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Abstract

Since the advent of CRISPR-Cas9, a ground-
breaking gene-editing technology that enables
precise genomic modifications via a short RNA
guide sequence, there has been a marked in-
crease in the accessibility and application of
this technology across various fields. The
success of CRISPR-Cas9 has spurred further
investment and led to the discovery of addi-
tional CRISPR systems, including CRISPR-
Cas13. Distinct from Cas9, which targets
DNA, Cas13 targets RNA, offering unique ad-
vantages for gene modulation. We focus on
Cas13d, a variant known for its collateral activ-
ity where it non-specifically cleaves adjacent
RNA molecules upon activation, a feature crit-
ical to its function. We introduce DeepFM-
Crispr, a novel deep learning model developed
to predict the on-target efficiency and evaluate
the off-target effects of Cas13d. This model
harnesses a large language model to generate
comprehensive representations rich in evolu-
tionary and structural data, thereby enhancing
predictions of RNA secondary structures and
overall sgRNA efficacy. A transformer-based
architecture processes these inputs to produce
a predictive efficacy score. Comparative exper-
iments show that DeepFM-Crispr not only sur-
passes traditional models but also outperforms
recent state-of-the-art deep learning methods
in terms of prediction accuracy and reliability.

1 Introduction

The discovery and development of Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR) and their associated Cas proteins have
revolutionized biotechnology and biomedical sci-
ences. Initially identified within the adap-
tive immune systems of bacteria and archaea,
these CRISPR-Cas systems have been ingeniously
adapted for genome editing. They exploit their
inherent ability to make precise and efficient ge-
netic alterations (Doudna and Charpentier, 2013;

Jinek et al., 2012). The CRISPR locus is charac-
terized by repetitive base sequences interspersed
with spacers derived from past viral and plasmid in-
vaders. This locus is transcribed into a long precur-
sor CRISPR RNA (pre-crRNA), which is then pro-
cessed into mature guide RNAs (crRNAs). These
crRNAs direct the Cas proteins to cleave comple-
mentary sequences in invading genetic elements,
thereby providing adaptive immunity. Among the
various CRISPR-Cas systems, CRISPR-Cas9 of
Type II has attracted significant attention due to its
simplicity and versatility in genome editing. It em-
ploys a dual-RNA structure consisting of crRNA
and trans-activating crRNA (tracrRNA), guiding
the Cas9 enzyme to specific DNA targets (Jinek
et al., 2012; Doudna and Charpentier, 2014).

CRISPR-Cas12, a Type V system, offers unique
advantages over Cas9 by utilizing a single RNA
for both CRISPR array processing and target DNA
recognition. This system cleaves target DNA in a
staggered manner, increasing the diversity of ed-
itable sequences and enhancing the potential for
multiplex editing. Another innovative addition to
the CRISPR toolkit is CRISPR-Cas13, which tar-
gets RNA instead of DNA, facilitating not only
gene modulation without altering the genome but
also enabling novel diagnostic applications due to
its collateral cleavage activity upon target recog-
nition (Gootenberg et al., 2017). The specificity
and efficacy of guide RNA design are crucial for
maximizing on-target actions and minimizing off-
target effects, which are particularly concerning
with Cas9’s potential DNA off-targets and Cas13’s
RNA-targeted collateral activity (Abudayyeh et al.,
2017). CRISPR screens, including those for viabil-
ity and FACS-sorting, have become instrumental
in evaluating the effectiveness and specificity of
CRISPR systems. These screens employ a multi-
tude of guide RNAs to ascertain factors influencing
knockout efficiency and to refine guide designs
to balance activity and specificity (Doench et al.,
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2016). Unlike tools focused solely on CRISPR-
Cas9, those designed for Cas13 must account for
RNA secondary structures, significantly impacting
guide RNA efficiency (Wessels et al., 2020).

To address challenges related to data scarcity and
the complexity of integrating structural and evolu-
tionary information, we introduce DeepFM-Crispr.
This model leverages advanced transformer-based
architectures and large language models, which
have revolutionized fields ranging from natural lan-
guage processing (Liu et al., 2023a, 2024, 2023b;
Li et al., 2023) to bioinformatics due to their abil-
ity to handle large datasets and extract deep, con-
textual relationships within data. Our transformer
(Vaswani et al., 2017) model processes a wide array
of inputs, offering a predictive score for on-target
efficiency based on enriched representations of evo-
lutionary and structural insights. Validated against
a dataset of 22,599 Cas13d sgRNAs (Cheng et al.,
2023), DeepFM-Cas13d outperforms conventional
machine learning methods and existing prediction
tools, particularly in targeting non-coding RNAs
(Shmakov et al., 2015).

2 Method

Our methodology integrates multiple deep learn-
ing architectures and data representation techniques
to predict the on-target efficiency of sgRNAs based
on their sequences and secondary structures. This
approach harnesses the power of large language
models, convolutional networks, and transformer
encoders to process and analyze the complex bio-
logical data. The details of DeepFM-Crispr shown
in Fig. 1.

2.1 Data Representation

sgRNA sequences were encoded using a one-hot
encoding scheme, where each nucleotide (A, C,
G, U) is represented by a binary vector. The vec-
tors for adenine (A), cyto- sine (C), guanine (G),
and uracil (U) are respectively [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1]. This methodological
choice ensures a uniform input structure for all
sequences, facilitating the computational handling
of genetic data across diverse sgRNA samples. By
transforming the nucleotide sequences into binary
vectors, the model can effectively learn from the po-
sitional and compositional nuances of the sgRNA
without the biases and variances inherent in raw
textual data.

The one-hot encoded vectors serve as the pri-

mary input for the subsequent layers of the ma-
chine learning architecture. They are fed into a
series of deep learning models that are designed
to extract and learn complex patterns and relation-
ships. This initial representation forms the basis
for all further transformations and feature extrac-
tions performed by the RNA large language model
and other components of our predictive framework.
The standardized format ensures that each sgRNA
is represented in a consistent manner, allowing the
deep learning algorithms to focus on learning the
underlying biological mechanisms rather than ad-
justing to variations in data format.

2.2 RNA Large Language Model

RNA-FM (Chen et al., 2022) is designed as an
end-to-end deep learning model that efficiently
extracts latent features from RNA sequences and
leverages an attention mechanism to capture con-
textual information. It features 12 layers of
transformer-based bidirectional encoder blocks
equipped with positional embeddings. This struc-
ture allows RNA-FM to accurately discern the po-
sitional context of ncRNA sequences. The encoder
within RNA-FM utilizes self-attention and feedfor-
ward connections to generate complex representa-
tions that integrate context from every sequence
position. Furthermore, the model is adept at con-
structing pairwise interactions between nucleotides,
enhancing its ability to depict direct nucleotide-
nucleotide interactions and providing a nuanced
representation of the input data. These capabili-
ties make RNA-FM particularly effective in cor-
relating internal representations with RNA sec-
ondary structures. As a result, the model produces
high-dimensional embeddings for each sgRNA
(Abudayyeh et al., 2017), encapsulating both lo-
cal and global contextual relationships within the
sequences. These embeddings are subsequently uti-
lized as inputs for further predictive modeling to de-
termine sgRNA efficacy scores, and also serve as in-
puts for a secondary structure prediction model, en-
hancing our understanding and prediction of RNA
structural configurations.

2.3 Secondary Structure Prediction

The secondary structure of each sgRNA was pre-
dicted using a ResNet model (Krishna et al., 2017)
that processes inputs derived from the RNA-FM
representations. This model outputs a probability
matrix where each nucleotide position is labeled
as either paired (1) or unpaired (0). These binary
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Figure 1: The Overall Architecture of DeepFM-Crispr.

sequences are then further processed using a deep
convolutional network based on the ResNet archi-
tecture, which is particularly adept at capturing spa-
tial hierarchies in structured data (He et al., 2016).
This approach allows for effective integration of
contextual and spatial information, enhancing the
accuracy of the secondary structure predictions for
the sgRNAs.

2.4 Feature Integration and Processing

The embeddings from the RNA-FM and the
outputs from the secondary structure prediction
ResNet are integrated and further processed to re-
fine the feature representation.

DenseNet architecture. Seq-DenseNet (Wei
et al., 2021) and SS-DenseNet (Zhao et al., 2021),
was employed to process integrated features. This
architecture benefits from dense connectivity pat-
terns that improve the flow of information and gra-
dients throughout the network, aiding in the robust
learning of features from both sequence and struc-
tural data (Wei et al., 2021). Positional Encoding
Transformer Encoder. The output embedding of
RNA-FM are passed through a positional encoding
transformer encoder. This module incorporates po-
sitional encodings to the input features to maintain
the sequence order, which is crucial for capturing
dependencies that are positionally distant in the
sgRNA sequence. The transformer encoder refines
these features by focusing on the most relevant
parts of the sgRNA for efficacy prediction (Huang
et al., 2017).

2.5 Efficacy Prediction

The final prediction of sgRNA efficacy is per-
formed using a multi-layer perceptron (MLP)
(Riedmiller and Lernen, 2014). The MLP com-

prises an input layer that receives the processed
features, several hidden layers with non-linear acti-
vation functions to capture complex relationships
in the data, and an output layer that produces a
continuous efficacy score for each sgRNA.

3 Dataset

To explore the efficiency and specificity of the
Cas13d system, we performed a comprehensive
two-vector CRISPR/Cas13d proliferation screen
on the A375 melanoma cell line, guided by pro-
tocols from a well-established benchmark study
(Cheng et al., 2023). The screening library con-
sisted of 10,830 sgRNAs targeting a total of 426
genes, including 192 protein-coding genes and 234
long non-coding RNAs (lncRNAs). This selection
included 94 essential genes and 14 non-essential
genes, previously identified in A375 cells via RNA
interference and CRISPR-based screenings. Our
library design aimed to robustly model the efficien-
cies of Cas13d sgRNAs, allocating approximately
30 guides per gene. This strategy was intended
to overcome potential biases observed in previ-
ous tiling screens that were limited to only 2-3
genes, thereby enhancing the representativity of
the sgRNA library.

Following the screening, sgRNA abundance was
quantitatively assessed through high-throughput
sequencing. Data analysis was conducted using
the MAGeCK algorithm to evaluate sgRNA per-
formance and gene essentiality. Quality control
checks were stringent, with an average of 5.6 mil-
lion reads per sample, ensuring reliable data cap-
ture. Each guide was represented by over 300
reads, with fewer than four guides missing per
gene—indicative of comprehensive coverage. The
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Figure 2: Comparison Result between DeepFM-Crispr with baselines.

Gini coefficient was maintained below 0.06, con-
firming a uniform and non-biased distribution of
guide representation across the dataset. Most no-
tably, 20 of the essential genes demonstrated signifi-
cant depletion, with a false discovery rate (FDR) of
less than 10%, underscoring the screening’s effec-
tiveness in identifying gene functionalities crucial
for cell proliferation in melanoma.

4 Experiments

4.1 Implementation
Batch Size: The model was trained with a batch

size of 128 sgRNAs to balance computational effi-
ciency with memory constraints.

Learning Rate: We employed a learning rate of
1e-4, utilizing a learning rate scheduler to decrease
the rate by 10% every two epochs to stabilize train-
ing as it progressed.

Epochs: The model was trained for up to 50
epochs, with early stopping implemented if the
validation loss did not improve for 5 consecutive
epochs. This approach prevented overfitting and
ensured that the model generalized well to new,

unseen data.

Optimizer: The Adam optimizer (Zhang, 2018)
was used for its adaptive learning rate capabilities,
which helped in converging faster and more effec-
tively than traditional stochastic gradient descent.
L2 regularization (Cortes et al., 2012) was applied
to all trainable parameters to prevent overfitting
by penalizing large weights. A dropout rate of 0.1
was used in each transformer layer to randomly
omit a subset of features during training, further
helping the model to generalize better. To handle
the varying lengths of sgRNA sequences, attention
masks were used within the transformer layers to
ignore padding tokens during the self-attention cal-
culations.

Baseline Methods: In the evaluation of guide
RNA (gRNA) efficacy prediction, the DeepFM-
Crispr model was compared against several estab-
lished machine learning methods, including Ran-
dom Forest (RF) (Rigatti, 2017), XGBoost (XGB)
(Chen and Guestrin, 2016), Support Vector Ma-
chine (SVM) (Suthaharan and Suthaharan, 2016),
AdaBoost (ADA) (Ying et al., 2013), and a recent
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deep learning method, DeepCas13 (Wessels et al.,
2020).

4.2 Evaluation
Conventional machine learning algorithms were

applied using 185 curated features consistent with
previous studies. Each model was trained and val-
idated on three publicly available Cas13d tiling
screening datasets, encompassing a total of 5,726
sgRNAs, employing five-fold cross-validation to
ensure robustness. The evaluation of our models
focused on two primary metrics: (1) the predic-
tion accuracy of sgRNA efficacy across the entire
dataset, and (2) the ability to classify sgRNAs into
efficient or non-efficient categories based on their
performance.

4.3 Result Discussion
Prediction Accuracy. The first metric of evalu-

ation was the coefficient of determination (R²) and
the Pearson correlation coefficient (PCC) between
the predicted efficacy scores and the actual log fold
changes (LFCs). DeepFM-Crispr demonstrated
superior performance in this regard, achieving a
higher R² value and a more pronounced negative
Pearson correlation. These results, illustrated in
Fig. 2, indicate that DeepFM-Crispr provides more
accurate predictions of sgRNA efficacy, aligning
closely with experimental outcomes.

Classification of sgRNA Efficiency. For the
classification task, sgRNAs were categorized based
on their LFC values; those with LFC smaller than
-0.5 were classified as positive (efficient), and all
others as negative (non-efficient). The effective-
ness of each model in this binary classification was
measured by the area under the Receiver Operating
Characteristic (ROC) curve (AUC) and the area
under the precision-recall curve (AUPR). DeepFM-
Crispr not only matched the top AUC performance
of DeepCas13 at an average of 0.88 across five-
fold cross-validation (as shown in Fig. 2) but also
significantly outperformed other methods, which
exhibited AUC scores ranging from 0.78 to 0.85.

Furthermore, DeepFM-Crispr excelled in the
precision-recall metric, achieving an average
AUPR score of 0.69. This score was notably higher
than those achieved by DeepCas13 and other tra-
ditional approaches, which varied between 0.45
and 0.58 (depicted in Fig. 2). This indicates a
stronger capability of DeepFM-Crispr to differen-
tiate between strong and weak knockdown effects.
The high AUPR score is particularly significant in

the context of the dataset’s imbalance, where pos-
itive samples are less frequent, underscoring the
model’s robustness in distinguishing positives from
negatives.

Implications for Gene Editing Applications.
These findings underscore the enhanced predictive
accuracy of DeepFM-Crispr in assessing sgRNA
efficacy, affirming its utility in gene editing applica-
tions where precise guide RNA selection is crucial.
The ability of DeepFM-Crispr to accurately predict
and classify sgRNA efficiency supports its poten-
tial as a valuable tool in optimizing CRISPR-based
gene editing. This is particularly in therapeutic con-
texts where the precision of genetic modification
can dictate treatment efficacy.

5 Related Work

The CRISPR-Cas systems (Doudna and Char-
pentier, 2013; Jinek et al., 2012) have revolu-
tionized the field of genetic engineering, offer-
ing unprecedented precision in gene editing (Jinek
et al., 2012; Doudna and Charpentier, 2014; Khalil,
2020). Since its inception, the CRISPR-Cas9 sys-
tem has been extensively studied and applied across
various biological contexts due to its ability to
make targeted DNA modifications. However, the
discovery of CRISPR-Cas13 (Abudayyeh et al.,
2017), which targets RNA, has opened new av-
enues for gene modulation without altering the
DNA itself. Among the variants, Cas13d is par-
ticularly notable for its collateral activity, where it
cleaves nearby non-target RNA sequences upon ac-
tivation, offering potential for diagnostic as well as
therapeutic applications (Barrangou et al., 2007).

Recent advancements have leveraged computa-
tional models to enhance the predictability and ef-
ficiency of CRISPR systems. For instance, mod-
els like CRISPRpred-seq (Muhammad Rafid et al.,
2020) and DeepCas (Wessels et al., 2020) have uti-
lized traditional machine learning and deep learn-
ing techniques to predict sgRNA efficacy, primarily
focusing on CRISPR-Cas9. These models often
rely on sequence-based features and have shown
significant promise in reducing off-target effects
and enhancing on-target efficiency. However, the
unique mechanisms and RNA targeting properties
of Cas13d (Gupta et al., 2022) present distinct chal-
lenges and opportunities that these models are not
tailored to address.

DeepFM-Crispr introduces an innovative ap-
proach by integrating large language models and
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transformer-based architectures to specifically en-
hance the performance of CRISPR-Cas13d sys-
tems. This model surpasses traditional and recent
computational approaches by effectively capturing
and processing extensive evolutionary and struc-
tural information pertinent to RNA. The use of a
large language model allows DeepFM-Crispr to un-
derstand and predict the complex dynamics of RNA
interactions (Cheng et al., 2023), which are crucial
for achieving high precision in RNA-targeted gene
editing. Our model not only builds upon the exist-
ing body of knowledge but also sets a new bench-
mark for computational tools in the CRISPR field,
particularly for RNA-targeting systems. By focus-
ing on Cas13d, DeepFM-Crispr addresses a critical
gap in the existing tools, offering refined predic-
tions and insights that are vital for both research
and therapeutic applications.

6 Conclusion

The DeepFM-Crispr model has proven to be ex-
ceptionally versatile and robust, demonstrating not
only its efficacy with the Cas13d system but also
its potential applicability to other CRISPR-Cas sys-
tems. Leveraging advanced large language model
techniques, DeepFM-Crispr adeptly captures com-
plex genetic interactions and sequence nuances es-
sential for precise genome editing. The model’s
strength lies in its ability to integrate sophisticated
deep learning techniques with large-scale genomic
data, enabling it to surpass traditional models in
both predictive accuracy and operational efficiency.
This adaptability positions DeepFM-Crispr as a
valuable asset across a broad spectrum of CRISPR
technologies, potentially revolutionizing gene edit-
ing methodologies across diverse applications.

7 Future Work

Looking forward, our research will extend the
application of DeepFM-Crispr to other widely used
CRISPR systems (Barrangou and Doudna, 2016),
such as Cas9 and Cas12. These systems play cru-
cial roles in both basic research and clinical settings.
By tailoring DeepFM-Crispr to these platforms,
we aim to enhance the specificity and efficiency
of sgRNA design, thereby minimizing off-target
effects and optimizing therapeutic outcomes. Fu-
ture developments will also focus on refining the
model’s architecture to incorporate a more compre-
hensive range of genomic features and environmen-
tal factors, which are expected to further enhance

its predictive capabilities.
As CRISPR technology continues to evolve, the

integration of sophisticated computational models
like DeepFM-Crispr is poised to drive significant
advancements in the field of genetic engineering.
This synergy between cutting-edge biotechnology
and computational innovation opens new avenues
for medical research and treatment strategies, hold-
ing promise for transformative impacts on health-
care and disease management.
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