@inproceedings{abbasi-etal-2024-psycholex,
title = "{P}sycho{L}ex: Unveiling the Psychological Mind of Large Language Models",
author = "Abbasi, Mohammad Amin and
Mirnezami, Farnaz Sadat and
Naderi, Hassan",
editor = "Peled-Cohen, Lotem and
Calderon, Nitay and
Lissak, Shir and
Reichart, Roi",
booktitle = "Proceedings of the 1st Workshop on NLP for Science (NLP4Science)",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4science-1.4",
pages = "24--35",
abstract = "This paper explores the intersection of psychology and artificial intelligence through the development and evaluation of specialized Large Language Models (LLMs). We introduce PsychoLex , a suite of resources designed to enhance LLMs{'} proficiency in psychological tasks in both Persian and English. Key contributions include the PsychoLexQA dataset for instructional content and the PsychoLexEval dataset for rigorous evaluation of LLMs in complex psychological scenarios. Additionally, we present the PsychoLexLLaMA model, optimized specifically for psychological applications, demonstrating superior performance compared to general-purpose models. The findings underscore the potential of tailored LLMs for advancing psychological research and applications, while also highlighting areas for further refinement. This research offers a foundational step towards integrating LLMs into specialized psychological domains, with implications for future advancements in AI-driven psychological practice.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abbasi-etal-2024-psycholex">
<titleInfo>
<title>PsychoLex: Unveiling the Psychological Mind of Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Amin</namePart>
<namePart type="family">Abbasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farnaz</namePart>
<namePart type="given">Sadat</namePart>
<namePart type="family">Mirnezami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Naderi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for Science (NLP4Science)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lotem</namePart>
<namePart type="family">Peled-Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitay</namePart>
<namePart type="family">Calderon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shir</namePart>
<namePart type="family">Lissak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores the intersection of psychology and artificial intelligence through the development and evaluation of specialized Large Language Models (LLMs). We introduce PsychoLex , a suite of resources designed to enhance LLMs’ proficiency in psychological tasks in both Persian and English. Key contributions include the PsychoLexQA dataset for instructional content and the PsychoLexEval dataset for rigorous evaluation of LLMs in complex psychological scenarios. Additionally, we present the PsychoLexLLaMA model, optimized specifically for psychological applications, demonstrating superior performance compared to general-purpose models. The findings underscore the potential of tailored LLMs for advancing psychological research and applications, while also highlighting areas for further refinement. This research offers a foundational step towards integrating LLMs into specialized psychological domains, with implications for future advancements in AI-driven psychological practice.</abstract>
<identifier type="citekey">abbasi-etal-2024-psycholex</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4science-1.4</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>24</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PsychoLex: Unveiling the Psychological Mind of Large Language Models
%A Abbasi, Mohammad Amin
%A Mirnezami, Farnaz Sadat
%A Naderi, Hassan
%Y Peled-Cohen, Lotem
%Y Calderon, Nitay
%Y Lissak, Shir
%Y Reichart, Roi
%S Proceedings of the 1st Workshop on NLP for Science (NLP4Science)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F abbasi-etal-2024-psycholex
%X This paper explores the intersection of psychology and artificial intelligence through the development and evaluation of specialized Large Language Models (LLMs). We introduce PsychoLex , a suite of resources designed to enhance LLMs’ proficiency in psychological tasks in both Persian and English. Key contributions include the PsychoLexQA dataset for instructional content and the PsychoLexEval dataset for rigorous evaluation of LLMs in complex psychological scenarios. Additionally, we present the PsychoLexLLaMA model, optimized specifically for psychological applications, demonstrating superior performance compared to general-purpose models. The findings underscore the potential of tailored LLMs for advancing psychological research and applications, while also highlighting areas for further refinement. This research offers a foundational step towards integrating LLMs into specialized psychological domains, with implications for future advancements in AI-driven psychological practice.
%U https://aclanthology.org/2024.nlp4science-1.4
%P 24-35
Markdown (Informal)
[PsychoLex: Unveiling the Psychological Mind of Large Language Models](https://aclanthology.org/2024.nlp4science-1.4) (Abbasi et al., NLP4Science 2024)
ACL