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Abstract
Theorem proving presents a significant chal-
lenge for large language models (LLMs) due
to the requirement for formal proofs to be rig-
orously checked by proof assistants, such as
Lean, eliminating any margin for error or hallu-
cination. While existing LLM-based theorem
provers attempt to operate autonomously, they
often struggle with novel and complex theo-
rems where human insights are essential. Lean
Copilot is a novel framework that integrates
LLM inference into the Lean proof assistant
environment. In this work, we benchmark per-
formance of several LLMs including general
and math-specific models for theorem proving
using the Lean Copilot framework. Our initial
investigation suggests that a general-purpose
large model like LLaMa-70B still has edge over
math-specific smaller models for the task under
consideration. We provide useful insights into
the performance of different LLMs we chose
for the task.

1 Introduction

As mathematical problems become increasingly in-
tricate, the task of formalizing and generating ver-
ifiable math proofs becomes proportionally more
challenging. The translation process from informal
theorems and proofs to a standardized, machine-
verifiable, formal language, requires much effort
and expertise from human mathematicians, cre-
ating a steep learning curve. This challenge has
raised great interest in the potential of using AI to
aid in the math formalization process, and more
generally in automated theorem proving(ATP). The
integration of AI, specifically large language mod-
els(LLMs), in math formalization and theorem
proving can not only accelerate the proof discovery
process, but can also enhance the reliability and
rigor of mathematical arguments by minimizing
human error.

While the ultimate goal may be to achieve fully
autonomous proof generation without human as-

sistance, current ATP systems based on language
models struggle when dealing with more complex
proof problems. Typically, these language models
employed for theorem proving come from larger
base models like BERT and GPT, then finetuned
on large amounts of mathematical text data such
as Mathlib(mathlib Community, 2020). This limi-
tation seen likely stems from the models’ lack of
flexibility when encountering mathematical areas
not adequately covered by their training data. To
address this inflexibility with autonomous proof
generation, there are Interactive Theorem Prov-
ing (ITP) systems where proof assistants- software
frameworks built for math formalization like Coq,
Isabelle, and Lean- are used in conjunction with hu-
man mathematicians in the proving process. This
integration allows for the aid of proof automation
tools with human intuition. The use of ITP system
proof assistants has become increasingly prevalent
for ensuring a level of rigor and standard in formal-
izing mathematical language.

Lean is one such popular proof assistant as well
as functional programming language for formaliz-
ing mathematics that supports ITP by offering a
framework for writing and verifying proofs. Lean
uses tactic style proving where proofs are gener-
ated step by step using tactics, or instructions used
to manipulate the current state of a proof to the
next state. From the start of a proof, users will con-
tinue the proof using the appropriate tactic based
on the user’s knowledge of the math problem and
tactics. While a powerful proof assistant for math-
ematicians, it still requires a great deal of effort
to find the ideal tactics. This is a common bar-
rier across all ITP systems; thus, the integration of
Large Language Models (LLMs) with proof assis-
tants was introduced to offer intuitive, automated
assistance in generating and verifying mathemati-
cal proofs. LLMs can automate tedious aspects of
proof writing, such as identifying relevant lemmas
and theorems and drawing from extensive math-
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ematical training data to uncover overlooked but
crucial insights.

However, despite the potential of LLMs, exist-
ing LLM-based provers cannot assist humans in
an interactive, seamless manner. Current LLM-
based systems are typically trained and evaluated
following machine learning standards that rely on
extracted datasets from an ITP’s codebase rather
than within the proof assistant itself. This discon-
nection results in models that, while effective in
a controlled environment, are difficult to integrate
into the practical workflows of proof assistants.
This gap between LLM training environments and
proof assistant usage highlights a critical need for
systems to bridge the two and enable more effective
human-AI collaboration in theorem proving.

Recently, the effort to combine proof assistant,
Lean, with LLMs was achieved through a new
framework LeanCopilot. LeanCopilot is an open-
source framework that supports users to bring in
pre-trained LLMs and use/build LLM-based proof
automation tools natively in Lean (Song et al.,
2024). This makes LLM-based proof automation
available in Lean and increasing accessibility in
math formalization. It is based on LeanDojo’s Re-
prover algorithm for tactic generation and can be
brought in as a package in Lean through an IDE
of choice (Yang et al., 2023). It is able to run
LLMs on most laptops without the need for GPUs,
a feature that increases accessibility for LLM-based
proof automation. While users can create their
own tools, LeanCopilot also comes with a suite
of built in proof automation tools. These tools
were built using CTranslate2’s C++ library for effi-
cient LLM inference with Transformer models, run-
ning it via Lean’s foreign function interface(FFI).
A more comprehensive review of these tools can
be found in following sections:

• suggest_tactics: Analyzes the current proof
state and recommends relevant tactics

• search_proof : Construct full proof for theo-
rem

• select_premises: Identifies relevant premises
for current proof goal

The performance of LLMs for theorem proving
tasks can vary widely depending on the complexity
of the proofs and the model architecture. Recent
research has demonstrated that while LLMs can
effectively automate portions of proof generation,

their success is highly contingent on the difficulty
of the mathematical problems being tackled and
the specific design of the model (Xin et al., 2024;
Song et al., 2024). This variability in performance
motivates our work to benchmark LLMs specifi-
cally in the context of ITP, as understanding these
models’ strengths and weaknesses is crucial for
improving their utility in automating mathematical
proof generation.

In our research, we utilize LeanCopilot’s abil-
ity to bring in LLMs to evaluate the performance
of various LLMs for theorem proving. LLMs
are commonly benchmarked for theorem proving
by testing how many theorems they can generate
proofs for. We evaluate the performance of LLMs
trained for math tasks, Pythia2.8b, Llemma7b,
LeanStarPlus7b, LeanStarCot7b, against general
LLMs, Llama3-70b and ByT5. We replicate the
experiments used to evaluate LeanCopilot’s built-
in proof automation tools but instead to bench-
mark LLMs for proof generation. We evaluate
the performance of these different LLMs for ITP
using LeanCopilot’s built-in proof automation tool,
suggest_tactics. This benchmarking will allow
us to evaluate how different LLMs perform in as-
sisting with theorem proving tasks across a selec-
tion of proof problems sourced from the Mathemat-
ics in Lean textbook. By systematically evaluating
different LLMs, we aim to identify key factors that
contribute to successful proof generation and high-
light areas where further advancements are needed.

2 Related Works

The roots of ITP lie in the broader field of auto-
mated reasoning, which emerged as a distinct area
of study in the mid-20th century. While ATP sys-
tems aimed to fully automate the process of deriv-
ing proofs, early researchers recognized the limi-
tations of these systems, particularly in handling
complex, domain-specific proofs that required a
deeper level of human intuition and insight.

The inception of ITP was driven by the need to
integrate human expertise into the proof construc-
tion process, allowing for a relationship between
automated tools and human mathematicians. One
of the earliest milestones in this direction was the
development of the LCF (Logic for Computable
Functions) theorem prover by Robin Milner in the
1970s (Milner, 1972). LCF introduced a novel ap-
proach that combined a small trusted kernel, which
ensured the soundness of proofs, with a flexible
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and extensible user interface that allowed human
interaction. The LCF approach set a precedent for
future ITP systems by emphasizing the importance
of human oversight in the verification process.

The 1980s and 1990s saw the emergence of some
of the most influential ITP systems, notably Coq
and Isabelle. These systems were built on the foun-
dational ideas of the LCF approach but introduced
significant innovations that expanded the scope and
applicability of ITP.

Coq, developed by Thierry Coquand and Gérard
Huet, was based on the Calculus of Inductive Con-
structions (CIC), a powerful type theory that en-
abled the formalization of a wide range of mathe-
matical concepts (Coquand and Huet, 1988). Coq’s
ability to handle inductive types and support con-
structive mathematics made it a versatile tool for
both theorem proving and the extraction of certified
programs. Coq’s interactive environment allowed
mathematicians to build proofs incrementally by
using a rich set of tactics to guide the proof pro-
cess while relying on the underlying formalism to
ensure correctness.

Isabelle, developed by Lawrence Paulson, took
a different approach by providing a generic frame-
work that could support multiple logics (Paulson,
1986). Isabelle’s most notable contribution was its
use of higher-order logic (HOL), which allowed for
the formalization of more complex mathematical
structures and proofs. Isabelle’s architecture was
designed to be highly modular, enabling users to
extend the system with custom proof strategies and
tactics. This flexibility made Isabelle particularly
popular in both academia and industry for formal
verification tasks.

As ITP systems matured, the focus shifted
towards enhancing their automation capabilities
while preserving the essential role of human in-
teraction. The concept of proof tactics, first intro-
duced in LCF, became central to this effort. Tactics
are commands that automate common proof steps,
allowing users to delegate routine tasks to the com-
puter prover while focusing on more challenging
aspects of the proof.

These developments set the stage for the cre-
ation and release of Lean, a modern proof assistant
developed by Leonardo de Moura and his team
at Microsoft Research (Moura and Ullrich, 2021).
First released in 2013, Lean was designed with a
focus on combining expressive power, automation,
and user-friendly interaction. It builds on ideas
from earlier systems but introduces several unique

features that distinguish it in the landscape of ITP
tools.

Lean is based on a version of dependent type
theory, similar to Coq, but it emphasizes a more
unified approach to proof automation and user inter-
action. This is exemplified by Lean’s tactic frame-
work, which allows users to construct proofs in-
crementally by applying tactics—commands that
automate specific proof steps. Lean’s programming
framework also enables users to write custom tac-
tics in the Lean language itself, making it highly
extensible and adaptable to different domains of
mathematics and computer science.

Lean’s integration of a tactic language is an evo-
lution of the earlier LCF and Coq systems, which
introduced tactics as a means of automating com-
mon proof steps. Lean’s tactic framework has been
further enhanced to support more sophisticated
proof strategies, making it an effective tool for both
novice users and expert mathematicians. This com-
bination of user interaction and automation makes
Lean a useful tool in the formalization of math-
ematics and the verification of complex systems,
enabling better integration of human expertise with
automated proof checking.

2.1 LeanCopilot
The creation of LeanCopilot opens a new avenue of
accessibility for mathematicians who hope to use
LLMs in their math formalization research.

Figure 1 provides a flowchart of the algo-
rithm used by LeanCopilot for selecting relevant
premises to generate tactics and full proofs. The
specific algorithm highlighted for premise selec-
tion is LeanDojo’s reprover algorithm which is
based on dense passage retrieval. It selects top
relevant premises from mathlib, a library of for-
malized math theorems, lemmas, and definitions
across various subjects of math and uses them
to generate tactics. This is the algorithm used
in suggest_tactics and by select_premises.
LeanCopilot’s search_proof is also based off Lean’s
rule-based proof search tool aesop. aesop imple-
ments a tree-based search over a user-defined set
of proof rules to generate the full proof (Limperg
and From, 2023). However, because the proof
rule search space is predefined by the user, aesop
lacks flexibility considering it depends heavily how
advantageous the rule set is. Every proof goal
in the process uses the same predefined rule set
even though different goals may call for differ-
ent rules. search_proof adds to aesop by using
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Figure 1: Flowchart of LeanCopilot proof generation algorithm used in suggest_tactics, select_premises,
and search_proof

suggest_tactics to generate goal-dependent tac-
tics for every goal thus making the rule set cus-
tom to each proof goal. In LeanCopilot’s evalua-
tions, search_proof outperformed aesop for both
autonomously generating proofs and when intere-
acting with human users. In our experiments to
benchmark LLMs, we will be swapping out the lan-
guage model used to generate the tactics as seen in
1. LeanCopilot uses the language model ByT5 as
its base model for its proof automation tools unless
another LLM is specififed by the user.

However even with the introduction of Lean-
copilot, there is a lack of recorded evaluation of the
capabilities of LLMs for ITP systems. We aim to
bridge this gap by benchmarking LLMs to further
realize how we may improve models for theorem
proving. The ongoing integration of Lean with
other tools and platforms, along with the poten-
tial of LLMs to enhance automation, suggests a
promising future for Lean in the broader landscape
of theorem proving.

3 Methodology

This section outlines our approach for benchmark-
ing the capabilities of different LLMs, both math-
specific and general LLMs, in assisting with theo-
rem proving using LeanCopilot. We replicate the
benchmarking experiments used to evaluate the

proof-automation tools in LeanCopilot, but instead
to benchmark different LLMs for proof genera-
tion. In their experiments the authors (Song et al.,
2024) evaluated LeanCopilot’s suggest_tactics
and search_proof against preexisting lean proof
automation tool aesop. Currently, LeanCopilot
doesn’t support bringing in different LLMs for their
tools search_proof and select_premise, thus
we will only benchmark using suggest_tactics.

We benchmark the following LLMs:

1. ByT5: Based on the T5 (Text-to-Text Trans-
fer Transformer) architecture, specifically the
T5-Small variant, which has 60 million pa-
rameters (Xue et al., 2021). It operates on
byte-level inputs, eliminating the need for to-
kenization and making it effective for han-
dling diverse and irregular text formats. In
LeanCopilot, ByT5 serves as the foundational
model, providing capabilities for generating
and manipulating formal mathematical proofs.

2. Pythia-2.8b: This model is a specialized
version of the Pythia language models, fine-
tuned on the Leandojo dataset (Song et al.,
2024), which consists of a curated collection
of formalized mathematics in Lean. With 2.8
billion parameters, it is designed to excel in
theorem proving tasks within the Lean frame-
work. The fine-tuning on Leandojo enhances
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the model’s ability to generate contextually
accurate proof steps and better understand the
nuances of mathematical formalization, mak-
ing it a valuable tool for formalizing and veri-
fying mathematical proofs in Lean.

3. Llama-3 70b: LLama-3 (Large Lan-
guage Model for AI) is a highly advanced
transformer-based model containing 70 bil-
lion parameters (et al., 2024). Its substantial
parameter count allows it to capture intricate
patterns in language, making it highly effec-
tive for complex reasoning tasks, including
formal theorem proving. As one of the larger
models in our study, LLama-3 70B provides a
benchmark for evaluating the performance of
large-scale general language models in formal
mathematics.

4. Llemma7b: Llemma7b is a mid-sized lan-
guage model with 7 billion parameters, opti-
mized for balancing computational efficiency
with performance (Azerbayev et al., 2024).
While not as large as LLa-ma3 70b, it offers
significant capabilities in understanding and
generating mathematical proofs. Its reduced
size allows for more accessible deployment
in resource-constrained environments, with-
out compromising on the quality of theorem
proving assistance.

5. LeanStarPlus7b: Lean-STaR is a frame-
work designed to enhance language mod-
els in ATP by integrating informal reason-
ing with formal proof steps (Lin et al.,
2024). Building on the Self-Taught Reasoner
(STaR) framework (Zelikman et al., 2022),
Lean-STaR introduces the concept of gen-
erating "thoughts"—natural language ratio-
nales—prior to each tactic. It operates in
two phases: first, retrospective thoughts are
generated by analyzing human-written proofs
from Mathlib, creating a thought-augmented
dataset; second, this data is used to fine-tune
a tactic predictor model, which is further opti-
mized through expert iteration. This approach
significantly improves theorem-proving capa-
bilities, as demonstrated on the miniF2F-test
benchmark, where Lean-STaR achieves state-
of-the-art results, surpassing previous models
in pass rates.

6. LeanCotPlus7b: LeanCotPlus is an exten-

sion of the LeanCot model, optimized for im-
proved interaction with the Lean proof assis-
tant. This model builds upon LeanCot’s foun-
dational capabilities with additional enhance-
ments aimed at increasing its effectiveness in
theorem proving and proof automation. Lean-
CotPlus incorporates advanced techniques for
better understanding and generating mathe-
matical proofs.

We use the "Mathematics in Lean" textbook as
our benchmarking data (Avigad et al., 2021). The
textbook covers the math formalization process
through various topics in math such as topology
and logic in the Lean language. We randomly se-
lected 50 proof problems in the textbook and eval-
uate how well each LLM performed at generat-
ing the full proof of each problem. Proof prob-
lems in the textbook contain "ground-truth" tactics
that kick start each proof. Following the Lean-
Copilot experiment procedure, we will enter each
ground-truth tactic one by one. After entering each
tactic, we will prompt Lean with either aesop,
suggest_tactics, or search_proof to attempt to
solve the remaining proof goals. We will record the
number of tactics the user had to input as prompts
before the tool successfully completes the proof.
The list of generated, suggested tactics is ranked
top to bottom by likelihood of solving the proof.
We choose the top tactic to input to eliminate hu-
man bias. For suggest_tactics, we consider the
proof complete when in the list of suggested tactics,
there exists a tactic that solves the current goal.

Figure 2: Ground truth proof for proving there are in-
finitely many primes from Mathematics in Lean Text-
book. The proof is purposefully not completed as an
exercise for users to fill in each sorry with remaining
tactics.

As an example of how a proof from the text-
book looks, figure 2 shows the proof there exists
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infinitely many prime numbers in Lean. The the-
orem asserts that for any natural number n, there
exists a prime number p such that p > n. Then
the intro tactic introduces the variable n into the
proof context. This sets the stage for proving the
existence of a prime number greater than n. Next
we establish that 2 ≤ (n+ 1)! + 1. The factorial
function grows rapidly, so adding 1 ensures that
the result is greater than 1 and thus has a prime
factor. The rcases tactic is used to deconstruct
the result of the exists_prime_factor theorem,
which guarantees the existence of a prime factor p
of (n+ 1)! + 1. Here, pp asserts that p is prime,
and pdvd asserts that p divides (n+ 1)! + 1. The
refine’ tactic is used to fill in part of the goal,
specifically stating that p is the desired prime num-
ber and that p > n needs to be shown. To prove
p > n, we use a proof by contradiction. The
by_contra tactic assumes the opposite, p ≤ n,
and the push_neg tactic simplifies this assumption.
If p divides both (n+ 1)! and (n+ 1)! + 1, then
it must divide their difference, which is 1. But no
prime number can divide 1, leading to a contradic-
tion. This final contradiction establishes that p must
be greater than n. The sorry placeholders repre-
sent steps where detailed proofs need to be filled
in to . The tactics that exist already in the proof,
are considered our "ground truth tactics". For our
experiments, each sorry is considered a problem
where we replace sorry with suggest_tactics.

4 Datasets on which the LLMs under
consideration were trained

In this section, we discuss the datasets on which the
models were trained to get an idea of their internal
knowledge base.

4.1 ByT5

ByT5, the base model used in LeanCopilot, was
initially trained on a multilingual corpus covering
a broad spectrum of languages and domains. For
the theorem proving tasks, it was fine-tuned on
formal mathematics datasets, including those from
Mathlib, to enhance its performance in proof
generation.

4.2 Pythia2.8b

The Pythia model suite was trained on the Pile
dataset, a comprehensive collection of English-
language texts specifically designed for large-scale

language model training (Gao et al., 2020). The
Pile is highly regarded in the machine learning
community because it is openly accessible,
performs well across various tasks.

4.3 Llama3 70b

The Llama3 (et al., 2024) model was trained us-
ing a curated dataset from various sources, with
data up to the end of 2023. This dataset underwent
extensive cleaning and de-duplication processes
to ensure high-quality tokens, focusing on remov-
ing personally identifiable information (PII) and
unsafe content. The web data, which formed a sig-
nificant part of the dataset, was processed using
custom parsers to extract clean and relevant text
while preserving the structure of mathematical and
code content. The data mix for Llama3 was metic-
ulously determined through experiments, resulting
in a composition of 50% general knowledge, 25%
mathematical and reasoning, 17% code, and 8%
multilingual tokens, ensuring a balanced and com-
prehensive pre-training corpus.

4.4 Llemma7b

The Llemma7b model was trained on the Proof-
Pile-2, a 55-billion-token dataset that combines
scientific papers, web data rich in mathematical
content, and mathematical code (Azerbayev et al.,
2023). The dataset includes the AlgebraicStack, an
11-billion-token collection of source code from 17
languages, which emphasizes numerical, symbolic,
and formal mathematics. Additionally, the train-
ing utilized OpenWebMath (Paster et al., 2024), a
15-billion-token dataset of mathematically focused
web pages, and the ArXiv subset from the Red-
Pajama dataset (Computer, 2023), contributing 29
billion tokens of scientific papers. The final data
mix was heavily skewed towards mathematical and
scientific content, with 95% coming from Proof-
Pile-2 and small portions from general domain data
and GitHub repositories.

4.5 LeanStarPlus7b & LeanCotPlus7b

Both models were trained and evaluated using
datasets specifically curated from Lean’s Mathlib
(mathlib Community, 2020), the largest collection
of formalized mathematics in the Lean theorem
prover. Additionally, miniF2F, a standard bench-
mark in the formal verification community, was
used to evaluate the models’ performance (Zheng
et al., 2022). This dataset contains a diverse set of
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formalized theorems that challenge the models’
ability to generalize across different mathematical
domains.

5 Results & Discussion

In this section, we will detail the results of our
experiments with the Mathematics in Lean text-
book problems. Fifty (50) proof problems were
randomly selected from the textbook for our ex-
periments. As a reminder, for suggest_tactics,
since the list of tactics are ranked from most likely
to complete proof to least likely, we select the first
tactic in the list of generated tactics as our input to
the proof. In the following Figures, we exemplify
the solution with one problem from the textbook.
This example problem is to prove the product of
an even number with any natural number will be
an even number. This problem is straightforward
for most with a math background, thus is a good
example to understand the results produced by dif-
ferent models. We observe similar behaviour with
our selected test-set.

5.1 ByT5

The results for ByT5 are shown in Figures 3 and 4.
In Figure 3 we have the list of generated tactics for
the first tactic. The majority of tactics from the list
are some variant of the intro tactic aside from the
tactics norm _num, which is used to perform numer-
ical simplifications and arithmetic reasoning, and
simp [even_mul], which applies simplification
rules specifically related to the property of even
multiplication. ByT5 is the only model where the
tactic simp_all was used after an intro tactic. In
this case, it led to the immeadiate resolution of the
proof since the tactic applies a broad set of simpli-
fication rules. While efficient, this may highlight a
limitation of highlevel automation where the rules
are not explicitly revealed.

5.2 LeanCotPlus7b & LeanStarPlus7b

Both LeanCoTPlus7b and LeanStarPlus7b gener-
ated the same full proof script as seen in Figures 5
and 6. This script starts with introducing the vari-
ables m, n, and the hypothesis h, then applies case
analysis on h, and then simplifies the goal using the
provided hypothesis and basic arithmetic. This sug-
gests a high level of consistency in how these mod-
els approach proof generation for this of theorem.
LeanCoTPlus7b and LeanStarPlus7b are indeed

Figure 3: First list of generated tactics from
suggest_tactics from base model ByT5. Chose first
listed tactic intro m n h which introduces variables m
and n as natural numbers and h as hypothesis that n is
even.

Figure 4: Left: Remaining subgoals after inputting
intro m n h as the first tactic for ByT5 test. Suggests
the renaming of m, n, and h to mt, nt, and at respec-
tively. Remaining goal is to show mt *nt is even. Right:
Suggested list of tactics by ByT5 after first inputted tac-
tic; chose simp_all as the tactic which simplifies the
current proof state, resulting in no further goals.

related models, both derived from the Lean ecosys-
tem, which implies that they share foundational
techniques and architectures for theorem proving.
It is important to highlight, that both models gave
the full proof of the theorem, even though it was
prompted with suggest_tactics. This showcases
their ability to generate full proofs, however this is
a limitation for users who want to select their own
tactic and perform ITP.

Figure 5: Generated list of tactics by LeanCotPlus7b

5.3 Pythia2.8b

In this experiment, Pythia2,8b generates long,
broad lists of tactics at each step. This can be seen
as advantageous as it may suggest various proof
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Figure 6: Generated list of tactics by LeanStarPlus7b

directions. This may also suggest that users will
need a higher level of mathematical understanding
to sift through all the suggested tactics in order to
select one.

Figure 7: Top: Generated list of tactics by pythia2.8b.
Bottom: Remaining subgoal after iniserting tactic into
m n hmn. Tactic introduces natural number variables
m and n and hypothesis hmn, which asserts n is even.
Remaining subgoal is to prove m*n is even.

5.4 Llemma7b
Llemma7b adopts a methodical approach
to proving the theorem, utilizing the
tactics even_iff_two_dvd and exact
dvd_mul_of_dvd_left h m as seen by Fig-
ures 9 and 10. The tactic even_iff_two_dvd
translates the hypothesis into a form that as-
serts divisibility by 2, aligning with a common
mathematical technique where the evenness of
a number is proven by showing divisibility by
2. The use of tactic dvd_mul_of_dvd_left then
applies this divisibility to the product of two
numbers, completing the proof. This approach
reflects a strategy often employed by human
mathematicians, highlighting Llemma7b’s capa-
bility to generate proofs that mirror traditional

Figure 8: Left: Generated list of tactics for the second
proof tactic by Pythia2.8b. Right: Remaining subgoal
after inserting tactic rw [mul_comm] and suggested tac-
tics for that goal.

mathematical reasoning. In contrast to the other
models, which provided a broad list of tactics
or rely on high-level automation, Llemma7b’s
proof method is distinctive in its explicit use of
fundamental mathematical properties.

Figure 9: First and second set of tactics generated by
Llemma7b

5.5 Llama-3 70b

As seen in Figure 11, the proof Llama-3 70b gave
involves introducing the variables and hypothesis,
deconstructing the hypothesis that n is even into
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Figure 10: Third and fourth set of tactics generated by
Llemma7b

the form 2 * k, and then rewriting the expression
for m * n to demonstrate that it is indeed even by
using known properties of even numbers. The 70
B model gave us not just one tactic but multiple
tactics at a time with a majority of the steps being
part of the solution. Similar to Llemma7b, it also
included as part of the tactic, what the next proof
goal would be for each tactic.

Figure 11: Progression of generated tactics by Llama-3
70b for each step of the proof from left to right

Based on our experiment results as seen in Table
1, LeanCopilot and Llama-3 70B demonstrated the
highest levels of autonomy, achieving 100% au-
tonomous proof generation with no human-entered
tactics required. Pythia 2.8B also performed well,
with 90% of proofs generated autonomously and an
average of 0.2 human-entered tactics. LeanStarPlus
7B and LeanCoTPlus 7B both achieved 60% auton-
omy, with an average of 0.7 human-entered tactics,
while Llemma 7B lagged behind with only 30%
autonomous proofs and an average of 0.9 human-
entered tactics. These results suggest that Lean-
Copilot and Llama-3 70B are particularly effec-
tive in fully automating proof generation, while
Llemma 7B may require more human intervention

in the proof process.

6 Observations

Our findings highlight the capabilities and diver-
sity of modern language models in generating
proofs within the Lean proof assistant environ-
ment. All models showcased capabilities for proof
generation, but as can be seen by LeanCotPlus7b,
LeanStarPlus7b, and Llama3-70b in our qualita-
tive exmaple, some models have difficulty with
just tactic generation as opposed to proof genera-
tion. Additionally, the tendency of some models,
such as ByT5, to rely heavily on broad automation
tactics like simp_all can obscure the underlying
reasoning processes and limit interpretability. Inter-
estingly, while Llemma7b produced very intuitive
results in our example problem, in our experiments,
it was the only model that lagged behind in both
autonomous proof and tactic generation. These
results highlight the need for future research to de-
velop models that strike a better balance between
automation and mathematical transparency.

7 Conclusions

In this study, we explored the integration of Large
Language Models (LLMs) with Interactive Theo-
rem Proving (ITP) systems, specifically focusing
on Lean and the Lean Copilot framework. Our
experiments aimed to assess the effectiveness of
various LLMs in generating and automating mathe-
matical proofs, highlighting both the potential and
limitations of current technologies.

Our results demonstrated that different LLMs
exhibit varied capabilities in assisting with theo-
rem proving tasks. As shown in our qualitative
example, most models appeared to rely heavily on
automation, generating long lists of tactics and/or
employing tactics which were vague in mathemat-
ical reasoning. Our future work would focus on
benchmarking advanced models on complex theo-
rems, developing models that enhance both automa-
tion and transparency, enabling more robust and
accessible proof generation tools. Our research re-
inforces the promise of integrating AI with formal
proof systems while highlighting areas for contin-
ued development.
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LLMs Avg. # human entered
tactics

% autonomous proof Avg. % automated tac-
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Table 1: Results from suggest_tactics integrated with various LLMs.
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