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Introduction

We are excited to welcome you to the NLP4Science workshop, part of EMNLP 2024, taking place in
Miami, Florida, on November 16, 2024. This on-site workshop delves into an important frontier in
natural language processing (NLP): leveraging NLP to deepen our understanding of the human mind and
behavior.
In recent years, NLP and large language models (LLMs) have become pivotal tools in the scientific mo-
deling of the human mind and behavior, influencing fields such as social science, psychology, psychiatry,
healthcare, neuroscience, and behavioral economics. At NLP4Science, we will explore these advances
through keynote talks, an expert panel, and a poster session featuring papers accepted to the workshop.
Topics will include the principles of NLP-driven scientific modeling, methods for statistically robust
evaluation of NLP models, experimental designs for NLP-based scientific research, and more.
This year, we received over 40 submissions, each carefully reviewed by our program committee. We are
pleased to accept 22 papers, which will be presented as posters during the workshop. We extend our
gratitude to all authors for their contributions, and we look forward to seeing how this work will advance
our understanding of the human mind and behavior through NLP.
In addition to the poster session, we are honored to host several invited speakers who will present their
cutting-edge research, including Amit Sharma (Microsoft Research), Rita Goldstein (Mount Sinai), Ro-
ger Levy (MIT), and Hadas Raviv (Princeton University). We will also hold a panel session where experts
from multiple disciplines will discuss the future of NLP in scientific discovery. The panel, moderated by
Roi Reichart (Technion), will feature Elliot Ash (ETH Zurich), Lyle Ungar (University of Pennsylvania),
Diyi Yang (Stanford University), and Jekaterina Novikova (AI Risk and Vulnerability Alliance).
We would like to thank the organizing committee and workshop chairs, the authors for submitting their
outstanding work, the reviewers for their hard work, and, of course, the workshop participants.
We hope this workshop fosters fruitful discussions and collaborations that push the boundaries of NLP’s
potential as a critical tool for scientific modeling of the human mind and behavior.
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Keynote Talk
Teaching Causal Reasoning to Transformers

Amit Sharma
Microsoft Research, India

Sat, November 16, 2024 – Time: 09:00 – 09:45 –

Abstract: Large language models (LLMs) have demonstrated remarkable accuracy in identifying cause-
and-effect relationships across various scientific fields. However, their ability to reason over these re-
lationships remains inconsistent. In this work, we introduce an axiomatic approach to enhance causal
reasoning in transformer models. By training on synthetic demonstrations of causal axioms, we show
that even models with fewer than 100 million parameters can achieve reasoning capabilities comparable
to much larger models, such as Phi and GPT-4. This suggests that axiomatic training offers a new method
for imparting causal reasoning to LLMs, without the need for active interventions. Additionally, it may
help explain how models like GPT-4, which are trained solely on observational data, can exhibit seemin-
gly sophisticated reasoning.

Keynote Talk
Natural Language Processing of Spontaneous Speech in Drug

Addiction: A Brain Biomarker of Treatment Effects and a
Predictor of Outcomes

Rita Z. Goldstein
Icahn School of Medicine at Mount Sinai, USA
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Sat, November 16, 2024 – Time: 09:45 – 10:30 –

Abstract: Escalating morbidity and mortality with opioid and stimulant use disorders makes it impera-
tive to identify reliable and valid behavioral markers of brain function that change with treatment and
predict outcomes. A naturalistic approach targeting spontaneous speech can serve as a readily accessi-
ble behavioral marker of neural plasticity with treatment, amenable for analyses with innovative artificial
intelligence (AI), including natural language processing (NLP) approaches. Language, a ubiquitous, den-
se and measurable yet complex brain function that engages numerous higher-order executive functions
(including the prefrontal cortex, PFC), is a distinctively human medium to express emotions, thoughts,
and perceptions and to communicate. Concomitant with evidence for PFC recovery with treatment and
abstinence in people with heroin and cocaine use disorders, using NLP our results show the impact of 3-
months of treatment also on verbal movie-recall, further tracking the brain’s shared representation of this
drug-themed complex stimulus, and its change with time; in contrast to common lab-based tasks, movies
establish a dynamic narrative context, approximating real world processing by allowing a glimpse into
the way groups of individuals with common addiction related experiences collectively attribute salience
in their environment, addressing the social nature of drug use and recovery. Our results also show that
NLP of speech about the consequences of drug use or abstinence outperformed numerous other models
(including those incorporating drug use itself) as a predictor of 1-year outcomes, suggesting that hidden
predictors of longitudinal craving, withdrawal, abstinence and drug use are embedded in peoples’ ver-
bal outputs at baseline. The machine-learning community could only unlock the power of AI by first
painstakingly curating large-scale training datasets. Using rich data that can be collected at scale, here
we demonstrate a naturalistic ecologically valid approach to identify prognostic bio-markers of vulnera-
bility and resilience in drug addiction. These bio-markers could ultimately facilitate the identification
and design of neuroscience-informed empirically-based individually-tailored intervention and prevention
approaches, timely deployed to improve outcomes, optimize recovery and save lives in people with drug
addiction.

Keynote Talk
Cognitive Science of Language in the Era of Large Language

Models
Roger Levy

Department of Brain and Cognitive Sciences at MIT, USA

Sat, November 16, 2024 – Time: 13:00 – 13:45 –

Abstract: Large language models (LLMs) are the first human-created artifacts whose text processing
and generation capabilities seem to approach our own. But the hardware they run on is vastly different
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than ours, and the software implementing them probably is too. How, then, can we use LLMs to advance
the science of language in the human mind? In this talk I give examples of three key ways LLMs can
contribute to the cognitive science of language: they can help us place lower bounds on the learnability
of linguistic generalizations; they can help us reverse-engineer human language processing mechanisms;
and they can help us develop hypotheses for the interface between language and other cognitive mecha-
nisms.

Keynote Talk
The First 1000 Days - Harnessing Real-World Data to Model

the Complexity of Language Acquisition
Hadas Raviv

Princeton Neuroscience Institute, USA

Sat, November 16, 2024 – Time: 13:45 – 14:30 –

Abstract: Human motor, cognitive, and social skills undergo extraordinary development during life’s
first 1000 days (1kD). Babies are born helpless, equipped with minimal cognitive-motor skills, and must
rely on their caregivers to provide for their needs. However, within a few years, they walk, climb, talk,
and reason about the world. Despite the large body of research devoted to studying the first 1000 days,
our understanding of the developmental processes that shape children’s future outcomes is limited. One
of the biggest impediments to modeling human development is the lack of dense measurements of chil-
dren’s lives during their first few years of life. Until recently, capturing, managing, and analyzing large
longitudinal datasets containing the rich sensory input with which the child is immersed has been techno-
logically challenging.

Keynote Talk
The Role of NLP Interpretability in Advancing the Human

Mind and Social Science Research
Nitay Calderon

The Faculty of Data and Decision Sciences at the Technion, Israel
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Sat, November 16, 2024 – Time: 16:15 – 16:45 –

Abstract: The role of language in modern science goes far beyond its use as a tool for communicating
research, sharing knowledge, or exploring new ideas. Language is fundamental to understanding human
behavior, thoughts, and social development, serving as a gateway to comprehending the human mind. Gi-
ven this centrality, it is no surprise that recent advances in Natural Language Processing (NLP) and the
rise of Large Language Models (LLMs) have led researchers to leverage NLP for modeling scientific phe-
nomena, decoding complex patterns, and uncovering insights about humanity. In this talk, I will explore
how NLP interpretability methods are instrumental for the NLP4Science approach. Specifically, inter-
pretability enables us to understand the underlying mechanisms and patterns the NLP model identifies,
facilitating deeper comprehension and advancing scientific discoveries. I will review key interpretability
paradigms, compare their strengths and limitations, and showcase their application in diverse scientific
disciplines. For example, probing techniques are commonly used in neuroscience by aligning NLP re-
presentations with brain signals, and causal NLP methods such as counterfactuals are used in political
science. I will then present a comprehensive analysis of over two thousand interpretability papers, hig-
hlighting trends in NLP interpretability paradigms and comparing them to those in other fields. Finally,
I will discuss the broader implications of these findings and offer recommendations for promoting the
adoption of NLP interpretability techniques in fields beyond NLP.
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TokenSHAP: Interpreting Large Language Models with Monte Carlo
Shapley Value Estimation

Miriam Horovicz
NI

Tel Aviv, Israel
miriam.horovicz@ni.com

Roni Goldshmidt
Nexar

Tel Aviv, Israel
roni.goldshmidt@getnexar.com

Abstract
As large language models (LLMs) become in-
creasingly prevalent in critical applications, the
need for interpretable AI has grown. We in-
troduce TokenSHAP, a novel method for in-
terpreting LLMs by attributing importance to
individual tokens or substrings within input
prompts. This approach adapts Shapley val-
ues from cooperative game theory to natural
language processing, offering a rigorous frame-
work for understanding how different parts
of an input contribute to a model’s response.
TokenSHAP leverages Monte Carlo sampling
for computational efficiency, providing inter-
pretable, quantitative measures of token im-
portance. We demonstrate its efficacy across
diverse prompts and LLM architectures, show-
ing consistent improvements over existing base-
lines in alignment with human judgments, faith-
fulness to model behavior, and consistency.

Key contributions include:

• A theoretical framework extending Shap-
ley values to variable-length text LLM
inputs.

• An efficient Monte Carlo sampling ap-
proach tailored for language models.

• Comprehensive evaluation across various
prompts and model types.

• Capability to effortlessly visualize the in-
sights.

Our method’s ability to capture nuanced inter-
actions between tokens provides valuable in-
sights into LLM behavior, enhancing model
transparency, improving prompt engineering,
and aiding in the development of more reliable
AI systems. TokenSHAP represents a signifi-
cant step towards the necessary interpretability
for responsible AI deployment, contributing to
the broader goal of creating more transparent,
accountable, and trustworthy AI systems.

1 Introduction

Large language models (LLMs) have greatly ad-
vanced natural language processing, delivering near

or at human-level performance on many tasks.
However, their "black box" nature poses inter-
pretability challenges, crucial for applications in
fields like healthcare and legal analysis, where un-
derstanding AI decision-making is vital.

This paper introduces TokenSHAP, a method en-
hancing LLM interpretability by adapting Shapley
values from game theory. TokenSHAP treats in-
put tokens as players, assessing their contribution
to model outputs. This allows for a deeper under-
standing of how LLMs process information, crucial
for improving model transparency and reliability.

We propose a Monte Carlo sampling method for
practical Shapley value estimation, accommodat-
ing the variable lengths and contextual nature of
language inputs. Our evaluations across different
prompts and models confirm TokenSHAP’s versa-
tility and effectiveness in revealing LLM decision-
making processes. This breakthrough aids the de-
velopment of more accountable AI systems, en-
suring their responsible use as they become more
integrated into critical applications.

2 Related Work

2.1 Interpretability in Machine Learning

Interpretability in machine learning has gained sig-
nificant attention as models become increasingly
complex. Methods for explaining AI systems can
be broadly categorized into two approaches: black
box methods and white box methods (Guidotti
et al., 2018).

Black box methods, such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), have
emerged as popular approaches for explaining pre-
dictions across various ML models without requir-
ing access to the model’s internal architecture or
parameters. LIME provides local approximations
of model behavior by perturbing input data, while
SHAP unifies several feature attribution methods
under the Shapley value framework. These meth-

1



ods are particularly valuable when working with
proprietary or complex models where internal ac-
cess is limited or impractical (Molnar, 2020).

White box methods, on the other hand, require
knowledge of and access to the model’s internal
structure. These include techniques like gradient-
based saliency maps (?) and layer-wise relevance
propagation (LRP) (Bach et al., 2015). While these
methods can provide more detailed insights into the
model’s decision-making process, they are limited
to scenarios where the model architecture is fully
accessible and understood (Gilpin et al., 2018).

Recent advancements include counterfactual ex-
planations (Wachter et al., 2018), which explore
how altering inputs changes model predictions.
While these methods offer valuable insights for tab-
ular and image data, they face challenges when
applied to the sequential and contextual nature
of language, highlighting the need for specialized
NLP interpretability techniques (Danilevsky et al.,
2020).

2.2 Interpretability in Natural Language
Processing

In the NLP domain, attention visualization tech-
niques (Vig, 2019) have gained popularity, of-
fering insights into which parts of the input a
model focuses on. However, these visualizations
often lack quantitative rigor. More sophisticated
methods like Integrated Gradients (Sundararajan
et al., 2017) and Layer-wise Relevance Propaga-
tion (LRP) (Bach et al., 2015) provide continuous
importance scores for input tokens but can struggle
with gradient saturation and non-linearity in deep
models.

Probing tasks (Tenney et al., 2019) have also
been employed to examine the representations
learned by language models, revealing the types of
linguistic information encoded at different layers.
However, these methods do not directly interpret
how inputs lead to specific outputs in inference
tasks.

2.3 Shapley Values in Machine Learning and
NLP

Shapley values, originating from cooperative game
theory, have emerged as a powerful tool for feature
importance estimation in machine learning. Lund-
berg and Lee’s SHAP method (Lundberg and Lee,
2017) unified several feature attribution techniques
under the Shapley value framework, ensuring con-
sistency and local accuracy. However, the computa-

tional intensity of exact Shapley value calculation
has led to approximations like KernelSHAP and
TreeSHAP, which are primarily designed for fixed-
length feature vectors.

Applying Shapley values to NLP tasks presents
unique challenges due to the combinatorial explo-
sion of possible token subsets in variable-length
text. Recent work by Sundararajan et al. (Sun-
dararajan et al., 2017) introduced TracIn to track
the influence of training data points on predictions,
but it doesn’t provide granular token-level insights
for individual predictions.

3 Methodology

3.1 TokenSHAP Overview

TokenSHAP attributes importance to individual to-
kens or substrings in an input prompt by estimating
their Shapley values. The Shapley value for a token
represents its average marginal contribution to the
model’s output across all possible combinations of
tokens. This approach provides a rigorous frame-
work for understanding how each part of the input
influences the final response of large language mod-
els (LLMs).

3.2 Tokenization and Sampling

Given an input prompt x = (x1, ..., xn), where
xi represents individual tokens or substrings, we
consider all possible subsets S ⊆ N , where N =
{1, ..., n}. The exponential number of subsets (2n)
makes exact computation impractical, so we em-
ploy Monte Carlo sampling to estimate Shapley
values efficiently. This sampling approach balances
the need for computational feasibility with the ac-
curacy of Shapley value estimations.

3.3 Monte Carlo Shapley Estimation

We adapt the Monte Carlo sampling approach to
the context of text inputs. For each token xi, we
estimate its Shapley value ϕi as follows:

1. Generate a set of combinations that includes:

(a) All combinations where xi is the only
token removed (essential combinations)

(b) A random sample of other combinations
based on a specified sampling ratio

2. For each combination:

(a) Generate the model’s response
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(b) Calculate the cosine similarity between
this response and the full prompt re-
sponse

3. Compute the average similarity for combina-
tions with and without xi

4. Calculate ϕi as the difference between these
averages

This Monte Carlo estimation approach ensures
a balance between computational efficiency and
estimation accuracy. The use of essential combina-
tions alongside random samples provides a robust
basis for estimating Shapley values, even with a
relatively small number of samples.

3.4 Value Function
We define the value function v(S) as the cosine sim-
ilarity between the TF-IDF vectors of the model’s
response to the subset S and the response to the
full prompt. Formally:

v(S) = cosine_similarity(TF-IDF(r(S)),TF-IDF(r(N)))
(1)

where r(S) is the model’s response to the subset
S, and r(N) is the response to the full prompt.
This formulation allows us to measure how closely
the response to a subset resembles the response to
the entire input, providing a quantitative basis for
attributing importance to individual tokens.

3.5 Model Interaction
For each sampled subset S, we query the LLM
to generate a response. The prompt for a subset
is constructed by concatenating the tokens or sub-
strings corresponding to the indices in S. This step
ensures that the model’s behavior is consistently
evaluated across varying subsets of the input.

3.6 Shapley Value Computation
The estimated Shapley value for token xi is com-
puted as:

ϕi =(average similarity of combinations including xi)

− (average similarity of combinations excluding xi)
(2)

This difference in average similarities provides
a measure of the token’s importance to the model’s
output. The final Shapley values are normalized
to ensure comparability across different inputs and
models.

Algorithm 1 TokenSHAP
Require: Input prompt x, model name, sampling

ratio r, tokenizer/splitter
Ensure: Shapley values ϕi for each token xi

1: Tokenize or split x into n tokens (x1, . . . , xn)
2: Calculate baseline response b for full prompt x
3: Initialize essential combinations E ← {}
4: for i = 1 to n do
5: E ← E ∪ (x1, . . . , xi−1, xi+1, . . . , xn)
6: end for
7: N ← min(n, ⌊(2n − 1) · r⌋) ▷ Number of

sampled combinations
8: if N < n then
9: C ← E ▷ Use only first-order samples

10: else
11: S ← Random sample of N − n combina-

tions excluding E
12: C ← E ∪ S ▷ All combinations to process
13: end if
14: for each combination c in C do
15: Get model response Rc for c
16: Calculate cosine similarity sim(b, Rc)
17: end for
18: for i = 1 to n do
19: withi ← average similarity of combina-

tions including xi
20: withouti ← average similarity of combina-

tions excluding xi
21: ϕi ← withi − withouti
22: end for
23: Normalize ϕ1, . . . , ϕn

24: return ϕ1, . . . , ϕn

3



3.7 Visualization
We present the results using a color-coded visual-
ization of the input text. The color intensity repre-
sents the magnitude of the Shapley value for each
token or substring, with a diverging color map (e.g.,
coolwarm) to distinguish positive and negative val-
ues. This visualization aids in intuitively under-
standing the model’s decision-making process by
highlighting the most influential parts of the input.

Figure 1: Flowchart of the TokenSHAP algorithm illus-
trating the process of Shapley value estimation for token
importance in large language models by accepting parts
of the text to the players and a cosine similarity measure
to the base prompt as a gain.

Figure 2: A graph that shows the visualization of the
prompt in blue-red colors.

By providing a clear and quantitative analysis
of token importance, TokenSHAP enhances the in-
terpretability of LLMs, offering insights that are
critical for improving model transparency, trustwor-
thiness, and overall performance.

4 Experiments

4.1 Injection of Random Words and Method
Comparison

This experiment evaluates the ability of differ-
ent interpretability methods to accurately assign
low importance to randomly injected words within
prompts. The goal is to test each method’s sensitiv-
ity and precision in identifying extraneous words
that should not significantly impact model deci-
sions.

4.1.1 Experimental Design

We selected random prompts from the Alpaca
dataset and injected each with random words at
random places. We examined the performance of
the following explainability methods in assigning
low importance to those random words:

1. Random: This method uses a random base-
line, assigning random importance to each
token.

2. Prompt Engineer: This method uses relevant
prompts to derive the tokens’ importance from
an LLM model. Llama3 was used with few-
shot in-context learning.

3. TokenSHAP: Utilizes Shapley values to quan-
tify the impact of each token within a prompt
on the model’s output, effectively identifying
tokens with low importance.

4.1.2 Results and Evaluation

This section details the performance of each inter-
pretability method when applied to both regular and
injected prompts. Effective methods are expected
to demonstrate the ability to discern between ’real’
and injected words by assigning significantly lower
importance to the latter.

Statistical Analysis The analysis focused on
comparing the average importance values and stan-
dard deviations for ’real’ words against those for in-
jected words. Effective discrimination by a method
would manifest as a substantial difference in these
metrics, with lower values for injected words indi-
cating better performance.

Results Summary Table 1 presents the differ-
ences in mean importance values and standard de-
viations between non-injected and injected words
for each evaluated method. Notably, a method per-
forming well should show a larger mean difference
and a controlled standard deviation.

Method ∆ Mean Importance ∆ Std Dev
Random 0.017 -0.017
Prompt Engineer 0.019 -0.001
TokenSHAP 0.033 0.011

Table 1: Differential importance values between non-
injected and injected words across methods
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4.1.3 Visual Analysis
Boxplots were generated to visually depict the dis-
tribution of importance values for each method,
contrasting injected versus non-injected words.
These plots underscore the quantitative findings
and highlight how each method manages the vari-
ance and central tendency of importance values
across conditions.

Figure 3: Box plot showing the distribution of impor-
tance values for the Random Baseline method.

Figure 4: Box plot showing the distribution of impor-
tance values for the Prompt Engineering method.

Figure 5: Box plot showing the distribution of impor-
tance values for TokenSHAP.

4.1.4 Discussion
As anticipated, the Random method performed
the poorest, showing minimal differentiation be-
tween real and injected words. Prompt Engineer-
ing demonstrated slight improvement but remained
limited in discriminative power. In contrast, To-
kenSHAP significantly excelled, effectively dis-

tinguishing between relevant and irrelevant tokens
with its realistic and lower SHAP values for in-
jected words, thus proving to be the most reli-
able method for ensuring model interpretability
and transparency.

4.2 Monte Carlo Shapley Value
Approximation

4.2.1 Experimental Setup
To assess the effectiveness of Monte Carlo sam-
pling in approximating Shapley values under di-
verse conditions, we designed an experiment com-
paring different sampling ratios, both with and
without the inclusion of first-order omission con-
ditions. The first-order omission condition entails
always including subgroups that omit exactly one
token, offering a consistent baseline for compari-
son. This condition was tested alongside scenarios
where it was entirely excluded, allowing us to ex-
plore the impact of this methodological choice on
the approximation accuracy.

4.2.2 Methodology
The experiment involved calculating the cosine
similarity between true Shapley values and those
approximated by the Monte Carlo method across
various sampling ratios. These ratios ranged from
1.0 (full sampling) down to 0.0. The true Shap-
ley values were computed comprehensively, and
then the similarity to these values was measured
by comparing the results from the Monte Carlo ap-
proximations to the original Shapley value vector
through cosine similarity. This metric provides a
clear measure of how closely the approximations
match the true values, highlighting the accuracy of
the sampling method.

4.2.3 Results and Analysis

Figure 6: Change in average similarity between true
Shapley values and their approximations under different
sampling ratios, with and without the condition of first-
order omission.
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Figure 6 presents the results, demonstrating sig-
nificant differences in approximation accuracy de-
pending on the presence of the first-order omission
condition. The sampling ratio plays a crucial role
in determining the number of combinations consid-
ered beyond the essential first-order samples.

4.2.4 Implications
These findings underscore the importance of includ-
ing first-order omissions in Monte Carlo sampling
to maintain robustness and reliability in Shapley
value approximations. This approach validates the
Monte Carlo sampler’s capability to accurately esti-
mate Shapley values, highlighting its utility in prac-
tical applications where computational efficiency
is critical.

5 Discussion

5.1 Interpretability Insights

TokenSHAP offers several advantages for interpret-
ing LLM outputs:

1. Quantitative Measure: It provides a rigor-
ous, quantitative assessment of token impor-
tance, utilizing the Shapley value framework
to quantify the contribution of each token to
the model’s output in a consistent and objec-
tive manner.

2. Context-awareness: The method captures
the interdependence between tokens, reflect-
ing how the model processes the entire input.
This contextual sensitivity is essential for ac-
curately interpreting the sophisticated dynam-
ics of LLMs.

3. Model-agnostic: TokenSHAP can be applied
to any LLM without requiring access to its
internal architecture, making it a versatile tool
for users working with proprietary or black-
box models. This positions TokenSHAP as a
powerful black box method in the landscape
of explainable AI, contrasting with white box
methods that require detailed knowledge of
model internals.

4. Granularity: The approach allows for analy-
sis at both token and substring levels, offering
significant flexibility and enabling detailed ex-
ploration of how linguistic constructs larger
than single tokens influence the model’s deci-
sions.

5.2 Limitations

1. Computational Cost: Despite the efficiency
gains from Monte Carlo sampling, Token-
SHAP remains more computationally inten-
sive than simpler interpretability methods, due
to the need for repeated model evaluations.

2. Sensitivity to Sampling: The stochastic na-
ture of Monte Carlo sampling introduces vari-
ability in the importance scores, which may
slightly vary between runs, affecting repro-
ducibility in sensitive applications.

3. Assumption of Additivity: The theoretical
foundation of Shapley values assumes that
contributions from individual tokens can be
additively combined, which may not always
be accurate in cases where complex interac-
tions and non-linear dynamics dominate.

5.3 Future Work

1. Exploring Alternative Value Functions: Fu-
ture research could include developing more
sophisticated value functions that better cap-
ture nuanced aspects of semantic similarity
and contextual alignment. Usage of LLM can
also be considered for this task.

2. Investigating Shapley Value Stability: Fur-
ther studies are needed to assess the stability
of Shapley values across different LLM archi-
tectures and input sizes, to understand their
robustness and generalizability.

3. Developing Interactive Tools: There is a sub-
stantial opportunity to create interactive, user-
friendly tools that allow practitioners to dy-
namically explore token importance, enhanc-
ing the accessibility and practical utility of
TokenSHAP.

4. Extending to Multi-turn Conversations:
Applying TokenSHAP to multi-turn conver-
sational contexts could provide insights into
how contextual understanding evolves in dia-
logue systems.

5. Bias Analysis: Utilizing TokenSHAP for sys-
tematic identification and analysis of potential
biases in LLM outputs could contribute to the
development of more ethical and fair AI sys-
tems.
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6 Conclusion

TokenSHAP offers a significant advancement in the
interpretability of large language models (LLMs)
by adapting Shapley values to natural language
processing and employing Monte Carlo estimation
for feasibility. This approach overcomes the chal-
lenges of variable input lengths and contextual de-
pendencies, offering a scalable solution for com-
plex language models.

Key achievements include:

• A novel framework that extends Shapley val-
ues to natural language, providing a rigorous,
theoretically grounded method for interpret-
ing token importance.

• An efficient Monte Carlo sampling method
that enhances the computational feasibility of
applying TokenSHAP to large-scale models.

• Superior performance over existing methods
in terms of alignment with human judgments,
model behavior faithfulness, and consistency.

• Detailed insights into LLM behavior, reveal-
ing how models process and prioritize input
components.

Our method’s capacity to capture detailed to-
ken interactions enhances model transparency and
aids in debugging, bias mitigation, and regulatory
compliance, which is essential as LLMs are increas-
ingly deployed in critical domains.

Future research will explore sophisticated value
functions, the stability of Shapley values across
models, and the extension of TokenSHAP to con-
versational AI. Developing interactive tools based
on TokenSHAP could also enhance its accessibility
and practical utility for practitioners.

TokenSHAP represents a vital step towards mak-
ing AI systems not only powerful but also trans-
parent and accountable, ensuring their responsible
development and deployment in transformative ap-
plications.

Limitations

While TokenSHAP provides a valuable framework
for interpreting large language models, it is not
without limitations. The computational cost asso-
ciated with Monte Carlo sampling can be signifi-
cant, especially for very large models or long input
texts. Additionally, the method assumes additivity

in token contributions, which may not fully capture
complex non-linear interactions in some models.
The stochastic nature of the sampling process may
also introduce variability in the results, affecting
reproducibility in certain applications.

Ethics Statement

The development of TokenSHAP is motivated by
the need for transparency and accountability in AI
systems, particularly large language models that
are increasingly used in sensitive domains. By
providing interpretable insights into model behav-
ior, TokenSHAP aims to mitigate risks associated
with black-box models, such as unintended biases
or unfairness. We acknowledge that interpretabil-
ity methods can also be misused, for example, to
manipulate model outputs or infer proprietary in-
formation. Therefore, we advocate for responsible
use of TokenSHAP, aligned with ethical guidelines
and regulatory standards in AI.
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Abstract

Since the advent of CRISPR-Cas9, a ground-
breaking gene-editing technology that enables
precise genomic modifications via a short RNA
guide sequence, there has been a marked in-
crease in the accessibility and application of
this technology across various fields. The
success of CRISPR-Cas9 has spurred further
investment and led to the discovery of addi-
tional CRISPR systems, including CRISPR-
Cas13. Distinct from Cas9, which targets
DNA, Cas13 targets RNA, offering unique ad-
vantages for gene modulation. We focus on
Cas13d, a variant known for its collateral activ-
ity where it non-specifically cleaves adjacent
RNA molecules upon activation, a feature crit-
ical to its function. We introduce DeepFM-
Crispr, a novel deep learning model developed
to predict the on-target efficiency and evaluate
the off-target effects of Cas13d. This model
harnesses a large language model to generate
comprehensive representations rich in evolu-
tionary and structural data, thereby enhancing
predictions of RNA secondary structures and
overall sgRNA efficacy. A transformer-based
architecture processes these inputs to produce
a predictive efficacy score. Comparative exper-
iments show that DeepFM-Crispr not only sur-
passes traditional models but also outperforms
recent state-of-the-art deep learning methods
in terms of prediction accuracy and reliability.

1 Introduction

The discovery and development of Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR) and their associated Cas proteins have
revolutionized biotechnology and biomedical sci-
ences. Initially identified within the adap-
tive immune systems of bacteria and archaea,
these CRISPR-Cas systems have been ingeniously
adapted for genome editing. They exploit their
inherent ability to make precise and efficient ge-
netic alterations (Doudna and Charpentier, 2013;

Jinek et al., 2012). The CRISPR locus is charac-
terized by repetitive base sequences interspersed
with spacers derived from past viral and plasmid in-
vaders. This locus is transcribed into a long precur-
sor CRISPR RNA (pre-crRNA), which is then pro-
cessed into mature guide RNAs (crRNAs). These
crRNAs direct the Cas proteins to cleave comple-
mentary sequences in invading genetic elements,
thereby providing adaptive immunity. Among the
various CRISPR-Cas systems, CRISPR-Cas9 of
Type II has attracted significant attention due to its
simplicity and versatility in genome editing. It em-
ploys a dual-RNA structure consisting of crRNA
and trans-activating crRNA (tracrRNA), guiding
the Cas9 enzyme to specific DNA targets (Jinek
et al., 2012; Doudna and Charpentier, 2014).

CRISPR-Cas12, a Type V system, offers unique
advantages over Cas9 by utilizing a single RNA
for both CRISPR array processing and target DNA
recognition. This system cleaves target DNA in a
staggered manner, increasing the diversity of ed-
itable sequences and enhancing the potential for
multiplex editing. Another innovative addition to
the CRISPR toolkit is CRISPR-Cas13, which tar-
gets RNA instead of DNA, facilitating not only
gene modulation without altering the genome but
also enabling novel diagnostic applications due to
its collateral cleavage activity upon target recog-
nition (Gootenberg et al., 2017). The specificity
and efficacy of guide RNA design are crucial for
maximizing on-target actions and minimizing off-
target effects, which are particularly concerning
with Cas9’s potential DNA off-targets and Cas13’s
RNA-targeted collateral activity (Abudayyeh et al.,
2017). CRISPR screens, including those for viabil-
ity and FACS-sorting, have become instrumental
in evaluating the effectiveness and specificity of
CRISPR systems. These screens employ a multi-
tude of guide RNAs to ascertain factors influencing
knockout efficiency and to refine guide designs
to balance activity and specificity (Doench et al.,
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2016). Unlike tools focused solely on CRISPR-
Cas9, those designed for Cas13 must account for
RNA secondary structures, significantly impacting
guide RNA efficiency (Wessels et al., 2020).

To address challenges related to data scarcity and
the complexity of integrating structural and evolu-
tionary information, we introduce DeepFM-Crispr.
This model leverages advanced transformer-based
architectures and large language models, which
have revolutionized fields ranging from natural lan-
guage processing (Liu et al., 2023a, 2024, 2023b;
Li et al., 2023) to bioinformatics due to their abil-
ity to handle large datasets and extract deep, con-
textual relationships within data. Our transformer
(Vaswani et al., 2017) model processes a wide array
of inputs, offering a predictive score for on-target
efficiency based on enriched representations of evo-
lutionary and structural insights. Validated against
a dataset of 22,599 Cas13d sgRNAs (Cheng et al.,
2023), DeepFM-Cas13d outperforms conventional
machine learning methods and existing prediction
tools, particularly in targeting non-coding RNAs
(Shmakov et al., 2015).

2 Method

Our methodology integrates multiple deep learn-
ing architectures and data representation techniques
to predict the on-target efficiency of sgRNAs based
on their sequences and secondary structures. This
approach harnesses the power of large language
models, convolutional networks, and transformer
encoders to process and analyze the complex bio-
logical data. The details of DeepFM-Crispr shown
in Fig. 1.

2.1 Data Representation

sgRNA sequences were encoded using a one-hot
encoding scheme, where each nucleotide (A, C,
G, U) is represented by a binary vector. The vec-
tors for adenine (A), cyto- sine (C), guanine (G),
and uracil (U) are respectively [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1]. This methodological
choice ensures a uniform input structure for all
sequences, facilitating the computational handling
of genetic data across diverse sgRNA samples. By
transforming the nucleotide sequences into binary
vectors, the model can effectively learn from the po-
sitional and compositional nuances of the sgRNA
without the biases and variances inherent in raw
textual data.

The one-hot encoded vectors serve as the pri-

mary input for the subsequent layers of the ma-
chine learning architecture. They are fed into a
series of deep learning models that are designed
to extract and learn complex patterns and relation-
ships. This initial representation forms the basis
for all further transformations and feature extrac-
tions performed by the RNA large language model
and other components of our predictive framework.
The standardized format ensures that each sgRNA
is represented in a consistent manner, allowing the
deep learning algorithms to focus on learning the
underlying biological mechanisms rather than ad-
justing to variations in data format.

2.2 RNA Large Language Model

RNA-FM (Chen et al., 2022) is designed as an
end-to-end deep learning model that efficiently
extracts latent features from RNA sequences and
leverages an attention mechanism to capture con-
textual information. It features 12 layers of
transformer-based bidirectional encoder blocks
equipped with positional embeddings. This struc-
ture allows RNA-FM to accurately discern the po-
sitional context of ncRNA sequences. The encoder
within RNA-FM utilizes self-attention and feedfor-
ward connections to generate complex representa-
tions that integrate context from every sequence
position. Furthermore, the model is adept at con-
structing pairwise interactions between nucleotides,
enhancing its ability to depict direct nucleotide-
nucleotide interactions and providing a nuanced
representation of the input data. These capabili-
ties make RNA-FM particularly effective in cor-
relating internal representations with RNA sec-
ondary structures. As a result, the model produces
high-dimensional embeddings for each sgRNA
(Abudayyeh et al., 2017), encapsulating both lo-
cal and global contextual relationships within the
sequences. These embeddings are subsequently uti-
lized as inputs for further predictive modeling to de-
termine sgRNA efficacy scores, and also serve as in-
puts for a secondary structure prediction model, en-
hancing our understanding and prediction of RNA
structural configurations.

2.3 Secondary Structure Prediction

The secondary structure of each sgRNA was pre-
dicted using a ResNet model (Krishna et al., 2017)
that processes inputs derived from the RNA-FM
representations. This model outputs a probability
matrix where each nucleotide position is labeled
as either paired (1) or unpaired (0). These binary
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Figure 1: The Overall Architecture of DeepFM-Crispr.

sequences are then further processed using a deep
convolutional network based on the ResNet archi-
tecture, which is particularly adept at capturing spa-
tial hierarchies in structured data (He et al., 2016).
This approach allows for effective integration of
contextual and spatial information, enhancing the
accuracy of the secondary structure predictions for
the sgRNAs.

2.4 Feature Integration and Processing

The embeddings from the RNA-FM and the
outputs from the secondary structure prediction
ResNet are integrated and further processed to re-
fine the feature representation.

DenseNet architecture. Seq-DenseNet (Wei
et al., 2021) and SS-DenseNet (Zhao et al., 2021),
was employed to process integrated features. This
architecture benefits from dense connectivity pat-
terns that improve the flow of information and gra-
dients throughout the network, aiding in the robust
learning of features from both sequence and struc-
tural data (Wei et al., 2021). Positional Encoding
Transformer Encoder. The output embedding of
RNA-FM are passed through a positional encoding
transformer encoder. This module incorporates po-
sitional encodings to the input features to maintain
the sequence order, which is crucial for capturing
dependencies that are positionally distant in the
sgRNA sequence. The transformer encoder refines
these features by focusing on the most relevant
parts of the sgRNA for efficacy prediction (Huang
et al., 2017).

2.5 Efficacy Prediction

The final prediction of sgRNA efficacy is per-
formed using a multi-layer perceptron (MLP)
(Riedmiller and Lernen, 2014). The MLP com-

prises an input layer that receives the processed
features, several hidden layers with non-linear acti-
vation functions to capture complex relationships
in the data, and an output layer that produces a
continuous efficacy score for each sgRNA.

3 Dataset

To explore the efficiency and specificity of the
Cas13d system, we performed a comprehensive
two-vector CRISPR/Cas13d proliferation screen
on the A375 melanoma cell line, guided by pro-
tocols from a well-established benchmark study
(Cheng et al., 2023). The screening library con-
sisted of 10,830 sgRNAs targeting a total of 426
genes, including 192 protein-coding genes and 234
long non-coding RNAs (lncRNAs). This selection
included 94 essential genes and 14 non-essential
genes, previously identified in A375 cells via RNA
interference and CRISPR-based screenings. Our
library design aimed to robustly model the efficien-
cies of Cas13d sgRNAs, allocating approximately
30 guides per gene. This strategy was intended
to overcome potential biases observed in previ-
ous tiling screens that were limited to only 2-3
genes, thereby enhancing the representativity of
the sgRNA library.

Following the screening, sgRNA abundance was
quantitatively assessed through high-throughput
sequencing. Data analysis was conducted using
the MAGeCK algorithm to evaluate sgRNA per-
formance and gene essentiality. Quality control
checks were stringent, with an average of 5.6 mil-
lion reads per sample, ensuring reliable data cap-
ture. Each guide was represented by over 300
reads, with fewer than four guides missing per
gene—indicative of comprehensive coverage. The
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Figure 2: Comparison Result between DeepFM-Crispr with baselines.

Gini coefficient was maintained below 0.06, con-
firming a uniform and non-biased distribution of
guide representation across the dataset. Most no-
tably, 20 of the essential genes demonstrated signifi-
cant depletion, with a false discovery rate (FDR) of
less than 10%, underscoring the screening’s effec-
tiveness in identifying gene functionalities crucial
for cell proliferation in melanoma.

4 Experiments

4.1 Implementation
Batch Size: The model was trained with a batch

size of 128 sgRNAs to balance computational effi-
ciency with memory constraints.

Learning Rate: We employed a learning rate of
1e-4, utilizing a learning rate scheduler to decrease
the rate by 10% every two epochs to stabilize train-
ing as it progressed.

Epochs: The model was trained for up to 50
epochs, with early stopping implemented if the
validation loss did not improve for 5 consecutive
epochs. This approach prevented overfitting and
ensured that the model generalized well to new,

unseen data.

Optimizer: The Adam optimizer (Zhang, 2018)
was used for its adaptive learning rate capabilities,
which helped in converging faster and more effec-
tively than traditional stochastic gradient descent.
L2 regularization (Cortes et al., 2012) was applied
to all trainable parameters to prevent overfitting
by penalizing large weights. A dropout rate of 0.1
was used in each transformer layer to randomly
omit a subset of features during training, further
helping the model to generalize better. To handle
the varying lengths of sgRNA sequences, attention
masks were used within the transformer layers to
ignore padding tokens during the self-attention cal-
culations.

Baseline Methods: In the evaluation of guide
RNA (gRNA) efficacy prediction, the DeepFM-
Crispr model was compared against several estab-
lished machine learning methods, including Ran-
dom Forest (RF) (Rigatti, 2017), XGBoost (XGB)
(Chen and Guestrin, 2016), Support Vector Ma-
chine (SVM) (Suthaharan and Suthaharan, 2016),
AdaBoost (ADA) (Ying et al., 2013), and a recent
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deep learning method, DeepCas13 (Wessels et al.,
2020).

4.2 Evaluation
Conventional machine learning algorithms were

applied using 185 curated features consistent with
previous studies. Each model was trained and val-
idated on three publicly available Cas13d tiling
screening datasets, encompassing a total of 5,726
sgRNAs, employing five-fold cross-validation to
ensure robustness. The evaluation of our models
focused on two primary metrics: (1) the predic-
tion accuracy of sgRNA efficacy across the entire
dataset, and (2) the ability to classify sgRNAs into
efficient or non-efficient categories based on their
performance.

4.3 Result Discussion
Prediction Accuracy. The first metric of evalu-

ation was the coefficient of determination (R²) and
the Pearson correlation coefficient (PCC) between
the predicted efficacy scores and the actual log fold
changes (LFCs). DeepFM-Crispr demonstrated
superior performance in this regard, achieving a
higher R² value and a more pronounced negative
Pearson correlation. These results, illustrated in
Fig. 2, indicate that DeepFM-Crispr provides more
accurate predictions of sgRNA efficacy, aligning
closely with experimental outcomes.

Classification of sgRNA Efficiency. For the
classification task, sgRNAs were categorized based
on their LFC values; those with LFC smaller than
-0.5 were classified as positive (efficient), and all
others as negative (non-efficient). The effective-
ness of each model in this binary classification was
measured by the area under the Receiver Operating
Characteristic (ROC) curve (AUC) and the area
under the precision-recall curve (AUPR). DeepFM-
Crispr not only matched the top AUC performance
of DeepCas13 at an average of 0.88 across five-
fold cross-validation (as shown in Fig. 2) but also
significantly outperformed other methods, which
exhibited AUC scores ranging from 0.78 to 0.85.

Furthermore, DeepFM-Crispr excelled in the
precision-recall metric, achieving an average
AUPR score of 0.69. This score was notably higher
than those achieved by DeepCas13 and other tra-
ditional approaches, which varied between 0.45
and 0.58 (depicted in Fig. 2). This indicates a
stronger capability of DeepFM-Crispr to differen-
tiate between strong and weak knockdown effects.
The high AUPR score is particularly significant in

the context of the dataset’s imbalance, where pos-
itive samples are less frequent, underscoring the
model’s robustness in distinguishing positives from
negatives.

Implications for Gene Editing Applications.
These findings underscore the enhanced predictive
accuracy of DeepFM-Crispr in assessing sgRNA
efficacy, affirming its utility in gene editing applica-
tions where precise guide RNA selection is crucial.
The ability of DeepFM-Crispr to accurately predict
and classify sgRNA efficiency supports its poten-
tial as a valuable tool in optimizing CRISPR-based
gene editing. This is particularly in therapeutic con-
texts where the precision of genetic modification
can dictate treatment efficacy.

5 Related Work

The CRISPR-Cas systems (Doudna and Char-
pentier, 2013; Jinek et al., 2012) have revolu-
tionized the field of genetic engineering, offer-
ing unprecedented precision in gene editing (Jinek
et al., 2012; Doudna and Charpentier, 2014; Khalil,
2020). Since its inception, the CRISPR-Cas9 sys-
tem has been extensively studied and applied across
various biological contexts due to its ability to
make targeted DNA modifications. However, the
discovery of CRISPR-Cas13 (Abudayyeh et al.,
2017), which targets RNA, has opened new av-
enues for gene modulation without altering the
DNA itself. Among the variants, Cas13d is par-
ticularly notable for its collateral activity, where it
cleaves nearby non-target RNA sequences upon ac-
tivation, offering potential for diagnostic as well as
therapeutic applications (Barrangou et al., 2007).

Recent advancements have leveraged computa-
tional models to enhance the predictability and ef-
ficiency of CRISPR systems. For instance, mod-
els like CRISPRpred-seq (Muhammad Rafid et al.,
2020) and DeepCas (Wessels et al., 2020) have uti-
lized traditional machine learning and deep learn-
ing techniques to predict sgRNA efficacy, primarily
focusing on CRISPR-Cas9. These models often
rely on sequence-based features and have shown
significant promise in reducing off-target effects
and enhancing on-target efficiency. However, the
unique mechanisms and RNA targeting properties
of Cas13d (Gupta et al., 2022) present distinct chal-
lenges and opportunities that these models are not
tailored to address.

DeepFM-Crispr introduces an innovative ap-
proach by integrating large language models and
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transformer-based architectures to specifically en-
hance the performance of CRISPR-Cas13d sys-
tems. This model surpasses traditional and recent
computational approaches by effectively capturing
and processing extensive evolutionary and struc-
tural information pertinent to RNA. The use of a
large language model allows DeepFM-Crispr to un-
derstand and predict the complex dynamics of RNA
interactions (Cheng et al., 2023), which are crucial
for achieving high precision in RNA-targeted gene
editing. Our model not only builds upon the exist-
ing body of knowledge but also sets a new bench-
mark for computational tools in the CRISPR field,
particularly for RNA-targeting systems. By focus-
ing on Cas13d, DeepFM-Crispr addresses a critical
gap in the existing tools, offering refined predic-
tions and insights that are vital for both research
and therapeutic applications.

6 Conclusion

The DeepFM-Crispr model has proven to be ex-
ceptionally versatile and robust, demonstrating not
only its efficacy with the Cas13d system but also
its potential applicability to other CRISPR-Cas sys-
tems. Leveraging advanced large language model
techniques, DeepFM-Crispr adeptly captures com-
plex genetic interactions and sequence nuances es-
sential for precise genome editing. The model’s
strength lies in its ability to integrate sophisticated
deep learning techniques with large-scale genomic
data, enabling it to surpass traditional models in
both predictive accuracy and operational efficiency.
This adaptability positions DeepFM-Crispr as a
valuable asset across a broad spectrum of CRISPR
technologies, potentially revolutionizing gene edit-
ing methodologies across diverse applications.

7 Future Work

Looking forward, our research will extend the
application of DeepFM-Crispr to other widely used
CRISPR systems (Barrangou and Doudna, 2016),
such as Cas9 and Cas12. These systems play cru-
cial roles in both basic research and clinical settings.
By tailoring DeepFM-Crispr to these platforms,
we aim to enhance the specificity and efficiency
of sgRNA design, thereby minimizing off-target
effects and optimizing therapeutic outcomes. Fu-
ture developments will also focus on refining the
model’s architecture to incorporate a more compre-
hensive range of genomic features and environmen-
tal factors, which are expected to further enhance

its predictive capabilities.
As CRISPR technology continues to evolve, the

integration of sophisticated computational models
like DeepFM-Crispr is poised to drive significant
advancements in the field of genetic engineering.
This synergy between cutting-edge biotechnology
and computational innovation opens new avenues
for medical research and treatment strategies, hold-
ing promise for transformative impacts on health-
care and disease management.
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Abstract

This paper investigates biases of Large Lan-
guage Models (LLMs) through the lens of
grammatical gender. Drawing inspiration from
seminal works in psycholinguistics, particu-
larly the study of gender’s influence on lan-
guage perception, we leverage multilingual
LLMs to revisit and expand upon the founda-
tional experiments of Boroditsky (2003). Em-
ploying LLMs as a novel method for examin-
ing psycholinguistic biases related to grammat-
ical gender, we prompt a model to describe
nouns with adjectives in various languages, fo-
cusing specifically on languages with grammat-
ical gender. In particular, we look at adjective
co-occurrences across gender and languages,
and train a binary classifier to predict gram-
matical gender given adjectives an LLM uses
to describe a noun. Surprisingly, we find that
a simple classifier can not only predict noun
gender above chance but also exhibit cross-
language transferability. We find a strong social
influence of language on the way multilingual
LLMs reason.

1 Introduction

The way we perceive the world is not only affected
by our culture (Oyserman and Lee, 2008; Ma-
suda et al., 2008), but also the language we speak
(Boroditsky et al., 2003; Boroditsky, 2001). The
relationship between cognition and language has
been of interest for a long time (Langacker, 1993),
especially through the lens of gender (Boroditsky
et al., 2003; Gygax et al., 2008). Recent advances
in Large Language Models (LLMs), that match
human performance on multiple tasks, provide an
exciting opportunity to study the relationship be-
tween the psycholinguistic biases of humans and
those of machines. While it is unclear whether
the latter relationship exists, it would be a more
scalable, affordable, and even ethical (Banyard and
Flanagan, 2013) alternative to human studies.

Figure 1: Probing the bias of multilingual LLMs. We
prompt a LLM to describe gendered nouns using adjec-
tives. This allows us to study psycholinguistic biases
of LLMs. For example, if the generated adjectives are
predictive of the nouns’s gender, we can, by training a
binary classifier, predict grammatical gender by only
looking at the adjectives a LLM uses to describe a word.

In this work, we revisit the study of (Boroditsky
et al., 2003) in the era of LLMs. To see how gram-
matical gender affects cognition, Boroditsky et al.
(2003) ask speakers of languages with grammati-
cal gender (where nouns have assigned genders)
to describe various objects, finding that the lan-
guage a person speaks affects the attribution of
masculine or feminine characteristics to objects.
For example, a Spanish speaker (where “bridge”
is masculine) might describe a bridge with words
like “strong” or "sturdy”, while a German speaker
(where “bridge” is feminine) might use terms like
“elegant” or “beautiful”. However, several subse-
quent studies fail to replicate such results (Haertlé;
Mickan et al., 2014; Samuel et al., 2019), which is
but a symptom of the replication crisis in psychol-
ogy (Wiggins and Christopherson, 2019; Shrout
and Rodgers, 2018; Maxwell et al., 2015). Sim-
ilarly, studies in the field of NLP that examine
the way gendered nouns are used in text corpora
(Williams et al., 2021; Kann, 2019), find conflicting
evidence on whether there is a relationship between
grammatical gender and cognition.

The existence of gender bias has been well stud-
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ied for word embeddings (Bolukbasi et al., 2016;
Basta et al., 2019; Caliskan et al., 2017), as well as
a range of NLP systems, such as ones for machine
translation (Stanovsky et al., 2019; Vanmassenhove
et al., 2018), image and video captioning (Tatman,
2017; Hall et al., 2023), or sentiment analysis (Kir-
itchenko and Mohammad, 2018). More recently,
the social biases of LLMs have been studied (Kirk
et al., 2021). While the multilingual capabilities of
LLMs have been extensively evaluated, showing
they perform well on machine translation (Hendy
et al., 2023; Jiao et al., 2023; Wang et al., 2023)
as well as various multilingual benchmarks (Ahuja
et al., 2023; Bang et al., 2023), the evaluation of
biases in the multilingual setting is less mature.
Contrary to recent work showing that multilingual
LLMs have different biases for different languages
Mukherjee et al. (2023), we find that when it comes
to gendered nouns, LLMs are biased in a similar
way, as the biases are predictive of each other.

In this paper, we loosely follow the protocol
of Boroditsky et al. (2003) and prompt LLMs to
describe nouns using adjectives in different lan-
guages. Specifically, we focus on open-sourced
LLMs (Llama-2 (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023)). We select 10 languages
that have grammatical gender (e.g, German and
Spanish), and use the LLMs to describe gendered
nouns using adjectives. This allows us to see how
adjectives co-occur across languages. Our most im-
portant findings are that (i) a simple classifier can
predict the gender of a noun using the adjectives
used to describe it, and (ii) such a classifier reliably
transfers across languages, suggesting LLMs are
biased similarly in different languages.

2 Method

In this work, we are interested in the adjectives a
multilingual LLM uses to describe gendered nouns
when asked in different languages. Here, we de-
scribe how we generate such adjectives, and how
we examine whether they are predictive of the
grammatical gender of the nouns.

2.1 Describing nouns in different languages

We show our pipeline for describing gendered
nouns with adjectives in Figure 1. More formally,
for a language l we have a database of K gen-
dered nouns N l = {nl

1, n
l
2, ..., n

l
K}, with corre-

sponding grammatical genders g(nl
i) = {f,m}

for feminine and masculine, respectively. We

prompt the LLM to describe a noun nl
k using ad-

jectives, which we parse into a list of M adjectives
A(nl

k) = {al1, al2, ..., alM}. For every noun n, we
repeat the prompting N times and compute the
frequencies f with which the adjectives appear:

f(ai) =

∑N
j=1 1(ai ∈ A(nj))

N
. (1)

Finally, we keep the adjectives with top-p frequen-
cies. In practice, we use N = 50 and p = 50.

2.2 Predicting gender from descriptions
To examine to what extent the adjectives an LLM
uses to describe a noun are predictive of its gram-
matical gender, we train a binary classifier Φ to
predict grammatical gender:

ĝ(nl
i) = Φ

(
p∑

i=1

f
(
ali

)
eg

(
ali

))
,

where the input to the classifier are GloVe (Pen-
nington et al., 2014) word embeddings eg of the
adjectives weighted by the adjectives frequencies f .
In practice, we use a modified version of f , where
f ′ = −30/ log(f) to give us a better scaling. The
classifier Φ is a 2-layer MLP and we train it with
binary cross-entropy loss.

As shown in Figure 1, we first translate the gen-
erated adjectives to English. We do this for two rea-
sons. Firstly, adjectives in some languages are also
gendered and that would help the classifier learn
this shortcut (e.g. pretty in Spanish is bonito and
bonita for masculine and feminine, respectively).
Adjectives in English are not gendered, so the clas-
sifier Φ has no way of inferring the gender of the
noun from the grammatical form. Secondly, this
allows for easy transfer of the classifier across lan-
guages – e.g. we can train Φ on words generated
in Hindi, and evaluate on Italian.

3 Experiments

3.1 Implementation details
Languages We conduct experiments on the lan-

guages Bulgarian, Czech, French, German, Greek,
Hindi, Italian, Latvian, Portuguese, and Spanish.

Nouns We automatically collect commonly used
nouns from every language, and their correspond-
ing grammatical gender. For details on the way
we collect those nouns, and the number of nouns
per language, please refer to the Appendix. We
exclude neuter nouns as such nouns do not exist
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Figure 2: Bias when describing gendered nouns. Here
we prompt an LLM in Spanish and for a random sample
of adjectives, show the percentage of masculine nouns
they were used for.

in every language. We subsample the feminine or
masculine nouns in each gender to ensure a uniform
distribution for each language.

LLMs In our experiments we use the open-
sourced Mistral-7B (Jiang et al., 2023) model, un-
less stated otherwise. We also repeat our experi-
ments with Llama2-7B (Touvron et al., 2023).

Prompts We prompt the LLM to describe the
given noun in the corresponding language using
comma-separated adjectives. In practice, we use
few-shot prompts, which we show in the Appendix.

Translation Where we translate nouns, adjec-
tives, or prompts, we use Google Translate 1.

3.2 Bias in generated adjectives

First, we look at adjectives that commonly occur
for masculine or feminine nouns.

For every adjective ai, we look at the ratio rm:

rm(ai) =

∑
n∈N ,g(n)=m 1(ai ∈ A(n)))∑

n∈N 1(ai ∈ A(n)))
, (2)

which shows the proportion of masculine words
it was used to describe. We randomly sample ad-
jectives and show their rm in Figure 2. We see
that adjectives like intricate and desolate are as-
sociated with feminine nouns, whereas adjectives
like dedicated and brave are associated with mascu-
line nouns. We show more examples for different
languages in the Appendix.

3.3 Do languages show similar biases?

Next, we explore whether adjectives describing
masculine and feminine nouns tend to co-occur
in different languages. To this end, we compute
a gendered-adjective similarity score Spq for ev-
ery language pair of languages lp and lq. We

1Google Translate, https://translate.google.com/

Figure 3: Gendered adjective similarity sccores.

do that as follows. We take the set of N adjec-
tives a1, a2, ..., aN that are used to describe at least
15 nouns in both lp and lq. Then for both lan-
guages, we construct a gendered-adjective score
vector σ ∈ RN , where σ[i] = rm(ai). Now, σp
and σq contain the gender ratio for all N adjectives.
Finally, we define the gendered-adjective similarity
score Spq as the cosine similarity between σp and
σq.

In Figure 3 we show the score S for all language
pairs. We see that in Romance languages (Spanish,
Italian, French Portuguese), Slavic languages (Bul-
garian, Czech), and Germanic languages (German),
the LLM shows a high gendered-adjective simi-
larity score, meaning that the adjectives in these
languages tend to have similar value of rm. On the
other hand, Greek, Hindi and Latvian have a low
score between themselves and others.

3.4 Predicting the gendered nouns

Can we predict the gender of a noun in some lan-
guage given the adjectives used to describe it? Fol-
lowing Section 2.2, we train binary classifiers to
predict the grammatical gender of a noun from the
adjectives used to describe it (translated to English).
We train a separate classifier for each language. As
seen in Table 1, for all languages the classifier re-
liably does better than random – meaning that the
adjectives are predictive of gender.

3.5 Transfer between languages

If we train a grammatical gender classifier, like in
Section 3.4, can we predict the gender of a noun
in an unseen language? To answer this, where we
train grammatical gender classifiers on adjectives
from 9 languages (translated to English), and eval-
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Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.64 68.4% 72.4% 63.3%
Czech 0.52 59.0% 58.3% 60.2%
French 0.63 56.5% 55.8% 56.8%
German 0.60 60.0% 52.7% 69.4%
Greek 0.68 69.0% 62.7% 77.6%
Hindi 0.53 54.3% 57.5% 51.2%
Italian 0.46 68.2% 73.0% 54.3%
Latvian 0.64 62.6% 60.0% 65.0%
Portuguese 0.55 62.0% 62.7% 60.1 %
Spanish 0.62 63.3% 59.6% 68.0%

Table 1: Predicting grammatical gender. We train
a classifier to predict the gender of nouns given the
adjectives the LLM uses to describe them.

Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.56 62.5% 64.4% 59.8%
Czech 0.45 60.6% 70.6% 43.5%
French 0.62 54.8% 50.3% 57.3%
German 0.54 58.6% 73.1% 46.0%
Greek 0.64 60.6% 47.8% 75.3%
Hindi 0.53 48.8% 37.9% 60.2%
Italian 0.40 60.1% 61.6% 55.6%
Latvian 0.41 51.7% 81.2% 29.7%
Portuguese 0.55 62.8% 63.0% 62.4%
Spanish 0.59 58.8% 56.7% 60.1%

Table 2: Unseen Language Results. We train on all
other languages and predict the genders of nouns in
the given language. We train a separate leave-one-out
classifier for each language.

uate on the final language. As we see in Table 2,
such classifiers can reliably predict gender across
languages. Interestingly, they even work better than
random for Greek, Hindi and Latvian, despite the
results reported in Section 3.3. We suggest that
although the LLM uses different adjectives to de-
scribe masculine and feminine nouns in different
languages (hence low Spq), they are semantically
similar (hence high accuracy when evaluating the
classifier on an unseen language).

4 Discussion

4.1 Reproducibility
Studying the phenomena relating cognition to
grammatical gender in psychology has led to incon-
clusive results(Boroditsky, 2001; Haertlé; Mickan
et al., 2014; Samuel et al., 2019). These could be
explained by different experimental settings with
speakers of different languages, which are diffi-
cult to control in a human study. Similarly, prior
works that examine text corpora using NLP tech-
niques show conflicting results (Williams et al.,

LLM Eval F1
Accuracy

Overall Masc. Fem.

Mistral-7B Same 0.59 62.3% 61.5% 62.6%
Llama2-7B Same 0.59 64.6% 67.9% 59.9%

Mistral-7B Unseen 0.53 57.9% 60.7% 55.1%
Llama2-7B Unseen 0.54 59.1% 62.6% 54.9%

Table 3: Evaluating Llama-2. We compare grammat-
ical gender classifiers Llama-2 to Mistral when tested
on the same language (as in Section 3.4), or an unseen
language (as in Section 3.5). We show mean results
over all 10 languages. We see that we observe a similar
predictive performance on adjectives used by Llama-2
as those by Mistral.

2021; Kann, 2019). The results of these works
heavily depend on the text corpora analyzed, and
the methods used to identify adjective-noun pairs,
which might be subpar for languages other than En-
glish. Our method presents more consistent results
by ensuring consistent evaluation across languages.

4.2 Importance of our results

Our results are only valid for noun-adjective as-
sociations in LLMs. However, these associations
have been learnt through co-occurences of these
words in text corpora, which have been produced
by speakers of the respective languages. Future
work should study how well such biases in LLMs
are predictive of biases of humans.

The results we present suggest a consistent bias
that associates nouns with adjectives, depending
on their grammatical gender. This could be impor-
tant when LLMs are used to describe humans us-
ing objects, or vice versa (anthropomorphism, per-
sonification, metaphors, ...), where traits of these
objects are transferred to the human. Furthermore,
using LLMs to perform machine translation of such
phrases could lead to a loss of meaning or unex-
pected biases.

5 Conclusion

In this work, we revisit the psycholinguistic experi-
ments of Boroditsky et al. (2003), confirming the
hypothesis of their work applies to LLMs, where
different words are used to described masculine
and feminine nouns. Our most surprising finding is
that we can reliably zero-shot transfer a classifier
that predicts grammatical gender across languages.
This shows that while LLMs might think differently
on different languages, they are biased similarly
when it comes to grammatical gender. We hope
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this work inspires others to explore psycholonguis-
tic experiments applied to LLMs, and to drive a
discussion of whether such results can be useful to
inform or motivate human experiments.

6 Limitations

We only conducted experiments and observed
these effects for the opens-sourced Mistral-7B and
Llama2-7B models. It is not clear if similar effects
can be observed in larger LLMs, or commercial
LLMs such as GPT-4. While we ensured to cover
a wide range of languages, the ones we used are by
no means exhaustive and only cover indo-european
languages. Finally, we only explore the biases of
general-purpose, multilingual LLMs. Looking into
specialised LLMs, fine-tuned for the specific lan-
guage, might be more representative of what mod-
els would be used in practice.
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Appendix

A Collecting nouns

We collect words in German 2 and Spanish 3 from
a blog post that lists commonly used words in these
languages, and shows their grammatical gender.
For Bulgarian 4, Greek 5, Czech 6, French 7, Hindi
8, Italian 9, Latvian 10 and Portuguese 11, we take
a list of words and their grammatical gender from
Wikipedia. Following that, we only select words
whose English translation is in the list of commonly
used words in either German or Spanish.

Language Total Masc. Fem.

Bulgarian 1414 839 575
Czech 2383 1501 882
French 2763 996 1767
German 2031 952 1089
Greek 1257 670 587
Hindi 830 425 405
Italian 2919 2219 700
Latvian 1223 522 701
Portuguese 1766 1119 647
Spanish 1758 896 862

Table 4: Dataset Statistics. We present the number of
masculine and feminine words we consider for all 10
languages. The languages are sorted alphabetically.

We show the number of collected nouns per lan-
guage in Table 4. We use 90% of the nouns in each
language for training, and 10% for testing.

B Excluding animate nouns

Following prior works that look into grammatical
gender by looking at word co-occurrence in text
corpora (Williams et al., 2021), we exclude ani-
mate nouns from our datasets in all languages (e.g.

2https://frequencylists.blogspot.com/2016/01/
the-2980-most-frequently-used-german.html

3https://frequencylists.blogspot.com/2015/12/
the-2000-most-frequently-used-spanish.html

4https://en.wiktionary.org/wiki/Category:
Bulgarian_nouns_by_gender

5https://en.wiktionary.org/wiki/Category:
Greek_nouns_by_gender

6https://en.wiktionary.org/wiki/Category:
Czech_nouns_by_gender

7https://en.wiktionary.org/wiki/Category:
French_nouns_by_gender

8https://en.wiktionary.org/wiki/Category:
Hindi_nouns_by_gender

9https://en.wiktionary.org/wiki/Category:
Italian_nouns_by_gender

10https://en.wiktionary.org/wiki/Category:
Latvian_nouns_by_gender

11https://en.wiktionary.org/wiki/Category:
Portuguese_nouns_by_gender

LLM F1
Accuracy

Overall Male Female

Mistral-7B 0.57 55.0% 50.0% 60.0%
Llama2-7B 0.70 65.0% 50.0% 80.0%

Table 5: Evaluating the agreement with native En-
glish. We evaluate the agreement of our classifier
trained on 10 gendered languages to the perceived gram-
matical gender of native English speakers, which we
treat as ground truth.

“uncle”, “cashier”, “engineer”, etc.). We repeat the
experiments from Section 3.4 in Table 6, and see
that the inclusion of animate nouns does not affect
overall results.

Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.70 71.1% 73.8% 68.3%
German 0.69 63.8% 63.1% 64.2%
Spanish 0.56 55.3% 56.2% 54.4%
Italian 0.51 65.2% 64.5% 67.1%
Czech 0.55 57.2% 54.3% 61.2%
Greek 0.68 69.5% 79.6% 60.1%
Portuguese 0.60 61.1% 56.7% 67.2%
Hindi 0.59 58.1% 67.7% 51.2%
Latvian 0.70 63.2% 60.0% 64.8%
French 0.60 57.0% 58.8% 55.8%

Table 6: Gendered Nouns Predictions. This table is for
the filtered dictionaries, i.e. without jobs/mother/father
etc.

C Gendered adjectives

We show more examples of adjectives that are pre-
dominantly used for masculine (or feminine) nouns
in Figure 4, similarly to Section 3.2.

D Promps

The prompt we use in English is as follows:
***Question***: Describe the word “bottle”

using comma-separated adjectives. ***Answer***:
glass, sleek, thin, brittle, elegant, transparent,
clear, tall, fragile, shiny
***Question***: Describe the word “stone” using
comma-separated adjectives. ***Answer***: round,
old, strong, cold, solid, ancient, sturdy, dense,
natural, durable
***Question***: Describe the word <> using
comma-separated adjectives. ***Answer***:

For the other languages we translate the prompt,
e.g. in Spanish we use:

***Pregunta***: Describe la palabra
“botella” usando adjetivos separados por
comas. ***Respuesta***: vidrio, liso, delgado,
quebradizo, elegante, transparente, claro, alto,
frágil, brillante
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Bulgarian

French

German

Figure 4: Bias when describing gendered nouns. Here
we prompt an LLM in Bulgarian, French, and German
and for a random sample of adjectives, show the per-
centage of masculine nouns they were used for.

***Pregunta***: Describe la palabra “piedra”
usando adjetivos separados por comas.
***Respuesta***: redondo, viejo, fuerte,
frío, sólido, antiguo, robusto, denso, natural,
duradero
***Pregunta***: Describe la palabra <> usando
adjetivos separados por comas. ***Respuesta***:
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Abstract 

This paper explores the intersection of 

psychology and artificial intelligence 

through the development and evaluation 

of specialized Large Language Models 

(LLMs). We introduce PsychoLex 1 , a 

suite of resources designed to enhance 

LLMs' proficiency in psychological tasks 

in both Persian and English. Key contribu-

tions include the PsychoLexQA dataset 

for instructional content and the Psycho-

LexEval dataset for rigorous evaluation of 

LLMs in complex psychological scenar-

ios. Additionally, we present the Psycho-

LexLLaMA model, optimized specifically 

for psychological applications, demon-

strating superior performance compared to 

general-purpose models. The findings un-

derscore the potential of tailored LLMs for 

advancing psychological research and ap-

plications, while also highlighting areas 

for further refinement. This research offers 

a foundational step towards integrating 

LLMs into specialized psychological do-

mains, with implications for future ad-

vancements in AI-driven psychological 

practice. 

1 Introduction 

The rise of Large Language Models (LLMs) has 

significantly advanced artificial intelligence (AI), 

providing remarkable capabilities in natural lan-

guage processing and understanding (Guo et al., 

2023; Minaee et al., 2024; Wu et al., 2023). These 

models have shown proficiency in generating hu-

man-like text, translating languages, and engaging 

 
1https://huggingface.co/collections/aminabbasi/psy-
cholex-66b64e3768da519596e49de9 

in sophisticated dialogues (Agrawal, 2023). How-

ever, as users increasingly rely on LLMs for psy-

chological and therapeutic questions (Lai et al., 

2023), the limitations of these models in special-

ized domains have become apparent. Notably, 

there is a critical absence of datasets designed to 

evaluate and enhance LLMs' performance in the 

field of psychology. 

Despite considerable progress in general AI re-

search, the integration of psychological expertise 

into LLMs remains underdeveloped. Existing 

methodologies often lack the depth required to un-

derstand and respond accurately to complex psy-

chological inquiries. Moreover, the field is hin-

dered by the lack of comprehensive datasets that 

include not only questions and answers but also 

instructional content tailored to psychological 

contexts. This gap is significant because it re-

stricts the practical applications of LLMs in psy-

chological research, therapy, and education, 

where nuanced and precise information is essen-

tial. 

Our research seeks to address this gap by intro-

ducing PsychoLex, a suite of resources and mod-

els specifically designed for psychological appli-

cations in both Persian and English. The primary 

objectives of this study are to develop and evalu-

ate specialized datasets, namely PsychoLexQA 

and PsychoLexEval, and to introduce Psycho-

LexLLaMA, an LLM developed for psycholo-

gyical tasks. These contributions include: (i) Psy-

choLexQA, which provides comprehensive in-

structional content and detailed questions and an-

swers to enhance LLM training; (ii) Psycho-

LexEval, a multiple-choice question and answer 

(MCQA) dataset designed for rigorous evaluation 
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of LLMs in psychological contexts, ensuring they 

can handle complex psychological queries accu-

rately and contextually;(iii) PsychoLexLLaMA, 

which improves the performance of LLMs in psy-

chological tasks through continual pre-training 

and fine-tuning of LLaMA 3.1.(Dubey et al., 

2024) Together, these contributions aim to pro-

vide robust solutions to existing challenges, en-

hancing the accuracy and relevance of AI-driven 

psychological tools and paving the way for future 

advancements in integrating AI with psychologi-

cal practice. 

The structure of this paper is organized as fol-

lows: Section 2 reviews related work in LLMs and 

their applications in psychology. Section 3 details 

the datasets developed for this study, including 

their creation and validation processes. Section 4 

discusses the development and fine-tuning of the 

PsychoLexLLaMA model. Section 5 presents the 

evaluation methodology and results, comparing 

PsychoLexLLaMA with other state-of-the-art 

models. Section 6 provides a comprehensive dis-

cussion of the findings, and Section 7 concludes 

the paper with insights into future research direc-

tions and potential applications. 

By exploring the intersection of AI and psy-

chology, this paper aims to unveil the psycholog-

ical capabilities of LLMs and demonstrate their 

potential to advance both fields significantly. 

2 Related Works 

In this section, we review existing research that 

benchmarks the capabilities of large language 

models (LLMs) in Persian, followed by studies 

that explore the integration of LLMs into psycho-

logical research and applications. This dual-focus 

review establishes the context for our work, em-

phasizing both the linguistic challenges specific to 

Persian and the broader implications of applying 

LLMs in the field of psychology. 

2.1 Benchmarking Large Language Models 

for Persian  

Recent advancements in large language models 

(LLMs), particularly ChatGPT, have generated 

significant interest in their evaluation across vari-

ous languages and tasks. ChatGPT’s performance 

on various Persian natural language processing 

tasks is evaluated by Abaskohi et al. (2024). they 

present a comprehensive evaluation of large lan-

guage models (LLMs) for the Persian language, 

focusing on models like GPT-3.5-turbo (OpenAI, 

2023a), GPT-4 (OpenAI, 2023b), and OpenChat-

3.5. This study, which is the first extensive bench-

marking effort for Persian, aims to address the 

challenges posed by Persian as a low-resource 

language with unique linguistic features. The 

evaluation covers a broad range of natural lan-

guage processing (NLP) tasks, including senti-

ment analysis, question answering, natural lan-

guage inference, and translation. the study high-

lights the model's superior performance in multi-

ple-choice questions(MCQs) related to math and 

general knowledge from the ParsiNLU dataset 

(Khashabi et al., 2020). These benchmarks are par-

ticularly important for assessing the models' rea-

soning capabilities in Persian. While ChatGPT-4 

excels across several benchmarks, its application 

in psychology has not been tested, underscoring a 

critical area for future research. 

2.2 Khayyam Challenge (PersianMMLU) 

Recent advancements have focused on optimizing 

the performance of Large Language Models 

(LLMs). The PersianMMLU (Ghahroodi et al., 

2024) is particularly significant as it concentrates 

on the Persian language capabilities of these mod-

els. It evaluates their proficiency in answering 

multiple-choice questions across diverse fields 

such as mathematics, science, logic, and intelli-

gence testing. This comprehensive evaluation in-

volved advanced models like GPT-3.5, GPT-

4(OpenAI, 2023b), Aya (Ustun et al., 2024), Per-

sianMind(Rostami et al., 2024), mT0 

(Muennighoff et al., 2023), mGPT (Shliazhko et 

al., 2022), and Claude3-haiku (Anthropic, 2024). 

The study utilized a robust dataset derived from 

Iran’s national university entrance exams and ed-

ucational assessments. While GPT-4 emerged as 

the superior model, its efficacy in psychological 

applications remains untested. This gap highlights 

the necessity of our current research, which aims 

to specifically evaluate the performance of LLMs 

in psychology-related scenarios. 

2.3 Using large language models in psychol-

ogy 

Demszky et al. (2023) explores the integration of 

LLMs, particularly GPT-3 and GPT-4, into psy-

chological research practices. These models' 

adeptness at text generation, dialogue engage-

ment, persona simulation, and information syn-

thesis provides innovative approaches to studying 

various psychological subfields. The primary aim 
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is to evaluate the extent to which LLMs can enrich 

psychological research methodologies. Despite 

their potential, LLMs often fall short in delivering 

contextually accurate advice consistently. This 

study highlights the importance of refining LLMs 

through fine-tuning and reinforcement learning 

from human feedback to ensure their practical ef-

ficacy in real-world psychological settings. The 

extensive datasets used to train these models, en-

compassing diverse sources of human language 

data, are aimed at tailoring LLMs to better serve 

both theoretical and applied psychology. 

2.4 Exploring the Frontiers of LLMs in Psy-

chological Applications 

The application of Artificial Intelligence (AI), es-

pecially large language models (LLMs), is revo-

lutionizing psychological research. A study by Ke 

et al. (2024) underscores significant advances in 

language models and their profound impact on the 

field of psychology. LLMs like OpenAI's 

ChatGPT facilitate various research activities, in-

cluding literature reviews, hypothesis formula-

tion, experiment design, data analysis, and schol-

arly writing across several psychological domains 

such as cognitive, behavioral, clinical, educa-

tional, developmental, and social psychology. 

While these models offer substantial benefits, the 

review also delineates key technical and ethical 

challenges, including data privacy concerns and 

inherent limitations of LLMs. The authors advo-

cate for the careful integration of these technolo-

gies in psychological research to enhance our un-

derstanding of the human mind and improve the 

methodologies employed in psychological stud-

ies. 

 

In conclusion, the existing body of research on 

large language models (LLMs) highlights both 

significant advancements and notable limitations 

in applying these models to Persian natural lan-

guage processing and psychological applications. 

However, challenges persist due to the low-re-

source nature of the Persian language and the lim-

ited evaluation of LLMs in psychological settings. 

While LLMs hold potential for improving psy-

chological research, they often lack consistency 

and contextual accuracy. Future work is needed to 

refine these models for specialized fields, address-

ing their current limitations and improving their 

reliability in practical applications. 

3 Dataset 

This section outlines the datasets developed to in-

vestigate the application of large language models 

(LLMs) in psychology. We detail the creation and 

utilization of three pivotal datasets: the founda-

tional pretraining data, the PsychoLexQA dataset 

for instructional content, and the PsychoLexEval 

dataset for evaluating model comprehension and 

performance. 

3.1 Pretraining Data 

For the pretraining phase, we employed "Intro-

duction to Psychology" by Hilgard (1953), a sem-

inal textbook noted for its comprehensive insights 

into psychology. This text was used in both its 

Persian and English versions to establish a bilin-

gual foundation for our models. The dataset com-

prised approximately 1.3 million tokens, offering 

a rich and diverse corpus that spans a broad spec-

trum of psychological topics. This extensive pre-

training data enabled our models to develop a 

deep understanding of essential psychological 

concepts and terminology, facilitating their appli-

cation in both Persian and English contexts. 

3.2 PsychoLexQA 

For the instructional dataset, we adopted two dis-

tinct methodologies to generate detailed and com-

prehensive instructional content in both Persian 

and English 

3.2.1 Document-Based Instructions 

The first method involved extracting instructional 

content from "Introduction to Psychology" in both 

languages. This process was automated using the 

GPT-4o model, where paragraphs from the text-

book were analyzed to grasp key concepts. For 

each paragraph, the model generated a series of 

questions and answers aimed at testing material 

comprehension. Each question was crafted to be 

clear and precise, with detailed answers provided 

to ensure a thorough understanding of the dis-

cussed psychological concepts. Paragraphs lack-

ing sufficient content for question generation 

were identified and noted. This method resulted in 

a dataset containing 7,055 entries. Appendix  A  

demonstrates an example of PsychoLexQA dataset 

based on psychology document. 
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3.2.2 Self-Instruct 

The second method focuses on creating structured 

instructional tasks for various psychological sub-

categories in both Persian and English. This semi-

automated approach, inspired by the Self-Instruct  

framework (Wang et al., 2022), utilizes a prede-

fined list of subcategories such as Clinical and 

Cognitive Psychology and tasks such as Case 

Study Analysis and Experiment Design to generate 

detailed bilingual task instructions. Through itera-

tive processes, the model generates comprehen-

sive inputs and outputs, resulting in a dataset of 

3,001 entries covering multiple psychological do-

mains, ensuring a diverse and realistic range of 

scenarios. Figures 3, 4, 5, 6 in the Appendix  A de-

picts several examples of PsychoLexQA dataset 

which has been created using a self-instruct 

method. 

3.2.3 Scope of PsychoLexQA 

The PsychoLexQA dataset, focuses on simulating 

real-world psycho-logical scenarios through a 

range of instructional tasks. These tasks challenge 

LLMs with exercises like: (1) Case Study Analysis: 

Identifying psychological issues and proposing in-

terventions; (2) Experiment Design: Developing 

experimental methodologies, hypotheses, and var-

iables; (3) Data Interpretation: Analyzing statistical 

or experimental data; (4) Scenario Response: Of-

fering interventions for hypothetical psychological 

scenarios; (5) Theoretical Explanation: Explaining 

psycho-logical theories or concepts; (6) Diagnostic 

Evaluation: Simulating diagnostic processes for 

psychological conditions; (7) Ethical Dilemma 

Resolution: Proposing ethical resolutions in psy-

chological practice; (8) Intervention Planning: 

Crafting treatment plans for psychological condi-

tions; (9) Literature Review: Summarizing key 

findings from psychological research; (10) Com-

parative Analysis: Comparing psychological theo-

ries, interventions, or case outcomes. 

     The dataset further breaks down into subcatego-

ries that reflect distinct psychological areas, such as 

Clinical Psychology, Cognitive Psychology, De-

velopmental Psychology, Social Psychology, Bio-

logical Psychology, Industrial-Organizational Psy-

chology, Neuropsychology, Health Psychology, 

and Educational Psychology. Each subcategory is 

paired with tasks de-signed to simulate challenges 

and interventions relevant to that field. Together, 

both datasets provide a comprehensive tool for 

evaluating and training LLMs in diverse and real-

istic psycho-logical scenarios, with Psycho-

LexEval assessing broad understanding and Psy-

choLexQA focusing on task-based problem-solv-

ing. 

3.3 PsychoLexEval 

The PsychoLexEval dataset, a multiple-choice 

question and answer (MCQA) format in both Per-

sian and English, is designed to assess the com-

prehension and performance of LLMs in psychol-

ogy. This section will describe the data collection 

and review process, the methods employed to en-

sure quality and compliance, and the broad scope 

and coverage of this MCQA dataset. An example 

of the PsychoLexEval dataset can be found in Ap-

pendix  A. 

3.3.1 Data Collection  

To construct this dataset, we compiled questions 

from multiple significant sources: (1) Graduate 

Entrance Exams: questions from psychology en-

trance exams (2014-2024) that cover advanced 

topics; (2) Employment Exams: questions from 

various job tests, including both specialized and 

general psychology; (3) Online Sources: Ques-

tions from trusted psychology test websites; (4) 

GPT-4 Generated Content: questions from Psy-

chology books, covering a wide range of topics.  

3.3.2 Filtering and Review 

To ensure high quality and legal compliance, we 

implemented rigorous filtering and review pro-

cesses for the dataset. Initially, a human review 

was conducted where a sample of questions was 

meticulously scrutinized by experts. This step was 

crucial to ensure that each question was relevant, 

complete, and clearly articulated. During this 

phase, we specifically retained only those ques-

tions that had exactly four answer options, ensur-

ing consistency and clarity in the evaluation pro-

cess. Additionally, to avoid any legal complica-

tions, we carefully removed any content that po-

tentially violated copyright laws. This step was 

essential to maintain the integrity of the dataset 

and ensure that all included materials were legally 

compliant for use in our research and broader ac-

ademic dissemination. These measures collec-

tively reinforced the dataset's reliability and ad-

herence to legal standards, providing a robust 

foundation for evaluating large language models 

within psychological contexts. 
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3.3.3 Scope of PsychoLexEval 

The PsychoLexEval dataset is meticulously de-

signed to evaluate the comprehension and perfor-

mance of large language models (LLMs) in psy-

chology, encompassing a broad spectrum of psy-

chological fields. These include general psychol-

ogy, developmental psychology, and clinical psy-

chology, along with psychometrics, cognitive 

tests, and industrial-organizational psychology. 

The dataset also covers social and educational 

psychology, exceptional children’s needs, and 

foundational concepts from Introduction to Psy-

chology. With 3,430 rows of diverse content, it 

serves as an invaluable resource for researchers to 

assess LLMs' capabilities across various psychol-

ogy domains.  

4 PsychoLexLLaMA 

In this section, we detail the development of Psy-

choLexLLaMA, a specialized large language 

model (LLM) designed explicitly for psychology.  

Our goal was to surpass the performance of gen-

eral-purpose models by optimizing our model to 

require minimal data and hardware resources. the 

model benefits significantly from the integration of 

the PsychoLexQA dataset, which includes tasks 

such as case study analysis, experiment design, and 

diagnostic evaluation. This dataset allows Psycho-

LexLLaMA to handle complex psychological sce-

narios across a variety of domains like clinical, 

cognitive, and developmental psychology, making 

it a highly valuable tool for both practical and re-

search-oriented applications. 

    The integration of PsychoLexQA significantly 

enhances PsychoLexLLaMA’s role in applied psy-

chology and psychological science. It assists clini-

cal practitioners with diagnostics and interventions, 

supports research with experiment design and data 

interpretation, and enriches education by generat-

ing tailored instructional content. Overall, it pro-

vides specialized, accurate responses, making it a 

valuable tool across clinical, research, and educa-

tional domains in psychology. 

We utilized the Transformers2 library for model 

development. The process of constructing our 

model is illustrated in Figure 1. 

 

 
2 https://github.com/huggingface/transformers 

4.1 Continuous Pre-Training 

For continuous pre-training (Zhou et al., 2024), we 

employed the LoRA technique (Hu et al., 2021) on 

the bilingual texts of "Introduction to Psychology" 

by Hilgard. This foundational work was processed 

in both Persian and English, leveraging the estab-

lished pretraining data. We utilized LLaMA 

3.1(Dubey et al., 2024) as our base models in two 

configurations: 8B and 70B. This stage was criti-

cal for aligning the base models with psychologi-

cal content, thereby enhancing their understand-

ing and application of complex psychological 

concepts efficiently. The pre-training for the 8B 

model took 8 minutes using a single A100 80GB 

GPU, while the 70B model required 41 minutes 

on two A100 80GB GPUs. Table 1 provides a de-

tailed overview of the LoRA training configura-

tions used during this phase.  

4.2 Supervised Fine-Tuning 

The supervised fine-tuning phase was essential 

for tailoring our models to meet the specific de-

mands of psychological analysis. Utilizing the 

PsychoLexQA dataset, which includes both in-

structional content and a comprehensive set of 

questions and answers, we applied the LoRA 

technique to further train the pre-trained models. 

This phase was pivotal in refining the models' 

abilities to interpret and respond accurately to in-

tricate psychological queries and scenarios within 

the dataset. The supervised fine-tuning for the 8B 

model took 22 minutes using a single A100 GPU, 

while the 70B model required 32 minutes on two 

A100 GPUs. The LoRA training configurations  

Lr Rank Alpha Dropout 

1e-5 8 16 0.0 

Table 1: LoRA training configurations 

 

 

Figure 1:  Process of constructing PsychoLexLLaMA 

model. 
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used during this phase were the same as those in 

the continuous pre-training. 

4.3 Linear Weight Combination 

To bolster the final model’s robustness and pre-

serve the integrity of previous training advances, 

we implemented a linear weight combination 

strategy. This involved merging the weights of the 

LLaMA 3.1 Instruct model with our continuously 

pre-trained and finely-tuned models. Each model 

contributed 50% of its weight to the final compo-

site. This method synergistically combined the 

foundational capabilities of LLaMA with our 

newly developed psychological expertise, produc-

ing a balanced and potent tool adept at handling 

sophisticated psychological inquiries. 

    Through these meticulous steps, Psycho-

LexLLaMA has been meticulously tailored to 

meet the unique needs of psychological applica-

tions. It stands as a robust resource for researchers 

and practitioners in both psychology and artificial 

intelligence, providing a reliable platform for fur-

ther explorations and advancements in these 

fields. The next sections will evaluate Psycho-

LexLLaMA’s performance in detail, comparing it 

with other models to underscore its enhanced ca-

pabilities in the realm of psychological research 

and practice. 

5 Evaluation 

In this study, we conducted a comprehensive eval-

uation of various language models that operate in 

both Persian and English, focusing on their ability 

to understand and accurately respond to psycho-

logical questions. The models assessed include in-

clude Qwen2 (Yang et al., 2024), Aya-23 

(Aryabumi et al., 2024), Phi-3 (Abdin et al., 2024), 

Llama-3, Llama-3.1(Dubey et al., 2024), Gemma 

1.1 (Team et al., 2024), command-r, Per-

sianLLaMA (Abbasi et al., 2023), PersianMind 

(Rostami et al., 2024b), and PsychoLexLLaMA.   

Our focus on open-source models was intended to 

enhance the accessibility and reproducibility of 

our findings. The generation configuration for all 

the LLMs evaluated is consistent across the exper-

iments and is detailed in Table 2. 

5.1 Zero-shot Setting 

In the zero-shot setting, models were tested with-

out any prior contextual examples, relying solely 

on their pre-existing knowledge. This setting eval-

uated the models' intrinsic ability to generate ac-

curate responses based solely on their training. 

5.2 One-shot Setting 

The one-shot setting involved presenting each 

model with a single relevant example before it an-

swered a question. This setting was used to assess 

the impact of a minimal context on the accuracy 

of the models, providing insights into their ability 

to leverage new information quickly 

5.3 Five-shot Setting 

In the five-shot setting, models were given five re-

lated examples before responding to questions. 

This scenario tested the models' capacity to utilize 

more extensive contextual information to enhance 

their accuracy, offering a deeper understanding of 

their learning capabilities. 

5.4 Evaluation Metric 

The effectiveness of each model across the zero-

shot, one-shot, and five-shot settings was meas-

ured using accuracy as the primary metric. Accu-

racy was defined as the proportion of correct an-

swers provided by the models relative to the total 

number of questions posed. This rigorous evalua-

tion approach allowed us to discern the strengths 

and weaknesses of each model in processing and 

understanding psychological content comprehen-

sively. 

    Through these methodical evaluations, we 

aimed to illustrate the varying capabilities of each 

model under different contextual conditions. This 

analysis not only sheds light on how models adapt 

to incremental information but also highlights 

their potential applicability in psychological set-

tings, where understanding nuanced human be-

havior is crucial. 

6 Results 

This section outlines the outcomes of our evalua-

tion of selected large language models (LLMs) us-

ing the PsychoLexEval dataset in both Persian and 

Temp 

Max new 

tokens top p 

Do sam-

ple 

0.01 16 0.9 True 

Table 2: Generation configurations for all evaluated 

LLMs. 
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English. The primary focus was on assessing the 

models' proficiency in understanding and re-

sponding to psychological questions.   

    Tables 3 and 4 illustrate the accuracy results of 

the models on the PsychoLexEval dataset for Per-

sian and English, respectively. These tables quan-

tify how effectively each model comprehends and 

addresses psychology-related questions across 

languages. 

6.1 Discussion 

The results from Tables 3 and 4 provide significant 

insights into the performance of various LLMs, 

showcasing their competencies in both Persian 

English. Notably, these findings highlight the influ-

ence of model architecture and parameter size on 

handling specialized tasks, such as interpreting and 

responding to psychology-related questions. 

Model # Param 

Accuracy 

0-shot 1-shot 5-shot Avg 

Qwen2 Instruct 7B 03.55 06.18 08.63 6.12 

Gemma 1.1 it 7B 43.07 40.68 27.57 37.11 

PersianMind 7B 35.78 35.96 24.63 32.12 

Aya-23 8B 39.64 41.42 27.02 36.03 

Llama-3 Instruct 8B 33.88 10.66 34.49 26.34 

Llama-3.1 Instruct 8B 45.89 41.36 35.78 41.01 

PsychoLexLLaMA-pretrain-sft 8B 47.30 43.13 46.61 45.68 

PsychoLexLLaMA-average 8B 48.52 41.97 47.05 45.85 

PersianLLaMA 13B 20.13 18.52 19.89 19.51 

Aya-23 35B 21.07 10.47 22.69 18.08 

c4ai-command-r-v01 35B 35.96 21.75 46.20 34.64 

Llama-3 Instruct 70B 19.54 09.31 0.5 9.78 

Llama-3.1 Instruct 70B 70.34 67.83 70.40 69.52 

PsychoLexLLaMA-pretrain-sft 70B 67.79 45.34 68.07 60.4 

PsychoLexLLaMA-average 70B 65.84 53.06 69.66 62.85 

Qwen2 Instruct 72B 31.37 05.82 50.3 29.16 

Table 3 : Accuracy of LLMs on the PsychoLexEval dataset in Persian.  

 

 
Model # Param 

Accuracy 

0-shot 1-shot 5-shot Avg 

Qwen2 Instruct 7B 89.31 42.74 83.76 71.94 

Gemma 1.1 it 7B 84.75 55.06 65.86 68.56 

Aya-23 8B 73.62 33.80 77.05 61.49 

Llama-3 Instruct 8B 85.77 78.57 68.22 77.52 

Llama-3.1 Instruct 8B 88.97 89.25 87 88.41 

PsychoLexLLaMA-pretrain-sft 8B 88.97 81.21 62.03 77.4 

PsychoLexLLaMA-average 8B 90.10 89.03 90.04 89.72 

Aya-23 35B 81.32 79.02 82 80.78 

c4ai-command-r-v01 35B 87 78.06 75.08 80.05 

Llama-3 Instruct 70B 90.55 88.58 76.77 85.3 

Llama-3.1 Instruct 70B 93 .02 92 .63 92.1 92.58 

PsychoLexLLaMA-pretrain-sft 70B 91.45 90.24 90.85 90.85 

PsychoLexLLaMA-average 70B 92.13 91.85 91.87 91.95 

Qwen2 Instruct 72B 91.11 73.79 92.29 85.73 

Table 4 : Accuracy of LLMs on the PsychoLexEval dataset in English. 
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6.1.1 Performance Trends Across Models 

The data reveal substantial variability in perfor-

mance across models and settings. For instance, the 

Llama-3.1 Instruct with 70B parameters exhibits 

superior performance in all scenarios, suggesting a 

positive correlation between larger parameter sizes 

and enhanced comprehension and response accu-

racy. This trend is consistent in the English data, 

where models with larger parameters, such as 

Llama-3.1 Instruct 70B, also demonstrate robust 

performance, especially in zero-shot and five-shot 

settings. 

 Conversely, models with fewer parameters 

sometimes perform well in lower-shot settings but 

typically exhibit decreased performance as the 

complexity of tasks increases. For example, the 

Qwen2 Instruct with 7B parameters faces greater 

challenges in the Persian context than in English, 

potentially indicating linguistic or dataset-specific 

hurdles that are more effectively managed by larger 

models. 

6.1.2 Language-Specific Observations 

Our evaluation underscores distinct language-spe-

cific differences. In Persian, the increase in model 

accuracy from zero to five shots is more marked, 

indicating that Persian language models signifi-

cantly benefit from added context. Conversely, 

English language models tend to have higher 

baseline performances, likely reflecting the ad-

vantages of more extensive pre-training datasets 

available in English. 

6.1.3 Impact of Training and Fine-Tuning 

The results particularly underscore the critical im-

portance of targeted training and fine-tuning, as 

seen with the PsychoLexLLaMA models. De-

signed to surpass its predecessor, Llama 3.1, the 

70B PsychoLexLLaMA occasionally does not 

reach its ambitious targets but consistently 

matches or exceeds the performance of the origi-

nal Llama 3.1 model. This consistency indicates 

that while specific enhancements did not univer-

sally lead to improvements, they significantly bol-

stered the model's capabilities. The 70B version, 

with its vast parameter count, possesses the capac-

ity to acquire a broader knowledge base, making 

it challenging to add new knowledge without for-

getting previously learned information. Conse-

quently, fine-tuning such a large model demands 

considerably more data to achieve better out-

comes due to its complexity. 

   In contrast, the 8B version of Psycho-

LexLLaMA often outperforms larger models, 

suggesting that precise, domain-specific fine-tun-

ing can yield remarkable effectiveness, even with 

fewer parameters. This success highlights the po-

tential of smaller models, particularly when 

equipped with tailored enhancements for specific 

applications like psychological evaluations. 

   The varying impacts of scaling between the 8B 

and 70B versions suggest that while larger models 

possess a broad knowledge base enhancing their 

general performance, strategic fine-tuning is cru-

cial for maximizing efficacy in specialized do-

mains. This observation encourages further re-

search into training strategies that optimize both 

large and small models for specific tasks, ensuring 

that they not only retain previous knowledge but 

also effectively integrate new information. 

7 Conclusion 

This study has significantly advanced our under-

standing of how large language models (LLMs) 

can be effectively tailored for applications within 

psychology. Through the integration of special-

ized psychological content, the development of 

the PsychoLexQA and PsychoLexEval datasets, 

and the creation of the PsychoLexLLaMA model, 

we have demonstrated the substantial benefits of 

targeted model training and fine-tuning. 

Our findings indicate that specific pretraining 

and fine-tuning strategies substantially enhance 

the performance of LLMs in psychological set-

tings, underscoring the critical role of thoughtful 

model architecture and training approaches. Nota-

bly, while larger models typically show strong 

performance, our results reveal that even smaller 

models can achieve exceptional outcomes when 

subjected to precise, domain-specific adjust-

ments. This suggests a scalable potential for 

LLMs in psychological applications that can be 

adapted to different contexts and constraints. 

In conclusion, this research not only sheds light 

on the current capabilities and challenges of using 

LLMs in psychology but also sets a foundation for 

future work. It encourages ongoing refinement of 

these models to improve their relevance and accu-

racy, thereby enhancing their utility in real-world 

psychological applications. Moving forward, we 

anticipate that continued advancements in model 

training methodologies and evaluation strategies 

will drive significant progress in the field, making 
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LLMs an indispensable tool in the arsenal of psy-

chological research and practice. 

Limitations 

This study highlights the potential of customizing 

large language models (LLMs) for psychological 

applications, but several limitations may affect the 

generalizability of our findings. The Psycho-

LexQA and PsychoLexEval datasets, which are 

key to this research, contain inherent biases from 

the selected materials and question designs, re-

stricting the application of results to broader psy-

chological contexts. The reliance on freely li-

censed sources, particularly Hilgard's Introduc-

tion to Psychology (1953), limits the diversity and 

depth of psychological topics in this study. While 

the text provides a solid foundation in core princi-

ples, it does not reflect the significant advance-

ments in psychology, such as developments in 

cognitive-behavioral therapy, neuropsychology, 

and cross-cultural psychology. Due to copyright 

restrictions, more recent, relevant texts could not 

be used, potentially limiting the model's engage-

ment with modern psychological paradigms. Fu-

ture iterations will aim to include up-to-date psy-

chological literature to address this limitation and 

enhance the model's applicability to contempo-

rary practice. Another major limitation is the need 

for high-performance hardware, such as GPUs, 

which can hinder replicability and limit access for 

researchers with fewer resources. Balancing 

model performance with minimal data and hard-

ware remains challenging, often requiring trade-

offs that reduce practical utility. Future research 

should aim to diversify training data and develop 

more resource-efficient methods to enhance the 

deployment of LLMs in psychology. 
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Question: How do researchers measure brain activity dur-
ing sleep and meditation? 
 
Answer: Researchers measure brain activity during sleep 
and meditation using neuroimaging techniques such as elec-
troencephalograms (EEGs), magnetic resonance imagery 
(MRI), and positron emission tomography (PET). These tech-
niques record electrical changes in the brain, brain wave pat-
terns, and activation of specific brain areas, allowing re-
searchers to observe and analyze different states of con-
sciousness. 

 

 

 کنند؟   ی م   یریاندازه گ   یتیشن مغز را در هنگام خواب و مد   یت محققان چگونه فعال   سوال: 

 

 مانند الکتروانسفالوگرام   ی عصب   یربرداری تصو   های یک محققان با استفاده از تکن   : پاسخ 

(EEG) تصو توموگراف  (MRI) یسی مغناط   ید تشد   یربرداری ،   یترون پوز   یل گس   ی و 

(PET)  ها یک تکن   ین . ا کنند ی م   یری گ اندازه   یتیشن مغز را در طول خواب و مد   یت فعال 

خاص مغز را ثبت   ی نواح   ی ساز و فعال   ی مغز   اج امو   ی در مغز، الگوها   یکی الکتر   ییرات تغ 

را مشاهده و   یاریمختلف هوش   ی ها تا حالت   دهند ی امکان را م   ین و به محققان ا   کنند ی م 

 .کنند   یل و تحل   یه تجز 

Figure 2: Example of PsychoLexQA dataset (Docu-

ment-based). 

 

 

 

 

A  Dataset samples 

Figures 2 shows an example of PsychoLexQA da-

taset based on psychology document. Figure 3, 4, 

5, 6 illustrates example of PsychoLexQA dataset 

based on self-instruct method. Figure 7 shows an 

example of the  PsychoLexEval dataset that in-

cludes a multiple-choice question and answer. 

Each example is presented in English and Persian 

to enhance understanding.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment Design : 
Instruct: Design an experiment to evaluate the effect of a 
growth mindset intervention on students' persistence in aca-
demic tasks. Include methods for measuring sustainability 
and outcomes. 
 
Output: The experiment will include two groups of students: 
one group that will participate in a growth mindset interven-
tion that includes workshops on the benefits of facing chal-
lenges and learning from failure, and a control group that will 
receive no specific intervention. Persistence is measured by 
the time spent on a challenging academic task and the number 
of tasks completed. The hypothesis is that compared to the 
control group, students in the growth mindset group show 
more persistence and performance in academic assignments 
and highlight the impact of mindset on learning behaviors. 

آموزان  دانش   یداریرشد را بر پا   یت مداخله ذهن   یر تا تأث   ید کن   ی طراح   یشآزما   یک   دستور: 

 باشد.   یج و نتا   یداری پا   یری گ اندازه   ی برا  یی ها . شامل روش ید کن   یابی ارز   یلی تحص   یف در وظا 

 

گروه که در مداخله  یک آموزان خواهد بود:  شامل دو گروه از دانش   یش آزما   ین ا   : خروجی 

ها رو شدن با چالش روبه   یایدرباره مزا   ییها که شامل کارگاه   کنند ی رشد شرکت م   یت ذهن 

 یداری. پا کند ی نم   یافت در   ی مداخله خاص   یچ از شکست است و گروه کنترل که ه   یادگیری و  

کامل    یف و تعداد وظا   یز برانگ چالش   یلی تحص   یفه وظ   یک   ی زمان صرف شده بر رو   یق از طر 

رشد در   یتآموزان در گروه ذهن است که دانش   ینا   یه خواهد شد. فرض   یریگ شده اندازه 

نشان خواهند داد و    یلی تحص   یف در وظا   یشتری و عملکرد ب   یداریبا گروه کنترل پا   یسه مقا 

 . کند ی را برجسته م   یادگیری   یبر رفتارها   یت ذهن   یر تأث 

 

Figure 4: Example of PsychoLexQA dataset (Self-

instruct).  

 

 

 

 

 

Scenario Response: 
Instruct: In a scenario where a student has difficulty manag-
ing time, identify specific strategies to help him improve his 
skills. 
 
Output: 1. Teach the student to create a prioritized to-do list 
to Organize tasks by urgency and importance 2. Introduce 
the concept of timing, where the student sets aside specific 
times for studying and taking breaks 3. Use digital tools such 
as calendars or time management apps to set reminders for 
deadlines. 4. Encourage regular reviews of their schedule so 
they can adjust and review their time management practices. 
5. Promote self-evaluation of their time and productivity to 
identify and improve their patterns. 
 

 

 یها   ی زمان مشکل دارد، استراتژ   یریتکه دانش آموز در مد   یویی در سنار   دستور: 

 .ید کن   یی خود شناسا   ی کمک به او در بهبود مهارت ها   یرا برا   ی خاص 

 

کند تا   یجاد شده ا   ی بند   یت اولو   ی که فهرست کارها   یاموزید . به دانش آموز ب 1  : خروجی 

  ی را معرف   ی . مفهوم زمان بند 2کند.   ی سازمانده   یت و اهم   یت را بر اساس فور   یف وظا 

  ی مطالعه و استراحت اختصاص م  یرا برا   ی خاص   ی که دانش آموز زمان ها   یی جا   ید، کن 

زمان    یریتمد   ی برنامه ها   یا .  ید استفاده کن   یم تقو   ند مان   یجیتالی د   ی . از ابزارها 3دهد.  

تا   ید کن   یق منظم برنامه خود را تشو   ینی . بازب 4مهلت ها.    یبرا   یادآوری   یم تنظ   ی برا 

زمان و بهره   یابی . خود ارز 5و مرور کنند.    یم زمان خود را تنظ   یریتمد   ی ها   یوه بتوانند ش 

 .ید ده   قا آنها ارت   ی و بهبود الگوها   یی شناسا   ی خود را برا   ی ور 

 

 

Figure 5: Example of PsychoLexQA dataset (Self-

instruct). 

 

 

 

 

 

Literature Review: 
Instruct: Conduct a literature review on the effects of brain 
plasticity on learning and memory. Summarize key findings 
and theoretical themes. 
 
Output: Literature review shows that brain flexibility signifi-
cantly affects learning and memory. Most of the findings indi-
cate that engaging in new activities causes neuronal growth, 
while stress can decrease flexibility. Theoretical themes em-
phasize the need for educational strategies that foster envi-

ronments that foster learning and resilience. 

.  ید و حافظه انجام ده   یادگیری مغز بر    یریپذ  انعطاف   یر درباره تأث   یات مرور ادب   یک   دستور: 

 . ید را خلاصه کن  ی نظر   ین و مضام   یدی کل   های  یافته 

 

 یادگیریبر    ی مغز به طور قابل توجه   یریکه انعطافپذ   یدهدنشان م   یات مرور ادب   : خروجی 

یت شدن در فعال   یر از آن است که درگ   ی ها حاک   یافته   ی   است. عمده   یرگذار و حافظه تأث 

 موجب کاهش انعطاف  یتواند که استرس م   ی در حال   یشود، م   ی باعث رشد نورون   ید جد   های 

مضام   یری پذ  ن   ینظر   ین شود.  است   یاز بر  مح   ی آموزش   راتژی های به  را که   یط هایی که 

 یدهند. قرار م   ید مورد تأک   یکنند، م   یترا تقو  ی آور   و تاب   یادگیری 

 

Figure 3: Example of PsychoLexQA dataset (Self-

instruct). 
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Multiple-Choice QA: 
Question: Which strategy is NOT considered a form of problem-

focused coping? 

 

Choices: 

1) Defining the problem 

2) Seeking emotional support 

3) Generating alternative solutions 

4) Changing personal goals 

 

Correct Answer is 2. 

 ی از مقابله متمرکز بر مشکل در نظر گرفته نم   ی به عنوان شکل   ی کدام استراتژ  سوال: 

 شود؟ 

 

 :ها  گزینه 

 مسئله   یف تعر  (1

 ی عاطف   یتحما   ی جستجو  (2

 یگزینجا   یراه حل ها   یجاد ا  (3

 ی اهداف شخص   ییر تغ  (4

 

 .است   2  یح صح   پاسخ 

Figure 7: Example of PsychoLexEval dataset. 

 

 

 

 

Generate a dataset with 40 detailed and comprehensive instruc-

tions for specific tasks in the subcategory defined below. The da-

taset should be structured with three components: input, and 

output. Each task should be available in both Persian and English. 

Inputs and outputs should be detailed and extensive. 

 

Output Format: 

[ 

{ 

"id": 1, 

"Language": “English”, 

"Subcategory": "Subcategory", 

"Task": "Task", 

"Input": "A clear and concise description of the task and spe-

cific details or data needed to perform the task if needed.", 

"Output": "The expected result or answer based on the input 

provided and should have long text." 

}, 

{ 

"id": 2, 

"Language": "Persian", 

"Subcategory": " زیرمجموعه", 

"Task": " تسک", 

"Instruction": “ توضیح واضح و مختصر وظیفه.”, 

"Input": “ های خاص مورد نیاز برای انجام وظیفه اختیاری: جزئیات یا داده  .”, 

"Output": “ نتیجه یا پاسخ مورد انتظار بر اساس ورودی ارائه شده.” 

}, 

… 

] 

………………………………………………………….. 

Each language should have 20 rows (totaling 40 rows), cover-

ing the following tasks: 

 

Case Study Analysis 

Experiment Design 

Data Interpretation 

Scenario Response 

Theoretical Explanation 

Diagnostic Evaluation 

Ethical Dilemma Resolution 

Intervention Planning 

Literature Review 

Comparative Analysis 

………………………………………………………… 

 

Ensure that the instructions, inputs, and outputs are diverse 

and cover a wide range of scenarios within each task type. and 

ensure to generate all 20 rows and not say it is a sample or some-

thing like this. 

 

Subcategory: 

[ 

    "Clinical Psychology", 

    "Cognitive Psychology", 

    "Developmental Psychology", 

    "Social Psychology", 

    "Biological Psychology", 

    "Industrial-Organizational Psychology", 

    "Neuropsychology", 

    "Health Psychology", 

    "Educational Psychology", 

] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B   Prompt template 

In the below, we provide an example prompt for 

each task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Study Analysis: 
Instruct: Analyze a 6-year-old boy who resorts to aggression 
in times of frustration. Explore possible causes and suggest 
strategies to manage his behavior. 

 
Output: Case analysis of a 6-year-old boy who resorted to ag-
gressive behaviors in times of frustration can reveal several 
potential factors. This behavior may be due to difficulty in reg-
ulating emotions, which may be related to the lack of coping 
strategies for frustration and anger. He may imitate aggressive 
behaviors he has observed in his environment, such as at 
home or in the media, or he may seek attention through these 
crises. Suggested strategies for managing his behavior could 
include teaching him emotion regulation techniques such as 
deep breathing and using 'I feel' sentences to express his feel-
ings. Setting up a consistent behavior management plan, in-
cluding clear rules and consequences, can help create struc-
ture. Finally, involving parents in reinforcing positive behav-
ior at home and providing a loving environment can support 
the boy in constructively managing his frustrations. 
 

 

شود را تحلیل کنید. ساله که در مواقع ناامیدی به تهاجم متوسل می   6یک پسر    دستور: 

 .هایی برای مدیریت رفتار او پیشنهاد کنید علل احتمالی را بررسی کرده و استراتژی 

 

ای که در مواقع ناامیدی به رفتارهای تهاجمی ساله   6تحلیل مورد مربوط به پسر    خروجی: 

تواند چندین عامل بالقوه را نشان دهد. این رفتار ممکن است ناشی شود، می متوسل می 

ای های مقابله از دشواری در تنظیم احساسات باشد که ممکن است به عدم وجود استراتژی 

های تهاجمی را که در محیط برای ناامیدی و خشم مربوط باشد. او ممکن است شیوه 

ها مشاهده کرده است، تقلید کند یا ممکن است از طریق این خود، مانند خانه یا رسانه 

تواند شامل های پیشنهادی برای مدیریت رفتار او می ها توجه جلب کند. استراتژی بحران 

تکنیک  عم آموزش  تنفس  مانند  احساسات  تنظیم  جملات  های  از  استفاده  و  من ' یق 

باشد تا احساسات خود را ابراز کند. تنظیم یک برنامه مدیریت رفتار   ' کنم احساس می 

تواند به ایجاد ساختار کمک کند. در نهایت، منسجم، از جمله قوانین و عواقب واضح، می 

فراهم کردن محیطی دوست   و  در خانه  مثبت  رفتار  تقویت  برای  والدین  درگیر کردن 

 .هایش حمایت کند تواند از پسر در مدیریت سازنده ناامیدی داشتنی می 

 

Figure 6: Example of PsychoLexQA dataset (Self-

instruct). 
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Abstract

Automatic text summarization helps to digest
the vast and ever-growing amount of scien-
tific publications. While transformer-based
solutions like BERT and SciBERT have ad-
vanced scientific summarization, lengthy doc-
uments pose a challenge due to the token
limits of these models. To address this is-
sue, we introduce and evaluate a two-stage
model that combines an extract-then-compress
framework. Our model incorporates a “graph-
augmented extraction module” to select order-
based salient sentences and an “abstractive
compression module” to generate concise sum-
maries. Additionally, we introduce the Bio-
ConSumm dataset, which focuses on biodiver-
sity conservation, to support underrepresented
domains and explore domain-specific summa-
rization strategies. Out of the tested models,
our model achieves the highest ROUGE-2 and
ROUGE-L scores on our newly created dataset
(BioConSumm) and on the SUMPUBMED
dataset, which serves as a benchmark in the
field of biomedicine.

1 Introduction

The scientific community has experienced an un-
precedented surge in the number of scientific pub-
lications (Erera et al., 2019). This exponential
growth has resulted in a state of information over-
load, presenting both opportunities and challenges
for researchers. Navigating the vast amount of
information, filtering out relevant studies, and ex-
tracting essential insights have become increasingly
challenging (Levy, 2008). To address this issue, re-
searchers have turned to automatic summarization
methods, which leverage various NLP techniques
to condense the essential findings, methodologies,
and contributions of research articles into concise
and informative summaries.

The use of transformer-based language mod-
els (LMs), such as BERT (Devlin et al., 2019),
BART (Lewis et al., 2020), SciBERT (Beltagy

et al., 2019), and T5 (Raffel et al., 2020) has sig-
nificantly improved text summarization. Particu-
larly SciBERT’s performance in handling science-
related documents, and BERTSUM (Zhong et al.,
2020), an extension of BERT for extractive summa-
rization, have advanced scientific summarization
in terms of domain-specific performance, accuracy,
and coherency (Liu, 2019; Sefid and Giles, 2022).
Large language models (LLMs) have further re-
shaped the field of text summarization. For exam-
ple, OpenAI’s GPT-3 and its successors (Achiam
et al., 2023) have shown remarkable capabilities
in generating coherent and informative summaries
(Tang et al., 2023; Jin et al., 2024). These models
can perform both extractive and abstractive sum-
marization with high accuracy and fluency. For
instance, Zhang et al. (2024) highlight how LLMs
can generate summaries that not only capture the
main ideas of the source text but also reformulate
them in novel ways, often providing additional con-
text or explanations.

Despite recent advancements in text summariza-
tion, there are strong reasons to continue refining
BERT-based models for scientific summarization:
SciBERT, for instance, is trained on scientific texts,
which provides with an edge in identifying aca-
demic papers’ unique language and structure. They
are also computationally more efficient and have
smaller memory requirements than LLMs, mak-
ing them faster and more accessible for process-
ing large volumes of scientific papers (Zhu et al.,
2023). Additionally, such models offer greater in-
terpretability, allowing for insights into the sum-
marization process, which is crucial in the context
of science (White et al., 2024). Their open-source
nature further aligns with scientific principles of
transparency and reproducibility, reducing privacy
concerns associated with proprietary models like
GPT. Although BERT-based models offer numer-
ous advantages for scientific summarization, they
struggle with processing lengthy documents due
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to token limits. To address this issue, two-stage
summarization models have been proposed, where
the first stage focuses on identifying and extract-
ing salient sentences or passages, and the second
stage on generating a concise and coherent sum-
mary based on the extracted sentences (Galanis and
Androutsopoulos, 2010; Zhang et al., 2019a; Ma
et al., 2021; Rezapour et al.).

In this paper, we build upon the previous
work and propose a model for summarizing sci-
entific documents that incorporates the extract-
then-compress framework. Our model integrates
a “graph-augmented extraction module” that first
selects order-based salient sentences from the com-
plete text of long documents in the initial step (see
§4.1), and then employs an “abstractive compres-
sion module” to generate concise and relevant sum-
maries using the extracted drafts (see §4.2). We test
our model on two datasets: First, SUMPUBMED,
a benchmark dataset for abstractive summariza-
tion of biomedical scientific articles (Gupta et al.,
2021). Second, BioConSumm, a new dataset that
we created, which was curated for the purpose of
this work and is from the domain of biodiversity
conservation. One limitation of existing scientific
text summarization tasks is their strong reliance on
datasets from well-established domains like com-
puter science and biomedicine, neglecting other
research areas. This lack of attention has resulted
in a shortage of comprehensive exploration and rich
datasets in these underrepresented domains. To ad-
dress this disparity, we introduce the BioConSumm
dataset, which also serves as a valuable resource for
training and evaluating text summarization models
across domains. With the BioConSumm dataset,
we can investigate the unique challenges and char-
acteristics of summarizing scientific texts in low-
resourced fields, assess the effectiveness of existing
summarization techniques, and develop domain-
specific or domain-agnostic models.

2 Related Work

2.1 Scientific Paper Summarization

Scientific paper summarization involves the gener-
ation of a concise summary that captures the essen-
tial information and findings of a publication while
preserving its core meaning (Yasunaga et al., 2019;
An et al., 2021). Automatic text summarization
methods can be broadly categorized into two types:
extractive (Mihalcea and Tarau, 2004) and abstrac-
tive ones (Nenkova and McKeown, 2012). Extrac-

tive models focus on identifying the most impor-
tant information, such as sentences or key phrases,
from the original text, and constructing a summary
based on these selections. Abstractive models aim
to grasp the key ideas from the text and generate
new, coherent summaries. Unsupervised, graph-
based ranking methods (Mihalcea and Tarau, 2004;
Erkan and Radev, 2004) are widely used for extrac-
tive summarization. These methods assign weights
to sentences in a document using scoring systems
like eigenvector centrality or cosine similarity. The
sentences with the highest scores are then extracted
to form the summaries. Caragea et al. (2014) pro-
posed a key phrase extraction framework that uses
a citation network. By identifying important nodes
and relationships within the graph, their approach
extracts key phrases from scientific papers and in-
corporates the citation context into the summary.
Cohan and Goharian (2015) considered both con-
tent and citation contexts for summarizing scien-
tific papers, and showed improved performance
over purely content-based methods. Similarly, Abu-
Jbara et al. (2013) proposed a hybrid method that
uses both citation relationships and text content
to summarize scientific papers more effectively.
Multi-document summarization techniques have
been developed, which combine extractive and ab-
stractive techniques to generate concise summaries
from multiple related scientific papers. Yasunaga
et al. (2017) proposed a graph-based neural net-
work model for summarizing scientific documents
by leveraging multi-document inputs, showing that
the combination of citation networks and multiple
documents can create more informative summaries.
Ding et al. (2014); Ge et al. (2021) incorporated
domain-specific ontologies and semantic graphs
to enrich the content-based summarization process
and showed improved coverage and accuracy in
summarizing scientific papers.

Recent improvements in deep learning and neu-
ral architectures have resulted in significant im-
provements in extractive models (Liu, 2019; Nal-
lapati et al., 2017). For instance, BertSumExt (Liu
and Lapata, 2019) leverages a decoder and encoder
architecture as well as a classifier to select the most
salient sentences from a document and generate
more coherent summaries compared to the previ-
ous models. Liu (2019) introduced BERTSUM,
which set new performance benchmarks across
domains, including scientific text, by incorporat-
ing inter-sentence dependencies and sentence-level
classification. Nallapati et al. (2016) developed a
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sequence-to-sequence model with attention mech-
anisms that generate more fluent and human-like
summaries by capturing long-range dependencies
within the text. Further developments, such as
PEGASUS (Zhang et al., 2020) and T5 (Raffel
et al., 2020), have expanded on this sequence-to-
sequence architecture with large-scale pretraining
on text generation tasks, enhancing abstractive sum-
marization capabilities.

2.2 Two-stage Summarization

Hybrid, two-stage document summarization sys-
tems combine both extractive and abstractive tech-
niques to improve summary quality (Galanis and
Androutsopoulos, 2010; Zhang et al., 2019a; Ma
et al., 2021; Rezapour et al.). The first stage typi-
cally involves the extraction of salient fragments
from the original text as raw summaries. In the
second stage, these fragments are arranged into
summaries. For example, Chen and Bansal (2018)
and Bae et al. (2019) followed a hybrid extract-
then-rewrite architecture, with policy-based RL
to bring the extraction and rewriting modules to-
gether. Lebanoff et al. (2019); Xu and Durrett
(2019); Mendes et al. (2019) adopted the extract-
then-compress paradigm, namely compressive sum-
marization, which first trains an extractor to se-
lect salient sentences that are later input to a de-
coder to generate the summaries. Gehrmann et al.
(2018) first selected key sentences through extrac-
tive methods and then rewrote them using abstrac-
tive techniques, balancing factual accuracy and flu-
ency. Zhong et al. (2020) proposed a matching-
based extractive summarization framework, which
can be viewed as an extract-then-match framework.
This framework employs a sentence extractor to
first generate candidate summaries. It then refines
these summaries to align more closely with the
source document in the learned semantic space.

3 Data

3.1 Data collection

BioConSumm. Our dataset consists of a col-
lection of academic papers in the domain of biodi-
versity and bio-conservation. In contrast to high-
resourced fields such as biomedicine and computer
science, where meticulously curated, high-quality
datasets for training models are available, obtaining
data for low-resourced domains like biodiversity
conservation may require a multi-step approach:
We first collected paper records from the Web

of Science (WoS). These records include meta-
information such as author details, paper titles, and
digital object identifiers (DOIs), among other rele-
vant data. Given that WoS has already organized its
records according to predefined research domains,
including biodiversity conservation, we used the
WoS query system to specify the category as bio-
diversity conservation. As of October 2020, there
were over 120,000 records pertaining to journal
and conference papers within the field of biodiver-
sity conservation. To narrow down the search, we
additionally specified the WoS topic as biodiver-
sity, focusing on papers where the title, abstract,
or keywords contained the term “biodiversity.” Fi-
nally, we downloaded more than 20,000 records
as ciw files, imported them into Endnote X91, and
leveraged the Endnote API to find and download
full papers in the format of PDF based on the WoS
records. Note that the Endnote API is limited to
downloading papers from databases that permit au-
tomatic downloading and are subscribed to by the
researchers’ organizations. As a result, we down-
loaded 12,168 full papers in the format of PDF.
Given that the texts in some PDF files use unknown
encoding, we extracted texts from 11,579 PDF files
as our final dataset. This data collection process can
be extended to other domains that have limited re-
sources or lack well-curated computational datasets
but for which WoS contains records. While we are
not allowed to share the full text of the papers, our
data extraction pipeline is reproducible, and using
the paper titles and our pipeline, researchers can
extract the data.

SUMPUBMED. We used SUMPUBMED
(Gupta et al., 2021), a dataset for abstractive sum-
marization of biomedical scientific articles built
from 33,772 scientific articles in Bio Med Central
(BMS), as a point of comparison. SUMPUBMED
processed these articles by ensuring that the
text and abstract in each article have the same
named entities. As Figure 1 shows, unlike the
abstracts in BioConSumm, every sentence in each
SUMPUBMED abstract must contain biomedical
named entities such as gene identifiers (i.e.,
H2A.Z) that also appear in the processed main
body of the same article.

Conducting experiments on these two datasets
from different domains enables a more thorough
evaluation of the proposed model and allows us to
assess how the model’s performance is influenced

1https://endnote.com/
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Figure 1: Example summaries in BioConSumm and
SUMPUBMED datasets

by some data characteristics via quantitative met-
rics and human evaluation. For BioConSumm, we
used the body of raw scientific articles as the in-
put data, while the ground truth is the abstracts of
these articles. Similarly, for SUMPUBMED, we
use the body and the processed version of abstracts,
as described above.2

4 Methodology

This section presents our proposed framework for
long document summarization, which follows the
extract-then-compress paradigm. Our model incor-
porates a graph-augmented extraction module that
extracts salient sentences from the full text of long
documents as drafts, and a subsequent abstractive
compression module that generates concise and co-
herent summaries based on the extractive drafts.

4.1 Graph-Augmented Extraction Module

Motivated by prior studies that leveraged sentence
graphs based on TF-IDF cosine similarities in
summarization tasks (Erkan and Radev, 2004; Ya-
sunaga et al., 2017), we extended this methodology
by incorporating SciBERT (Beltagy et al., 2019)
and Graph Convolution Network (GCN) (Kipf and
Welling, 2017) to build our graph-augmented ex-

2Both datasets are in English.

traction module.

4.1.1 Graph-Based Encoder
Given a source document represented as a sequence
of sentences S = [s1, s2, ..., sn], we construct an
undirected sentence graph G = (N , E), where N
denotes the set of nodes comprising the sentences
in the source document, and E indicates the signifi-
cant similarity between connected sentences. We
computed sentence similarity by following Erkan
and Radev (2004) to first derive the TF-IDF fea-
ture for each sentence and then calculate the cosine
similarity between any two sentences. We set a pre-
defined threshold of 0.1 for cosine similarity based
on the optimal performance observed in (Erkan and
Radev, 2004). If the computed cosine similarity
between two sentences exceeded this threshold, an
edge was added to link the two sentences. We de-
note the adjacency matrix of the resulting graph G
as A ∈ Rn×n, where n is the number of sentences.

We next obtained the initial node feature matrix
X ∈ Rn×d, where d is the dimension of the feature
vector, by leveraging sentence embeddings pro-
duced from SciBERT (Devlin et al., 2019). We in-
serted a special tag [CLS] at the beginning of each
sentence. The final hidden state that corresponds
to [CLS] was used as the sentence embedding.

To facilitate the identification of salient content
in the source document, we applied GCN on top of
the sentence graph. This technique propagates in-
formation across nodes based on the graph structure
and refines the node representations. Specifically,
we performed a symmetric normalization of the
adjacency matrix A as follows:

Â = D̃−
1
2 ÃD̃−

1
2 , (1)

where Ã is the adjacency matrix A with self-loops
such as Ã = A + In and D̃ is the degree matrix
of Ã such as D̃ii =

∑
j Ãij . To propagate infor-

mation across layers, we use the following rule for
each layer of GCN:

H(l+1) = σ(ÂH(l)W(l)), (2)

where H(l) ∈ Rn×d(l) is the hidden states for
each node in the l-th layer, d(l) is the dimen-
sion of hidden states in the l-th layer, σ is a non-
linear activation function such as ReLU(.), and
W(l) ∈ Rd(l)×d(l+1)

is the weight matrix to be
learned in the l-th layer. Particularly, we initial-
ize the hidden states in the first layer as the initial
node embedding: H(0) = X, and the final sentence
representations are denoted as H(L) ∈ Rn×d(L)

.
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4.1.2 Sentence Order-Based Extraction
We treat our graph-augmented extraction module
as an extractive summarization. The common
ground-truth labels were derived from target sum-
maries using a greedy algorithm (Nallapati et al.,
2017). However, the resulting labels are typically
binary, indicating only whether a sentence should
be extracted or not. Consequently, the model
is trained to extract sentences as unordered sets,
which does not preserve the coherence of the target
summaries. We believe that such binary labels can
hinder the performance of the subsequent abstrac-
tive compression module as they fail to consider
the order of sentences even if they are correctly
extracted as a set.

In order to address this issue, we propose a new
labeling method for our extraction module, which
produces soft labels that reflect ranked source sen-
tences following the sentence orders in a target
summary. We denote the set of ground-truth sen-
tences G = {g1, g2, ..., gx} indicating the sen-
tences in a source document that should be ex-
tracted, and the target summary as a sequence of
sentences T = [t1, t2, ..., ty]. We looped through
each ti ∈ T and found its most similar source
sentence in G based on ROUGE-2 such as gi∗ =
argmax
gj∈G

ROUGE(ti, gj). To reflect the sentence

order, we recorded the ROUGE-2 score ci between
the current summary Ci after adding gi∗ and the
target summary T :

Ci = Ci−1 ∪ gi∗ (3)

ci = ROUGE(Ci, T ) (4)

Once we finished the loop, we normalized the or-
dered sequence of ci into a predefined range [l, u]
in decreasing order such that a source sentence
corresponding to a lower-indexed target sentence
receives a higher score, and after training, it is
expected to be extracted earlier. Lastly, we used
label smoothing (Szegedy et al., 2016) to mix the
normalized score c̃k and the independent ROUGE
score calculated between each source sentence and
the target summary (Narayan et al., 2018) for all
source sentences sk ∈ S as the final score:

rk = ε · c̃k + (1− ε) · ROUGE(sk, T ), (5)

where ε ∈ [0, 1] is an adaptation factor and we set
it to a big value, such as 0.9, so that the final scores
are mainly based on the normalized scores derived
from sentence orders.

During the training, we added an MLP upon the
final sentence representation to predict the score:
ŷk = MLP(H(L)

k, ), where H(L)
k, means the k-th row

of H(L) representing the final sentence represen-
tation for sk. We adopted cross-entropy loss to
calculate the loss and set the minimization of the
loss as the training objective:

L = −
∑

sk∈S
rk · log(ŷk) (6)

4.2 Abstractive Compression Module

While our graph-augmented extraction module ef-
fectively compresses long documents into concise
summaries, the resulting summaries are extractive
in nature, lacking sentence coherence, which di-
minishes readability and could mislead readers.
To address this limitation, we introduce an ab-
stractive compression module that converts the ex-
tracted salient sentences into complete and coher-
ent summaries. For this purpose, we employed
a Transformer-based pre-trained model (Vaswani
et al., 2017) and fine-tuned it to generate the tar-
get summary given the output from the graph-
augmented extraction module as its input.

We explored two widely used models for text
generation in our investigation:

• T5 (Raffel et al., 2020), an encoder-decoder
model pre-trained on a diverse set of unsu-
pervised and supervised tasks. Each task is
converted into a text-to-text format to facili-
tate training and inference.

• BART (Lewis et al., 2020), a transformer-
based denoising autoencoder designed for pre-
training sequence-to-sequence tasks.

By leveraging the abstractive model, we aim
to transform the extractive summaries into final
summaries that are both coherent and informative,
enhancing the overall quality and readability of the
summarization output.

5 Experiments

In this section, we first introduce implementation
details, and then show experimental results from
both quantitative and qualitative evaluation.

5.1 Implementation Details

All models were implemented using the PyTorch
framework (Paszke et al., 2019) and Huggingface
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transformers (Wolf et al., 2020). For the graph-
augmented extraction module, we initialized SciB-
ERT with allenai/scibert-scivocab-uncased, and
built a 2-layered GCN. We set the dimensions of
the hidden layer and output layer for GCN as 200
and, 100 respectively. The dimension of the hidden
layer of MLP was set to 32 and we used ReLU as
the activation function in MLP. This module was
optimized by Adafactor (Shazeer and Stern, 2018)
with the learning rate of 5e − 5. As for the ab-
stractive compression module, we initialized BART
with facebook/bart-base and T5 with t5-base. Dur-
ing training, we optimized the model with AdamW
(Loshchilov and Hutter, 2018) and set the learning
rate to 5e− 5.

5.2 Quantitative Evaluation
To evaluate the performance of our proposed model,
we conducted experiments on BioConSumm, the
conservation dataset that we have curated, as well
as with SUMPUBMED. To evaluate the quality of
the generated summaries, we utilized the widely-
used ROUGE scores (Lin, 2004), which were as-
sessed against the ground truth data comprising
abstracts of scientific articles. Specifically, we cal-
culated the ROUGE-1, ROUGE-2, and ROUGE-L
metrics, which offer insights into the generated
summaries’ quality.

For both evaluations, we compared our model,
referred to as Ordered, against several baselines:

• T5: We follow a similar approach to the
BART baseline by fine-tuning the T5 model
on the dataset. Similarly, we truncated the in-
put documents to comply with the maximum
token limit imposed by T5.

• BART: We directly fine-tuned the BART
model on the dataset. In this process, we trun-
cated the input documents to fit within the
maximum token limit imposed by BART.

• Unordered: This baseline shares the same
structure as our model, but we trained the ex-
traction module based on the ROUGE score
between each sentence in an input document
and the target summary as in Narayan et al.
(2018).

5.2.1 Results on BioConSumm
Table 1 shows that BART consistently outper-
formed T5 across all evaluation scenarios in terms
of ROUGE-1 and ROUGE-L. This observation

Model R1 R2 RL
T5 42.97 12.16 20.13
BART 43.55 12.97 20.25

Unordered + T5 45.76 14.37 21.89
Unordered + BART 45.96 14.40 21.69
Ordered + T5 46.18 15.16 22.10
Ordered + BART 46.09 15.51 22.86

Table 1: Experimental results on BioConSumm.

Model R1 R2 RL
T5 42.16 12.38 19.78
BART 44.87 13.83 20.30

Unordered + T5 46.56 15.35 21.25
Unordered + BART 46.72 15.85 21.57
Ordered + T5 46.43 15.72 21.42
Ordered + BART 46.55 15.88 21.77

Table 2: Experimental results on SUMPUBMED.

aligns with the widespread success of BART for
summarization (Zhang et al., 2021; Lewis et al.,
2020). Also, all two-staged models outperformed
abstractive models, namely T5 and BART. This
could be due to the fact that crucial information
that needs to be included in the summary may not
always be found at the beginning of the scientific
documents, unlike documents in other domains
such as news articles (Grenander et al., 2019; Xing
et al., 2021). By contrast, two-staged models can
encode entire documents, which enables them to
capture salient content regardless of its position in
a document.

Among the two-staged models, those incorpo-
rating sentence order-based extraction (referred to
as “Ordered”) outperformed the models that do not
explicitly consider sentence order (referred to as
“Unordered”). This finding validates our initial hy-
pothesis that considering sentence order in the ex-
tractive module matters, which is often disregarded
in traditional extractive summarization. Our pro-
posed method, which incorporates sentence order
into the training of the extractive module, preserves
sentence order and explicitly models the inherent
coherence and structure within a document during
the first stage of summarization. We believe that
this feature contributes to the better performance of
our proposed models; enabling it to better capture
the essence and flow of the original content.

5.2.2 Results on SUMPUBMED

We conducted additional experiments on
SUMPUBMED (Table 2). Consistent with
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our findings on BioConSumm, all order-based
two-staged models outperformed the single
abstractive models or unordered models in terms
of ROUGE-2 and ROUGE-L. This reaffirms the
effectiveness of order-based two-staged models for
long document summarization. The improvement
on BioConSumm data is notably larger (specifically
for ROUGE-L) than for SUMPUBMED. We
conducted a human evaluation to investigate the
characteristics of summaries and the reason for
this difference.

5.3 Human Evaluation
We sampled 10 articles from each of the two
datasets and asked four students fluent in English
to read the full papers with their abstracts re-
moved. The abstract (ground truth) and the model-
generated summaries of each paper were rated by
two students with respect to four aspects: Content
coverage, Coherence, Hallucination, and Overall
quality (Howcroft et al., 2020). The evaluators
were unaware of whether they were assessing the
original abstract or a model-generated summary
during the evaluation process. The four evaluation
aspects are further explained below:

• Content Coverage: This includes five items,
which aim to evaluate how well a model-
generated summary or an abstract covers the
main points of the corresponding full paper:
1) research background, 2) research questions
or goals, 3) methods, 4) findings, and 5) con-
clusion or discussion.

• Coherence: Three coherence items aim to
evaluate 1) how logical a summary or abstract
is organized (e.g., background → research
questions → methods → findings → contri-
bution), 2) whether bullet points/numbering
is correctly formed in a reasonable order if
applicable, and 3) how fluent the summary
reads.

• Hallucination: This aspect aims to evaluate
whether a summary or abstract contains any
information not mentioned in the paper.

• Overall Quality: We asked the evaluators to
rate a summary or abstract for its overall qual-
ity.

We used a rating scale ranging from 1 to 4 (bad,
fair, good, and excellent) for all metrics except
numbering and hallucination, which were assessed

BioConSumm SumPubMed
A M A M

Background 3.45 3.2 2.88 2.13
Question 3.05 3.28 2.56 2.67
Method 2.76 2.56 2.75 2.67
Finding 3.25 3.1 2.8 2.8
Conclusion 2.9 2.9 2.33 2.1

Organization 3.4 3.45 2.3 2
Numbering 1 1 1 1
Fluency 3.55 3.35 2.5 2.6

Hallucination 0 0.1 0 0

Overall Quality 3.15 2.8 2.3 2.1

Table 3: Human evaluation of abstracts (A) and
model-generated summaries (M) for BioConSumm and
SUMPUBMED data. Since Ordered + BART model is
consistently the best model in terms of ROUGE-2 and
ROUGE-L as well as the human evaluation scores, we
only show results of these models.

by a yes-or-no evaluation, with 1 representing “yes”
and 0 representing “no.”

Table 3 shows the average human ratings for
abstracts and model-generated summaries. The ab-
stracts from SUMPUBMED got lower ratings than
those from BioConSumm, particularly for coher-
ence; a metric that represents the logical order of
abstracts in the training data and the generated sum-
maries. This is because SUMPUBMED processed
all indexed articles by ensuring that the named enti-
ties in both the text and abstract in each article were
the same. Sentences without shared named enti-
ties between the text and abstract were removed,
resulting in lower coherence. The higher coher-
ence of the raw texts and abstracts from BioCon-
Summ dataset likely provides superior information
for training a more effective order-based sentence
extraction model, resulting in a more substantial
improvement of the final model performance repre-
sented by ROUGE scores.

6 Conclusions and Future Work

This paper presents a novel dataset for summarizing
scientific articles from the domain of biodiversity
conservation, which distinguishes it from existing
datasets in this field. Additionally, we proposed
a two-staged summarization model that employs
the “extract-then-compress” approach to effectively
summarize lengthy scientific documents. To eval-
uate the effectiveness of our model, we compared
its performance using both our newly introduced
dataset and a benchmark summarization dataset
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from the biomedical domain. The results demon-
strate that our model outperforms well-established
summarization methods.

7 Limitations

While our model exhibits promising performance,
there are still challenges to address, particularly in
modeling cross-domain datasets. Furthermore, it
is important to recognize that evaluating the qual-
ity of summaries is a complex task that goes be-
yond the scope of a single metric. While ROUGE
scores have been widely used and accepted as a
standard evaluation measure in summarization re-
search (Fabbri et al., 2021; Rezapour et al., 2022),
they have inherent limitations, e.g., their focus on
lexical overlap, which may not fully capture the nu-
ances of semantic salience. Future work should fo-
cus on incorporating additional evaluation methods
(e.g., Bertscore (Zhang et al., 2019b)) that consider
semantic relevance and coherence and provide a
more comprehensive assessment of the summaries.

Finally, expanding datasets to low-resourced do-
mains beyond biodiversity conservation can ad-
vance summarization techniques across scientific
disciplines. In addition, exploring cross-domain
summarization tasks, despite limited training data,
addresses the challenges of varying terminology
and writing styles. Overcoming these challenges
enables the wider application of summarization
techniques, promoting knowledge dissemination
and interdisciplinary research.

8 Ethical Statement

Our dataset consists exclusively of English-
language texts, which may introduce limitations
in terms of linguistic diversity and inclusivity. We
are committed to promoting open and collabora-
tive research practices. While we cannot share
the full texts of our new dataset, a list of paper ti-
tles and detailed instructions for reproducing our
data collection process are available for future re-
search endeavors 3. Furthermore, in this analysis,
we deliberately chose not to employ any LLMs,
whether closed- or open-weight, out of respect for
the proprietary nature of our data, ensuring that our
methods are fully aligned with ethical standards
regarding data usage and model selection.

3https://github.com/khan1792/BioConSumm
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Abstract

Psychiatry texts provide critical insights into pa-
tient mental states and therapeutic interactions.
These texts are essential for understanding psy-
chiatric conditions, treatment dynamics, and
patient responses. However, the complex and
diverse nature of psychiatric communications
poses significant challenges for traditional topic
modeling methods. The intricate language, sub-
tle psychological nuances, and varying lengths
of text segments make it difficult to extract co-
herent and meaningful topics. Conventional
approaches often struggle to capture the depth
and overlap of themes present in these texts. In
this study, we present a novel approach to topic
modeling that addresses these limitations by
reformulating the problem as a community de-
tection task within a graph constructed from the
text corpus. Our methodology includes lemma-
tization for data standardization, TF-IDF vec-
torization to create a term-document matrix,
and cosine similarity computation to produce a
similarity matrix. This matrix is then binarized
to form a graph, on which community detec-
tion is performed using the Louvain method.
The detected communities are subsequently an-
alyzed with Latent Dirichlet Allocation (LDA)
to extract topics. Our approach outperforms tra-
ditional topic modeling methods, offering more
accurate and interpretable topic extraction with
improved coherence and lower perplexity.

1 Introduction

Psychiatric disorders like depression, bipolar dis-
order, anxiety, schizophrenia, and substance abuse
are major contributors to disability, significantly
impacting individuals’ quality of life due to their
prevalence and duration (James et al., 2018;
Figueroa et al., 2020; Cuijpers et al., 2012). Tra-
ditionally, psychiatrists diagnose these conditions
through detailed consultations, with linguistic re-
search highlighting key speech patterns in vari-
ous disorders (Cohen et al., 2008; Patra et al.,

2020). Mental health interventions, including
psychosocial, behavioral, pharmacological, and
telemedicine methods, are vital for improving well-
being but face systemic obstacles (DeRubeis et al.,
2008; Miranda et al., 2008). The absence of objec-
tive diagnostic tools, variability in treatment qual-
ity, clinician shortages, especially in rural areas,
and the high costs of training reduce the effective-
ness of psychological therapies, underscoring the
need for improved diagnostic and treatment tools
(Firth et al., 2017; Wang et al., 2007).

Recently, there has been a surge in research
aimed at diagnosing psychiatric disorders through
Natural Language Processing (NLP). Studies have
targeted a range of disorders, including schizophre-
nia, depression, bipolar disorder, obsessive-
compulsive disorder, autism spectrum disorders,
and dementia (Malgaroli et al., 2023; Rumshisky
et al., 2016). Topic modeling has emerged as a
key NLP technique for extracting meaningful pat-
terns and themes from psychiatric texts (Nikolenko
et al., 2017). Topic modeling algorithms are de-
signed to uncover latent topics within large corpora
of text by analyzing word co-occurrence patterns
(Tong and Zhang, 2016). This approach can reveal
underlying themes in patient narratives, therapy
session transcripts, and clinical notes, providing
valuable insights into the content and dynamics
of psychiatric disorders. By applying topic mod-
eling to mental health data, researchers can gain
a deeper understanding of prevalent issues, treat-
ment efficacy, and patient experiences, ultimately
contributing to the improvement of diagnostic and
therapeutic processes (Nikolenko et al., 2017).

Latent Dirichlet Allocation (LDA) is a widely
used topic modeling technique based on the
premise that documents are mixtures of topics and
topics are distributions over words (Blei et al.,
2003). Latent Semantic Analysis (LSA) is an-
other topic modeling technique that employs singu-
lar value decomposition to reduce dimensionality
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and uncover underlying semantic structures (Du-
mais, 2004). Non-Negative Matrix Factorization
(NMF) is also one of the topic modeling techniques,
which factorizes term-document matrices into non-
negative components, focusing on additive topic
combinations (Lee and Seung, 2000). BERTopic
enhances topic modeling by utilizing contextual
embeddings from models like BERT and MPNet,
combined with advanced term weighting, which
improves topic identification, particularly in spe-
cialized domains such as legal documents (Groo-
tendorst, 2022). Spectral clustering further refines
topic coherence by analyzing document similar-
ity structures, though it requires careful parame-
ter tuning and can be sensitive to noise (Ng et al.,
2001). K-means clustering is used to extract precise
topics from unstructured data, such as biomedical
texts, with improvements in accuracy and efficiency
(Sinaga and Yang, 2020).

Existing topic modeling approaches, such as
LDA and similar models, often face challenges in
accurately capturing specific concepts of substan-
tive interest within a corpus (Chemudugunta et al.,
2008; Chang et al., 2009). While these models can
explore the themes present in the data, they fre-
quently produce multiple topics with overlapping
content or merge distinct themes into a single topic.
This can lead to difficulties in interpreting the top-
ics and measuring key concepts accurately (Lei,
2012). Additionally, these models do not inher-
ently incorporate information about the topics of
interest, making it challenging for researchers to de-
termine whether the generated topics align with the
intended substantive concepts until after the model
has been fitted (Brookes and McEnery, 2019). This
limitation highlights the need for human validation
to ensure the relevance and accuracy of the topics.

To address these issues, our graph-based method
offers a more refined approach by constructing a
network of terms, which better captures the rela-
tionships and nuances in the data, ultimately lead-
ing to clearer interpretations and more accurate
measurements of the underlying thematic struc-
tures. In this study, we propose a novel approach
to improve topic modeling in psychiatric text anal-
ysis by leveraging graph-driven community detec-
tion topic modelling (GCD-TM). This approach
involves three key concepts:

• We build a graph based on cosine similarity
computed from TF-IDF vectorized text data,
where each document is represented as a node

and edges denote the semantic similarity be-
tween nodes. This enables the identification of
closely related groups of documents that share
similar themes (Singh and Shashi, 2019).

• We apply the Louvain method for commu-
nity detection on the constructed graph (Meo
et al., 2011). This technique identifies densely
connected subgroups within the graph, which
correspond to communities of documents with
closely related content. This step allows for
more accurate grouping of related documents
before topic modeling.

• Once communities are detected, Latent Dirich-
let Allocation (LDA) is used to extract topics
within each community. By focusing on these
pre-grouped communities, the resulting topics
are more coherent and accurately represent the
underlying themes in the text, addressing the
limitations of traditional topic models that of-
ten mix different themes or create overlapping
topics.

The paper is structured as follows: Section 2 re-
views related work, Section 3 describes the method-
ology, Section 4 discusses the results, section 5
gives the limitation, and Section 6 concludes with
findings and future directions.

2 Related Works

This section explains topic modeling methodolo-
gies, including word-assisted, clustering-based,
and sequence-based approaches.

Word-assisted topic modelling: Topic mod-
eling is a technique used to identify themes and
patterns in large text corpora by analyzing the co-
occurrence of words and documents. Traditionally,
fully automated models such as Latent Dirichlet
Allocation (LDA) have been used to extract top-
ics without requiring prior knowledge (Blei et al.,
2003; Wood et al., 2017). However, these models
often struggle with interpretability and can produce
overlapping or ambiguous topics. To address these
limitations, the keyATM approach has been pro-
posed, which integrates human input by requiring
researchers to specify a few keywords related to the
topics of interest before fitting the model (Eshima
et al., 2024; Lu et al., 2011). This enhancement
has been shown to significantly improve both the
interpretability and classification performance of
the topics generated, providing more accurate and
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actionable insights from textual data. A model sim-
ilar to the base keyATM assumes that each docu-
ment has a single keyword topic, while other topics
may lack keywords. In contrast, keyATM allows
each document to belong to multiple keyword top-
ics, providing a more flexible approach (Li et al.,
2019).

Clustering based topic modelling: This study
explores a hybrid topic modeling approach combin-
ing Bidirectional Encoder Representations (BERT)
with Latent Dirichlet Allocation (LDA) and unsu-
pervised clustering methods (George and Sumathy,
2023; Lim et al., 2017; Mu et al., 2022). Dimen-
sionality reduction techniques such as PCA, t-SNE,
and UMAP are employed to address computational
inefficiencies in high-dimensional data. The ap-
proach, applied to the CORD19 dataset, integrates
LDA’s probabilistic topic assignments with BERT’s
sentence embeddings. Clustering is performed with
k-means, and the Elbow Method identifies the op-
timal number of clusters (Subramani et al., 2018;
Alharbi et al., 2021). The results indicate that this
hybrid framework enhances topic coherence and ef-
fectiveness in topic modeling applications. STEL-
LAR is an interactive tool for topic exploration,
using BERT embeddings with UMAP and HDB-
SCAN to model topics. Human evaluation of the
generated topics demonstrated their coherence and
relevance (Eklund and Forsman, 2022).

3 Methodology

The proposed method, illustrated in Figure 1, in-
volves several key stages: text preprocessing, text
vectorization, graph construction, community de-
tection, and topic modeling.

3.1 Text Preprocessing

Text preprocessing plays a crucial role in the quality
of topic modeling results, and the pipeline for this
study involved several key steps. First, text clean-
ing was applied to remove special characters, digits,
non-informative tokens such as URLs, and exces-
sive white spaces, while also converting all text to
lowercase for consistency. Next, stopword removal
was conducted using the NLTK library, eliminating
common English stopwords (e.g., ’and’, ’the’, ’is’)
as well as domain-specific stopwords to prevent
them from influencing topic formation. Finally,
lemmatization was performed using the WordNet
lemmatizer in NLTK, reducing words to their base
or dictionary forms to standardize vocabulary and

improve topic coherence by ensuring that varia-
tions like "running" and "ran" were treated as the
same term, "run." This process helped reduce re-
dundancy and enhance the overall clarity of the
topics.

3.2 Text Vectorization
Text data is vectorized using TF-IDF with the term-
document matrix X given by (Singh and Shashi,
2019):

Xij = TF-IDF(ti, dj) (1)

where TF-IDF(ti, dj) represents the TF-IDF score
of term ti in document dj .

3.3 Graph Creation
Cosine similarity is computed for the TF-IDF ma-
trix X to obtain a similarity matrix S: The cosine
similarity between documents i and j is computed
using:

Sij =

∑
k Xki ·Xkj√∑

k X
2
ki ·
√∑

k X
2
kj

(2)

where Sij represents the cosine similarity be-
tween the term vectors of documents i and j. Here,
Xki denotes the TF-IDF score of term k in docu-
ment i, and Xkj denotes the TF-IDF score of term
k in document j. The numerator

∑
k Xki · Xkj

calculates the dot product of the term vectors for
the two documents, which measures their similar-
ity in terms of term distributions. The denominator√∑

k X
2
ki ·
√∑

k X
2
kj normalizes this dot prod-

uct by the magnitudes of the term vectors for both
documents, ensuring the similarity score lies be-
tween 0 and 1, where 1 indicates identical term
distributions.

A binary distance matrix B is then created using
a threshold τ :

τ = k × (µ+ 3σ) (3)

where µ is the mean and σ is the standard devi-
ation of the similarity values in the matrix S. The
parameter k is optimized through hyperparameter
tuning to determine the appropriate threshold for
binarization. This binarization step, which converts
the similarity matrix into a binary form based on
the threshold, plays a crucial role in influencing the
quality of the resulting topics.

To evaluate the sensitivity of topics to binariza-
tion, different threshold levels τ were tested by ad-
justing the value of k. If the threshold τ is set too
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Figure 1: Proposed Architecture of Graph-Driven Community Detection for Topic Modelling.

low, many connections between documents are lost,
leading to a sparse graph with fewer edges. This
can result in over-fragmentation, where documents
that should be grouped together are isolated, thus
producing incoherent topics. Conversely, setting
a higher threshold results in a densely connected
graph, which diminishes the distinction between
communities and blurs topic separation. Therefore,
tuning k is critical to achieving the right balance be-
tween graph connectivity and effective community
separation.

The binary distance matrix B is defined by:

Bij =

{
1, if Sij < τ

0, if Sij ≥ τ
(4)

In this matrix, Bij represents the presence or
absence of an edge between documents i and j. If
the cosine similarity Sij is less than the threshold
τ , Bij is set to 1, indicating a connection. If Sij is
greater than or equal to τ , Bij is set to 0, indicating
no connection. This binary matrix is used to con-
struct a graph for subsequent community detection.

A graph G is constructed from the binary dis-
tance matrix B.

3.4 Community Detection

Community detection is performed using the Lou-
vain method on G. The Louvain method is an
algorithm designed to optimize the modularity of a
partition of the graph into communities. Modular-
ity is a metric that measures the density of edges

within communities compared to edges between
different communities.

Modularity Q for a given partition of the graph
into communities is defined as:

Q =
1

2m

∑

i,j

[
Bij −

kikj
2m

]
δ(ci, cj) (5)

where Bij is the adjacency matrix of G, where
Bij = 1 if there is an edge between nodes i and
j, and Bij = 0 otherwise. ki and kj represent the
degrees of nodes i and j, respectively, and m is
the total number of edges in the graph. The term
δ(ci, cj) is the Kronecker delta, which equals 1 if
nodes i and j are in the same community and 0
otherwise.

The Louvain algorithm maximizes modularity
in two phases. In the Local Moving Phase, each
node starts in its own community and is iteratively
moved to increase modularity (Meo et al., 2011).
Once no further improvement is possible, the Ag-
gregation Phase begins, where communities are
combined into single nodes, and the process repeats.
These steps are iterated until no more modularity
gains can be achieved. The result is a partition of
the graph into non-overlapping communities with
denser internal connections compared to external
ones.

3.5 Topic Modelling
The Latent Dirichlet Allocation (LDA) model is
employed to extract latent topics from the commu-
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nities detected in the previous steps. For this, a
corpus and a dictionary are first prepared using the
words from each community. The corpus consists
of a bag-of-words (BoW) representation of the text,
where each document (community) is represented
by a list of tuples. Each tuple contains a word
and its corresponding frequency in that community.
The dictionary maps each unique word to an integer
ID. The LDA model is then trained on this corpus,
with the dictionary providing the mapping between
words and their IDs. The model is configured to
extract a predefined number of topics, denoted as
K. The training involves iterating over the cor-
pus multiple times, controlled by the parameter
’passes’, to refine the topic distribution for each
document. In this study, the model is trained with
K = 5 topics and 15 passes to ensure convergence
and optimal topic extraction. The result is a set
of topics, each represented by a distribution over
the words in the dictionary, which characterizes the
underlying themes within the communities.

4 Experimental Discussion

4.1 Experimental setup

Dataset: The datasets utilized in this study,
sourced from Kaggle, include the Suicidal Men-
tal Health Dataset, Reddit Mental Health Data,
and Predicting Anxiety in Mental Health Data.
Each dataset comprises three key features: patient
IDs, textual statements, and corresponding mental
health status labels.

The Suicidal Mental Health Dataset(SMH) en-
compasses a wide range of textual data related
to suicide, capturing personal experiences, men-
tal health struggles, and appeals for help. Reddit
Mental Health Data (RMH) comprises posts and
comments from mental health-focused subreddits,
offering candid insights into everyday experiences
with conditions like depression and anxiety. The
Predicting Anxiety in Mental Health Data (AMH)
focuses on anxiety-related content, including forum
posts and social media comments, detailing symp-
toms, triggers, and coping mechanisms. Together,
these datasets provide a rich foundation for analyz-
ing mental health themes and language patterns in
written communication. Table 1 summarizes the
stastistics of the three datasets.

Evaluation Measures: To evaluate the effective-
ness of topic modeling, we use two key measures
in this study: coherence score and perplexity. The
coherence score assesses how coherent the topics

Dataset Total Number of samples
SMH 5000
RMH 10000
AMH 3500

Table 1: A summary of the datasets used in this work.
Dataset statistics including total number, majority sam-
ples, and minority samples.

are by evaluating the degree to which the top words
of a topic frequently appear together in the text. A
higher coherence score indicates that the topics are
more semantically consistent and meaningful. On
the other hand, perplexity measures the model’s
ability to predict a set of words within the text.
It provides an indication of how well the model
captures the underlying structure of the data, with
lower perplexity values suggesting better predictive
performance and a more accurate representation of
the text (Newman et al., 2011).

Baseline Models and Implementation Details:
We performed a comprehensive comparison be-
tween our proposed method and four baseline
approaches: Latent Dirichlet Allocation (LDA),
Spectral Clustering (SC), BERTopic, and K-means
Clustering (KMC). This evaluation encompasses a
range of traditional topic modeling techniques to
ensure thorough benchmarking. Each topic model-
ing method was tested with multiple configurations,
and hyperparameter tuning was employed to opti-
mize their performance.

Our proposed method was developed using
Python version 3.11. All experiments were con-
ducted on a desktop computer equipped with a
Ryzen 9 5950X processor, 128GB of RAM, and an
NVIDIA GeForce RTX 3090 graphics card with
24GB of memory.

4.2 Comparative Analysis on SMH Dataset

The table 2 presents a performance comparison of
different topic modeling techniques on the Suicide
Mental Health (SMH) dataset. The results high-
light the effectiveness of each method based on
two metrics: Coherence and Perplexity.

GCD-TM outperforms all other methods with a
coherence score of 0.67, indicating that it generates
the most semantically meaningful and internally
consistent topics. This suggests that GCD-TM is
particularly effective at identifying coherent pat-
terns within the text data. Additionally, GCD-TM
has the lowest perplexity score (-8.48), demonstrat-
ing its strong ability to generalize to new data. This

51



Figure 2: Wordcloud for SMH Dataset.

low perplexity value means that the topics gener-
ated by GCD-TM are not only coherent but also
accurate in representing the underlying structure of
the dataset.

In comparison, BERTopic shows a decent per-
formance with a coherence score of 0.45, which
is better than LDA, SC, and KMC, but still falls
short of GCD-TM. Its perplexity score of -7.32,
while better than some methods, is also not as low
as GCD-TM, indicating room for improvement in
predictive accuracy. SC and KMC perform mod-
erately, with coherence scores of 0.41 and 0.39,
respectively, and perplexity scores of -7.35 and
-8.01. These results suggest that while these meth-
ods can produce somewhat coherent topics, they
do not perform as well in terms of generalization.
Finally, LDA has the lowest coherence score (0.38)
and a relatively high perplexity score (-6.15), in-
dicating that it struggles the most with producing
coherent topics and accurately modeling the dataset
compared to the other techniques.

Methods Coherence Perplexity
LDA 0.38 -6.15
SC 0.41 -7.35
KMC 0.39 -8.01
BERTopic 0.45 -7.32
GCD-TM 0.67 -8.48

Table 2: Performance Comparison of different topic
modelling techniques on Suicide Mental Health dataset
(SMH).

Figure 2 shows the word cloud for the SMH
dataset, highlighting prominent terms such as "life",
"tired", "hate", "suicide," "kill," and "dead." Table
3 lists the top five words for each topic generated
by five different topic modeling methods (LDA,
SC, KMC, BERTopic, and GCD-TM). This table
demonstrates how GCD-TM uniquely segments the
dataset into distinct topics using the most relevant
keywords, showcasing its capability to organize the
text data into meaningful clusters, distinguishing
itself from the other methods.

Topics Top five words by LDA
1 Time, worry, stress, sadness, solitude
2 Event, joyful, bad, pressure, decision
3 Workplace, chat, help, colleague, hear
4 Prepare, harm, daybreak, close, shadow
5 Love, people, nurture, optimism, remain
Topics Top five words by SC
1 Right, worry, nothing, sadness, isolation
2 Life, individuals, conflict, better, dead
3 Support, idea, advice, partner, attention
4 Passing, back, hope, someone, void
5 Every, bonds, empathy, always, endure
Topics Top five words by KMC
1 Years, fear, anxiety, depression, alone
2 Thing, happy, worst, tension, choice
3 Office, talk, support, friend, listen
4 Ready, kill, morning, end, dark
5 Love, family, care, hope, stay
Topics Top five words by BERTopic
1 Exhaustion, dread, nervous, sad, solitude
2 Living, society, struggle, urge, kill
3 Comfort, chat, courage, buddy, care
4 End, suffer, gloom, silence, empty
5 Warm, connection, kind, belief, family
Topics Top five words by GCD-TM
1 Suicide, fear, anxiety, depression, alone
2 Life, people, kill, tension, hate
3 Help, talk, support, friend, listen
4 Death, pain, hopeless, end, dark
5 Love, family, care, hope, stay

Table 3: Sample topics generated by different topic
modelling techniques (top 5 topics) from the Suicide
Mental Health dataset (SMH).

4.3 Comparative Analysis on RMH Dataset

Table 4 compares different topic modeling tech-
niques on the Reddit Mental Health Data (RMH)
dataset using coherence and perplexity. GCD-TM
is the top performer with a coherence score of 0.73
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Figure 3: Wordcloud for RMH Dataset.

and a perplexity score of -6.52, indicating it pro-
duces the most coherent topics and excels in pre-
dicting new data. Spectral Clustering (SC) follows
with a coherence score of 0.54 and a perplexity
score of -6.08, demonstrating good topic coherence
and prediction but not as effectively as GCD-TM.

K-Means Clustering (KMC) scores 0.49 in co-
herence and has the highest perplexity score of
-4.28, showing that while it offers better coherence
than some methods, it struggles with generalizing
to new data. Latent Dirichlet Allocation (LDA)
achieves a coherence score of 0.43 and a perplexity
score of -5.51, suggesting moderate coherence and
weaker predictive performance. BERTopic, with
the lowest coherence score of 0.36 and a perplexity
score of -5.37, exhibits the least interpretable topics
and only moderate prediction capability.

Methods Coherence Perplexity
LDA 0.43 -5.51
SC 0.54 -6.08
KMC 0.49 -4.28
BERTopic 0.36 -5.37
GCD-TM 0.73 -6.52

Table 4: Performance Comparison of different topic
modelling techniques on Reddit Mental Health Data
(RMH).

Table 5 presents the topics generated by five
topic modeling methods applied to the Reddit Men-
tal Health (RMH) dataset, with each topic repre-
sented by its top five associated words. This table
highlights the key themes identified, with the GCD-

Topics Top five words by LDA
1 Hopes, first, better, best, calm
2 Year, stress, rooms, dawns, change
3 Love, thing, bliss, rough, worse
4 Goals, share, ties, smile, hurt
5 Family, odds, paths, trusts, days
Topics Top five words by SC
1 Lives, weary, buddy, tough, right
2 Worry, pains, house, early, major
3 Weeks, close, relax, worst, anger
4 Hopes, trusts, cares, loves, happy
5 Hard, worse, plans, helps, times
Topics Top five words by KMC
1 Life, better, tired, friend, hard
2 Patient, issue, home, long, first
3 Week, family, rest, best, hate
4 Wish, help, support, love, happy
5 Hard, worse, right, care, month
Topics Top five words by BERTopic
1 Goals, heavy, buddy, tough, quiet
2 Tasks, worries, homes, early, shift
3 Break, folks, peace, rough, anger
4 Dreams, gives, bonds, laugh, cheer
5 Trials, risks, steps, trusts, weeks
Topics Top five words by GCD-TM
1 Depression, sadness, tired, empty, life
2 People, struggle, daily, difficult, survive
3 Sleep, insomnia, restless, night, wake
4 Therapy, help, support, treatment, better
5 Pain, cry, tears, hurt, sorrow

Table 5: Sample topics generated by different topic
modelling techniques (top 5 topics) from the Reddit
Mental Health Data (RMH).

TM model outperforming the other methods. Fig-
ure 3 displays the word cloud for the RMH dataset.

4.4 Comparative Analysis on AMH Dataset

Table 6 compares the performance of various topic
modeling techniques on the Anxiety Mental Health
Data (AMH) dataset, evaluating each method based
on coherence and perplexity. GCD-TM demon-
strates the highest coherence score of 0.69 and the
lowest perplexity score of -7.92, indicating that it
produces the most coherent topics and performs
the best in terms of predictive accuracy among the
methods evaluated.

In comparison, BERTopic has a coherence score
of 0.46 and a perplexity score of -6.77, showing
relatively strong performance but not as effective
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Figure 4: Wordcloud for RMH Dataset.

as GCD-TM. K-Means Clustering (KMC) follows
with a coherence score of 0.45 and a perplexity
score of -6.54, indicating reasonable topic coher-
ence but higher perplexity. Spectral Clustering (SC)
and Latent Dirichlet Allocation (LDA) have coher-
ence scores of 0.44 and 0.41, respectively, with
perplexity scores of -6.08 and -6.18. Both meth-
ods show lower coherence and higher perplexity
compared to GCD-TM and BERTopic, reflecting
their less effective performance in generating and
predicting topics.

Methods Coherence Perplexity
LDA 0.41 -6.18
SC 0.44 -6.08
KMC 0.45 -6.54
BERTopic 0.46 -6.77
GCD-TM 0.69 -7.92

Table 6: Performance Comparison of different topic
modelling techniques on Anxiety Mental Health Data
(AMH).

Table 7 presents the top five words associated
with each topic generated by different topic mod-
elling methods from the Anxiety Mental Health
Data (AMH).Figure 4 illustrates the wordcloud of
AMH dataset.
4.5 Performance Analysis and Insights

The superior performance of the Graph-Driven
Community Detection for Topic Modeling (GCD-
TM) method over traditional techniques like LDA,
Spectral Clustering (SC), K-Means Clustering

Topics Top five words by LDA
1 Hate, anxious, reason, little, long
2 Times, haste, able, point, fear
3 Today, crowd, worry, stress, every
4 Sleep, noise, dreams, hours, rush
5 Quiet, calm, clear, focus, panic
Topics Top five words by SC
1 Stress, worse, shock, creep, today
2 Month, speed, thank, every, always
3 Long, alone, past, shame, nerves
4 Cause, awake, noise, hours, rush
5 Quiet, ease, focus, peace, clear
Topics Top five words by KMC
1 Worry, tensed, month, first, strain
2 Heart, fear, able, time, days
3 Friends, good, alone, avoid, good
4 Sleep, awake, night, dream, chest
5 Calm, heart, relax, focus, hour
Topics Top five words by BERTopic
1 Worry, thing, head, doubt, strain
2 Pain, back, ache, gasp, dread
3 Groups, throng, always, year, crowd
4 Snooze, uneasy, dusk, alert, life
5 Peace, every, ease, days, steer
Topics Top five words by GCD-TM
1 Anxiety, nervous, panic, worry, stress
2 Heart, race, chest, breath, fear
3 Social, crowd, alone, avoid, public
4 Sleep, restless, night, awake, thoughts
5 Calm, breathing, relax, focus, control

Table 7: Sample topics generated by different topic
modelling techniques (top 5 topics) from the Anxiety
Mental Health Data (AMH).

(KMC), and BERTopic is primarily due to its inno-
vative integration of graph-based community detec-
tion with topic modeling. This approach enables
GCD-TM to uncover more coherent and contextu-
ally meaningful topics, resulting in higher coher-
ence scores and lower perplexity values.

One of the key reasons GCD-TM achieves better
results is its ability to capture the intricate rela-
tionships between words by constructing a graph
where nodes represent terms, and edges represent
the similarities between them. Unlike traditional
methods that rely solely on statistical distributions,
GCD-TM’s use of graph theory allows it to iden-
tify clusters (or communities) of related words that
are more likely to appear together in meaningful
contexts. This graph-based approach is particularly
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effective in detecting nuanced and contextually rel-
evant word associations, which often go unnoticed
in methods like LDA, SC, or KMC, where the focus
is more on word frequency and document-term dis-
tributions. The Louvain method, used for commu-
nity detection within GCD-TM, further enhances
the model’s performance by optimizing modularity,
which measures the strength of the division of a
network into communities. By maximizing modu-
larity, the Louvain method ensures that the commu-
nities (or clusters of words) identified are densely
connected internally but sparsely connected with
other communities. This results in well-defined
groups of related words that contribute to more co-
herent topic extraction during the subsequent LDA
phase.

Furthermore, GCD-TM’s approach to binarizing
the similarity matrix, based on a carefully tuned
threshold, allows it to effectively filter out noise
and focus on the most significant word associations.
This selective process leads to the construction of
a more accurate and representative graph, which is
crucial for the success of community detection and,
ultimately, topic modeling. By integrating these
techniques, GCD-TM is able to provide a more de-
tailed and accurate representation of the underlying
thematic structure in the data. This holistic ap-
proach not only captures the global context within
the text but also reveals the subtle, localized pat-
terns that are often missed by other models. As a
result, GCD-TM produces topics that are not only
more coherent but also more reflective of the actual
content and structure of the dataset, leading to its
superior performance compared to traditional topic
modeling methods.

5 Limitations

Despite its strong performance, GCD-TM has cer-
tain limitations. First, the method’s reliance on
graph construction and community detection makes
it computationally intensive, especially with large
datasets, which can lead to increased processing
times. Second, the model’s effectiveness is sensi-
tive to the choice of threshold for graph binariza-
tion and the number of topics specified, requiring
careful hyperparameter tuning to achieve optimal
results. Additionally, while GCD-TM excels at cap-
turing well-defined themes, it may struggle with
topics that are highly interrelated or overlap sig-
nificantly, potentially leading to less distinct topic
separation. Finally, the complexity of the method

might make it less accessible for users who are
not familiar with graph-based approaches or com-
munity detection techniques, limiting its broader
applicability in different research contexts.

6 Conclusion

In this study, we introduced the Graph-Driven Com-
munity Detection for Topic Modeling (GCD-TM)
methodology and demonstrated its effectiveness
in uncovering thematic structures within mental
health datasets. By leveraging a combination of
text preprocessing, TF-IDF vectorization, graph-
based community detection, and topic modeling
with LDA, GCD-TM offers a robust approach to
identifying and analyzing latent topics. Our method
outperforms traditional techniques in terms of co-
herence and perplexity, highlighting its capacity to
deliver a more nuanced and accurate representation
of underlying themes.

The comparative evaluation reveals that GCD-
TM not only achieves superior results but also pro-
vides a more detailed understanding of thematic
structures compared to methods like LDA, SC,
KMC, and BERTopic. The combination of com-
munity detection and topic modeling enhances the
model’s ability to capture complex relationships
within the data, leading to more meaningful and in-
terpretable topics. To further enhance the GCD-TM
methodology, it would be beneficial to explore the
integration of additional data features and modal-
ities, experiment with alternative algorithms, and
assess the model’s performance across more di-
verse datasets to improve robustness and adapt-
ability. Additionally, investigating methods to ad-
dress computational efficiency and scalability will
be crucial for handling larger and more complex
datasets. Finally, applying GCD-TM to other do-
mains and comparing its performance with emerg-
ing techniques could provide valuable insights and
drive innovation in topic modeling.
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Abstract

Instruction finetuning is a popular paradigm
to align large language models (LLM) with
human intent. Despite its popularity, this
idea is less explored in improving LLMs to
align existing foundation models with scien-
tific disciplines, concepts and goals. In this
work, we present SciTune as a tuning frame-
work to improve the ability of LLMs to follow
multimodal instructions generated from scien-
tific publications. To test our methodology,
we train a large multimodal model LLaMA-
SciTune that connects a vision encoder and
LLM for science-focused visual and language
understanding. LLaMA-SciTune significantly
outperforms the state-of-the-art models in the
generated figure types and captions in SciCap
and VisText benchmarks. In comparison to
the models that are finetuned with synthetic
data only, LLaMA-SciTune surpasses human
performance on average and in many sub-
categories on the ScienceQA benchmark. Our
results demonstrate that human-generated sci-
entific multimodal instructions remain highly
valuable in tuning LLMs to perform well on
science tasks, despite their lower volume and
relative scarcity compared to synthetic data.
We publicly release the SciTune codebase1.

1 Introduction

Instruction finetuning has gained significant trac-
tion in the NLP community as a means of en-
hancing the capabilities of large language models
(LLMs), allowing them to accurately balance de-
sired outcomes, context, and human preferences,
leading to more relevant and coherent responses.
More recently, AI assistants have been trained
to comprehend and execute multimodal vision-
and-language instructions, aligned with human
intent, to accomplish diverse real-world tasks in
complex multimodal environments. In one of
the latest developments, MiniGPT-4 (Zhu et al.,

1https://github.com/pnnl/scitune

2023), LLaVA (Liu et al., 2023) and LLaMA-
Adapter (Gao et al., 2023) have focused on ex-
panding language-only instruction models to incor-
porate multimodal capabilities, thereby granting
LLMs the ability to perform visual grounded rea-
soning tasks.

Recent research suggests that high-quality multi-
modal pretraining data and instructions, such as
high-resolution images and diverse multimodal
data are important for effective model perfor-
mance (McKinzie et al., 2024). However, one
of the primary bottlenecks is the scarcity of high-
quality data for multimodal pretraining and instruc-
tion tuning. To mitigate the challenges associ-
ated with data scarcity, many recent multimodal
models rely on synthetically generated instructions
(training data distilled from responses from other
models) for fine-tuning instead of human anno-
tations (Liu et al., 2023; Cascante-Bonilla et al.,
2023; Bai et al., 2022).

However, using synthetic data to align AI mod-
els can create confusion and uncertainty, since syn-
thetic data, being artificially generated, often fails
to capture the complexities of human values (Liu
et al., 2024; Zhou et al., 2024). This can cause
AI models to learn from biased (Feng et al., 2023;
Liu et al., 2021), ungrounded (Liu et al., 2022; Pa-
tel and Pavlick, 2022) or inaccurate data (Ji et al.,
2023; Weidinger et al., 2021). Additionally, train-
ing models on recursively generated data can lead
to a loss of true data distribution, resulting in less
varied and misaligned outputs (Shumailov et al.,
2024). Furthermore, models tuned with synthetic
data often fail to meet the standards required by
certain scientific subdomains, such as medicine (Li
et al., 2023; Xia et al., 2024). For example, sev-
eral open-source medical vision-language mod-
els such as LLaVA-Med (Li et al., 2023), Med-
Flamingo (Moor et al., 2023), MedVInT (Zhang
et al., 2023b), and RadFM (Wu et al., 2023) failed
to satisfy the trustfulness, fairness, safety, privacy,
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and robustness conditions in the recently intro-
duced CARES (Xia et al., 2024) benchmark. As a
result, AI systems relying on synthetic data might
behave unpredictably and could potentially cause
unintended or harmful outcomes (Anderljung et al.,
2023; Zou et al., 2023).

We believe this is mainly due to the absence of
alignment methods designed to synchronize exist-
ing foundation models with scientific disciplines,
concepts, and goals and to ensure that the gener-
ated content meets the standards and expectations
of the scientific community. Our hypothesis is that
scientifically aligned multimodal models can learn
from unique patterns and structures present in scien-
tific language generated by human scientists, thus
would be able to follow precise instructions about
complex procedures, protocols, and guidelines in
the scientific environments. This leads to the ques-
tion: To what extent, can LLMs align solely with
human-curated scientific multimodal instructions?

To this end, we build on top of the LLaVA (Liu
et al., 2023) model architecture to perform scien-
tific multimodal instruction tuning (SciTune) on
top of a decoder-based pretrained LLM and vision
encoder. The SciTune training method includes
two stages for scientific multimodal instruction tun-
ing, i) scientific concept alignment to learn across
various scientific visual signals (e.g., plots, charts,
equation, diagram, etc.), and textual signals (e.g.,
captions, optical character recognition (OCR) and
paragraph mentions), ii) scientific instruction tun-
ing to fine-tune on a multimodal scientific reason-
ing task. To validate our approach, we train our
models on top of LLaMA (Touvron et al., 2023a)
and the CLIP (Radford et al., 2021) vision encoder
model. We show that our model surpasses human
performance on the ScienceQA multimodal reason-
ing benchmark and performs significantly better
than state-of-the-art vision-language models in a
variety of scientific image understanding tasks. Our
results demonstrate that human-curated scientific
multimodal instructions remain highly valuable in
tuning LLMs to perform well on science tasks, de-
spite their lower volume and relative scarcity com-
pared to synthetic data.

2 Methodology

In this section, we describe the SciTune framework
in two stages of Scientific Multimodal Concept
Alignment and Multimodal Task-specific Instruc-
tion Tuning and the design choices and multimodal

architecture used for the experiments.

2.1 Scientific Multimodal Instructions

We use an early-fusion strategy (Liu et al., 2023)
to jointly reason over the text, images, and other
modalities with a shared multifaceted representa-
tion as presented as SciTune instructions. The Sc-
iTune instruction template x = (sD, sI , sT ) in-
cludes a system message sD to help the model
to understand the role and context, instruction sI
randomly sampled from the visual-grounded ques-
tions, and sT to encode the multimodal data.

Human-curated Scientific Instructions This
work solely focuses on multimodal instructions
curated by humans instead of machine generated
content used in other visual instruction tuned mod-
els (Liu et al., 2023; Gao et al., 2023). Our goal
is to align the pretrained foundation models with
natural scientific concepts and the intentions of hu-
mans (scientists). To this end, we chose scientific
publications (PDFs) as the medium of scientific
instructions that demonstrate various stages of sci-
entific discovery.

We use the SciCap (Hsu et al., 2021) dataset
with more than 400,000 scientific figure images ex-
tracted from various arXiv papers, including their
respective captions and relevant paragraphs. This
dataset is composed of arXiv papers from January
2010 to October 2020. It consists eight distinct
categories: Computer Science, Economics, Elec-
trical Engineering and Systems Science, Mathe-
matics, Physics, Quantitative Biology, Quantitative
Finance, and Statistics. We use the 333,472 ex-
amples provided in the SciCap training split for
pretraining and use the validation split to evaluate
the performance.

We introduce scientific captions (sc), figure
types (st), optical character recognition (OCR)(so)
and paragraph mentions(sm) in the instruction tem-
plate (sT = {sc, st, so, sm}) to convert the SciCap
dataset into a multimodal instruction-tuning dataset.
Figure-captioning (sc) data typically includes brief
text that is highly specific to the associated fig-
ure. In contrast, interleaved data such as paragraph
mentions (sm) generally features longer and more
varied text, which is broadly relevant to the figures
it associates. Please see the Appendix (Table 6) for
a SciTune instruction sample.
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This factorization is computed by calling procedure 
Compute L given in Figure 1, which Compute L(w, s, g, 
P w ) Proof. The internal loop in line 6 is performed 
until a scaled factor of length t × s is found.
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SciTune-SciCap SciTune-ScienceQA

Figure Captioning
(SciCap, VisText)
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Figure 1: SciTune enables models to learn scientific concept alignment across various visual signals (e.g., plots,
charts, equation, diagram), and textual signals (e.g., captions, OCR and paragraph mentions); shown in the left
graphic in the figure. After alignment, the model can be used to perform various scientific visual grounding
tasks (e.g., figure type generation, captioning) with zero demonstrations at inference time (shown in the upper-left
graphic). The pretrained model can be further finetuned on a multimodal scientific reasoning task (e.g., ScienceQA;
shown in the upper-right graphic).

2.2 Multimodal Architecture

Architecture We build on top of the most recent
multimodal architectures (e.g., LLaVA (Liu et al.,
2023), LLaMA-Adapter (Zhang et al., 2023a)) that
guide LLMs to follow multimodal instructions.
We noticed that adapter-based multimodal training
serves as the most efficient technique for injecting
multimodal knowledge to a pretrained LLM de-
coder model. Our goal was to improve the existing
LLMs to perform better on science-focused multi-
modal reasoning and visual grounded tasks. To this
end, we chose LLaMA-1 (Touvron et al., 2023a) as
the LLM decoder, and CLIP visual encoder (Rad-
ford et al., 2021) to experiment with multimodal
adapter training as shown in Figure 1.

The SciTune adapter transforms the output of
the visual encoder model as inputs to the language
decoder with a linear projection layer. While we
keep the language decoder and the visual encoder
models frozen, the multimodal adapter is updated
during the pretraining stage. This modular archi-
tecture can be filled by any language decoder and a
visual encoder model. We conduct the experiments

with LLaMA 7B and 13B model variants for bet-
ter comparison with other baseline models. It is
worthwhile to note that we chose LLaMA due to
its superior performance in the public benchmarks
and its open-source accessibility.

We do not use any instruction-tuned LLaMA
variants (e.g., Vicuna, Guanaco) in our experiments
due to two main reasons. First, we mainly focus
on improving the base LLM decoder models with
multimodal instructions generated by humans in
order to eliminate all confounding factors such as
machine generated instruction tuning. Since a ma-
jority of instruction-tuned models developed on top
of LLaMA are knowledge-distilled from closed-
source, proprietary models like GPT-4, we want
to avoid any unexpected performance advantages.
Second, we want to make a fair comparison with
other baseline models proposed in this area de-
veloped on top of the base LLaMA model, and
test whether the multimodal instruction tuning pro-
posed in this work could lead into better scientific
concept understanding compared to those models.
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Training We model the language distribu-
tion p(x) from a set of SciTune instructions
(x1, x2, .., xm) as the product of conditional multi-
modal token probabilities as shown in Equation 1.

p(x) =
n∏

j=1

p(sT>j |sV , sI , sT<j) (1)

We model sV with the multimodal tokens af-
ter projection from the respective plot visuals V .
We sample the instruction sI from the list of ques-
tions presented in the Appendix (Table 7). Note
that we skip the token descriptors in sT for brevity,
unless the model is trained autoregressively to gen-
erate exact tokens across all textual modalities
in sT = {sc, st, so, sm}. More importantly, the
model is able to jointly generate all modality tokens
in a single-turn conversation. For example, given
a scientific plot and an instruction, the model first
generates the figure type (e.g., Graph Plot, Scatter-
plot, Node Diagram, Equation, Bar Chart), then the
visual content through captioning and OCR, and
finally the cited paragraph.

As presented in Figure 1, LlaMA-SciTune-Scicap
is tuned to align the LLM towards scientific con-
cepts. LlaMA-SciTune-Scicap can be further fine-
tuned on a multimodal scientific reasoning task. In
our experiments, we name the task finetuned model
variant as LlaMA-SciTune-ScienceQA.

3 Experiments

In this section, we report the performance of
LLaMA-SciTune models across a variety of science-
focused downstream tasks. Our goal is to assess
the performance of the models in visual grounded
language understanding and multimodal reasoning
tasks. For example, we want to show how much dif-
ference the training stages contribute to the model
performance, or whether adding various scientific
modalities in the instruction template improves the
overall performance. Note that our objective is
not to introduce a model that tops the leaderboard
across various downstream tasks. Instead, we aim
to demonstrate the extent to how human-curated
scientific multimodal instructions can be useful in
aligning vision-language models.

To this end, we trained three LLaMA-SciTune-
SciCap models and finetuned them with scientific
multimodal reasoning dataset (e.g., ScienceQA)
for the corresponding LLaMA-SciTune-ScienceQA
models. Three LLaMA-SciTune-SciCap models dif-
fer on the text input types (e.g., Caption, Figure

Type, OCR, and Figure Mentions) and the scale
of the LLM (e.g., 7B and 13B) used in the model
training. For example, LLaMA-SciTune-SciCap-
13B (CTOM) model uses the base LLaMA-1 13B
checkpoint and figure caption, figure type, OCR,
and figure mentions in the training. Similarly,
LLaMA-SciTune-ScienceQA-13B (CTOM) model
is finetuned on the LLaMA-SciTune-SciCap-13B
(CTOM) with the ScienceQA (Lu et al., 2022) train-
ing split. While LLaMA-SciTune-SciCap model
tunes the LLM to better understand scientific con-
cepts, LLaMA-SciTune-ScienceQA is further fine-
tuned for scientific reasoning.

First, we report the performance of LLaMA-
SciTune-SciCap in two science-focused visual
grounded tasks to assess the scientific concept
alignment training stage (Section 3.1). Finally,
we use the ScienceQA benchmark to test the mul-
timodal reasoning abilities of LLaMA-SciTune-
ScienceQA across three scientific subject areas
(Section 3.2).

3.1 Vision Grounded Tasks Performance

In this section, we report the performance of the
LLaMA-SciTune-SciCap model for two zero-shot
downstream tasks. Note that, we reference the
LLaMA-SciTune-SciCap-13B (CTOM) model in
this performance analysis. In the first task, we eval-
uate how well the LLaMA-SciTune-SciCap model
is able to align the associated figure types with the
actual image. In the second task, we evaluate the
performance of the LLaMA-SciTune-SciCap model
in generating the figure captions.

3.1.1 Scientific Figure Type Generation
In the scientific concept alignment stage, one of
the learning tasks is to align the scientific visu-
als with the correct figure type. For example, the
model should be able to distinguish a graph plot
from a scatter plot. We compare the performance
of our model of generating the figure types with a
standalone vision encoder. For example, we use
the CLIP model (Radford et al., 2021) to perform
figure type classification in the zero-shot manner
given five candidate types (e.g., Graph Plot, Scat-
terplot, Node Diagram, Equation, Bar Chart). We
use the validation data released by the SciCap
challenge to perform our experiments. This val-
idation dataset includes plots and the associated
figure types. We locate the figure types in the
generated SciTune outputs, and compare it with
the ground truth. As shown in Table 1, LLaMA-
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SciTune-SciCap shows 57% performance improve-
ment over the standalone CLIP model used in the
figure type classification.

It is important to note that the LLaMA-SciTune-
SciCap used the same CLIP model as the visual
encoder, but the additional multimodal adapter was
optimized towards aligning figure types with the
plots during the pretraining stage. This multimodal
adapter is able to project the outputs of vision
encoder into the LLM to improve its understand-
ing on the scientific plots. One could argue that
a more ideal comparison would be between the
LLaMA-SciTune-SciCap model and a version of
the CLIP model that is specifically tuned with the
same dataset, rather than comparing it with the
vanilla (untuned) CLIP model. In this experiment,
our objective was to evaluate how much the Sci-
Tune adapter (Figure 1) contributes to improving
the LLM’s performance in understanding scientific
plots, as opposed to improvements gained merely
through the use of the tuned visual encoder.

Table 1: Accuracy of Generating the Figure Types. We
also report the zero-shot figure type classification per-
formance of the CLIP model.

Figure Type CLIP SciTune-SciCap
Graph Plot 52.58 93.63
Scatterplot 52.20 70.14

Node Diagram 77.67 95.40
Equation 60.47 89.54
Bar Chart 32.67 80.33

All 55.11 85.81

3.1.2 Scientific Figure Captioning
In this section, we test the model performance of
generating scientific figure captions given only the
scientific plot. Previous works show that scientific
figure captioning is an extremely challenging task
due to complex image understanding required in
vision-to-language modeling (Huang et al., 2023).
We take the first sentence in the generated Sci-
Tune output as the generated caption. We com-
pare LLaMA-SciTune-SciCap model performance
with the SOTA image captioning model, BLIP (Li
et al., 2022), trained with more than 14M image-
text pairs. We use two text evaluation metrics,
BLEU and ROUGE, to measure the quality of gen-
erated captions with respect to the ground truth
captions. We evaluate the models in two scien-
tific image captioning benchmarks, SciCap and

VisText (Tang et al., 2023). We used the validation
split with 47639 and 1202 images in two bench-
marks, respectively.

As shown in Table 2, the LLaMA-SciTune-
SciCap model outperforms the BLIP model in both
automated text evaluation metrics. This suggests
that LLaMA-SciTune-SciCap may have a better un-
derstanding of the scientific plot in comparison to
the BLIP model finetuned towards image captions.
Table 8 (see Appendix) shows a few generated cap-
tions in comparison to the baseline and ground truth
image captions.

Table 2: In-distribution (SciCap) and out-of-
distribution (VisText) Evaluation of Generated
Figure Captions

Benchmark Model BLEU ROUGE

SciCap
BLIP 0.02±0.02 0.11±0.07

SciTune-SciCap 0.05±0.03 0.13±0.08

VisText
BLIP 0.06±0.05 0.23±0.11

SciTune-SciCap 0.10±0.07 0.23±0.12

3.2 Scientific Multimodal Reasoning Task
Performance

In this section, we evaluate the model performance
on science-focused multimodal reasoning ques-
tion and answering (QA). We report the LLaMA-
SciTune-ScienceQA model performance in the Sci-
enceQA benchmark (Lu et al., 2022) that includes
21k multimodal multiple choice questions with
rich domain diversity across 3 subjects, 26 topics,
127 categories, and 379 skills. We use the Sci-
enceQA training split (12726 examples) to tune the
LLaMA-SciTune-SciCap model further as shown in
Figure 1. Table 3 reports the performance of the
models on the ScienceQA test split (4241 test ques-
tions). While lectures are shared between training
and test splits, there are new questions associated
with multimodal contexts, and explanations in the
test split. We have three main observations from
this table.

First, LLaMA-SciTune-ScienceQA-13B (CTOM)
model outperforms the human performance on aver-
age and in four other sub-groupings. For example,
this model records 90.03% accuracy in correctly
answering the multimodal reasoning questions in
the ScienceQA benchmark, where humans record
only 88.40% accuracy. This performance benefit
is consistent across social science questions, ques-
tions with text or no contexts, and higher-grade
questions. More importantly, we noticed that this
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Table 3: Results (accuracy %) on ScienceQA dataset. Question classes: NAT = natural science, SOC = social
science, LAN = language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6,
G7-12 = grades 7-12. We present two variants, LLaMA-SciTune-ScienceQA (C) and LLaMA-SciTune-ScinceQA
(CTOM). Acronyms inside the parenthesis represent the text inputs used in the SciTune instruction template. E.g.,
Caption, Figure Type, OCR, and Figure Mentions. We use the notation ♠ to denote the models finetuned with
GPT-3.5/4 synthetic instructions, or use GPT-3.5/4 for any support during the inference time. We bold the accuracy
values that are greater than what humans achieved.

Method #Params Avg NAT SOC LAN TXT IMG NO G1-6 G7-12
Random Chance - 39.83 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67
Human Average - 88.40 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42
UnifiedQA 223M 70.12 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00
UnifiedQA (CoT) 223M 74.11 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82
♠ GPT-3 (Zero Shot) 175B 74.04 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87
♠ GPT-3 (CoT) (ALE) 175B 75.17 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68
♠ ChatGPT CoT 175B+ 78.31 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03
♠ GPT-4 CoT 1T+ 83.99 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04
Multimodal-CoT 223M 84.91 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37
Multimodal-CoT 770M 91.68 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31
♠ LLaMA-Adapter 13B 85.19 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05
♠ LLaVa 13B 90.92 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90
♠ LLaVa + GPT-4 (judge) 13B 92.53 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16
♠ Chameleon (ChatGPT) 175B+ 79.93 81.62 70.64 84.00 79.77 70.80 86.62 81.86 76.53
♠ Chameleon (GPT-4) 1T+ 86.54 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72
SciTune-ScienceQA (C) 7B 85.61 84.36 92.23 82.81 89.56 81.26 88.29 81.28 86.03
SciTune-ScienceQA (CTOM) 7B 86.11 84.50 94.15 82.91 88.35 83.64 88.74 85.05 85.60
SciTune-ScienceQA (CTOM) 13B 90.03 89.30 95.61 87.00 93.08 86.67 91.75 84.37 91.30

model reaches a comparable performance with the
LLaVA model, which is trained with synthetic data
and twice the size of the training data than what
the former model has seen, and in some cases has
additional support from GPT-4 during inference.

Second, we noticed that LLaMA-SciTune-
ScienceQA-7B (CTOM) model performs better
than LLaMA-SciTune-ScienceQA-7B (C) model
pretrained only with captions. For example, CTOM
variant (86.11) slightly outperforms C variant
(85.11) on average performance and across many
other sub-groupings. This suggests the importance
of interleaved multimodal data in the scientific con-
cept alignment stage which lifts the downstream
task performance over the model tuned only with
figure-caption data.

Finally, we noticed a significant performance ad-
vantage of the models trained with larger language
decoder model (13B) compared to the relatively
smaller model (7B). For example, the LLaMA-
SciTune-ScienceQA-13B (CTOM) model has nearly
5% performance advantage over the 7B model vari-
ant. This advantage is 5x bigger than what reported
by the LLaVA model when scaled from 7B to
13B (Liu et al., 2023). While this observation sug-
gests that the larger language decoder model helps

to improve the multimodal reasoning performance,
we believe it could lead to huge performance ben-
efit with even larger models (LLaMA-65B) when
trained with highly-curated scientific multimodal
instruction tuning datasets.

Explanation Performance Analysis In addition
to generating the specific answers to the questions
asked, LLaMA-SciTune-ScienceQA models also
generate a corresponding lecture and explanation
for the answers. Please see Figures 3 and 4 and
in the Appendix for several examples of generated
lectures and explanations. In order to better un-
derstand the behavior of generated solution, we
manually investigate a few random test examples.
Specifically, we picked 50 samples from both the
correct and incorrect predictions. We observe that
even the correct samples contain a certain amount
of incorrect solutions, i.e., around 8% in C and
2% in CTOM version of the 7B models. These
results indicate that solution may not always ben-
efit the final answer, and the model is robust to
some extent, i.e., it can predict the correct answer
even with incorrect rationales. The incorrect solu-
tions are further divided into two major categories,
namely commonsense that requires commonsense
knowledge such as factual information and count-
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ing numbers in the images, and the logical mistakes
which shows contradictions in the reasoning. In our
experiment, commonsense mistakes are dominant
compared to logical, which aligns with previous
work (Zhang et al., 2023d). Furthermore, there are
cases where solutions are correct in an absolute
sense but their final answers are wrong. We also
noticed that solutions generated by the CTOM ver-
sion of the model are more accurate compared to
the C version of the model, further emphasizing the
importance of multi-modal training with additional
scientific modalities. There are certain task cate-
gories where our model performs extremely well
compared to baselines. In our manual analysis, we
found the model is very good with numerical ques-
tions, including temperatures and distances, and
can answer all topological/map related questions
such as "which ocean is highlighted" in the image.

While we observe high performance in aggre-
gate, it is also important to determine whether this
performance persists in cases with minimal train-
ing examples. We evaluate the performance of the
model for questions whose accompanying lectures
are only observed a few times in the training data.
For these few-shot examples, the model will be
less likely to have the exact lecture memorized and
ready to use in its generation of the answer, which
could lead to lower performance.

We show the model performance on questions
for which the lectures were viewed in 5, 10, 25, and
50 times during training, in Table 4. The model
performance drops substantially for questions with
only 5 or fewer lectures in the training data but
quickly recovers after the lecture is viewed at least
10 times. This suggests that the LLaMA-SciTune-
ScienceQA model doesn’t require substantial expo-
sure to a particular type of knowledge to achieve
adequate performance. Furthermore, this perfor-
mance drop is worse for the 7B model as compared
to the 13B model, which means that the 13B model
is able to learn more quickly from fewer exam-
ples or may have more knowledge “baked in” from
pretraining that can be leveraged for few-shot ex-
amples. Future extensions of the model to other
datasets should test performance on completely
unseen data, e.g. a more standard VQA dataset
not used during training, to determine whether the
model is similarly robust in other domains.

Chain of Thought Reasoning Performance
Outside of the coarse-grained accuracy metric (did
the model get the answer right?), we also need to

Table 4: Few-shot performance analysis. We report the
number of times lectures seen during the training in fre-
quency, and the number of test questions with the lec-
ture.

Frequency #Questions Accuracy
(7B)

Accuracy
(13B)

5 36 75.00 83.33
10 125 81.60 85.60
25 412 80.34 85.92
50 1140 81.05 86.14

determine whether the model’s overall process of
reasoning was correct (did the model accurately
explain the reasoning that supports the answer?).
We investigate the accuracy of the generated text,
outside of the answer alone, assessing if the model
is able to accurately recover the lecture and the
solution that it was trained to generate and to help
its reasoning toward the final answer. We report
the BLEU and ROUGE scores over all the gener-
ated text, separated into the lecture and solution
components and compared with the correspond-
ing ground-truth data, e.g. compare the generated
lecture component with the ground-truth lecture.

The aggregate results for the generation metrics
are shown in Table 5. When considering all the
questions, the model generates the solution text
with higher accuracy than the lecture text. How-
ever, in cases where the model answers incorrectly,
the trend reverses and the model has a higher ac-
curacy in generating the lecture text as compared
to the solution text. Therefore, the model may be
failing to answer these questions due to a failure
to reason in the “solution stage” of its generation.
Furthermore, for the 13B model we see that the
lecture generation performance is higher for incor-
rect answers than correct answers (ROUGE score
of 0.924 for incorrect vs. 0.861 for correct). This
could indicate overfitting, where the model “mem-
orizes” lectures that apply to the problem but fails
to apply the lectures to the actual solution.

This problem is apparent with an example ques-
tion about object properties, where the model must
determine the property shared by an icicle, a fish
bowl, a glass, and a tea cup. The model correctly
generates the lecture about object properties re-
quired to reason through the problem (“An object
has different properties. A property of an object
can tell you how it looks, feels, tastes, or smells.”).
However, in the solution stage the model incor-
rectly reasons that all the objects were transparent
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instead of fragile, based on a failure to infer the
properties of the objects from the image (“You can
see clearly through a transparent object. All four
objects are transparent.”).

Incorrect reasoning can be attributed to two fac-
tors, i.e., linguistic and visual features. In a manual
analysis of 100 test samples, we found that linguis-
tic features are a weakness for mainly two use cases,
namely retrieving commonsense facts (e.g. charac-
teristics of bird song) and semantic understanding
of words in terms of figure of speech and relative
position of words in the dictionary. In contrast, vi-
sual features appear to be strong in use-cases such
as identifying geographic areas but it lags in count-
ing numbers in images and retrieving properties of
objects such as color, texture and states.

These observations suggest that to improve
model training, we need a wide variety of human-
curated instructions, especially datasets that in-
clude both text and visuals explained by humans.
Such diverse explanations would help the model
understand various scenarios that require different
types of reasoning.

Table 5: Evaluation of generated lectures and solutions.

7B Model 13B Model
BLEU ROUGE BLEU ROUGE

All answers
Lecture 0.763 0.778 0.854 0.868
Solution 0.791 0.838 0.872 0.921
Correct answers
Lecture 0.765 0.780 0.847 0.861
Solution 0.829 0.873 0.893 0.937
Incorrect answers
Lecture 0.751 0.767 0.909 0.924
Solution 0.565 0.631 0.694 0.778

4 Related Work

Zhang et al. (2023a) proposed LLaMA-Adapter
to guide the LLaMA model to follow multimodal
instructions. Specifically, they proposed a zero-
init attention with gating as a Parameter-Efficient
Fine-Tuning (PEFT) technique to prepend learn-
able multimodal adaptation prompts to the in-
put text tokens at higher transformer layers in
the LLaMA model. The same authors proposed
LLaMA-Adapter-V2 (Gao et al., 2023) that dis-
tributes the learnable parameters across all layers in
the LLaMA model to improve performance in mul-
timodal reasoning. MiniGPT-4 (Zhu et al., 2023)
combined the frozen LLM (Vicuna) and a vision

encoder with a single projection layer and fine-
tuned with a highly-curated visual conversation
dataset. More recently, Liu et al. (2023) intro-
duce visual instruction tuning to develop general-
purpose visual assistant (LLaVA) that follows mul-
timodal instructions. They present several data
reformation techniques to construct multimodal
instruction-following data from the standard image-
text pairs. For example, the LLaVA model was
trained with 595K image-text pairs filtered from
the CC3M dataset (Sharma et al., 2018), and 158K
unique language-image instruction-following data
generated from ChatGPT/GPT-4 (Liu et al., 2023).
This multimodal instruction set includes image-
based conversations and detailed descriptions and
complex reasoning questions. LLaVA (Liu et al.,
2023) reaches the best performance in the Sci-
enceQA benchmark with support from GPT-4 that
acts as a judge to evaluate the generated answers.
LLaVAR (Zhang et al., 2023c) extends the LLaVA
for text-rich images by training with additional
422K image-OCR and 16K conversations gener-
ated from GPT-4.

5 Conclusion

In this work, we present scientific multimodal
instruction tuning to align LLMs with scientific
concepts and goals. To this end, we use human-
generated multimodal instructions curated from
visual signals (e.g., plots, charts, equations), and
textual signals (e.g., captions, optical character
recognition (OCR) and paragraph mentions) found
within scientific publications. We train several
models built on top of LLaMA language decoder
model and CLIP vision encoder model and test
the models on science-focused multimodal down-
stream tasks. In evaluation, we show that the result-
ing LLaMA-SciTune-SciCap models can perform
better on classifying scientific visuals and gener-
ating figure captions compared with SOTA vision-
to-language models. Furthermore, the LLaMA-
SciTune-ScienceQA model surpasses the human
performance in ScienceQA, the standard multi-
modal science-focused reasoning QA benchmark.

Our results suggest human-curated scientific
multimodal data remains highly valuable despite
the advancements in synthetic data generation tech-
niques. While it is fast and easy to generate
large volume of synthetic training data with closed-
source models such as GPT-4, they may contain in-
accuracies or biases due to lack of expert review. In
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contrast, although existing human-generated scien-
tific multimodal datasets are comparatively smaller,
they provide reliable ground truth for tuning LLMs,
which leads to better generalization and perfor-
mance in downstream science applications.
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A SciTune Multimodal Instructions

Table 6 shows two SciTune instruction examples
used in the scientific concept alignment training
stage. Table 7 presents the LLaVA questions that
used to sample the sI instructions.

B Training Details

We use the LLaVA codebase (Liu et al., 2023) for
multimodal adapter training with SciTune instruc-
tions. We train the model for 1 epoch with 128
batch size with a 0.002 learning rate and 2048 con-
text length. LLaMA-SciTune 7B and 13B model
variants took 6.5 and 11.2 hours to train, respec-
tively with 8 x A100 GPUs. We use Pytorch Fully
Sharded Data Parallel (FSDP) to recursively wrap
the language models decoder layers in the task-
specific instruction finetuning stage. We finetuned
the models for 12 epochs with the ScienceQA
training example to make a fair comparison with
LLaVA.

C LLaMA-1 and LLaMA-2 Base Model
Comparison

We also test our methodology with LLaMA-2 (Tou-
vron et al., 2023b) as the base language decoder
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Table 6: SciTune Multimodal Instruction Examples. We distinguish the system message sD, natural language
instruction sI , scientific figure type st, caption sc, OCR so and paragraph mentions sm. The list of instructions
used to sample sI are presented at Table 7.

A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
Human: Give an elaborate explanation of the image you see.

Assistant: Graph Plot Room temperature characteristics (drain-source current versus gate voltage) for a set
of nominally identical samples from the same wafer. Sample to sample variations are very important,
especially below the threshold voltage (-0.5 V for the best device, in red). In the most extreme case (blue curve)
the many decades of excess current compared to the best device are attributed to direct transport through
individual arsenic dopants which have diffused into the channel after doping and annealing steps.
The source-drain voltage is 10mV for these data.
FIG. 6: figure S1: Room temperature characteristics (drain-source current versus gate voltage) for
a set of nominally identical samples from the same wafer.

A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
Human: Describe the following image in detail.

Assistant: Graph Plot Resonance frequency of the (1, 0) mode of the r1 = 4 cm cavity filled with 1 atm
of N2 as a function of the vertical position of the central electrode.
Inner electrode position, (arb , offset)
In Fig. 10 we have an example of this behavior: the resonance frequency shows a maximum
which corresponds to a minimum in the eccentricity of the electrode [39].
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Table 7: LLaVA Instructions for detailed image descriptions

"Describe the following image in detail."
"Provide a detailed description of the given image."
"Give an elaborate explanation of the image you see."
"Share a comprehensive rundown of the presented image."
"Offer a thorough analysis of the image."
"Explain the various aspects of the image before you."
"Clarify the contents of the displayed image with great detail."
"Characterize the image using a well-detailed description."
"Break down the elements of the image in a detailed manner."
"Walk through the important details of the image."
"Portray the image with a rich, descriptive narrative."
"Narrate the contents of the image with precision."
"Analyze the image in a comprehensive and detailed manner."
"Illustrate the image through a descriptive explanation."
"Examine the image closely and share its details."
"Write an exhaustive depiction of the given image."

model. LLaMA-2 was reported to have superior
performance compared to LLaMA-1 with addi-
tional pretraining corpus (2x tokens), larger context
length (2x), and adopted grouped-query attention.
In addition, there were additional steps taken to
improve the safety of LLaMA-2 models. We do
not use the LLaMA-2 model variants optimized for
chat and dialogue use cases to make a fair com-
parison with LLaMA-1 model. In this experiment,
we repeat the entire training (CTOM) pipeline (as
shown in Figure 1) with the LLaMA-2 (13B) model.
Figure 2 shows a comparison of ScienceQA per-
formance with LLaMA-1 and LLaMA-2 base lan-
guage models. Despite the reported performance
improvements in the LLaMA-2 model over the
LLaMA-1, we do not observe any performance
advantage of the former model in the ScienceQA
benchmark. This may be due to the effect of larger
pretraining data or a different dataset mix used to
pretrain LLaMA-2. For example, LLaMA-2 au-
thors reported an increase in toxicity of the new
models with more than 7B parameters (Touvron
et al., 2023b). It remains as a future work to reason
this performance difference with more empirical
results. We use the LLaMA-1 as the base language
decoder model in the rest of the experiments unless
explicitly mentioned.

D Visual Grounded Task Performance

Table 8 shows a few generated captions for the Sci-
Cap images used to test the model performance on
visual grounded tasks. We report the gold-standard

Figure 2: ScienceQA Performance of the LLaMA-
SciTune models with LLaMA-1 and LLaMA-2 as the
base language decoder models

captions as they appeared in the arXiv articles used
to collect SciCap dataset, and the captions gener-
ated from the BLIP and LLaMA-SciTune (13B,
CTOM) models for the comparisons.

E ScienceQA Chain of Thought
Reasoning Examples

Figures 3 and 4 show a few answers, lectures
and solutions generated by LLaMA-SciTune (13B,
CTOM) for ScienceQA test instances.
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Table 8: A Sample of Generated Captions. We highlight the gold standard caption in red, and generated captions
from the BLIP (Li et al., 2022) model in gray. LLaMA-SciTune model first generates the figure types followed
with the captions colored in blue.

Packet drop rate
a chart of a bar chart with a number of different items
Bar Chart Packet drop rate for each method.

The kinetic energy of the recoil protons as a function of the recoil angle at beam
momenta P=1.5 and 15 GeV/c, blue and red, respectively.
a plot of a curve with a blue line and a red line.
Graph Plot The angular distribution of the electron recoil spectrum in the 1.5
GeV/c and 15 GeV/c electron beams.

Artificial neural network structure.
a diagram of a network with several different paths.
Node Diagram The generative neural network.

ROC curves of cIBP-VAE in comparison to alternative models on the clinical
ECG data set.
a plot of the average and average time of a cell phone.
Graph Plot ROC curves of c-VAE, CNN, and c-VAE+CNN on the cerebellar
atrophy dataset.

Functional architecture of the developed prototype.
a diagram of a camera and a person on a phone.
Node Diagram An overview of the system architecture of the proposed method.

Distance between matched groups in Madrid and RGO catalogs (bins of 0.1
degrees). The red line represents the mean value.
a plot of a line of data with a red line and a white line.
Graph Plot Distance correlation between groups matched by Madrid RGO.

Comparison of penetration rate of mobile broadband subscribers with that of
fixed broadband subscribers.
a chart of the number of people who are using the internet.
Bar Chart The average rate of mobile broadband subcribers and fixed broad-
band subscribers for each quarter (in thousands).

Model staleness of the one-off trained model vs. the model retrained every day.
a diagram of a graph with a line graph and a line graph.
Graph Plot Prediction accuracy of model trained once and fine-tuned every
day.

Comparison of the effect of the path loss exponent α on rates achieved by both
transmitters, M = 4.
a plot of a line graph with a blue line and red line.
Graph Plot The sum-rate and sum-rate of RRM-RRM with respect to the path
loss exponent γ for the two cases: γ = 2 and γ = 3.

Conceptual diagram of nonlinear adaptive method developed to control the
HCV epidemic in the existence of uncertainties on parameters of the model.
a diagram of a block diagram of a nuclear system.
Node Diagram Block diagram of the proposed non-linear SIR epidemic model
with adaptive controllers.
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(a) An example with right answer and right explanation

(b) An example with incorrect answer and incorrect explanation

Figure 3: Two Multimodal QA examples with answer and explanation generated by LLaMA-SciTune
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(a) An example with right answer and right explanation

(b) An example with incorrect answer and incorrect explanation

Figure 4: Two Unimodal QA examples with answer and explanation generated by LLaMA-SciTune
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Abstract

Semi-structured interviews (SSIs) are a com-
monly employed data-collection method in
healthcare research, offering in-depth qualita-
tive insights into subject experiences. Despite
their value, manual analysis of SSIs is notori-
ously time-consuming and labor-intensive, in
part due to the difficulty of extracting and cate-
gorizing emotional responses, and challenges
in scaling human evaluation for large popula-
tions. In this study, we develop RACER, a
Large Language Model (LLM) based expert-
guided automated pipeline that efficiently con-
verts raw interview transcripts into insight-
ful domain-relevant themes and sub-themes.
We used RACER to analyze SSIs conducted
with 93 healthcare professionals and trainees
to assess the broad personal and professional
mental health impacts of the COVID-19 cri-
sis. RACER achieves moderately high agree-
ment with two human evaluators (72%), which
approaches the human inter-rater agreement
(77%). Interestingly, LLMs and humans strug-
gle with similar content involving nuanced
emotional, ambivalent/dialectical, and psycho-
logical statements. Our study highlights the
opportunities and challenges in using LLMs to
improve research efficiency and opens new av-
enues for scalable analysis of SSIs in healthcare
research.

1 Introduction

Semi-structured interviews (SSIs) are a widely used
qualitative research method in healthcare research
that provide an in-depth understanding of subjects’
experiences in their own words (Adams, 2010).
SSIs require interviewers to ask pre-specified ‘root’
questions, along with the option to ask follow-up
questions to gain clarity on the interviewee’s re-
sponses. This flexibility is a key characteristic of
SSIs, allowing for a more dynamic and responsive
data collection process, especially in areas where
exploratory forays are needed. The adaptability
of SSIs is particularly beneficial in exploring com-

plex or sensitive topics such as mental health. SSIs
allow rapport building between interviewer and
subject and facilitate candid responses on sensi-
tive matters. The open-ended nature of follow-up
questions gives subjects the freedom to reflect on
experiences and articulate thoughts without judge-
ment. This helps reveal the nuances, contradictions,
and diversity of perspectives that traditional fixed
quantitative surveys may overlook. However, the
traditional manual analysis of these interviews is
a time-consuming and resource-intensive process.
The advent of Large Language Models (LLMs),
such as GPT-4 (Lee et al., 2023b,a,e), offers a novel
and efficient method to extract and interpret data
from such text corpora. Yet, the validity of LLMs
in analyzing emotional states may be limited in
circumstances where participants express multiple
emotions or conflicting (dialectical) states.

As a case-study, we leveraged data from SSIs,
conducted during the peak of the COVID-19 crisis
in 2020, to understand the mental well-being of 93
healthcare professionals and trainees. The COVID-
19 pandemic brought to the forefront profound per-
sonal and professional challenges experienced by
healthcare workers. Fear of infecting family mem-
bers, grief over patient deaths, moral dilemmas
in resource allocation, and anxieties about pro-
fessional preparedness collectively introduced a
heightened level of psychological complexity and
stress in the lives of healthcare professionals. The
stigma surrounding the pursuit of mental health sup-
port exacerbated these challenges, leaving health-
care workers hesitant to openly discuss their diffi-
culties or seek assistance.

In this paper, we developed RACER, an expert-
guided automated pipeline that Retrieved responses
to about 40 questions per SSI, Aggregated re-
sponses to each question across all subjects,
Clustered these responses for each question
into insightful domain-relevant Expert-guided
themes (Lee et al., 2023c), and finally Re-clustered
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responses to produce a robust result. Human eval-
uation on a subset of the total population revealed
moderately high agreement (McHugh, 2012) be-
tween humans and RACER outputs, and similari-
ties between inter-human disagreement and human-
machine disagreement. We summarize our findings
from applying RACER to our SSI-survey on the ex-
periences of healthcare professionals and trainees
during COVID-19, to reveal the power of this ap-
proach. Our results demonstrate both the capabil-
ities and the limitations leveraging LLMs to effi-
ciently process and extract insights from a large
corpus of SSIs.

Related Work

Our research is related to a growing body of re-
search that applies state-of-the-art and open-source
LLMs to medical (Clusmann et al., 2023; Shah
et al., 2023a) and psychological text corpora (Stade
et al., 2024), with the most common and related
applications being in mental health chatbots (Lee
et al., 2023a) and medical evidence summarization
and documentation (Tang et al., 2023a; Wornow
et al., 2023a; Shah et al., 2023b). This literature re-
ports broad improvements in performance over pre-
vious methods using classic Natural Language Pro-
cessing (NLP) techniques in such domains (Raveau
et al., 2023) Our research is most similar to very re-
cent work assessing the use of LLMs in psychiatric
mental health assessment (Kjell et al., 2024) and
thematic analysis more broadly (Dai et al., 2023;
Lee et al., 2023d; Stefano De Paoli, 2023), where
the authors produce one-off examples of LLMs
applied to specific use-cases replacing traditional
research methods. In contrast, we present an expert-
guided, reliable, and scalable methodology for SSI
analysis, and an end-to-end case study applying
our methodology to a real-world dataset, to demon-
strate the efficacy of our methods for mental-health
and burnout related SSIs. Furthermore, our anal-
yses reveal intriguing similarities between inter-
human disagreement and the self-consistency of
LLM outputs.

2 Results

Recruitment and interview of a diverse sample
of healthcare professionals and trainees

Healthcare professionals and trainees across dif-
ferent specialties and career stages were recruited
via snowball sampling method (Goodman, 1961),

Characteristic Percentage
Gender

Male 54.84%
Female 45.16%

Age Group
22-33 years 39.78%
34-45 years 32.26%
46-60 years 16.13%
61+ years 5.38%
Unclear/Excluded 6.45%

Healthcare Professional/Student Type
(non-exclusive membership)

Physicians 54.84%
Medical Students 21.51%
Nurses 8.60%
Residents 7.53%
Other Professionals 12.90%
Unclear/Excluded 1.08%

Location
Houston, Texas 44.09%
Other Texas 21.50%
Florida 10.75%
Mid-West US 13.98%
Other US 5.38%
Unclear/Excluded 4.30%

Marital Status
Not married 41.94%
Married 52.69%
Unclear/Excluded 5.37%

Have Kids?
Yes 51.61%
No 45.16%
Unclear/Excluded 3.23%

Specialty Area
(non-exclusive membership)

Emergency Medicine 26.88%
Psychiatry 16.13%
Pulmonary Critical Care 16.13%
Internal Medicine 11.83%
Neurology/Neurocritical Care 5.38%
Surgery/ER 5.38%
Pediatrics 5.38%
Other Specialties 17.22%
Unclear/Excluded 2.15%

Years of Practice (Non-students)
Under 15 Years 71.23%
15-30 Years 20.55%
Over 30 Years 5.48%
Unclear/Excluded 2.74%

Table 1: Demographic Characteristics of the Study Pop-
ulation. Note that some categories are non-exclusive.
e.g. practicing faculty are categorized under both Physi-
cians and Other Professionals.74



Figure 1: Stages of the RACER (Retrieve, Aggregate, Cluster with Expert guidance, and Re-cluster)
Semi-Structured Interview (SSI) processing pipeline: First, Retrieve relevant responses to each SSI question.
Aggregate responses across subjects before Clustering them into themes (and subthemes) defined by Experts. To
assess robustness, Re-cluster multiple times and make assignments by majority vote. The pipeline efficiently and

robustly converts SSI text into meaningful themes.

described as follows. The investigators asked col-
leagues if they knew of anyone willing to par-
ticipate in interviews about their COVID-19 ex-
periences. Announcements were also posted on-
line and through professional networks. Participa-
tion was voluntary with no compensation provided.
Approval was obtained from the Baylor College
of Medicine (Houston, TX) Institutional Review
Board. The interviews were performed by a team
of two research coordinators with healthcare back-
grounds, and a third-year medical student, under
the supervision of the investigators.

The study population of healthcare professionals
and trainees consisted of 93 subjects (51 male, 42
female) with diverse demographics (Table 1). Sub-
jects were from 22 years to over 61 years in age,
and were located predominantly in Texas. Over
half were married and had children. Most sub-
jects had no care-taking responsibilities in addition
to child-care. Professionally, the sample included
physicians, medical students, nurses, residents and
other healthcare professionals. Subjects trained at
multiple institutions, with prominent representation
from Baylor College of Medicine and University
of Texas systems. Various specialties were rep-
resented in the cohort, with emergency medicine,
psychiatry and pulmonary/critical care among the

most common.

SSIs were conducted over videoconferencing
using a standard template consisting of a total of
41 questions, including four questions that were
only asked to students, and seven questions that
were asked to only non-students. Questions were
either factual, concerning demographics and per-
sonal and professional background, or open ended,
where interviewees were asked to talk about their
experiences during the COVID-19 pandemic, fo-
cusing on their exposure to the virus, work impacts,
emotional responses, future outlooks, and coping
strategies. Interviewees discussed how they had
practiced in high-risk areas, their concerns for per-
sonal and family safety, and modifications made
to their routines. They also reflected on the phys-
ical toll the crisis had taken. The impact on their
work included changes in working hours, shifts in
patient care quality, and altered management ap-
proaches. Emotional and psychological questions
revealed how the crisis affected them emotionally,
the level of support they received, family dynam-
ics, and changes in burnout levels. Looking ahead,
they pondered the crisis’s short-term and long-term
impacts on their careers and specialty choices. Fi-
nally, they shared their openness to seeking help
for burnout or mental overwhelm and identified
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potential obstacles in obtaining this help. Students
were not asked clinical-practice related questions,
and were instead asked about how their training
was being affected by pandemic-related changes.
Interviews lasted on average 26.7 +/- 8.9 s.d. min-
utes. When transcribed from raw interview audio
into text transcripts (using Otter.AI(Otter.ai, 2023)),
were on average 4044.30 +/- 1348.34 s.d. words
long.

RACER extracts relevant interviewee responses
and robustly clusters them

We developed an LLM-based automated
pipeline called RACER (Figure 1) that converts
a corpus of text SSI transcripts into insightful
themes per interview question. RACER, consists
of four stages, Retrieve, Aggregate, Cluster with
Expert guidance, and Recluster:

Retrieve: We first structured interview tran-
scripts by using an LLM (OpenAI’s GPT-4(Lee
et al., 2023b)) to retrieve relevant SSI text in
response to each of the questions in the interview
template. (See Appendix A for LLM prompt
details) To avoid LLM ‘hallucinations’ (Tonmoy
et al., 2024), we asked the LLM to provide
‘evidence’ in the form of text quoted verbatim
from the transcript, to back up its response to
each question. LLM outputs missing either
answers or backing evidence to any question were
automatically detected and re-run.

Aggregate: For each question, we then aggre-
gated the retrieved responses across all subjects
who were asked that question.

Cluster with Expert guidance: We then asked
the LLM to semantically cluster the responses
into primary and secondary clusters (‘themes’ and
‘sub-themes’). For most questions, we provided
the LLM expert-guidance in the form of primary-
cluster definitions. These definitions were derived
through a combination of theoretical foundations
from burnout literature and practical insights from
ongoing research during the COVID-19 pandemic
(Moukaddam et al., 2022; Innstrand, 2022; Edú-
Valsania et al., 2022). The primary clusters were
selected on the basis of well-established symptom
categories of burnout, such as emotional exhaus-
tion, depersonalization/detachment, and cynicism,
as well as factors exacerbated by the pandemic,

like involvement with COVID-19 patients, fear
of spreading the disease, and COVID-19 induced
stress. This process involved expert review of early
LLM experiments, where we observed that the
LLM’s autonomous clustering could be too vari-
able or too fine-grained for statistical analysis. We
then designed a few primary clusters per question
such that clusters were mutually exclusive and col-
lectively exhaustive.

For questions where primary clusters were not
derived from expert-guidance, we allowed the LLM
to autonomously discover primary clusters. In
these cases, the LLM’s discovered clusters were re-
viewed by experts to ensure they were meaningful
and useful for subsequent analysis.

The LLM discovered secondary clusters (or sub-
themes) automatically. Expert-provided cluster def-
initions were always mutually exclusive and col-
lectively exhaustive, while those discovered by the
LLM were not constrained to be so. Similar to
before, invalid LLM responses, e.g. those missing
cluster assignments for any subjects, were automat-
ically re-run.

This approach thus leveraged the strengths of
both expert knowledge and LLM capabilities. See
Supplementary Tables 2 and 3 for expert-guided
and LLM-discovered primary clusters respectively.

Re-Cluster: Leveraging the probabilistic nature
of LLMs, we assessed the robustness of the cluster-
ing process by re-running it four more times, em-
ploying the same cluster definitions and validation
criteria as in the initial step. We used a majority
vote over 5 runs to assign subjects to clusters, to
get robust cluster assignments for all downstream
processing. The number of votes (3, 4 or 5 out
of total 5 LLM calls) additionally provided a syn-
thetic measure of LLM self-consistency (Kompa
et al., 2021; Tanneru et al., 2023) that we have
quantified as a ‘self-concordance score’. Only a
very small fraction of subject-question pairs (12
out of 3342, 0.36%) had no ‘self-concordant’ clus-
ter assignments after applying the majority voting
process.

All together, we found that RACER was able
to take unstructured transcriptions and extract rele-
vant and insightful, clustered responses in a robust
manner for downstream human analysis.
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Figure 2: Human-RACER approaches resembles human-human disagreement: (A) Transcript segments from
two different subjects being asked “How do you think this [COVID-19] crisis has affected you emotionally?”.
Responses were evaluated as either all concordant or all non-concordant between both evaluators and RACER,
demonstrating the ambiguity that exists in parsing free responses. (B) The concordance ratio calculated between
evaluator pairs, and between RACER and both evaluators simultaneously. Chi-squared test with Yates continuity
correction between the three different evaluator pairings showed human evaluator concordance did not differ from
evaluator one’s concordance with RACER. * p < 0.5, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Human-machine disagreement approaches
inter-human disagreement

To validate the output of running RACER on our
SSI dataset, two human evaluators cross-checked
the resulting cluster assignments for 20 randomly-
selected subjects across 28 open ended questions
(See Figure 2A for an example). Using the same
cluster definitions as were previously used by
RACER, each human evaluator (E1 and E2) inde-
pendently read the raw transcript file and assigned
each subject’s answers to the primary clusters.
Evaluator cluster assignments were then compared
to RACER’s robust cluster assignments. To quan-
tify agreement, we defined a concordance score
and a concordance ratio as follows: If the clusters
for a given subject-question pair matched exactly
(for mutually exclusive clusters), or matched par-
tially (for mutually non-exclusive clusters) they
were assigned a concordance score of 1. Con-
versely, mismatch was assigned a concordance
score of 0. The overall concordance ratio is the
proportion of matched subject-question pairs be-
tween evaluators.

We observed a concordance ratio of 78% (E1)

and 87% (E2) between each of the human evalu-
ators and RACER, and a 77% (E1-E2) inter-rater
concordance ratio (Figure 2B). When the two hu-
man evaluators and RACER were compared simul-
taneously, there was only a small decrease in the
concordance ratio (72%), indicating that across the
majority of subject-question pairings, cluster as-
signments produced by humans and RACER were
all in agreement. (See Appendix A for additional
details)

Machine "confusion" resembles human confu-
sion

We examined the self-concordance produced by
RACER per subject-question pair to see how it
might affect the subject-question pair’s inter-rater
concordance (Figure 3).

Amongst the 443 subject-question pair sample
evaluated by humans, 392 (87.7%) had a self-
concordance of 1 (5 of 5 repeated primary clus-
ters), which was not different proportionally to
that of the whole population: 88.2% (1852 of
2099 subject-question pairs), thus RACER’s self-
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Figure 3: RACER “self-concordance” correlates with inter-evaluator concordance and reveals areas of human
disagreement: (A) Distribution of the proportion of subject-question pair self-concordance, calculated as the
fraction of identical primary cluster assignments across five runs. The self-concordance for the subject-question
pairs reviewed by human evaluators (20 subjects) were not significantly different from those for all subject-question
pairs (93 subjects), as determined by a Chi-squared test. (B) Average RACER self-concordance for each question
(n = 93) show a significant correlation with the concordance between evaluator pairs for the same questions (n =
20), using Spearman Rank correlation. (C) Comparison of RACER self-concordance within concordant versus non-
concordant subject-question pairs between human evaluators. The Chi-squared test indicates significant differences
in the distribution of self-concordance between these groups. Correlation significance: * p < 0.05, ** p < 0.01, ***
p < 0.001, **** p < 0.0001.

concordance across the evaluated 20 subjects was
representative of its general performance in primary
cluster assignment. When RACER’s average self-
concordance across all subjects for a given ques-
tion was correlated with the question’s inter-rater
concordance from the 20 human evaluated sub-
jects, there was a significant and positive correla-
tion between self- and inter-rater concordance. Ad-
ditionally, we observed that the self-concordance
of subject-question pairs that had inter-rater concor-
dance were higher than those that did not regardless
of the rater pair compared: human evaluators or
RACER.

Interestingly, when we juxtaposed RACER
self-concordance against human-human inter-rater
concordance, we observed that RACER self-
concordance was lower when humans were non-
concordant. This suggests that areas where RACER
was less self-concordant or ‘confused’ were also
areas where human evaluators tended to disagree.
Thus the RACER self-concordance generated via
repeated clustering could also serve as an indica-
tor of ambiguity or difficulty of understanding the
semi-structured interview and parsing human free-
responses.

3 Insights using RACER on healthcare
worker experience during COVID-19

We summarize RACER-derived insights from ana-
lyzing our 93-subject SSI corpus in Appendix B.

4 Discussion

Summary

Our study demonstrates the utility of RACER
for efficiently analyzing semi-structured interviews
(SSIs), particularly those exploring complex men-
tal health topics within the healthcare domain. We
introduce a novel approach by employing RACER
to analyze emotions and psychological behaviors,
opening new possibilities for exploration in mental
health. By providing expert-guided constraints and
using automated response validation steps, RACER
accurately extracts and robustly clusters relevant
responses from interview transcripts. Automating
these laborious manual tasks significantly enhances
the scalability of SSI analysis. The inter-rater agree-
ment between LLM-assigned clusters and human
expert clusters further bolsters our claims. The
automated pipeline achieved moderately high con-
cordance compared with manual evaluation by hu-
man annotators. The overall concordance ratio of
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0.72 for RACER versus both human evaluators ap-
proaches the 0.77 concordance ratio between the
two human evaluators.

The robust semantically clustered summary of
the SSI corpus is useful to researchers in multiple
ways: Clusters reveal common themes and experi-
ences across the population, allowing identification
of major issues and concerns. The quantitative
breakdowns by cluster provide an overview of the
distribution of different sentiments and impacts.
These could potentially be used for clinical appli-
cations such as early burnout detection, and op-
erational improvements through triage of targeted
interventions and support. Since semi-structured
textual data has been converted to structured data,
comparisons between subgroups (e.g. by demo-
graphics or professions) can be used to identify
disparities and facilitate equitable allocation of re-
sources. RACER also enables large-scale, multi-
site analyses of SSIs by providing a consistent and
reproducible methodology for extracting insights
from free-text responses, reducing inconsistencies
arising from inherent variability between human
evaluators across different sites.

Limitations

Our findings reveal both the promises and cur-
rent pitfalls of LLMs for SSI analysis. We found
that when RACER struggled with robust clustering,
both humans and machines were more likely to
be non-concordant, suggesting shared limitations
in handling complex emotions or psychologically
nuanced statements (Boag et al., 2021) or ambi-
guity of the underlying SSI. This underscores the
indispensable role of human expertise in reviewing
and interpreting LLM outputs, where RACER’s
self-concordance can guide expert scrutiny.

While RACER provided evidence in the form
of quoting relevant interview text to support its re-
sponse in the Retrieval step, the underlying method-
ology remains opaque. In contrast, human evalua-
tors were able to describe their techniques, even if
subjective. For instance, humans considered differ-
ent amounts of contextual information outside the
question scope, and inferred subject intentions to
varying degrees, i.e. whether the subject needed to
explicitly say certain phrases, or if they could be
inferred from previous statements or knowledge of
the subject matter. An LLM’s ability to consider
large amount of contextual information can be a
double-edged sword; beneficial if relevant informa-

tion appears elsewhere in the transcript, but mis-
leading if the research is indeed directed towards a
narrow window of text around the question.

We demonstrated that LLMs can help discover
knowledge by automatically extracting themes and
topics from subject responses. However, good per-
formance requires clear, mutually exclusive cat-
egory definitions. We found it highly useful to
involve domain experts early to precisely define
mutually exclusive thematic clusters. For certain
questions, where succinct mutually exclusive cate-
gorization was not possible, we chose to use LLM-
discovered clusters. However, validation of such
non-exclusive categorization is challenging. Our
results showed higher LLM accuracy and inter-
rater agreement for questions with non-overlapping
expert-defined clusters versus those allowing mul-
tiple clusters.

Additionally, human evaluators exhibited biases,
such as default cluster tendencies requiring coun-
tering evidence (e.g. starting from a default of
‘no’ and requiring evidence to switch to a ‘yes’,
or vice versa). Thus, expert human analysis also
demonstrates cognitive variability and individual
biases. Rather than definitive classifications, both
human and machine outputs should be considered
informed yet inherently biased perspectives on
complex qualitative responses (Atari et al., 2024).
Thus, in the future, clearly delineating the parame-
ters of evaluations with humans and RACER may
improve concordance.

While RACER’s cluster assignments may devi-
ate slightly from human reviewers, RACER was
internally consistent and demonstrated high cluster-
ing repeatability for most questions. Furthermore,
unlike humans, RACER was able to efficiently pro-
cess an extensive dataset of 93 subjects and can
scale to significantly larger data set sizes that would
otherwise be infeasible for human evaluators to
handle.

Future work

For researchers undertaking projects in this
emerging domain, both optimism and caution are
warranted (Badal et al., 2023; Dash et al.; Chiu
et al., 2024; Tang et al., 2023b; Wornow et al.,
2023b; Shah et al., 2023b). With appropriate con-
straints and validation, LLMs can accelerate knowl-
edge extraction from SSIs. We implemented safe-
guards against hallucination risks like requiring
verbatim textual evidence for an answer, which
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constrained the LLM to mostly avoid fabricating
content. While this is already an area of active
research, the possibility of a few false positives re-
mains and needs to be accounted for in downstream
use.

While evaluation of LLM outputs through com-
parison to multiple human raters is helpful, inter-
rater agreement must also be looked at to assess in-
herent ambiguity. To further improve performance,
we recommend specialized training for both SSI
interviewers and human evaluators.

We found it useful to generate an ensemble of
LLM clustering outputs from repeated runs, and
used it to extract robust cluster assignments and to
get a measure of model uncertainty. Future work
exploring this direction could produce useful meth-
ods that help build trust in LLM-assisted analyses
and inform human-in-the-loop processes for high-
stakes applications (Bienefeld et al., 2023).
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APPENDICES

A Methods

Semi-structured interviews

Study was approved by the Baylor College
of Medicine (Houston, TX) Institutional Review
Board [Protocol H-47690]. Consent was obtained
by reading the consent text and documenting ap-
proval to participate, as the interviews were virtual.
All interviewees were adults. Interviewers were
provided with a standard template to guide their
discussions. The subjects were all healthcare pro-
fessionals or trainees, including physicians, nurses,
and medical students. The interviews followed
a semi-structured format, where the interviewers
were instructed to cover a previously decided list
of questions, and were allowed to ask exploration
questions if the ‘root’ question was not answered.
The questions covered in the SSIs are listed in
Appendices 2 and 3. Raw audio and video inter-
view files were transcribed into text format using
the Otter.AI transcription service (Otter.ai, 2023).
Out of 100 interviews conducted, 7 were compro-
mised due to data-corruption/loss issues, providing
a total of 93 transcriptions for further processing.
Voice to text transcription was carried out using
Otter.AI(Otter.ai, 2023), which attempts to perform
automated speaker diarization, but does not do so
perfectly. To the best of our knowledge, this short-
coming did not seem to influence the subsequent
processing steps.

RACER

We used the OpenAI GPT-4 LLM for all our
work, except for prompts which exceeded GPT-4’s
limits, where we used GPT-4-32k.

Retrieval: In this step, the model was tasked
with retrieving relevant responses for each question
from a predefined list of questions (listed in
Appendix E) from the transcript. The prompt for
the LLM consisted of instructions and a template
consisting of the aforementioned list of questions
and what format each question’s response should
be in, followed by the entire SSI transcript. The
full prompt is detailed in Appendix E.

LLM Response Validation for Retrieval: By
asking the LLM to respond in a structured format,

we could partially automate the process of verify-
ing the LLM’s response. The LLM is called once
for each subject, and then the response is parsed
using the Python Pandas library. The LLM’s
response is marked invalid if it is ill-formatted
(not parsable in tab-separated-values format) or
incomplete (wrong number of rows, i.e. questions,
or columns, i.e. incomplete response). The LLM
is called again on invalid responses till the LLM
returns a valid response. We found that at most 4-5
(5%-6%) subjects would have invalid responses
in the first attempt, and in total, we were making
about 10% additional calls to get valid responses
for all subjects. The most common issues were
that the LLM would sometimes be incomplete
(skip questions, end output before final question)
and sometimes use the specified tab-delimiter
incorrectly.

Cluster with Expert guidance: In this step, we
employed a semantic clustering approach which
grouped responses based on the underlying themes
or sentiments ("semantic clusters") they conveyed.

Expert Guidance: In preliminary explorations,
we found that the LLM is able to automatically
generate interesting semantic clusters from a list of
the subjects’ responses without additional human
guidance. We observed that these clusters could
change between subsequent LLM calls, could be
mutually non-exclusive (subjects could belong to
multiple clusters), and could be too fine-grained
for statistical analysis. However, in many cases
(29 out of ≈40 questions, see Appendix C), we
felt like it was important to exercise more control
over the LLM’s response to improve response
robustness, to facilitate statistical analysis and for
easier human evaluation. So, we provided expert
guidance in the form of a list of primary clusters or
“themes” (defined on a per-question basis), which
were included in the prompt using a template
(detailed in Appendix F). Secondary clusters or
“sub-themes” were discovered automatically by
the LLM. Each subject’s response was mapped
exclusively to one primary cluster and could
furthermore be associated with one or more
secondary clusters.

LLM Response Validation for Clustering: The
LLM returned two lists in its response: one of
the cluster labels and their definitions, and the
other of the cluster-labels (single or two-level
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clustering) assigned to each subject. The LLM was
called once for each of 40 questions, and these
responses were parsed using the Python Pandas
library. A LLM response is marked invalid if
it was ill-formatted (not in tab-separated-values
format) or incomplete. The LLM was called again
on invalid responses till the LLM returned a valid
response. We found that almost 20 questions would
have invalid responses in the first attempt, and
in total, we were making almost 80% additional
calls to get valid responses for all questions. We
suspect that the rate of invalid responses in this
step is higher than in the previous step due to the
added complexity of the task i.e. the response
needs to first produce a valid clustering-schema,
and then additionally assign each of 93 subjects to
the clusters according to the clustering schema.

Recluster: We repeated the above clustering step
four additional times using a prompt similar to the
previous clustering prompt (detailed in Appendix
G). In this reclustering step, we used the same clus-
ter definitions as were used in the previous steps,
that is, a mix of expert-defined and LLM-generated
(but expert-reviewed) cluster definitions. As in
the original clustering, any invalid LLM responses
were automatically detected and re-processed until
a valid response was obtained. For the final cluster
assignments used in downstream analysis, we ap-
plied a majority vote rule based on the 5 clustering
repetitions. That is, each subject was assigned to
the cluster they most commonly belonged to across
the trials. This approach helps make the cluster
assignments robust to the occasional variability in
the LLM outputs. In a few cases (< 1% of all
subject-question pairs), this process failed to find
any cluster assignments that passed the majority-
vote.

Human evaluation of LLM responses

Our study employed human evaluation to ver-
ify the alignment between RACER-generated clus-
ters and human interpretation, utilizing two inde-
pendent evaluators who analyzed the responses of
20 randomly selected subjects from a pool of 93.
Each evaluator individually reviewed the raw in-
terview transcript files for the selected 20 subjects
and used the same cluster definitions as RACER to
assign subjects to clusters. Human evaluators spent
approximately 30 minutes per subject on average
for a comprehensive review and categorization of

the responses. This time investment reflects the
thoroughness and attention to detail applied by the
evaluators in their analysis, and also highlights the
limits of this process to scale to large study pop-
ulations. To validate the semantic clustering re-
sults produced by the LLM, each human evaluator
compared their assigned scores with those gener-
ated by the LLM. An inter-rater comparison was
also conducted, involving a detailed examination
of the scores and evaluations independently made
by both human evaluators (E1 and E2) for the same
set of subjects. Concordance scores of 1 were as-
signed to clusters that precisely matched or were
sub- or super-sets of each other, while discrepan-
cies received a concordance score of 0. The overall
concordance ratio represented the proportion of
clusters aligning between the evaluators.

Additionally, the evaluators’ findings were juxta-
posed with RACER’s cluster assignments to gauge
both inter-evaluator consistency and the degree of
correspondence with the LLM’s outcomes. We
also compared the use of Cohen’s kappa coefficient
with our concordance score and found them to be
similar. Due to the nature of the comparison across
questions which varied in the number of possible
clusters as well as probability of different cluster as-
signment across questions, the concordance scores
were used as they better described the intended
comparisons. Instances where RACER did not pro-
duce any robust cluster assignments were catego-
rized as ’mismatch’ during the evaluation process.
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B Insights using RACER on healthcare
worker experience during COVID-19

Here we summarize the insights gleaned from ana-
lyzing SSIs with 93 subjects using RACER.

COVID-19 exposure, response, work impact and
work changes:

The vast majority of practicing healthcare profes-
sionals reported having professional contact with
COVID-19 patients in the past two months. Most
subjects expressed safety concerns for themselves
and loved ones, especially regarding viral expo-
sure risks. Common protective measures adopted
included heightened hygiene practices, using per-
sonal protective equipment, limiting travel and so-
cial interactions, and modifying routines at work
and home to minimize transmission risks. Over
half of the subjects reported physical tolls from the
crisis, frequently citing exhaustion, disturbed sleep,
and dietary changes (Figure 4).

Most subjects felt personally prepared to handle
the pandemic, attributing this largely to their med-
ical knowledge, experience, and ability to adapt.
Assessment of institutional preparedness was more
varied, with around 60% expressing their hospi-
tal/unit was prepared, but around 25% felt improve-
ments were still needed.

Working hours markedly increased for most sub-
jects during the pandemic, with over 80% reporting
working more than 40 hours per week compared to
pre-COVID times. For many, this resulted from es-
calations in patient load and administrative duties.
Approaches to patient management also evolved,
with the vast majority of practicing healthcare pro-
fessionals stating their methods differed from usual
practices. This included increased reliance on tech-
nology, more precautions with patients, and adjust-
ments to treatments due to COVID-19. Most still
felt capable of handling the situation professionally,
though some desired more protections and support
systems.

Among students and trainees, the majority be-
lieved they adhered closely to the Hippocratic oath
during the pandemic. Their views on their educa-
tional institution’s policies regarding medical stu-
dents’ roles during that time were divided, with
half in agreement and others expressing mixed or
negative sentiments, reflecting a spectrum of per-
spectives on the adequacy and effectiveness of in-
stitutional responses to the crisis.

Emotional and psychological impact, and sup-
port and coping strategies

The COVID-19 crisis negatively affected the
emotional state of most subjects, with many report-
ing feelings of anxiety, stress, sadness, or anger.
However, around 25% indicated a mix of both pos-
itive emotions like gratitude as well as negative
feelings. Despite those challenges, the overwhelm-
ing majority felt supported by peers and family,
suggesting strong social networks within and out-
side the workplace. Family dynamics had been
affected for some, with around a quarter reporting
increased family problems during the pandemic.
This data underscored the profound emotional and
psychological effects of the crisis on healthcare
professionals, juxtaposed with the resilience and
support systems that helped them navigate these
challenges.

In regards to burnout, over 60% of subjects as-
sessed their pre-pandemic burnout as low or mild.
When asked about current burnout, around 40%
still reported mild or no burnout, but the percent-
age reporting severe burnout rose from around
15% pre-pandemic to 20% during the crisis. If
feeling burned out, nearly 90% stated they would
seek help, with most mentioning professional re-
sources like counseling. Over 60% also reported
they would seek professional help if feeling men-
tally overwhelmed, with therapists and workplace
programs being commonly cited options. However,
around 45% still anticipated obstacles in getting
help, including logistical barriers and stigma con-
cerns (Figure 5).

Future considerations and professional outlook

When asked about near-term impacts, over 50%
expressed concerns about anticipated difficulties,
health risks, economic instability, and significant
lifestyle changes. However, around 15% hoped
for new opportunities and growth resulting from
the crisis. Looking 5 years ahead, around 20% ex-
pected advancements in healthcare practices and
systems due to learned lessons. Though nearly
10% feared lingering personal and professional im-
pact. Among non-students considering job changes,
around 15% expressed an immediate willingness
to switch fields while around 18% would change
contingent on worsening conditions.

Regarding effects on career plans, 35% of stu-
dents reported the crisis has impacted their spe-
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Figure 4: Aggregated interview responses to selected questions about safety concerns arising from COVID-19
exposure, work impact, and medical management decisions. Error bars reflect cluster-assignment variability

arising from re-clustering step in RACER. Bar plot labels are primary clusters.
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Figure 5: Aggregated interview responses to selected questions about emotional and psychological impact,
and support and coping strategies. Error bars reflect cluster-assignment variability arising from re-clustering step

in RACER. Bar plot labels are primary clusters.
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Figure 6: Aggregated interview responses to selected questions about future considerations and professional
outlook, as it relates to working in healthcare during or after the pandemic. Error bars reflect

cluster-assignment variability arising from re-clustering step in RACER. Bar plot labels are primary clusters.
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cialty choices or work preferences. Specifically,
around 20% described reconsidering their specialty
choice due to the pandemic. Another 15% men-
tioned shifting their preferences regarding research
involvement, practice locations, and other factors.
However, 50% of students stated the crisis has not
affected their professional plans or specialty de-
cisions. Over 50% of students explicitly stated
adherence to their Hippocratic oath obligations,
while 10% conveyed adherence through descrip-
tions of their clinical actions and interventions. Of
students agreeing with their school’s pandemic poli-
cies, 40% expressed unqualified agreement and
10% provided positive justifications. However,
around 15% agreed tentatively due to concerns over
student safety and curriculum changes (Figure 6).
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C Interview questions and associated expert-guided primary clusters

Table 2: Expert provided primary clusters for questions.
Q1-Q13 and Q18 are factual, remaining are subjective. Q14-41 underwent human evaluation.

Q# Question Top-Level Cluster Guidance
1 How old are you? (1) Young Adults (22 to 33), (2) Middle-aged Adults

(34 to 45), (3) Older Adults (46 to 60), (4) Seniors
(61 and above), and (5) Unclear/irrelevant/no
response

2 Where do you live? (1) Houston, TX, (2) San Antonio, TX, (3) TX
(Other), (4) Florida, (5) Mid-West US, (6) US
(Other) and (7) Unclear/Excluded/No response

3 What is your marital status? (1) Not currently married, (2) Married currently, and
(3) Unclear/Excluded/No response

15 Are you concerned about safety of loved
ones, and how?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

17 Has this crisis taken a toll on you
physically in any way?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

18 How many hours are you working on
average (per week) nowadays?

(1) Full-time, (2) Less than Full-time, (3) More than
Full-time, and (4) Unclear/Excluded/No response

19 How has your working schedule and
logistics changed?

(1) Increased hours, (2) Decreased hours, (3) No
change, (4) Other, and (5) Unclear/irrelevant/no
response

20 How do your working hours compare to
pre-covid-19 crisis?

(1) Increased hours, (2) Decreased hours, (3) No
change, (4) Other, and (5) Unclear/irrelevant/no
response

21 How do think the covid-19 crisis has
affected the quality of patient care?

(1) Better, (2) Worse, (3) No-change, (4) Other and
(5) Unclear/irrelevant/no response

22 How has it changed your approach to
management?

(1) Changed, (2) No change, (3)
Fluctuating/uncertain change, and (4)
Unclear/irrelevant/no response

23 Are your processes different for
end-of-life decisions? Do you have to take
people off ventilator more frequently?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

24 How prepared do you feel for the
COVID-19 pandemic on a personal level?

(1) Prepared, (2) Unprepared, and (3)
Unclear/irrelevant/no response

25 How prepared do you feel the
unit/hospital is for the COVID-19
pandemic?

(1) Prepared, (2) Unprepared, and (3)
Unclear/irrelevant/no response

26 How do you think this crisis has affected
you emotionally?

(1) Positively (e.g. excitement), (2) Negatively, (3)
Mix of Positively and Negatively, (4) Neutral, and
(5) Unclear/irrelevant/no response

27 Do you feel supported by peers and/or
family during this time?

(1) Yes, (2) No, (3) Mixed, (4) Fluctuating over time
and (5) Unclear/irrelevant/no response

28 Have you had more problems with family
during this time?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

29 Before this crisis, if someone asked you
about your burnout level, what would you
have answered?

(1) No/Mild (e.g. 1, 2 or 3 out of 10), (2) Moderate
(e.g. 4, 5 or 6 out of 10), (3) Severe (e.g. 7, 8, 9 or
10 out of 10), and (4) Unclear/irrelevant/no response

Continued on next page
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Table 2 continued from previous page
Q# Question Top-Level Cluster Guidance
30 How burned out do you feel nowadays

(during the ongoing COVID crisis)?
(1) No/Mild (e.g. 1, 2 or 3 out of 10), (2) Moderate
(e.g. 4, 5 or 6 out of 10), (3) Severe (e.g. 7, 8, 9 or
10 out of 10), and (4) Unclear/irrelevant/no response

31 How do you feel about working from
home OR at the frontlines?

(1) Positively (e.g. excitement), (2) Negatively, (3)
Neutral/Mixed and (4) Unclear/irrelevant/no
response

32 Do you feel you should be able to handle
this as a healthcare professional?

(1) Yes, (2) No, (3) Mixed, and (4)
Unclear/irrelevant/no response

33 What impact do you see this crisis having
on you in the near future?

(1) Positive, (2) Negative, (3) Neutral/Mixed and (4)
Unclear/irrelevant/no response

34 What impact do you see this crisis having
on you about five years from now?

(1) Positive, (2) Negative, (3) Neutral/Mixed and (4)
Unclear/irrelevant/no response

35 Would you seek help if you felt burned
out? How?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

36 Would you change jobs or career
trajectories?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

37 Has this crisis affected your specialty
decision or career plans in any way?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

38 Would you get (professional or other)
help/care if you felt mentally
overwhelmed? How? When?

(1) Yes will get professional help, (2) Yes but not
professional help, (3) Mixed, (4) Will not seek/get
help and (5) Unclear/irrelevant/no response

39 Any obstacles you foresee in getting help
if you needed to?

(1) Yes, (2) No, and (3) Unclear/irrelevant/no
response

40 If student or trainee, how closely do you
feel that you are adhering to the
Hippocratic oath during this time?

(1) Adhering Closely, (2) Not adhering closely OR
Adhering conditionally, and (3)
Unclear/irrelevant/no response

41 If student or trainee, do you agree with
your school’s policies regarding medical
students’ roles at this time?

(1) Yes, (2) No, (3) Mixed/Conditionally, and (4)
Unclear/irrelevant/no response

D Interview questions with LLM-discovered primary clusters

Table 3: LLM-discovered (but expert-reviewed) Primary Clusters for remaining questions.
Q1-Q13 and Q18 are factual, remaining are subjective. Q14-41 underwent human evaluation.

Q# Question LLM-discovered Primary Clusters
4 Do you have kids? (1) Parents, (2) Non-parents, (3) Excluded
5 If you do have kids, provide details [Non-exclusive membership] (1) No Information, (2)

Single Child, (3) Two Children, (4) Three Children,
(5) Four or more Children, (6) Child Age Provided,
(7) Child Age Not Provided, (8) Children Living at
Home, (9) Children No Longer Living at Home

6 Are you a caretaker otherwise? (if not
own kids, e.g., elderly parents, adopted
family member, etc.)

(1) Caretakers of Family Members, (2) Caretakers of
Animals, (3) Partial Caretakers, (4) Financially
Supportive, (5) No Caretaking Responsibilities, (6)
Excluded

Continued on next page

90



Table 3 continued from previous page
Q# Question LLM-discovered Primary Clusters
7 What type of healthcare professional or

student/trainee are you?
[Non-exclusive membership] (1) Physicians, (2)
Medical Students, (3) Nurses, (4) Healthcare
Professionals, (5) Residents, (6) Excluded

8 If student or trainee, what year are you in? (1) First Year, (2) Second Year, (3) Third Year, (4)
Fourth Year, (5) Unclear Training Year, (6) Excluded

9 What institution did you complete your
(or are currently) training at?

[Non-exclusive membership] (1) Baylor College of
Medicine, (2) University of Texas, (3) Texas
Institutions, (4) Multiple Institutions, (5) Out of US
Training, (6) Unspecified or Missing Information

10 If you are a physician, did you train in the
US at any point?

(1) Trained in US, (2) Did not train in US, (3) No
clear response

11 What is your specialty (if student, what
specialty are you thinking of)?

[Non-exclusive membership] (1)
Cardiology/Respiratory, (2) Neurology/Neurocritical
Care, (3) Pediatrics, (4) Head and neck
surgery/Related Surgery, (5) Fertility, (6) Psychiatry,
(7) Emergency Medicine, (8) Pulmonary Critical
Care, (9) Oncology, (10) OBGYN, (11) Infectious
Diseases, (12) Anesthesiology and Critical Care,
(13) Surgery/ER, (14) Internal Medicine, (15)
Pathology, (16) Excluded

12 How long have you been practicing? (1) Years under 15, (2) Years 15-30, (3) Years over
30, (4) Excluded

13 Over the past two months, have you
practiced clinically in areas where you
could be in touch with patients who have
COVID-19?

(1) COVID-19 Patient Contact, (2) No COVID-19
Patient Contact

14 Are you concerned about your safety, and
how?

[Non-exclusive membership] (1) Safety concern due
to exposure risk, (2) Confidence in precautions or
PPE, (3) Unconcerned about safety, (4) Limited PPE
concerns

16 Have you modified your routine to protect
yourself or others, and how?

[Non-exclusive membership] (1) Self-care and
hygiene, (2) Use of Personal Protective Equipment
(PPE), (3) Limiting travel and outings, (4) Increased
use of virtual methods for activities, (5) Social
distancing within households and increased isolation
practices, (6) Routine changes specific to workplace,
(7) Vague responses, (8) Entry and exit practices
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E Prompt 1: Retrieving relevant responses from interview transcripts

Here is a template (tab -separated -values) of an interview (conducted
↪→ in 2020) between an interviewer and a healthcare professional
↪→ or medical student.

Populate the 'answer ' column of the template below using the
↪→ interview transcript appended after the template.

Be sure to note any positive , negative or neutral emotions expressed
↪→ by the interviewee in the answer.

If a template question was not asked in the appended transcript (or
↪→ is not applicable), the answer should be "NA".

For the last 'evidence ' column , provide evidence , by quoting verbatim
↪→ (except for newlines) the parts of the transcript that were
↪→ most relevant to answering the question.

question_number question answer evidence
1 How old are you? [numeric]
2 Where do you live? [city , state , country]
3 What is your marital status? [single/married/divorced/

↪→ widowed/etc]
4 Do you have kids? [yes/no]
5 If you do have kids , provide details [details]
6 Are you a caretaker otherwise? (if not own kids , eg elderly

↪→ parents , adopted family member , etc) [yes/no; details]
7 What type of healthcare professional or student/trainee are

↪→ you? [details]
8 If student or trainee , what year are you in? [year of

↪→ program]
9 What institution did you complete your (or are currently)

↪→ training at? [name and location of institution]
10 If you are a physician , did you train in the US at any point?

↪→ [yes/no]
11 What is your specialty (if student , what specialty are you

↪→ thinking of)? [details]
12 How long have you been practicing? [in years , or NA for

↪→ student]
13 Over the past two months , have you practiced clinically in

↪→ areas where you could be in touch with patients who have covid
↪→ -19? [yes/no]

14 Are you concerned about your safety , and how? [yes/no;
↪→ details]

15 Are you concerned about safety of loved ones , and how? [yes/
↪→ no; details]

16 Have you modified your routine to protect yourself or others ,
↪→ and how? [yes/no; details]

17 Has this crisis taken a toll on you physically in any way?
↪→ [yes/no; details]

18 How many hours are you working on average (per week) nowadays
↪→ ? [numeric]

19 How has your working schedule and logistics changed? [
↪→ details]

20 How do your working hours compare to pre -covid -19 crisis?
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↪→ [details]
21 How do think the covid -19 crisis has affected the quality of

↪→ patient care? [details]
22 How has it changed your approach to management? (different

↪→ from usual , at odds with existing guidelines , may not be as
↪→ effective , etc.) [details]

23 Are your processes different for end -of-life decisions? Do
↪→ you have to take people off ventilator more frequently? [
↪→ details]

24 How prepared do you feel for the COVID -19 pandemic on a
↪→ personal level? [details]

25 How prepared do you feel the unit/hospital is for the COVID
↪→ -19 pandemic? [details]

26 How do you think this crisis has affected you emotionally?
↪→ [note emotions recognized from interviewee;details]

27 Do you feel supported by peers and/or family during this time
↪→ ? [details]

28 Have you had more problems with family during this time?
↪→ [details]

29 Before this crisis , if someone asked you about your burnout
↪→ level , what would you have answered? [score (e.g. 6 out
↪→ of 10) and/or details]

30 How burned out do you feel nowadays (during the ongoing COVID
↪→ crisis)? [score (e.g. 6 out of 10) and/or details]

31 How do you feel about working from home OR at the frontlines?
↪→ [Home/Frontlines/Other; details]

32 Do you feel you should be able to handle this as a healthcare
↪→ professional? [yes/no; details]

33 What impact do you see this crisis having on you in the near
↪→ future? [details]

34 What impact do you see this crisis having on you about five
↪→ years from now? [details]

35 Would you seek help if you felt burned out? How? [yes/
↪→ no; details]

36 Would you change jobs or career trajectories? [yes/no;
↪→ details]

37 Has this crisis affected your specialty decision or career
↪→ plans in any way? [yes/no; details]

38 Would you get (professional or other) help/care if you felt
↪→ mentally overwhelmed? How? When? [yes/no; details]

39 Any obstacles you foresee in getting help if you needed to?
↪→ [yes/no; details]

40 If student or trainee , how closely do you feel that you are
↪→ adhering to the Hippocratic oath during this time? [closely/
↪→ not -closely; details]

41 If student or trainee , do you agree with your school 's
↪→ policies regarding medical students ' roles at this time? [yes/
↪→ no; details]

TRANSCRIPT:

[Interview Transcript Appended]
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F Prompt 2: Template for semantic Clustering of responses aggregated across all subjects

Out of 41 questions in our template in E, 29 questions had expert-provided templates that defined the
primary clusters but left secondary-cluster definitions to the LLM. Two questions (Q14, Q16) used LLM-
discovered (but expert-reviewed) single-level clustering with non-exclusive membership. The following
Python code shows the template used for generating the prompt associated with each question (note the
use of zero-indexing):

TEMPLATE = """ Cluster the responses in the table below at two levels.
Top level clusters must be {clusters }.
Top level clusters have mutually -exclusive cluster membership.
For the next level , cluster the responses from subjects belonging to

↪→ each top -level cluster highlighting the common theme per
↪→ cluster.

Subjects can belong to multiple clusters at this level.

Your response should be in tab -separated -values format , with the
↪→ following columns:

subject_id top_level_cluster_id secondary_cluster_ids

Example output line:
C-002 C1 "C1.1,C1.2,C1.4"

Start your response by defining each top and secondary cluster in tab
↪→ -separated -values format , with columns:

cluster_id cluster_name cluster_description

Note that some subject_ids may not be present in the prompt , and so
↪→ should also not be present in your response.

Provide both the (tab -separated) cluster -definitions table and the (
↪→ tab -separated) cluster -assignments table in your response.

\n"""

prompts = {
"default ": """ Cluster the responses in the table below

↪→ highlighting the common theme per cluster.
Group subjects that provide unclear , irrelevant , or no responses into

↪→ a separate "excluded" cluster.
Subjects can belong to multiple clusters. Your response should be in

↪→ tab -separated -values format ,
with the following columns: subject_id , cluster_ids

Example output line:
subject_id cluster_ids
C-002 "C2,C3"

Start your response by defining each cluster in tab -separated -values
↪→ format , with columns:

cluster_id , cluster_name , cluster_description

Note that some subject_ids may not be present in the prompt , and so
↪→ should also not be present in your response.
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Provide both the (tab -separated) cluster -definitions table and the (
↪→ tab -separated) cluster -assignments table in your response.

\n""",
0: TEMPLATE.format(

clusters ="(1) Young Adults (22 to 33), (2) Middle -aged Adults
↪→ (34 to 45), (3) Older Adults (46 to 60), (4) Seniors
↪→ (61 and above), and (5) Unclear/irrelevant/no response"

),
1: TEMPLATE.format(

clusters ="(1) Houston , Texas , (2) San Antonio , Texas , (3)
↪→ Texas (Other), (4) Florida , (5) Mid -West US, (6) US (
↪→ Other) and (7) Unclear/Excluded/No response"

),
2: TEMPLATE.format(

clusters ="(1) Not currently married , (2) Married currently ,
↪→ and (3) Unclear/Excluded/No response"

),
14: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
16: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
# 17: Numeric: How many hours are you working on average (per

↪→ week)?
17: TEMPLATE.format(

clusters ="(1) Full -time , (2) Less than Full -time , (3) More
↪→ than Full -time , and (4) Unclear/Excluded/No response"

),
18: TEMPLATE.format(

clusters ="(1) Increased hours , (2) Decreased hours , (3) No
↪→ change , (4) Other , and (5) Unclear/irrelevant/no
↪→ response"

),
# 19: How does this compare to pre -covid -19 crisis?
19: TEMPLATE.format(

clusters ="(1) Increased hours , (2) Decreased hours , (3) No
↪→ change , (4) Other , and (5) Unclear/irrelevant/no
↪→ response"

),
20: TEMPLATE.format(

clusters ="(1) Better , (2) Worse , (3) No-change , (4) Other and
↪→ (5) Unclear/irrelevant/no response"

),
21: TEMPLATE.format(

clusters ="(1) Changed , (2) No change , (3) Fluctuating/
↪→ uncertain change , and (4) Unclear/irrelevant/no
↪→ response"

),
22: TEMPLATE.format(
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clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
23: TEMPLATE.format(

clusters ="(1) Prepared , (2) Unprepared , and (3) Unclear/
↪→ irrelevant/no response"

),
24: TEMPLATE.format(

clusters ="(1) Prepared , (2) Unprepared , and (3) Unclear/
↪→ irrelevant/no response"

),
25: TEMPLATE.format(

clusters ="(1) Positively (e.g. excitement), (2) Negatively ,
↪→ (3) Mix of Positively and Negatively , (4) Neutral , and
↪→ (5) Unclear/irrelevant/no response"

),
26: TEMPLATE.format(

clusters ="(1) Yes , (2) No, (3) Mixed , (4) Fluctuating over
↪→ time and (5) Unclear/irrelevant/no response"

),
27: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
28: TEMPLATE.format(

clusters ="(1) No/Mild (e.g. 1, 2 or 3 out of 10), (2)
↪→ Moderate (e.g. 4, 5 or 6 out of 10), (3) Severe (e.g.
↪→ 7, 8, 9 or 10 out of 10), and (4) Unclear/irrelevant/no
↪→ response"

),
29: TEMPLATE.format(

clusters ="(1) No/Mild (e.g. 1, 2 or 3 out of 10), (2)
↪→ Moderate (e.g. 4, 5 or 6 out of 10), (3) Severe (e.g.
↪→ 7, 8, 9 or 10 out of 10), and (4) Unclear/irrelevant/no
↪→ response"

),
30: TEMPLATE.format(

clusters ="(1) Positively (e.g. excitement), (2) Negatively ,
↪→ (3) Neutral/Mixed and (4) Unclear/irrelevant/no
↪→ response"

),
31: TEMPLATE.format(

clusters ="(1) Yes , (2) No, (3) Mixed , and (4) Unclear/
↪→ irrelevant/no response"

),
32: TEMPLATE.format(

clusters ="(1) Positive , (2) Negative , (3) Neutral/Mixed and
↪→ (4) Unclear/irrelevant/no response"

),
33: TEMPLATE.format(

clusters ="(1) Positive , (2) Negative , (3) Neutral/Mixed and
↪→ (4) Unclear/irrelevant/no response"
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),
34: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
35: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
36: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
37: TEMPLATE.format(

clusters ="(1) Yes will get professional help , (1) Yes but not
↪→ professional help , (3) Mixed , (4) Will not seek/get
↪→ help and (5) Unclear/irrelevant/no response"

),
38: TEMPLATE.format(

clusters ="(1) Yes , (2) No, and (3) Unclear/irrelevant/no
↪→ response"

),
39: TEMPLATE.format(

clusters ="(1) Adhering Closely , (2) Not adhering closely OR
↪→ Adhering conditionally , and (3) Unclear/irrelevant/no
↪→ response"

),
40: TEMPLATE.format(

clusters ="(1) Yes , (2) No, (3) Mixed/Conditionally , and (3)
↪→ Unclear/irrelevant/no response"

),
}
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G Prompt 3: Re-Clustering using previously defined clusters

Cluster the responses in the table below highlighting the common
↪→ theme per cluster.

Group subjects that provide unclear , irrelevant , or no responses into
↪→ a separate "excluded" cluster.

Subjects can belong to multiple clusters. Your response should be in
↪→ tab -separated -values format ,

with the following columns: subject_id , cluster_ids

Example output line:
subject_id cluster_ids
C-002 "C2,C3"

Note that some subject_ids may not be present in the prompt , and so
↪→ should also not be present in your response.

Provide both the (tab -separated) cluster -definitions table and the (
↪→ tab -separated) cluster -assignments table in your response.

subject_id Are you a caretaker otherwise? (if not own kids , eg
↪→ elderly parents , adopted family member , etc)

C001 No
C002 No
C003 No
C004 No
C005 No

...

C086 Yes , looks after his mother -in-law 's finances
C087 No
C090 Yes; Partial caretaker for parents
C099 No
C100 No
C101 No
C102 No

Use the following cluster definitions (Do not repeat this in output):
cluster_id cluster_name cluster_description
C1 Caretakers of Family Members Subjects who responded that

↪→ they take care of relatives (elderly parents , children ,
↪→ siblings or others).

C2 Caretakers of Animals Subjects who take care of animals.
C3 Partial Caretakers Subjects who participate in

↪→ caretaking but not as primary caretakers.
C4 Financially Supportive Subjects who provide financial

↪→ support instead of physical caretaking.
C5 No Caretaking Responsibilities Subjects who stated that they

↪→ do not take care of anyone.
C6 Excluded Responses that are unclear , irrelevant , or

↪→ did not provide a response to the question.
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Abstract
Understanding and modeling collective intelli-
gence is essential for addressing complex social
systems. Directed graphs called fuzzy cogni-
tive maps (FCMs) offer a powerful tool for
encoding causal mental models, but extracting
high-integrity FCMs from text is challenging.
This study presents an approach using large lan-
guage models (LLMs) to automate FCM extrac-
tion. We introduce novel graph-based similar-
ity measures and evaluate them by correlating
their outputs with human judgments through
the Elo rating system. Results show positive
correlations with human evaluations, but even
the best-performing measure exhibits limita-
tions in capturing FCM nuances. Fine-tuning
LLMs improves performance, but existing mea-
sures still fall short. This study highlights the
need for soft similarity measures tailored to
FCM extraction, advancing collective intelli-
gence modeling with NLP.

1 Introduction

Social science has long sought to understand and
model the collective intelligence underlying hu-
manity’s most pressing problems such as climate
change, sustainable food supply, and violent con-
flict driven by inequitable resource distribution.
These are social-ecological systems (SES) prob-
lems characterized by complex, interwoven feed-
back loops involving human and natural systems
(Ostrom, 2009; Partelow, 2018). To model collec-
tive intelligence about SES, we can leverage mental
models of causal system structure.

Researchers in the social sciences have formally
encoded SES mental models using fuzzy cogni-
tive maps (FCMs) that represent causal systems

as signed, weighted digraphs, where edges repre-
sent causal relationships among natural language
concepts (Kosko, 1986) like that depicted in Figure
1. FCMs are inspired by human causal mental mod-
els that people use to explain causal mechanisms
and generate predictions (Craik, 1967).

FCMs have been widely used to facilitate cross-
disciplinary communication within research teams
(Gray et al., 2013), make qualitative and numeri-
cal predictions, and assess collective intelligence
(Gray et al., 2020; Aminpour et al., 2020; Voinov
et al., 2018). However, little work has explored ex-
tracting high-integrity FCMs from textual corpora.
The development of a robust text-to-FCM method
would enable more rapid synthesis of science- and
stakeholder-informed perspectives to provide ac-
cess to latent collective intelligence about SES.

This work presents a natural language process-
ing (NLP) approach to (1) extracting FCMs from
text with large language models (LLMs) and (2)
measuring extracted FCM quality with novel soft
F1 measures that permit approximate semantic
matches rather than requiring exact node and edge
matches. This helps capture and accumulate di-
verse causal collective intelligence of SES domains.
We provide code and datasets for reproducibility.1

2 Background and Objectives

Extracting FCM edges is a specialization of extract-
ing semantic relations or causal graphs: each node
is a textual span describing causal factors, and each
edge is a directed causal increase or decrease rela-

1The source codes and dataset are available at
https://github.com/kuldeep7688/soft-measures-causal-
intelligence.
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Figure 1: FCM describing the Mmahi and James (2023) mental model of conflict and food system dynamics in
Zamfara State, Nigeria; blue (resp. red) edges indicate causally increasing (resp. decreasing) relations; visualized
with Mental Modeler.

tionship where the source of the edge quantitatively
increases or decreases the target. Two issues distin-
guish FCM extraction from previous graph-based
extraction tasks: (1) high expressiveness and (2)
partial correctness. We describe these two issues
briefly to motivate our approach.

High expressiveness. Causal variables (i.e.,
FCM nodes) and relations may be expressed multi-
ple ways, so human annotators may disagree and
a machine prediction may actually outperform a
pre-determined human-generated gold standard ac-
cording to human judges. Many graph extraction
approaches are validated by their proximity to a
singular gold standard generated by human experts,
where small deviations from the standard greatly af-
fect the measure. This includes neural network loss
functions. Some relaxed matching strategies help
account for textual containment or overlap (Chen
et al., 2019; Toba et al., 2010), but these have not
been adequately extended to graph extraction.

Partial correctness. A sub-optimal node or edge
that captures a valid causal relationship is often use-
ful to report as a component of an FCM—especially
in data-poor contexts, as even limited information
can improve the understanding of a given system—
so an NLP model’s capability to produce partially
correct edges is important to capture (Table 1).

Consequently, binary judgments of correctness—

Source Target Direction Issue

turbine
structures

blue
mussels

increase NA (gold standard)

numbers
of blue
mussels

turbine
structures

increase source & target
swapped; extra
source text

turbines mussel
populations

decrease simplified source;
extra target text;
incorrect direction

turbine
structures

blue
mussels

decrease incorrect direction

Table 1: Examples of partially correct causal relation-
ships. Original text: "Some fishermen described the
establishment of large numbers of blue mussels on the
turbine structures" (ten Brink et al., 2021, p. 245).

such as precision, recall, and F1 scores—are sub-
optimal measures for our task. Decades of re-
search has produced numerical measures to score
the similarity (or distance) between spans of text to
avoid the need for absolute correctness (Mihalcea
et al., 2006; Bär et al., 2012; Lavie and Denkowski,
2009), but development of textual similarity mea-
sures for graphs, and FCMs in particular, has been
limited (Pilehvar and Navigli, 2015).

This paper (1) assesses fine-tuned LLM-based
methods to extract FCMs from text and (2) intro-
duces and evaluates edge-based similarity measures
for validating FCM quality, addressing the limita-
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tions of previous measures. Additionally, it (3) ini-
tiates an approach for validating graph-based NLP
predictions by (a) ranking predictions through pair-
wise comparative human judgments using Elo and
(b) comparing the rankings produced by humans
and similarity measures. This proof-of-concept
study suggests a methodology by which to improve
the qualitative evaluation of NLP-generated FCMs
en masse and, thereby, takes a step towards im-
proved collective intelligence models.

3 Methods and Data

3.1 Dataset
We curated a dataset of 318 short text passages ex-
tracted from a diverse set of research articles on
SES. These articles cover a wide range of SES top-
ics including offshore wind farm development, the
impact of banditry on the food system in north-
ern Nigeria, the distribution of food and medi-
cal aid in conflict regions, and maternal and child
health in countries with low Human Development
Index scores. We annotated each text passage with
(source, target, direction) tuples.

3.2 Annotation Ranking
To rank annotations for each text passage, we (1)
generated multiple annotations for each of a subset
of passages, (2) presented pairs of annotations to
raters, and (3) applied the Elo rating system.

3.2.1 Annotation Generation
Each of a subset of 20 passages were manually
annotated with (source, target, direction)
tuples by all authors. This subset was further aug-
mented with LLM annotations. This was achieved
through two distinct methods: few-shot learning
and instruction tuning with LoRA (Wei et al., 2021;
Hu et al., 2021). We employed the Llama-2-7B-
chat-hf (Touvron et al., 2023a,b), Llama-3-8B-
Instruct (Meta AI, 2024), and Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) models from Hugging
Face (Hugging Face, 2024). Fine-tuning was ac-
complished using splits of the 318 data points. A
detailed presentation of these methods appears in
Appendices F, C, and E.

3.2.2 The Elo Rating System
The Elo rating system, introduced by Arpad Elo
(Elo, 1967, 1978), is a widely used method for
quantifying the relative skill levels of players in
two-player competitive games. It has been demon-
strated to effectively rank models based on human

judgment (Boubdir et al., 2023), benchmark LLMs
(Zheng et al., 2023), and rank preferences, such as
humor in Twitter posts (Zheng et al., 2023) through
pairwise comparisons. Inspired by previous re-
search (Berijanian et al., 2024; SEE-Insight, 2024),
we used the Elo system to rank annotations and
then compared these rankings with those generated
by the candidate similarity measures.

3.2.3 Elo Tournaments
Each author was presented with a series of com-
parisons between annotations via a web interface
(Appendix G). Raters were instructed to select the
better annotation as ‘winner’ or to choose ‘tie’ fol-
lowing a set of guidelines (see Appendix I). Elo
scores were computed per passage, so each pas-
sage acted as an individual ‘tournament’. Raters
did not rate their own annotations to avoid potential
bias. Inter- and intra-rater reliability were captured
through overlaps (Appendix H.1).

3.3 Similarity Measures
We devised five candidate FCM similarity measures
based on the established textual similarity measures
in Table 2. The similarity between an FCM and a
gold standard is computed as a softly thresholded
F1 score between edge sets. Given a textual simi-
larity measure S (·, ·), a threshold T , and edge sets
E and Egold, as well as any textual edge attributes
A (we use A = {source, target}) and non-textual
edge attributes N (we use N = {direction}):
TP: For each e ∈ E, our method counts a true

positive if there exists an egold ∈ Egold such
that S

(
e.a, egold.a

)
≥ T for every a ∈ A and

e.n = egold.n for every n ∈ N ;

PP: For each e ∈ E, our method counts a partial
positive if there exists an egold ∈ Egold such
that S

(
e.a, egold.a

)
≥ T for every a ∈ A and

there exists an n ∈ N such that e.n ̸= egold.n;

FP: For each e ∈ E, our method counts a false
positive if for every egold ∈ Egold, we have
S
(
e.a, egold.a

)
< T for any a ∈ A;

FN: For each egold ∈ Egold, our method counts a
false negative if for every e ∈ E, we have
S
(
e.a, egold.a

)
< T for any a ∈ A.

For any S, once the TP, PP, FP, and FN have been
counted, the corresponding edge-based measure
can be calculated using the F1-like formula:

2 · TP + PP
2 · TP + PP + FP + FN

. (1)
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Measure Strengths Weaknesses

Exact match Simple and direct
measurement.

Sensitive to minor
textual differences.

BLEU (Pap-
ineni et al.,
2002)

Considers n-gram
precision and
brevity.

Does not account for
synonyms or gram-
matical meaning.

ROUGE
(Lin, 2004)

Flexible in mea-
sure type and n-
gram method.

Does not account for
synonyms or gram-
matical meaning.

METEOR
(Banerjee
and Lavie,
2005)

Accounts for
synonyms, stems,
and word order.

Does not account for
context or grammati-
cal meaning.

BLEURT
(Sellam
et al., 2020)

Captures abstract
meanings using
neural networks.

Potential biases and
limited user control.

Table 2: Text similarity/matching strategies.

For each S, a threshold T is chosen by grid search
(Appendix D.3). Note that by disallowing for par-
tial positives, when S (·, e.a) = 1e.a (·)—an exact
match criterion—and T = 1, this reduces to the
classical F1 score between edge sets.

For BLEU, ROUGE, METEOR, and BLEURT,
we refer to our novel edge-based measures as
BLEU-E, ROUGE-E, METEOR-E, and BLEURT-
E, respectively.

3.4 Correlation Analysis

The winning annotation of each tournament was
deemed the gold standard. We then produced a
ranking of annotations per passage using each
candidate similarity measure applied to each
(gold standard, annotation) FCM pair. The
Spearman correlations (Spearman, 1904) between
human- and similarity measure-generated rankings
were computed. We then applied the measure
with highest correlation to evaluate LLM-generated
FCMs and compared with an LLM-only tourna-
ment.

4 Results

4.1 Spearman Correlation

The Spearman correlation coefficients for each
measure, averaged across all passages, are summa-
rized in Table 3. Higher values indicate greater
mean correlation with human rankings. Novel
measure-produced rankings have positive mean cor-
relations with human-generated rankings, and each
improves upon vanilla F1 in this regard (Table 4).

Measure Mean 90% CI 95% CI
F1 0.016 (-0.057, 0.089) (-0.072, 0.104)
BLEU-E∗ 0.109 (-0.018, 0.237) (-0.045, 0.263)
METEOR-E∗ 0.126 (0.001, 0.252) (-0.025, 0.278)
ROUGE-E∗ 0.124 (0.007, 0.241) (-0.018, 0.266)
BLEURT-E∗ 0.152 (0.038, 0.265) (0.014, 0.289)

BLEU-E 0.415 (0.257, 0.574) (0.223, 0.607)
METEOR-E 0.333 (0.146, 0.520) (0.106, 0.559)
ROUGE-E 0.387 (0.205, 0.570) (0.166, 0.608)
BLEURT-E 0.338 (0.178, 0.498) (0.144, 0.532)

Table 3: Mean correlations of similarity measures with
human judgment and their confidence intervals. E∗

scores are computed without partial positives.

Figure 2: Mean BLEU-E across model variants.

4.2 LLM Inferences

Figure 2 presents the average BLEU-E scores for
FCM inferences on the test set by each LLM before
and after fine-tuning. As expected, fine-tuned mod-
els outperform their default counterparts, with Mis-
tral scoring highest, followed by Llama-2 and then
Llama-3.is consistent with the human-generated
ranking.

5 Discussion and Conclusions

This paper presents an evaluation of fine-tuned
LLM-based methods for extracting FCMs from
text, while also introducing and assessing novel
edge-based similarity measures to validate the qual-
ity of these FCMs. The study highlights the lim-
itations of traditional measures, which often fail
to capture the nuances and partial correctness in
FCMs, especially in the context of SES research.
For instance, there were cases where LLMs out-
performed human annotators, yet these instances
might have been overlooked if we relied solely on
traditional measures like the F1 score or validation
set loss. The novel edge-based measures allowing
for partial positives show markedly greater correla-
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tion with human judgments.
In addition to examining similarity measures,

this work initiates a new approach for validating
graph-based NLP predictions by employing pair-
wise comparative human judgments, using the Elo
rating system, to rank predictions. This method
was used to compare human-derived rankings with
those generated by similarity measures, providing
a proof of concept for enhancing the qualitative
evaluation of NLP-generated FCMs.

Fine-tuning LLMs proved beneficial, resulting
in higher BLEU-E scores and improved model per-
formance. Whereas the validation set losses for all
fine-tuned LLMs appear similar (Figure 3 in Ap-
pendix C), their qualitative performances differed
significantly. Although BLEU-E offers a more ac-
curate assessment than validation set loss, these
improvements do not fully resolve the underlying
issues with the current similarity measures.

The study’s findings emphasize the necessity
of developing more specialized measures that are
better aligned with human judgment and capable of
capturing the complexities of FCM extraction. This
study represents an initial step towards that goal,
highlighting the limitations of current approaches
and setting the stage for future research.

Future work will focus on developing and val-
idating new similarity measures that can better
capture the complexities and partial correctness in
FCM extraction. For instance, greater correlation
with human judgment should be achievable by pa-
rameterizing TP and PP with scalars and employing
optimization. Additionally, integrating human-in-
the-loop approaches may help refine LLM outputs,
leading to more accurate FCMs. We also imagine a
range of applications and extensions. For instance,
the proposed measures can be straightforwardly ex-
tended to knowledge hypergraphs. Furthermore, by
symmetrizing any one of our typically asymmetric
measures we may interpret it as a kernel (Kriege
et al., 2020; Scholkopf and Smola, 2018). Explic-
itly, let f = BLEURT-E and G1 and G2 be FCMs,
and define a kernel K as,

K (G1, G2) =
f (G1, G2) + f (G2, G1)

2
.

This interpretation brings to bear the entire suite of
kernel methods for the study of FCMs to facilitate
visualization, classification, and general pattern
recognition.

In conclusion, this study has provided insights
into the evaluation of LLM-generated FCMs and

also underscores the need for continued research.
Our framework provides a structured approach for
these evaluations. This paper marks just the begin-
ning of a journey towards improving the overall
evaluation framework for FCMs and enhancing the
role of LLMs in collective intelligence research,
particularly in SES contexts with small quantities
of low quality textual data.
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A Limitations

While our approach is robust, it is important to
acknowledge potential limitations that could im-
pact the generalizability and effectiveness of our
findings.

Firstly, the passages we selected for our study are
specific to a particular context and may not be rep-
resentative of different domains, which could limit

the generalizability of our findings across other con-
texts. Future research should explore cross-domain
evaluations to validate the effectiveness of our ap-
proach in various settings.

Secondly, our methodology relies on initial hu-
man annotations, then selecting between human
and LLM annotations as the gold standard, which
introduces the possibility of bias due to the diver-
sity of cultural and disciplinary backgrounds of the
annotators. The initial annotations may not encom-
pass all possible interpretations or nuances present
in the text. Future work will focus on expanding
the dataset to include a wider variety of texts and
annotations, which will help in creating a more
comprehensive and representative gold standard.

Furthermore, while we aimed to fine-tune LLMs
for improved performance, we did not tune all hy-
perparameters. Specifically, we only optimized the
rank parameter r for LoRA. The primary reason for
not extensively tuning all hyperparameters, such as
the learning rate, was that the focus of this paper
was on measure alignment instead of optimizing
hyperparameter settings. Future studies should aim
to explore a broader range of hyperparameter tun-
ing to fully explore the capabilities of the LLMs.

Additionally, our experiment was conducted
with a limited number of annotation samples for
LLM training and Elo ranking. Although the sam-
ple selection aimed to cover a broad spectrum of
text complexities, the small sample size may not
fully capture the variability in real-world data. Fur-
thermore, the samples were selected to provide
difficult examples, which may not represent typical
data. Moreover, the limited sample size may limit
the capabilities of LLMs due to a lack of surplus
of data available for fine tuning. Elo rankings may
have marginally deviated due to a limited sample
size. Expanding the number of samples in future
experiments will enhance the reliability and appli-
cability of our results.

Moreover, our current approach does not lever-
age human-in-the-loop (HITL) strategies to itera-
tively improve LLM inferences based on human
feedback. Integrating HITL mechanisms with the
Elo rating system could significantly enhance the
quality and accuracy of LLM-generated annota-
tions. By continuously integrating human judg-
ment, this iterative process would allow for ongo-
ing refinement and improvement of LLM outputs.
Future work should explore implementing HITL
strategies to capture real-time human feedback and
use it to fine-tune and validate LLM performance.
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To summarize, our approach demonstrates
promise. However, addressing these limitations
in future work will be crucial for further validat-
ing and enhancing the robustness, reliability, and
applicability of our findings.

B Ethical Considerations

This study involves the extraction and validation
of fuzzy cognitive maps (FCMs) from text using
large language models (LLMs). Several ethical con-
siderations are relevant to this work, particularly
regarding data use, annotation processes, biases,
and the environmental impact of our research.

Data Use and Privacy: The data used in this
study were created and annotated by the authors.
This ensures that we have complete control over the
data’s provenance and the conditions under which
it was generated. Since the data were produced
specifically for this research, issues related to intel-
lectual property and participant privacy are mini-
mized.

Annotation Process: All annotations were car-
ried out by the authors, ensuring a consistent under-
standing of the task and eliminating the need for ex-
ternal annotators. This method addresses concerns
about fair compensation and working conditions
for annotators, as the work was part of the authors’
research activities.

Bias and Fairness: Inherent biases in language
models can affect the outcomes. Researchers
should explore methods to identify and mitigate
such biases to enhance the fairness and reliability
of FCM extractions.

Environmental Impact: The environmental im-
pact of training and fine-tuning LLMs is a signifi-
cant concern in NLP research. In our study, each
training session lasted approximately 40 minutes,
which is relatively short. This brevity was due to
our primary focus on developing and validating
measures for extracting and evaluating FCMs from
text, rather than optimizing LLM performance.
Consequently, we did not extensively tune the LLM
hyperparameters, such as the learning rate, as our
focus was on measure alignment rather than finding
the ideal hyperparameter settings. This approach
not only aligns with our research goals but also
minimizes the environmental footprint of our com-
putational experiments.

Potential Misuse: NLP technologies can be mis-
used in various ways, such as generating mislead-
ing information or reinforcing harmful stereotypes.

Researchers and practitioners should be aware of
these risks and take steps to mitigate them when
deploying such technologies.

Researchers should incorporate comprehensive
strategies to address these ethical challenges, ensur-
ing that the development and application of NLP
technologies are aligned with broader societal val-
ues and ethical standards.

C Fine-Tuning Parameters and
Hyperparameters

For fine-tuning the models with instruction tuning,
we focused on adjusting the rank r in LoRA, while
maintaining other training parameters at constant
values. The cost function for training and vali-
dation was cross-entropy loss. The Huggingface
library (Hugging Face, 2024) was utilized to run
the training jobs with 4-bit quantization.

The common hyperparameters and their corre-
sponding values used for fine-tuning the three mod-
els are listed below. Note that while the maximum
number of training epochs was set to 15, early stop-
ping was employed, so not all experiments reached
the full 15 epochs. The early stopping mechanism
halted training when the validation loss did not
improve for 3 consecutive epochs.

• Maximum number of training epochs: 15
(subject to early stopping)

• Batch size: 4
• Optimizer: Paged AdamW 32-bit
• Learning rate: 2e-4
• Learning rate scheduler: Cosine decay
• Gradient accumulation steps: 1
• Gradient clipping: 0.3
• Gradient checkpointing : True (to
save memory)

• Weight decay: 0.001
• Warmup ratio: 0.1
• Use of 4-bit precision: Enabled (to
reduce memory and computational cost)

• Data type for 4-bit computations:
bfloat16

• Quantization type for 4-bit
precision: nf4

• Nested quantization: Disabled
• LoRA dropout rate: 0.1

The following hyperparameters were optimized
during the fine-tuning process:

• LoRA rank (r): 2, 4, 8, 16, 32, 64,
128, 256

106



• LoRA α : 2 ∗ r
We used one Nvidia V100 GPU to execute the

training jobs. On average, each experiment took
approximately 40 minutes to complete.

C.1 Optimal Rank (r) Values for LoRA
Fine-Tuning

To determine the optimal rank r for each model, we
experimented with various r values and monitored
the validation loss.

The best r values, based on the minimum valida-
tion set loss for Llama-2-7B-chat-hf, Llama-3-8B-
Instruct, and Mistral-7B-Instruct-v0.2 after testing
different r values, are as follows:

• Llama-2-7B-chat-hf: 128
• Llama-3-8B-Instruct: 64
• Mistral-7B-Instruct-v0.2: 128

As shown in Figure 3, all three models achieved
similar validation losses with their respective opti-
mal r values.

D Other Formulas and Hyperparameters

D.1 Elo Rating System
The Elo rating system (Elo, 1967, 1978), is a
method for quantifying the relative skill levels of
players in two-player competitive games such as
chess. It assigns a numerical rating to each player,
representing their skill level.

The Elo rating system updates players’ ratings
after each game based on the outcome. The formula
to update the rating involves several steps. First,
the expected score for player A against player B is
calculated using the formula:

EA =
1

1 + 10(RB−RA)/400
,

where RA and RB are the current ratings of players
A and B, respectively. Similarly, the expected
score for player B is:

EB =
1

1 + 10(RA−RB)/400
.

Note that EA + EB = 1. The actual score SA is
1 if player A wins, 0 if player A loses, and 0.5 in
the case of a draw. Similarly, SB is 1 if player B
wins, 0 if player B loses, and 0.5 for a draw. The
new ratings for players A and B are updated using
the formulas:

R′
A = RA +K(SA − EA)

R′
B = RB +K(SB − EB)

Here, K is a constant known as the K−factor,
which determines the sensitivity of the rating sys-
tem. A higher K−factor means ratings change
more significantly after each game, making the sys-
tem more responsive to recent results. Conversely,
a lower K–factor results in smaller changes, mak-
ing the ratings more stable and less sensitive to new
results. The K−factor can vary; in chess, it is of-
ten set to 32 for new players and 16 for established
players, but these values can be adjusted depending
on the specific application and the desired stability
of the ratings.

It can be shown that while the values of K and
the initial Elo ratings RA and RB affect the nu-
merical scores obtained after calculation, the rela-
tive ranking of players remains unchanged. Addi-
tionally, the order of "games" does not affect the
final ranking, ensuring the consistency of the sys-
tem regardless of the sequence in which games are
played.

D.2 Hyperparameters for Elo Rating
Calculation

In the process of calculating Elo ratings for annota-
tion evaluations, we utilized the following hyperpa-
rameters:

• K–factor: 32
• Initial Elo rating: 1000

D.3 Hyperparameters for Similarity
Measures

The English-trained checkpoint bleurt-base-128
and ROUGE-1 were used in this study. We con-
sidered a range of thresholds, T , for each measure
through exploratory data analysis and adaptive grid
search. The T chosen for each measure coordi-
nates to the highest achieved Spearman correlation
to the human-generated rankings. The T selected
for each measure is:

• BLEURT-E: -0.1532
• BLEU-E: 0.352
• METEOR-E: 0.01
• ROUGE-E: 0.45.

E Prompts Format for Instruction Tuning

This section details the prompts format used for
instruction tuning. This format ensures that the
model clearly understands the task and generates
the appropriate response based on the given instruc-
tion.
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Figure 3: Validation losses for Mistral-7B-Instruct-v0.2, Llama-2-7B-chat-hf, and Llama-3-8B-Instruct during
training with their respective optimal ranks r in LoRA. Plot generated using WandB (Weights & Biases, 2024).

E.1 Llama-2-7B and Mistral-7B
Both Llama-2-7B-chat-hf and Mistral-7B-Instruct-
v0.2 use the same prompt format for instruction
tuning. We provide the instructions for the model
within the [INST] and [/INST] tags, and the model
generates everything following the [/INST] tag.
The entire prompt is enclosed within <s> and </s>
tags.

The prompt format used is mentioned below:
<s>[INST] Given the input sentence, identify

all the triplets of entities and the
corresponding causal relationships between
them. The entities should be phrases from
the input sentence, and the relationships
should either be 'Positive' or 'Negative'.
Each new extracted triplet should start
with the <triplet> token, followed by the
subject phrase, the object phrase, and the
relationship, separated by <subj> and <obj>
tokens.

Input Sentence: <Sentence> [/INST]

Causal Relation Triplets : <triplet> Subject_1
<subj> Target_1 <obj> Relationship_1

<triplet> Subject_2 <subj> Target_2 <obj>
Relationship_2 </s>

A complete example, including the prompt, a
sample sentence, and its causal relation triplets
used for instruction tuning, is provided below:
<s>[INST] Given the input sentence, identify

all the triplets of entities and the
corresponding causal relationships between
them. The entities should be phrases from
the input sentence, and the relationships
should either be 'Positive' or 'Negative'.
Each new extracted triplet should start

with the <triplet> token, followed by the
subject phrase, the object phrase, and the
relationship, separated by <subj> and <obj>
tokens.

Input Sentence: Islamist violence in Mali has
also hit cattle herding areas, forcing
farmers to abandon their trade. Climate
change too has led to competition for
grazing lands and water, leading to
intercommunal conflicts. The result,
increased costs for breeders. [/INST]

Causal Relation Triplets : <triplet> islamist
violence <subj> cattle herding <obj>
negative

<triplet> climate change <subj> competition for
grazing lands and water <obj> positive

<triplet> competition for grazing lands and
water <subj> intercommunal conflicts <obj>
positive

<triplet> intercommunal conflicts <subj>
increased costs for breeders <obj> positive
</s>

E.2 Llama-3-8B
Llama-3-8B-Instruct follows a different prompt for-
mat compared to Llama-2 or Mistral. An example
of the prompt format for Llama-3-8B-Instruct is
provided below:
<|begin_of_text|><|start_header_id|>

system<|end_header_id|>

Given the input sentence, identify all the
triplets of entities and the corresponding
causal relationships between them. The
entities should be phrases from the input
sentence, and the relationships should
either be 'Positive' or 'Negative'. Each
new extracted triplet should start with the
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<triplet> token, followed by the subject
phrase, the object phrase, and the
relationship, separated by <subj> and <obj>
tokens. <|eot_id|><|start_header_id|>
user<|end_header_id|>

Input Sentence : A direct negative effect that
for example a wind farm can have on the
trawl fishery (reduced fishing activity),
<|eot_id|><|start_header_id|>
assistant<|end_header_id|>

Casual Relation Triplets : <triplet> wind farm
<subj> trawl fishery <obj> negative
<|eot_id|>

F Prompts Format For Zero- and
Three-Shot Learning

F.1 Zero-Shot Learning

To achieve structured output in zero-shot and three-
shot in-context learning, we optimized the prompts.
Examples of the prompts used in zero-shot in-
context learning for all the models are as follows:

F.1.1 Llama-2-7B-chat-hf

<s>[INST] <<SYS>> Given the input sentence,
identify all the triplets (subject,
object and causal relation) . The
subject and object should be phrases
from the input sentence.

The causal relation between subject and
object should strictly be either
"Positive" or "Negative" and nothing
else.

Each new extracted triplet i.e. subject,
object and relation should start with a
newline should be within <triple> and
</triplet>. The subject should be
within <subj> and </subj> tokens. The
object should be within <obj> and
</obj> tokens. The causal relation
should be within <relation> and
</relation> tokens. The format of
output of each triplet should be
strictly like below:

<triplet>
<subj> </subj>
<obj> </obj>
<relation> </relation>

</triplet>
<</SYS>>
Input Sentence : pastoralists in the arid

and semi-arid regions of Mali continue
to face increasing risk due to low
levels of rainfall [/INST]

Causal Relation Triplet :

<triplet>
<subj> pastoralists</subj>
<obj> low levels of rainfall</obj>
<relation> Negative</relation>

</triplet>

<triplet>
<subj> Mali</subj>
<obj> increasing risk</obj>
<relation> Positive</relation>

</triplet>

Note: The subject and object phrases are
enclosed within <subj> and <obj>
tokens, respectively, and the causal
relation is enclosed within <relation>
and </relation> tokens.

F.1.2 Llama-3-8B-Instruct

<|begin_of_text|> <|start_header_id|> system
<|end_header_id|>Given the input
sentence, identify all the triplets
(subject, object and causal relation).
The subject and object should be
phrases from the input sentence.

The causal relation between subject and
object should strictly be either
"Positive" or "Negative" and nothing
else.

Each new extracted triplet i.e. subject,
object and relation should start with a
newline should be within <triple> and
</triplet>. The subject should be
within <subj> and </subj> tokens. The
object should be within <obj> and
</obj> tokens. The causal relation
should be within <relation> and
</relation> tokens.

The format of output of each triplet should
be strictly like below:

<triplet>
<subj> </subj>
<obj> </obj>
<relation> </relation>

</triplet> <|eot_id|><|start_header_id|>
user <|end_header_id|>

Input Sentence : Women identified forced sex
and men highlighted lack of awareness
about contraception and fear of side
effects as important causes of kunika.
<|eot_id|><|start_header_id|> assistant
<|end_header_id|>

<triplet>
<subj>Women</subj>
<obj>forced sex</obj>
<relation>Positive</relation>

</triplet>

<triplet>
<subj>men</subj>
<obj>lack of awareness about

contraception and fear of side
effects</obj>

<relation>Positive</relation>
</triplet>

<triplet>
<subj>men</subj>
<obj>kunika</obj>
<relation>Negative</relation>

</triplet>

F.1.3 Mistral-7B-Instruct-v0.2
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<s>[INST] Given the input sentence, identify
all the triplets (subject, object and
causal relation) . The subject and
object should be phrases from the input
sentence.

The causal relation between subject and
object should strictly be either
"Positive" or "Negative" and nothing
else.

Each new extracted triplet i.e. subject,
object and relation should start with a
newline should be within <triple> and
</triplet>. The subject should be
within <subj> and </subj> tokens. The
object should be within <obj> and
</obj> tokens. The causal relation
should be within <relation> and
</relation> tokens. The format of
output of each triplet should be
strictly like below:

<triplet>
<subj> </subj>
<obj> </obj>
<relation> </relation>

</triplet>

Input Sentence : pastoralists in the arid
and semi-arid regions of Mali continue
to face increasing risk due to low
levels of rainfall [/INST]

Causal Relation Triplet :
<triplet>

<subj> pastoralists in the arid and
semi-arid regions of Mali </subj>

<obj> face increasing risk </obj>
<relation> Positive </relation>

</triplet>
<triplet>

<subj> Low levels of rainfall </subj>
<obj> cause pastoralists in the arid and

semi-arid regions of Mali to face
increasing risk </obj>

<relation> Negative </relation>
</triplet>

F.2 Three-Shot Learning

To achieve structured output in three-shot in-
context learning, we optimized the prompts. Below
are examples of the prompts used in three-shot in-
context learning for all the models:

F.2.1 Llama-2-7B-chat-hf

<s>[INST] <<SYS>> Given the input sentence,
identify all the triplets of entities
and the corresponding causal
relationships between them. The
entities should be phrases from the
input sentence, and the relationships
should either be 'Positive' or
'Negative'. Each new extracted triplet
should start with the <triplet> token,
followed by the subject phrase, the
object phrase, and the relationship,
separated by <subj> and <obj> tokens.

Don't add extra sentences.

<</SYS>>
Input Sentence : the current price of local

rice (sold loose) at the local market
is 1850 ngn/1kg. the price is expected
to rise to 2100 ngn/1kg in 6 weeks, due
to the high cost of oil. [/INST]

Causal Relation Triplets : <triplet> high
cost of oil <subj> price of local rice
<obj> positive

</s>
[INST]
Input Sentence : Participants also believed

that illiteracy and low levels of
education among some of the women were
barriers to seeking skilled pregnancy
health care. [/INST]

Causal Relation Triplets : <triplet>
illiteracy among women <subj> access to
skilled pregnancy health care <obj>
negative

<triplet> low education among women are
understaffed <subj> access to skilled
pregnancy health care <obj> negative

</s>
[INST]
Input Sentence : Other health sources of

protein are lean meats, low-fat milk,
nuts, and beans such as kidney beans.
[/INST]

Causal Relation Triplets : <triplet> nuts
<subj> health sources of protein <obj>
positive

<triplet> meats <subj> health sources of
protein <obj> positive </s>

<triplet> milk <subj> health sources of
protein <obj> positive </s>

<triplet> beans <subj> health sources of
protein <obj> positive </s>

</s>
[INST]
Input Sentence : pastoralists in the arid

and semi-arid regions of Mali continue
to face increasing risk due to low
levels of rainfall [/INST]

Causal Relation Triplets :
<triplet> low rainfall <subj> risk faced by

pastoralists <obj> negative

F.2.2 Llama-3-8B-Instruct

<|begin_of_text|> <|start_header_id|> system
<|end_header_id|> Given the input
sentence, identify all the triplets of
entities and the corresponding causal
relationships between them. The
entities should be phrases from the
input sentence, and the relationships
should either be 'Positive' or
'Negative'. Each new extracted triplet
should start with the <triplet> token,
followed by the subject phrase, the
object phrase, and the relationship,
separated by <subj> and <obj> tokens.

Don't add extra sentences.
<|eot_id|><|start_header_id|> user
<|end_header_id|>

Input Sentence : the current price of local
rice (sold loose) at the local market
is 1850 ngn/1kg. the price is expected
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to rise to 2100 ngn/1kg in 6 weeks, due
to the high cost of oil.
<|eot_id|><|start_header_id|> assistant
<|end_header_id|>

Causal Relation Triplets : <triplet> high
cost of oil <subj> price of local rice
<obj> positive
<|eot_id|><|start_header_id|> user
<|end_header_id|>

Input Sentence : Participants also believed
that illiteracy and low levels of
education among some of the women were
barriers to seeking skilled pregnancy
health care.
<|eot_id|><|start_header_id|> assistant
<|end_header_id|>

Causal Relation Triplets : <triplet>
illiteracy among women <subj> access to
skilled pregnancy health care <obj>
negative

<triplet> low education among women are
understaffed <subj> access to skilled
pregnancy health care <obj> negative
<|eot_id|><|start_header_id|> user
<|end_header_id|>

Input Sentence : Other health sources of
protein are lean meats, low-fat milk,
nuts, and beans such as kidney
beans.<|eot_id|><|start_header_id|>
assistant <|end_header_id|>

Causal Relation Triplets : <triplet> nuts
<subj> health sources of protein <obj>
positive

<triplet> meats <subj> health sources of
protein <obj> positive

<triplet> milk <subj> health sources of
protein <obj> positive

<triplet> beans <subj> health sources of
protein <obj> positive
<|eot_id|><|start_header_id|> user
<|end_header_id|>

Input Sentence : pastoralists in the arid
and semi-arid regions of Mali continue
to face increasing risk due to low
levels of rainfall
<|eot_id|><|start_header_id|> assistant
<|end_header_id|>

Causal Relation Triplets : <triplet> forced
sex <subj> kunika <obj> positive

<triplet> lack of awareness about
contraception <subj> kunika <obj> positive

<triplet> fear of side effects <subj> kunika
<obj> positive

F.2.3 Mistral-7B-Instruct-v0.2

<s>[INST] Given the input sentence, identify
all the triplets of entities and the
corresponding causal relationships
between them. The entities should be
phrases from the input sentence, and
the relationships should either be
'Positive' or 'Negative'. Each new
extracted triplet should start with the
<triplet> token, followed by the
subject phrase, the object phrase, and

the relationship, separated by <subj>
and <obj> tokens.

Don't add extra sentences.
Input Sentence : the current price of local

rice (sold loose) at the local market
is 1850 ngn/1kg. the price is expected
to rise to 2100 ngn/1kg in 6 weeks, due
to the high cost of oil. [/INST]

Causal Relation Triplets : <triplet> high
cost of oil <subj> price of local rice
<obj> positive

</s>
[INST]
Input Sentence : Participants also believed

that illiteracy and low levels of
education among some of the women were
barriers to seeking skilled pregnancy
health care. [/INST]

Causal Relation Triplets : <triplet>
illiteracy among women <subj> access to
skilled pregnancy health care <obj>
negative

<triplet> low education among women are
understaffed <subj> access to skilled
pregnancy health care <obj> negative

</s>
[INST]
Input Sentence : Other health sources of

protein are lean meats, low-fat milk,
nuts, and beans such as kidney beans.
[/INST]

Causal Relation Triplets : <triplet> nuts
<subj> health sources of protein <obj>
positive

<triplet> meats <subj> health sources of
protein <obj> positive </s>

<triplet> milk <subj> health sources of
protein <obj> positive </s>

<triplet> beans <subj> health sources of
protein <obj> positive </s>

</s>
[INST]
Input Sentence : pastoralists in the arid

and semi-arid regions of Mali continue
to face increasing risk due to low
levels of rainfall [/INST]

Causal Relation Triplets :
<triplet> low levels of rainfall <subj>

risk faced by pastoralists in arid and
semi-arid regions of Mali <obj>
positive.

G User Interfaces

In this appendix, we provide screenshots of the two
custom Dash-based user interfaces (UIs) (Plotly,
2024) developed for this study. These UIs were
integral to the annotation and evaluation processes,
facilitating consistent data collection and pairwise
comparisons.

G.1 Annotation Interface

Figure 4 shows the UI used by the seven partic-
ipants to annotate the 20 selected samples. This
interface was designed to be user-friendly and effi-
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cient, allowing participants to focus on the quality
of their annotations. The annotations were saved in
JSON format for consistency and ease of process-
ing.

G.2 Elo Comparison Interface

Figure 5 displays the UI used for the Elo rating
comparisons. In this interface, pairs of annotations
were presented to participants, who were asked to
choose the better annotation for each pair. This
interface randomized the sequence of comparisons
to eliminate potential biases and ensured that par-
ticipants could not see their own annotations to
prevent bias.

H Split Creation

The splits were created by taking the labelers an-
notations (7), extracting the names into a set, and
generating a list of random numbers the length
of which is the amount of combinations times the
amount of texts chosen. Then, with nested loops,
the outer of which being the texts, and the inner
being the possible labeler combinations, these num-
bers were assigned in order (front of list to back
of list). The dictionary was then sorted and made
back into a dictionary. Then, this list was divided
into splits by iterating through it, assigning one dat-
apoint at a time to each labeler skipping that point
if the labeler that is up is in the combinations. This
loop continues until all points are assigned.

LLM additions followed a similar process. We
looped through each labeler and created a combi-
nation list with them and the LLMs, but not the
LLMs with each other. After, we generated values
a random list and added the current length of the
list to each point. Then, looping through the rest of
the labelers, we follow the same process of looping
through the dictionary and assigning one point at a
time to a labeler. After all labelers had been paired
with the LLMs, we created the combination list of
the LLMs with each other, and followed the same
process of looping through the labelers.

Finally, we generated a list of random numbers
for each labeler as long as an individual labeler’s
split. Then, we reassigned the key values to the new
list of random numbers to obscure the ordering in
which the labels were added so as to randomize
the order of presentation of pairings between la-
beler+labeler, labeler+LLM and LLM.

Inter-rater splits were created using only LLM
outputs, where each labeler compared the three

combinations for each of 20 samples.

H.1 Inter- and Intra-Rater Reliability
The bar plot in Figure 6 illustrates the inter- and
intra-rater reliability among different percentages
of raters. Specifically, 57.1% of raters agreed on
10% of the samples, 71.4% of raters agreed on
20% of the samples, another 85.7% of raters also
agreed on 20% of the samples, and finally, 100% of
raters agreed on 50% of the samples. Notably, this
distribution shows that 90% of the data (0.2 + 0.2
+ 0.5) received agreement from 71.4% of raters or
more, highlighting a substantial consensus among
the majority of raters in this evaluation. Raters,
furthermore, demonstrated 90.5% self-consistency.

I Rater Guidelines

To support annotation scoring consistency and sci-
entific reproducibility, raters were instructed to use
the following guidelines when choosing a winner
during pairwise comparisons:

1. Prefer more ‘better’ tuples rather than more
‘worse’ ones (this constitues our ’human-
thresholded’ F1 per discussion today).

2. Prefer node names that do not introduce new
concepts that are not present in the text.

3. Prefer source/target in correct position.

4. If A affects B and if B affects C, we can also
infer that A affects C. However, we should
not include "A affects C” in the annotations,
unless it is explicitly mentioned.

5. Prefer node names as close to the text as pos-
sible.

6. Prefer verbose node names (include adjec-
tives) as these contain information that can
be referenced, utilized, or abstracted away as
necessary by downstream tasks/processes.

7. Prefer splitting node names at ‘and’ conjunc-
tions when concepts are ‘distinct’, e.g., in
“It is expected that both ecological and so-
cial compensation measures improve the over-
all acceptance of a local infrastructure, thus
anchoring the latter within the surrounding
community” it is better to have one source
nodes corresponding to ecological compensa-
tion measures as well as one corresponding to
social compensation measures.
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Figure 4: Screenshot of the annotation interface used by participants to annotate the text samples.

Figure 5: Screenshot of the Elo comparison interface used for pairwise comparisons of annotations. This interface
helped in generating the Elo scores by allowing participants to select the better annotation in each presented pair.

8. Prefer correct direction of causal relation.

Some of these guidelines can be in conflict with
each other. In these cases, prefer a heuristic higher
on the above list; but in all cases, use your best
judgment.

J Contrasts with F1

Table 4 provides paired differences in correlations
between edge-based measures and vanilla F1 rank-
ings.

Measure Mean 90% CI 95% CI
BLEU-E 0.399 (0.263, 0.535) (0.234, 0.564)
METEOR-E 0.317 (0.142, 0.492) (0.105, 0.528)
ROUGE-E 0.371 (0.210, 0.532) (0.176, 0.566)
BLEURT-E 0.322 (0.173, 0.471) (0.141, 0.503)

Table 4: Mean paired differences between similarity
measures’ and the baseline F1 measure’s correlations.

K Datasheet

K.1 Motivation for Dataset Creation

• Why was the dataset created? (e.g., were there
specific tasks in mind, or a specific gap that
needed to be filled?) The dataset is an amal-
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Figure 6: Inter-rater reliability for paired annotations

gamation of SES literature that is relevant to
the authors of this article and/or their collab-
orators. Each sub-dataset was created in the
process of developing FCM models of the rel-
evant system.

• What (other) tasks could the dataset be used
for? Are there obvious tasks for which it
should not be used? Absolutely. We plan to
further utilize this data in the construction of
’collective intelligence’ models of these SES.

• Has the dataset been used for any tasks al-
ready? If so, where are the results so others
can compare (e.g., links to published papers)?
No.

• Who funded the creation of the dataset? If
there is an associated grant, provide the grant
number. The dataset creation was funded un-
der the grants listed in the Acknowledgements
section.

K.2 Dataset Composition
• What are the instances? (that is, examples;

e.g., documents, images, people, countries)
Are there multiple types of instances? (e.g.,
movies, users, ratings; people, interactions
between them; nodes, edges) Are relationships
between instances made explicit in the data
(e.g., social network links, user/movie ratings,
etc.)? How many instances of each type are
there? Instances are text passage-tuple pairs
that correspond to text data and associated
concept pairs connected by causal relation
edges. The dataset is apportioned as follows:

– Total unique in Training: 224

– Total unique in Validation : 38
– Total unique in Testing : 56

• What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)?
Features/attributes? Is there a label/target as-
sociated with instances? If the instances are
related to people, are subpopulations identi-
fied (e.g., by age, gender, etc.) and what is
their distribution? See above. Concepts
can consist of anything that, roughly, ’qualita-
tively or quantitatively increases or decreases.’

• Is everything included or does the data rely
on external resources? (e.g., websites, tweets,
datasets) If external resources, a) are there
guarantees that they will exist, and remain
constant, over time; b) is there an official
archival version. Are there licenses, fees or
rights associated with any of the data? The
data does not rely on external resources.

• Are there recommended data splits or eval-
uation measures? (e.g., training, develop-
ment, testing; accuracy/AUC) When training
on multiple models, it is important to use a
consistent test set.

• What experiments were initially run on this
dataset? Have a summary of those results and,
if available, provide the link to a paper with
more information here. Any other comments?
N/A

K.3 Data Collection Process
• How was the data collected? (e.g., hardware

apparatus/sensor, manual human curation,
software program, software interface/API;
how were these constructs/measures/methods
validated?) Text passages were collected by
extracting raw text from PDF documents and
encoding them as strings. Annotations were
assigned via the UI described in the main pa-
per body and appendices.

• Who was involved in the data collection pro-
cess? (e.g., students, crowdworkers) How
were they compensated? (e.g., how much were
crowdworkers paid?) Only authors were in-
volved in the data collection process. Funding
consisted of salary and hourly pay.

• Over what time-frame was the data collected?
Does the collection time-frame match the cre-
ation time-frame? 3 years. How was the data
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associated with each instance acquired? Was
the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., sur-
vey responses), or indirectly inferred/derived
from other data (e.g., part of speech tags;
model-based guesses for age or language)?
If the latter two, were they validated/verified
and if so how? The data was directly observed
in text.

• Does the dataset contain all possible in-
stances? Or is it, for instance, a sample (not
necessarily random) from a larger set of in-
stances? If the dataset is a sample, then what
is the population? What was the sampling
strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)? Is the sam-
ple representative of the larger set (e.g., geo-
graphic coverage)? If not, why not (e.g., to
cover a more diverse range of instances)?
How does this affect possible uses? This
dataset is a sample. The population consists of
"all possible passage-tuple pairs." The dataset
is representative in the same sense as data in
other fine-tuning efforts (i.e., there is not a
precisely meaningful sense of ’representative-
ness’).

• Is there information missing from the dataset
and why? (this does not include intention-
ally dropped instances; it might include, e.g.,
redacted text, withheld documents) Is this data
missing because it was unavailable? N/A

• Are there any known errors, sources of noise,
or redundancies in the data? Conversion of
PDF to raw text can introduce errors, which
we manually evaluated through samples.

K.4 Dataset Distribution

• How is the dataset distributed? (e.g., website,
API, etc.; does the data have a DOI; is it
archived redundantly?) It has thus far been
shared only within the research team.

• When will the dataset be released/first dis-
tributed? (Is there a canonical paper/refer-
ence for this dataset?)The dataset will be re-
leased upon publication of the work.

• What license (if any) is it distributed under?
Are there any copyrights on the data? The
data will be openly available.

• Are there any fees or access/export restric-
tions? No.

K.5 Dataset Maintenance
• Who is supporting/hosting/maintaining the

dataset?

• How does one contact the owner/curator/man-
ager of the dataset (e.g. email address, or
other contact info)? The dataset may be re-
quested from the main author.

• Will the dataset be updated? How often and
by whom? How will updates/revisions be doc-
umented and communicated (e.g., mailing list,
GitHub)? Is there an erratum? Potentially.

• If the dataset becomes obsolete how will this
be communicated? N/A

• Is there a repository to link to any/all paper-
s/systems that use this dataset? N/A

• If others want to extend/augment/build on this
dataset, is there a mechanism for them to
do so? If so, is there a process for track-
ing/assessing the quality of those contribu-
tions. What is the process for communicat-
ing/distributing these contributions to users?
Please send a request to the corresponding
author.

K.6 Legal & Ethical Considerations
• If the dataset relates to people (e.g., their at-

tributes) or was generated by people, were
they informed about the data collection? (e.g.,
datasets that collect writing, photos, interac-
tions, transactions, etc.) N/A

• If it relates to other ethically protected sub-
jects, have appropriate obligations been met?
(e.g., medical data might include information
collected from animals) N/A

• If it relates to people, were there any ethical
review applications/reviews/approvals? (e.g.
Institutional Review Board applications)N/A

• If it relates to people, were they told what the
dataset would be used for and did they con-
sent? What community norms exist for data
collected from human communications? If
consent was obtained, how? Were the people
provided with any mechanism to revoke their
consent in the future or for certain uses? N/A
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• If it relates to people, could this dataset ex-
pose people to harm or legal action? (e.g.,
financial social or otherwise) What was done
to mitigate or reduce the potential for harm?
N/A

• If it relates to people, does it unfairly ad-
vantage or disadvantage a particular social
group? In what ways? How was this miti-
gated? N/A

• If it relates to people, were they provided with
privacy guarantees? If so, what guarantees
and how are these ensured? N/A

• Does the dataset comply with the EU General
Data Protection Regulation (GDPR)? Does it
comply with any other standards, such as the
US Equal Employment Opportunity Act? N/A

• Does the dataset contain information that
might be considered sensitive or confidential?
(e.g., personally identifying information) No.

• Does the dataset contain information that
might be considered inappropriate or offen-
sive? No.
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Abstract

Effective generation of novel hypotheses is in-
strumental to scientific progress. So far, re-
searchers have been the main powerhouse be-
hind hypothesis generation by painstaking data
analysis and thinking (also known as the Eu-
reka moment). In this paper, we examine the
potential of large language models (LLMs) to
generate hypotheses. We focus on hypothesis
generation based on data (i.e., labeled exam-
ples). To enable LLMs to handle long contexts,
we generate initial hypotheses from a small
number of examples and then update them it-
eratively to improve the quality of hypotheses.
Inspired by multi-armed bandits, we design
a reward function to inform the exploitation-
exploration tradeoff in the update process. Our
algorithm is able to generate hypotheses that
enable much better predictive performance than
few-shot prompting in classification tasks, im-
proving accuracy by 31.7% on a synthetic
dataset and by 13.9%, 3.3% and, 24.9% on
three real-world datasets. We also outperform
supervised learning by 12.1% and 11.6% on
two challenging real-world datasets. Further-
more, we find that the generated hypotheses
not only corroborate human-verified theories
but also uncover new insights for the tasks.

1 Introduction
Hypothesis generation drives scientific progress.
Mendel’s hypothesis on allele pairs lays the founda-
tion for modern genetics; Einstein’s hypothesis in gen-
eral theory of relativity led to the prediction and sub-
sequent confirmation of gravitational waves. In the
context of language modeling, the hypothesis on scaling
law inspires recent progress in large language models
(LLMs) (Kaplan et al., 2020). Despite the importance
of hypothesis generation, as Ludwig and Mullainathan
(2024) point out, science has been curiously asymmet-
ric. While many scientific publications present extensive
formal and empirical evaluation of hypotheses, the gen-
eration of hypotheses happens off-stage by researchers.
In order to generate novel hypotheses, researchers may
read literature, analyze data, pick the brain of each other,
and even “hallucinate” (see Kekulé’s discovery of the
structure of the benzene molecule (Rothenberg, 1995)).

Given the rise of large language models (Brown et al.,
2020; Anthropic, 2023; OpenAI, 2023b), we examine
their potential of providing much needed assistance in
hypothesis generation in this work.

In particular, we focus on hypothesis generation
based on data, a common approach in empirical sci-
ences. Our main question is how we can enable LLMs
to generate hypotheses of high-quality. While one can
easily prompt LLMs to generate hypotheses, LLMs may
not be able to effectively leverage the input examples in
a single long prompt. Moreover, it is important to have
measures of quality in the generation process so that
we can filter bad hypotheses and come up with better
ones. These two observations motivate us to start with
a setup analogous to supervised learning. We can iter-
atively prompt an LLM to generate hypotheses based
on the training examples and use training accuracy as
a measure of quality to guide the generation process.
Conveniently, we can also evaluate the quality of the
final generated hypotheses with their performance on
held-out examples, similar to supervised learning.

To generate high-quality hypotheses with LLMs, we
propose an algorithm inspired by the upper confidence
bound algorithm in multi-armed bandits (Auer, 2002)
(HypoGeniC1, Hypothesis Generation in Context; see
Figure 1). Given initial hypotheses generated from a
small number of examples, we need to assess their qual-
ity and propose new hypotheses to address their deficien-
cies. To navigate this exploration-exploitation tradeoff,
we introduce a reward function and evaluate the top k
hypotheses for each training example. We maintain a
wrong example bank to capture the gap in knowledge
of the hypotheses pool, and generate new hypotheses
based on the wrong example bank to close the gap.

The generated hypotheses naturally enable an inter-
pretable hypothesis-based classifier. We propose a suite
of inference strategies given a set of hypotheses. We
apply our method to one synthetic task where there is
a single known valid hypothesis and three real-world
tasks (DECEPTIVE REVIEWS, HEADLINE POPULAR-
ITY, and TWEET POPULARITY). The real-world tasks
focus on deception detection and message popularity
prediction, which are known to be challenging even for
humans (Ott et al., 2011; Salganik et al., 2006). Our al-

1We have publicly released the code and data for
HypoGeniC at https://github.com/ChicagoHAI/
hypothesis-generation.
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New hypothesis: Tweets with 
named entities like people, 
places, or organizations 
tend to get more retweets 
by being more specific.     
   Reward=0.83

Tweet 1: How do preseason stars fare 
during the regular season? [link] Some 
scoring stats there. 

Tweet 2: In the last decade, Melo and 
Kobe are the only two to lead the NBA in 
scoring in both preseason and regular 
season. [link]

Top k

A training example

Hypothesis bank

Reward Update

Hypothesis Generation

Wrong example bank

Hypothesis-based Inference if prediction is wrong

Hypothesis 1: Tweets with imperative 
commands like \"RT this\" are more 
likely to be retweeted as they directly 
ask people to retweet.  Reward=0.71 

Hypothesis 2: Tweets with more 
information, context, or detailed 
explanations tend to get more retweets 
than very short or cryptic tweets.      
  Reward=0.66 

Hypothesis 3: Tweets that create a 
sense of urgency or excitement by using 
words like \"now\", \"today\", 
\"tonight\", \"fastest\", 
\"seriously\", \"excited\" are more 
likely to be retweeted.  Reward=0.64 

Hypothesis 4: Tweets that include a 
link are less likely to be retweeted.  
  Reward=0.32 

. . .

Tweet 1: How do preseason stars fare 
during the regular season? [link] Some 
scoring stats there. 

Tweet 2: In the last decade, Melo and 
Kobe are the only two to lead the NBA in 
scoring in both preseason and regular 
season. [link]

Figure 1: Illustration of HypoGeniC. During update stage, we evaluate the top k hypotheses on each new training
example and update the reward based on the prediction correctness. If the number of hypotheses that got the example
wrong exceeds a certain threshold, we add the example to a wrong example bank. The wrong example bank is then
used to generate new hypotheses.

gorithm can recover the hypothesis in the synthetic task
and also provide useful hypotheses for the real-world
tasks. In fact, our generated hypotheses consistently out-
perform few-shot in-context learning baselines across
all four tasks (31.7% in SHOE SALES, 13.9% in DECEP-
TIVE REVIEWS, 3.3% in HEADLINE POPULARITY, and
24.9% in TWEET POPULARITY). The predictive perfor-
mance matches and even outperforms oracle supervised
learning with RoBERTa and Llama-2-7B except in DE-
CEPTIVE REVIEWS.

It is important to emphasize that although the util-
ity of hypotheses in assisting downstream classification
serves as an indicator for LLMs’ ability to generate
hypotheses, our goal is not to maximize the classifica-
tion performance. Rather, our primary interest lies in
the quality of the hypotheses. Thus, it is critical for the
hypotheses to be interpretable beyond the LLM used to
produce the hypotheses. We show that hypotheses gen-
erated by one LLM (e.g., GPT-3.5-turbo) can be used to
make accurate inference by another LLM (e.g., Mixtral).
On an out-of-distribution dataset for DECEPTIVE RE-
VIEWS, we can even outperform the oracle fine-tuned
RoBERTa. Such cross generalization provides strong
evidence that we are able to generate hypotheses of high
quality. Furthermore, through a qualitative analysis,
our generated hypotheses not only confirm theories
from existing literature but also provide new insights
about the task. For instance, one novel hypothesis
is that “reviews that mention personal experiences or

special occasions, such as birthdays, anniversaries, or
weddings, are more likely to be truthful”. We encourage
future research on deception detection to explore these
novel hypotheses.

To summarize, we make the following contributions:

• We propose a novel computational framework for
generating and evaluating hypotheses with LLMs.

• Our generated hypotheses enable interpretable
hypothesis-based classifiers that outperform in-
context learning and even supervised learning for
one synthetic and three real-world datasets. These
hypotheses are also robust across different LLMs
and out-of-distribution datasets.

• Our generated hypotheses corroborate existing
findings while also providing new insights for the
tasks.

2 Method
We begin with a description of the problem formulation.
Given a set S = {(x1, y1), . . . , (xn, yn)} where xi is
an example and yi is the corresponding label, the goal
is to learn a set of hypotheses H = {h1, ..., hm} that
describe theories of relationships between x and y. To
this end, we prompt an LLM to summarize demonstra-
tion examples into high-level hypotheses (§ 2.1). Then,
during inference, the LLM makes inference based on
the generated hypothesis (§ 2.2).

118



2.1 Hypothesis Generation

Our hypothesis generation algorithm (Algorithm 1) is in-
spired by the upper confidence bound (UCB) algorithm
(Auer, 2002). Given a set of initial examples Sinit ⊂ S ,
we first prompt an LLM to generate hypotheses for Sinit,
which serve as our initial hypothesis bankH. While ini-
tialized hypotheses may explain some portions of data,
they often fall short of encompassing the full scope of
the examples. We thus introduce an update stage which
serves a dual purpose: 1) it increases the percentage of
data explainable by the hypotheses and 2) it replaces
any hypotheses that are found to be inaccurate.

In the update stage, for a training example s, we select
the top k high-reward hypotheses from the hypothesis
bank H. The LLM is prompted to make a prediction
with each of the top k high-reward hypotheses on s.
Then we compute the accuracy of the inference and ac-
cordingly update the reward for each of the hypotheses.
If whyp hypotheses predict incorrectly for the example
s, then s is added to a wrong example poolW . Once
the wrong example pool reaches a max size of wmax,
the wrong examples inW are used to generate new hy-
potheses. The wrong example pool represents the gap
in knowledge that the current pool of hypotheses has
for the dataset. Thus, by generating new hypotheses,
the algorithm fills in these gaps. We updateH with the
newly generated hypotheses as per the rewards.
Reward. As mentioned above, each hypothesis has an
associated reward. In our algorithm, we use the reward
function in the UCB algorithm due to similarities be-
tween the multi-arm bandit problem and our problem
formulation. In particular, we consider each hypoth-
esis to be an arm and each training example to be a
“pull”. We note, however, that unlike the multi-arm
bandit problem, multiple hypotheses are tested for a sin-
gular train example. Moreover, there can be new arms
after hypotheses are updated, altering the setting from
the standard static arms scenario to a dynamic arms
scenario. Formally, the reward is defined as

ri =

∑
(xj ,yj)∈Si

I(yj = ŷj)

|Si|
+ α

√
log t

|Si|
, (1)

where Si is the set of examples that have been used to
evaluate the hypothesis hi, t is train time step, and α
is a hyperparameter that controls the exploration term.
The first term in the reward function denotes the accu-
racy of the hypothesis for all Si. The second term is
the exploration term, which is computed based on the
number of times the hypothesis has been selected and
the number of training examples visited so far. The ac-
curacy term urges the algorithm to use well-performing
hypotheses, whereas the exploration term encourages
the algorithm to explore hypotheses that have not been
selected many times. Thus, the reward function strikes
a balance between exploration and exploitation.

For more details on implementation of HypoGeniC,
refer to Appendix B.1.

Algorithm 1 HypoGeniC
Input: Training samples S, num_init, k, wmax, H
1: // Initialize hypothesis bank
2: H← generate_hypotheses({Si : i ≤ num_init})
3: W ← {}
4: for (xt, yt) ∈ S :
5: Htop ← {h : h ∈ H has top k reward}
6: for h ∈ Htop :
7: ŷh

t ← inference(h, t)
8: update_reward(h, yt, ŷh

t )
9: if |{wrong(ŷh

t ) : h ∈ H}| ≥ whyp :
10: // whyp is dynamically determined, see Appendix B.1
11: W ←W ∪{(xt, yt)}
12: if |W| = wmax :
13: N ← generate_hypotheses(W)
14: W ← {}
15: H ← {h : h ∈ H ∪N has top k reward}
16: returnH

2.2 Hypothesis-based Inference

For efficiency purposes, we use each hypothesis on its
own without accounting for their combinatorial effect
during training; however, we should leverage the set of
hypotheses as a whole during inference for at least two
reasons. Firstly, some hypotheses may only apply to a
subset of examples. Second, competing theories may
require head-to-head comparisons. Hence, we develop
multiple inference strategies to account for these differ-
ent styles of reasoning (see Appendix A for prompts
and Appendix B.2 for implementation details).

• Best-accuracy hypothesis. The hypothesis h with
the highest accuracy from the hypothesis bank is in-
cluded in the prompt to guide the model to perform
inference.

• Filter and weighted vote. One hypothesis may
not be enough to explain the data. Thus, this ap-
proach uses a combination of relevant hypothe-
ses to make predictions for a single example. We
first filter hypotheses by prompting an LLM to
judge which hypotheses are relevant to the example.
Next, an LLM is prompted to generate predictions
for each of the relevant hypotheses, and these pre-
dictions are aggregated with weighted vote, where
the weight is the training accuracy of the corre-
sponding hypothesis.

• Single-step adaptive inference. Similar to filter
and weighted vote, this approach leverages contex-
tual information to choose hypotheses. The differ-
ence, however, is that it selects the most applicable
hypothesis for each test example. Specifically, for
a given test example, the LLM is tasked with iden-
tifying the most applicable hypothesis from a set of
options. For each hypothesis, we provide instances
from the training set where the hypothesis was ac-
curate. Then, the LLM selects the most relevant
hypothesis by comparing the test example to these
training examples and evaluating their similarity.
Thereafter, we apply the hypothesis to the test ex-
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ample to perform inference. Please note that this
is all done in one step with a long prompt.

• Two-step adaptive inference. We divide the pre-
vious inference strategy into two steps:
1. The LLM determines the most relevant set of

examples by comparing the test example with
the corresponding examples of the hypotheses.

2. Then, the corresponding hypothesis is provided
to the LLM, which it uses to perform inference
on the test example in a second prompt.

3 Experiment Setup
We introduce the experiment setup to evaluate Hy-
poGeniC.

3.1 Tasks and Datasets
The choice of appropriate tasks is critical for evaluating
the ability of LLMs to generate hypothesis. The focus of
our work is on generating hypotheses based on observed
data. A prerequisite is that potential hypotheses do exist.
In the context of classification, it implies that the classi-
fication performance is non-trivial. In addition, we need
to ensure that the hypotheses describing the data are
likely not a priori known by LLMs, which rules out stan-
dard tasks such as sentiment analysis. Therefore, we use
four datasets that satisfy these requirements: a synthetic
task with a known true hypothesis and three real-world
datasets that exhibit complex underlying patterns and
constitute widely studied social science problems.

SHOE SALES is a synthetic task we created to inves-
tigate the scenario where there is only one single valid
hypothesis. The task is to predict the color of the shoe
that the customer will buy based on their appearance.
The input provides appearance features, namely, age,
height, gender, color of the hat, color of the shirt, color
of the bag, and size of the bag. We construct this dataset
such that the color of the shoe must match the color of
the shirt. Since there are six colors in total, this becomes
a 6-class classification problem.

Deceptive review detection is an instance of decep-
tion detection, a widely studied phenomenon in psy-
chology and other social sciences (Granhag and Vrij,
2005). This particular task (DECEPTIVE REVIEWS) re-
quires distinguishing genuine reviews from fictitious
ones (Ott et al., 2011), where human performance is
about chance (Lai and Tan, 2019). The dataset includes
800 genuine reviews and 800 fictitious reviews for 20
hotels in Chicago.

Predicting popularity is a notoriously challenging
task in social sciences because it is known to be affected
by seemingly random factors (Salganik et al., 2006). We
use two datasets in this work: HEADLINE POPULARITY
and TWEET POPULARITY. HEADLINE POPULARITY
is derived from a dataset in the Upworthy Research
Archive (Matias et al., 2021). The original dataset was
collected through A/B testing, where each user was
shown pairs of a headline and image for multiple pack-
ages (articles). Each user was exposed to only one of

these pairs per package, and the clicks were recorded
for each pair per package.2 This process resulted in a
total of 150,816 headlines across 22,666 packages. We
construct a binary classification dataset by choosing the
headlines that received the most clicks and least clicks
for each package. We remove all sets of duplicate head-
lines, which results in our version of the HEADLINE
POPULARITY dataset. The task for this dataset is to de-
duce which headline had more clicks in a pair. TWEET
POPULARITY uses a dataset of 13,174 tweet pairs (Tan
et al., 2014), which are matched by the topic and the
author. Similar to HEADLINE POPULARITY, the task is
to predict which one received more retweets.

3.2 Baselines, Oracles, and Evaluation Metrics
We use three different LLMs in our experiments (Mix-
tral (Mistral, 2023), GPT-3.5-turbo (OpenAI, 2023a),
and Claude-2.1 (Anthropic, 2023)). We compare our
approach with the following methods.

1. Zero-shot and few-shot prompting. We provide
LLMs with task-specific instructions (zero-shot),
optionally accompanied by three demonstration
examples (few-shot).

2. No updates. To assess the value of the update stage
in our algorithm, we evaluate the performance of
the initialized hypotheses. In particular, we pick
the best-performing hypothesis on the training set
and use it for inference on the test set.

3. Supervised Learning. We fine-tune RoBERTa
(Liu et al., 2019) and Llama-2-7B (Touvron et al.,
2023) on each of the datasets to serve as a non-
interpretable oracle. We include results for training
on 200 examples and 1000 examples. Since fine-
tuning update model weights, we expect RoBERTa
and Llama-2-7B to set the upper bound on in-
distribution datasets.

We randomly sample 200 training examples and 300
test examples for each dataset. Since all our datasets
are classification tasks with ground truth labels, we use
accuracy as our evaluation metric. To understand the
effect of the number of training examples, we evaluate
the performance of all methods at 10, 25, 50, 100, and
200 training examples. We also experiment with two
different hypothesis bank sizes: 3 and 20 hypotheses to
evaluate the impact of utilizing a larger number of hy-
potheses. The detailed hyperparameters of our approach
can be found in Appendix B.3.

4 Results
To demonstrate the effectiveness of our hypothesis gen-
eration approach, we present results via three evaluation
methods. First, we show that in the standard supervised

2The Upworthy Research Archive only provides the image
IDs instead of the graphics. We thus only use the headlines
for our dataset.
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learning setup, our generated hypotheses enable more
accurate predictions than baselines and even oracles
when using a small set of examples. Second, we evalu-
ate the generated hypotheses by checking whether they
can generalize across different inference LLMs and to
out-of-distribution datasets. We find surprisingly consis-
tent performance even when using a different LLM to
make inference from the generated hypotheses. So, we
conduct a qualitative analysis to show that the generated
hypotheses not only corroborate existing theories but
also provide novel insights about the tasks at hand.

4.1 Performance on Heldout Test Sets

As discussed in the introduction, a side product of our
approach is an interpretable hypothesis-based classifier.
We compare its performance with standard supervised
learning with the fine-tuned models and few-shot in-
context learning (Table 1).

Our generated hypotheses improve inference over
standard zero-shot and few-shot inference. Across
all LLMs, HypoGeniC outperforms the zero-shot learn-
ing by an average of 60% on SHOE SALES, 22.7% on
DECEPTIVE REVIEWS, 5.1% on HEADLINE POPULAR-
ITY, and 30.6% on TWEET POPULARITY. Similarly, we
find that HypoGeniC shows an increase from few-shot
learning by 31.7% on SHOE SALES, 13.9% on DECEP-
TIVE REVIEWS, 3.3% on HEADLINE POPULARITY, and
24.9% on TWEET POPULARITY. Note that these results
are inflated on TWEET POPULARITY as safety mode
is triggered for Mixtral and Claude-2.1 for zero-shot
and few-shot learning respectively. After computing
the 95% confidence intervals (with a binomial distribu-
tion assumption) for our results, the following results
are significant for the real life datasets: HypoGeniC
for DECEPTIVE REVIEWS and TWEET POPULARITY
with Claude-2.1 and Mixtral, when comparing to their
respective few shot baselines. If we relax the confidence
interval to 90%, the result for HEADLINE POPULARITY
with Mixtral is also statistically significant. These re-
sults demonstrate that hypothesis-based inference can
increase the performance of LLMs significantly. Fur-
ther results can be found in Table 5. One exception is
that our method performs slightly worse (by 1%) than
the few-shot baseline in the TWEET POPULARITY with
GPT-3.5-turbo. One possible reason is that the few-shot
demonstrations are effective at eliciting the pretraining
knowledge in GPT-3.5-turbo, possibly due to a large
amount of tweets in pretraining data. More detailed
results are in Appendix C.

We also evaluate generated hypotheses with oracle in-
ference, where the model retrospectively picks the best
hypothesis for each prediction from the bank. With ora-
cle inference, HypoGeniC achieves on average 88.6%
on DECEPTIVE REVIEWS, 84.1% on HEADLINE POPU-
LARITY, and 88% on TWEET POPULARITY across all
LLMs, which are superior to results in Table 1. This
result further suggests that hypotheses generated by Hy-
poGeniC are of high quality and can lead to accurate

predictions when the correct hypothesis is selected.

HypoGeniC matches or even exceeds the fine-tuned
models with the same number of training exam-
ples on most datasets. Both HypoGeniC and the
fine-tuned models yield 100% on the syntheic dataset.
Moreover, HypoGeniC is 12.8% and 11.2% better than
RoBERTa, and 12.1% and 11.6% better than Llama-2-
7B, on HEADLINE POPULARITY and TWEET POPULAR-
ITY respectively with 200 training examples. Since the
fine-tuned models learns by updating model weights to
minimize the cross-entropy loss, it tends to benefit from
more training examples, so we increase training exam-
ples to 1000 for the fine-tuned models. Despite the ac-
curacy boost from more training examples, we find that
HypoGeniC’s best result still outperforms RoBERTa by
3.7% and 0.7%, and Llama-2-7B by 3.7% and 11.4%,
on HEADLINE POPULARITY and TWEET POPULARITY,
respectively. One exception, however, is the DECEP-
TIVE REVIEWS dataset. We suspect that as word-level
features are very useful in this dataset (Ott et al., 2011),
they could be tougher for LLMs to extract but easier for
fine-tuned models to grasp.

Updating the hypothesis bank leads to hypotheses
of higher quality. Comparing HypoGeniC with the
“no updates” results, we find that updating hypotheses
generally leads to better hypotheses, suggesting that our
algorithm is effective at improving hypothesis quality.
The improvement is on average 0.7% on SHOE SALES,
5.8% on DECEPTIVE REVIEWS, 8.1% on HEADLINE
POPULARITY, and 7% on TWEET POPULARITY. An-
other advantage of HypoGeniC over “no updates” is
that sometimes the training examples exceed the con-
text window size of LLMs, which can lead to degraded
performance (Figures 4 and 5).

Effect of inference strategy. Figure 2 shows Hy-
poGeniC results with different inference strategies on
DECEPTIVE REVIEWS. Single-step adaptive inference
is the most effective. Generally, we find hypotheses to
be one-sided, focusing on either characteristics of truth-
ful or deceptive reviews. We thus need to consider more
than one hypothesis to make a correct prediction, so
best-accuracy hypothesis or two-step adaptive inference
are not ideal. On the other datasets, we find that the
effect of inference strategy is much smaller (Figure 3).
Best-accuracy hypothesis is sufficient for SHOE SALES
and HEADLINE POPULARITY, and filter and weighted
vote works best for TWEET POPULARITY. Whichever
inference strategy we use, the trend of HypoGeniC
against few-shot learning and the fine-tuned models
remains largely the same.

Generally, having more training examples and a
larger hypothesis pool improves performance. We
show performance for different methods as number of
training examples increase in Figures 4–6. We find Hy-
poGeniC accuracy steadily increases as training size
increases on SHOE SALES, suggesting that an LLM is
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SHOE DECEPTIVE HEADLINE TWEET
Models Methods SALES REVIEWS POPULARITY POPULARITY

RoBERTa (Oracle) Train 200 100.0 84.0 49.0 50.7
Train 1000 100.0 91.0 60.0 62.0

Llama-2-7B (Oracle) Train 200 100.0 88.7 49.7 50.3
Train 1000 100.0 92.3 60.0 51.3

Claude-2.1 Zero shot 36.0 31.0 59.0 50.3
Few shot 75.0 51.0 60.0 0.3*
HypoGeniC (no updates) 100.0 70.3 57.3 59.0
HypoGeniC 100.0 75.3 61.3 62.0

Mixtral Zero shot 43.0 55.0 55.0 2.7*
Few shot 79.0 56.3 55.3 48.7
HypoGeniC (no updates) 96.0 60.3 59.7 60.7
HypoGeniC 98.0 68.0 60.3 62.7

GPT-3.5-turbo Zero shot 39.0 50.0 56.0 41.0
Few shot 49.0 55.0 60.0 62.0
HypoGeniC (no updates) 100.0 56.0 44.0 45.0
HypoGeniC 100.0 60.7 63.7 61.0

Table 1: Prediction accuracies with 200 examples. We report the best numbers across all hyperparameter configu-
rations, number of training examples, and inference strategies for HypoGeniC (we discuss their effect in details
in § 4.1). The sensitive nature of the TWEET POPULARITY dataset may cause models to have their safety mode
triggered. These results are marked by * in the table.

A
c
c
u

ra
c
y

Claude-2.1 GPT-3.5-Turbo Mixtral

Default
Filter and Weighted Vote
Single-step Adaptive
Two-step Adaptive

Inference Method

Figure 2: HypoGeniC results with different inference
strategies on DECEPTIVE REVIEWS. Single-step adap-
tive hypothesis-based inference is generally the most
effective on this dataset.

more likely to generate the best hypothesis given more
examples. For the real-world datasets, however, the per-
formance sometimes peaks at training size at 25 or 100
before reaching to 200. We suspect that the evaluation
of the hypothesis bank would be less stable for the real-
world datasets, since more than one correct hypotheses
are needed for the task. We also find that using a hy-
pothesis pool of size 20 leads to better performance than
using a pool of size 3.

Although this classification experiment is conve-
nient to run and demonstrates that our generated
hypotheses are reasonable, our main goal is to gener-
ate high-quality hypotheses rather than maximizing
the performance of this particular way of using the
hypotheses. The next two experiments are essential
in understanding the quality of hypotheses through
generalization and manual analysis.

4.2 Generalization of the Generated Hypotheses

Our primary interest lies in the quality of the hypotheses.
A good hypothesis should enable accurate inference by
any AI model or even human and also generalize to
unseen out-of-distribution dataset. In this subsection,
we mix and match different LLMs for generation and
inference. We also evaluate the hypotheses in deceptive
review prediction on a new out-of-distribution (OOD)
dataset (Li et al., 2013).

We find that the hypotheses generated by Hy-
poGeniC generalize across models (Table 2). Gen-
erally, we find Claude-2.1 and Mixtral to be better at
inference. Thus, substituting the inference model with
them lead to better performance for hypothesis gener-
ated with GPT-3.5-turbo. Substituting Claude-2.1 and
Mixtral as each other’s inference model lead to small
changes in performance. On SHOE SALES, the perfor-
mance remains high for any inference model used.

Performance even increases for DECEPTIVE RE-
VIEWS and HEADLINE POPULARITY when using
Claude-2.1 as the inference model. For the cases where
performance drops from Claude-2.1 to Mixtral, the de-
crease is marginal: 2.3% on DECEPTIVE REVIEWS and
2.7% on TWEET POPULARITY.

These results suggest that the hypotheses gener-
ated by HypoGeniC are generalizable across different
LLMs, which somewhat contradicts the claim in Qiu
et al. (2024) that LLMs cannot reliably interpret the
hypotheses. We suspect that the reason is that our tasks
only rely on natural language, while their tasks rely on
notions of worlds and are fed into symbolic interpreters.
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SHOE DECEPTIVE HEADLINE TWEET
Generation Model Inference Methods SALES REVIEWS POPULARITY POPULARITY

Claude-2.1 Claude-2.1 100.0 67.3 57.7 62.0
Mixtral 94.0 65.0 57.7 59.3
GPT-3.5-turbo 100.0 60.7 56.3 57.7

Mixtral Claude-2.1 99.0 69.7 59.0 58.7
Mixtral 98.0 61.3 57.7 59.3
GPT-3.5-turbo 90.0 56.7 55.3 53.0

GPT-3.5-turbo Claude-2.1 100.0 75.3 60.3 59.0
Mixtral 98.0 62.0 60.0 62.3
GPT-3.5-turbo 100.0 57.3 58.7 56.3

Table 2: Performance of cross-model generation and inference with train size = 200 using best-accuracy hypothesis
inference and the best hypothesis bank size between 3 and 20.

Models OOD

RoBERTa (Oracle) 73.0 (↓11.0)
Llama-2-7B (Oracle) 78.7 (↓10.0)

Claude-2.1 Few shot 41.7 (↓9.3)
Claude-2.1 HypoGeniC 74.7 (↑4.7)

Mixtral Few shot 49.0 (↓7.3)
Mixtral HypoGeniC 64.7 (↑1.7)

GPT-3.5-turbo Few shot 52.0 (↓3.0)
GPT-3.5-turbo HypoGeniC 60.7 (↑3.4)

Table 3: Performance on OOD deceptive reviews.

Our generated hypotheses generalize to an out-of-
distribution dataset. Table 3 presents an overview for
the OOD deceptive review dataset. This dataset differs
from DECEPTIVE REVIEWS by including reviews from
four cities sourced from different websites (Li et al.,
2013). We find that HypoGeniC outperforms few-shot
learning by an average of 19.1%. Despite the distribu-
tion shift, HypoGeniC surprisingly increases accuracy
from DECEPTIVE REVIEWS by an average of 3.3%,
suggesting our hypotheses generalize well to this OOD
dataset. Claude-2.1 remains the best performing model.
In comparison, the performance of RoBERTa drops by
11%, and Llama-2-7B drops by 10%. As a result, Hy-
poGeniC with Claude-2.1 outperforms RoBERTa by
1.7%, demonstrating the robustness of hypothesis-based
inference. Refer to Appendix C.3 for more details.

4.3 Qualitative Analysis

For the synthetic dataset, all models are able to find
the true underlying hypothesis for SHOE SALES: “cus-
tomers tend to buy shoes that match the color of their
shirt.” For the real-world datasets, we search for studies
on these datasets on Google Scholar and compare our
hypotheses with findings from the literature. We con-
firm the validity of some of our hypotheses and discover
new insights about the tasks that previous studies did not
touch upon. We show a few examples in Table 4, and
the full list of hypotheses can be found in Appendix D.

Our generated hypotheses align with useful features
in existing literature. For DECEPTIVE REVIEWS, we
find that deceptive reviews are more likely to be emo-
tional, use superlatives, or contain information that
could not have been directly experienced. Similar find-
ings are also found by previous studies on DECEPTIVE
REVIEWS (Lai et al., 2020; Anderson and Simester,
2014; Ott et al., 2011; Li et al., 2014). For TWEET POP-
ULARITY, we discover that tweets that are concise, with
specific or relevant hashtags, or with emotional tones
are more likely to be retweeted more, aligning with
prior studies (Tan et al., 2014; Gligorić et al., 2019).
For HEADLINE POPULARITY, we find that revealing
something new or using vivid language and imagery can
drive engagement from readers to click on headlines.
Previous studies also find these rules apply to online
news headlines (Banerjee and Urminsky, 2021; Sadoski
et al., 2000).

We also discover new insights with our generated
hypotheses. For the DECEPTIVE REVIEWS dataset,
truthful reviews could mention the reviewer’s purpose
for staying at the hotel (e.g., business trip, vacation),
but deceptive ones tend not to have this information.
For HEADLINE POPULARITY, we find that headlines
that frame the content in a personal or relatable way
are clicked more. For TWEET POPULARITY, tweets
that mention influential individuals or organizations are
more likely to be retweeted.

Intriguingly, one of our hypotheses contradicts a fea-
ture engineering result. Ott et al. (2011) find that
the token “future” is associated with deceptive reviews,
while one of our hypotheses says that mentions of “past
experiences or future travel plans” are indicative of truth-
fulness. This discrepancy is interesting, because the
context for the token “future” is unclear. It could be
in the context of future plans but could also be as a
complaint about “never going to stay at the hotel in the
future.” Feature engineering is limited by contextual
ambiguity, whereas our generated hypotheses and their
interpretation by LLMs overcome such limitations.
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Dataset Finding Supported/Novel

DECEPTIVE REVIEWS Deceptive reviews contain more emotional terms. Li et al. (2014)

Truthful reviews would mention weddings or special oc-
casions.

HEADLINE POPULARITY Using vivid language and imagery helps. Banerjee and Urminsky (2021)

Headlines that frame the content in a personal or relatable
way are clicked more.

TWEET POPULARITY Tweets with emotional tones are retweeted more. Tan et al. (2014)

Mentioning influential individuals or organizations leads
to more retweets.

Table 4: Selected examples of generated hypotheses (on the real-world datasets) and whether they support existing
findings or are novel.

Our automatic evaluation of hypothesis quality also
reflects negative findings. Given mixed evidence
from previous literature on the effect of “reading ease”
on headline clicks, Banerjee and Urminsky (2021) finds
that reading ease negatively impacts click-through rates
in HEADLINE POPULARITY through careful feature en-
gineering. Consistent with this result, we found that
the hypotheses that claim “straightforward” and “clear”
writing to be indicative of higher click-through rates
have relatively lower accuracies during training.

5 Additional Related Work

Concept/pattern discovery. Our work is connected
to many recent studies on using LLMs to propose “hy-
potheses”, notably, Qiu et al. (2024) and Zhong et al.
(2023). Qiu et al. (2024) is motivated by testing the abil-
ity of LLMs to perform human-like induction reasoning,
and Zhong et al. (2023) aims to support open-ended
exploration. Similar to Qiu et al. (2024), Tenenbaum
et al. (2011) is motivated by human inductive reasoning
and examines concept induction in synthetic settings.
Ellis et al. (2020) further learns to program concepts.
Yang et al. (2024a) performs LLM-based inductive rea-
soning with a dataset that requires existing fact-rule
pairs, which is not applicable in our real-world prob-
lems. Romera-Paredes et al. (2024) generates programs
that lead to mathematical discovery. Similar to Zhong
et al. (2023), Pham et al. (2024) generates and refine
a list of topics to achieve interpretable topic modeling
for open-ended exploration. Honovich et al. (2022) ex-
plores the deduction of task description from examples.
Additionally, Qi et al. (2023), Wang et al. (2024), and
Baek et al. (2024) use LLMs to generate hypotheses
from previous literature. Yang et al. (2024b) tries to
generate hypotheses from raw web corpus, but their
method is not automated or scalable as it requires hu-
man annotated hypotheses from existing literature. Our
work, in contrast, focuses on hypothesis generation be-
tween the input and the label for real-world challenging
tasks and uses a UCB-style reward to propose novel
algorithms.

Reasoning with LLMs. Although it is not our pri-
mary goal, our results show that hypothesis-based clas-
sifiers can outperform few-shot prompting. As hypothe-
ses may be viewed as a form of reasoning, it is related
to reasoning with LLMs (Wei et al., 2022; Wang et al.,
2023, i.a.). In particular, our work differs from chain-
of-thought reasoning because no predefined reasoning
structure is available. Moreover, an important distinc-
tion between reasoning and hypothesis generation is
that the former leverages established reasoning, while
the latter requires both proposition and verification of
the hypotheses, to discover unknown knowledge.

LLMs for (social) sciences. Increasing attention has
been brought to the use of LLMs in social science re-
search (Ziems et al., 2024; Kim and Lee, 2023, i.a.).
Our experiments demonstrate the potential of LLMs
in generating hypotheses for social science research to
discover unknown knowledge in the data. Furthermore,
our approach can be extended to natural sciences for
general scientific discovery.

6 Conclusion & Further Discussion

In this work, we propose HypoGeniC, a novel data-
driven and automated method that leverages LLMs to
generate hypotheses with the goal of discovering un-
known knowledge. With HypoGeniC, we are not only
are able to generate human-interpretable hypotheses
but also achieve better predictive performance against
competitive baselines and even oracles. Furthermore,
our method can generalize well with different models
and datasets, including open models. Notably, with our
generated hypotheses, we uncover new insights in real-
world tasks that are widely studied in social sciences.

The key to success in HypoGeniC is not that LLMs
remembers the correct hypotheses, but lies in their abil-
ity to “hallucinate” and combine potentially relevant
concepts. The exploration-exploitation process then
identifies the valuable hypotheses. HypoGeniC can be
directly applied to complex social science tasks. We
encourage future work to explore hypothesis genera-
tion that requires additional modalities and/or leverages
existing literature along with past observations.
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7 Limitations

We address common concerns using a Q&A format.
Q: Why only experiment with social science tasks?
A: Math and physics problems and hypotheses are

hard to represent in natural language and usually require
symbolic parsers (Trinh et al., 2024). We leverage LLMs
to perform tasks that it is naturally adept at, which lead
us to social science tasks. We find that HypoGeniC
demonstrates strong results for the selected tasks, in-
dicating new possibilities in using LLMs for scientific
discovery. We leave extending our framework to natural
science tasks as future work.

Q: Why is HypoGeniC effective, given that the ac-
curacy improvement is not significant in some settings?

A: Even if there is no significant improvement in
accuracy, the benefits of HypoGeniC are found in the
quality of hypotheses. We find that the generated hy-
potheses discover new patterns that were previously
unseen, as discussed in § 4.3. Additionally, it is worth
noting that LLMs are imperfect at reasoning. Thus,
hypothesis-based inference with LLMs may not accu-
rately reflect the quality of the hypotheses.

Q: Since you worked on some old datasets, what
if the LLMs have pre-trained knowledge about these
tasks?

A: In Table 1, the zero/few-shot learning results sug-
gest that the models cannot solve the tasks by mem-
orizing the data. Additionally in § 4.3, we show that
HypoGeniC reveal new hypotheses, based on the liter-
ature space that we can manually search. Even if the
models have been pre-trained on the datasets, these hy-
potheses were not reported in previous literature. This
suggests that even experienced researchers still struggle
in finding the hypotheses that HypoGeniC generate.

Q: What hyperparameters have you tried?
A: We aim to provide a robust framework for hypoth-

esis generation, as opposed to focusing on the optimiza-
tion of results. Thus, we did not perform an extensive
hyperparameter search with the generation portion of
HypoGeniC. We did not adjust the value of k, which
determinesHtop in Algorithm 1 to maintain efficiency.
Additionally, we only considered the effect of using
a hypothesis bank size of 3 and 20 to only test using
an extremely small hypothesis bank size and a large
one. The ideal hypothesis bank size may require further
investigation. Finally, we only tested the size of our
wrong example bank wmax as 10 to strike a balance
between context window sizes and generation of good
quality hypotheses. We believe that a more thorough
hyperparameter search could improve the performance
of our methodology.

Q: How costly is your approach?
A: HypoGeniC has high latency, specifically when

using inference methods that require multiple prompts.
For example, the filter and weighted vote inference
policy requires iterating through the top hypotheses to
determine relevance and then performing inference if
it is relevant. For single-step adaptive inference and

best accuracy hypothesis, however, HypoGeniC is effi-
cient. Given that we request reasoning for all inference
prompts, the procedure can be time-consuming and re-
quire financial costs (e.g., GPT-3.5-turbo takes $2.05
on average over 76 experiments with an average of 1.5
hours per experiment). This concern is alleviated when
using open models. However, all these processes are
still relatively cheap compared to human efforts.

Q: What are some potential risks of hypothesis gen-
eration?

A: One potential risk of hypothesis generation is that
there is little guard regarding steorotypes and biases
being confirmed if given data that may seem to enforce
them. As a result, it can be potentially harmful to use
HypoGeniC in a real-world setting without proper over-
sight. Additionally, if the data reveals personal infor-
mation regarding people, there is no guarantee that the
hypotheses generated will not reveal this information.
We highly recommend human-AI collaboration in using
HypoGeniC to ensure that the generated hypotheses are
ethical and unbiased.
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A Prompts

We follow the general prompt engineering guide from
Claude (Anthropic, 2023) to craft the prompts. Specif-
ically for all the prompts we use for LLMs, we split
them into instruction and user prompts. In the instruc-
tion prompt, we first set a tone and context, followed by
an explicit task description, and then specify the answer
format. The user prompt then includes useful informa-
tion such as past examples and learned hypothesis. By
the end of the user prompt, we ask the LLM to make
a prediction. At generation time, we input the instruc-
tion prompt to LLMs as system prompt, wrapped by the
corresponding system prompt tokens for each model.
Below are some example templates for the prompts as-
sociated with each task.

A.1 Shoe Sales

Instruction Prompt
You’re a helpful assistant. Your task is given as
follows:
Given a set of observations, we want to generate
hypotheses that are useful for predicting the
color of the shoes given the appearance of the
person.
Please be concise and keep the hypotheses to be
one-sentence long.
Please generate them in the format of
{1. [hypothesis].
2. [hypothesis].
...
<num_hypotheses>. [hypothesis].}
Only propose <num_hypotheses> possible hypotheses
in total.
No need to explain the hypotheses.

User Prompt
We made some observations:
··· more examples here ···
Based on the above observations, generate
<num_hypotheses> hypotheses.
Please be concise and keep the hypotheses to be
one-sentence long.
Please generate them in the format of
{1. [hypothesis].
2. [hypothesis].
...
<num_hypotheses>. [hypothesis].}
Only propose <num_hypotheses> possible hypotheses
in total.

Example 1: Hypothesis Generation.

Instruction Prompt
You are a shoe salesman and want to recommend
shoes to customers. There are white, red, orange,
green, blue, and black shoes.
From past experiences, you learned some patterns.
Now, at each time, you should apply the learned
pattern, given below, to a new customer and
recommend a shoe color.
Give an answer for the shoe color recommendation.
The answer should be one color word. It has to
be one of white, red, orange, green, blue, and
black.

User Prompt
Our learned pattern: <hypothesis_high_reward>
New customer: <appearance> is buying a pair of
shoes, the shoes should be which color?
Answer:

Example 2: Hypothesis-based Inference.

Instruction Prompt

You are a shoe salesman and want to recommend
shoes to customers. There are white, red, orange,
green, blue, and black shoes.

Give your answer for the shoe color
recommendation. The answer should be one color
word. It has to be one of white, red, orange,
green, blue, and black. If you do not have enough
information to make a recommendation, you should
give the answer "unknown".

Give your final answer in the format of "Final
answer: [answer]."

User Prompt
Here are some examples of customers with certain
features buying certain products:
··· more examples here ···
New customer: <appearance> is buying a pair of
shoes, the shoes should be which color?
Answer:

Example 3: Zero/Few-shot Inference.

Instruction Prompt
You are a shoe salesman and want to recommend
shoes to customers. There are white, red, orange,
green, blue, and black shoes.

From past experiences, you learned some patterns.
For each pattern, you will also see a couple of
examples that worked for each pattern.
Choose a pattern. To do this, look at the
examples of each pattern, and see which of the
examples the current customer is closest to.
Choose the pattern corresponding to that example.
Give an answer for the shoe color recommendation.
The answer should be one word. It has to be one
of white, red, orange, green, blue, and black.
Give your final answer in the following format:
Reasoning for choosing pattern: reason,
Chosen pattern: pattern,
Reasoning for choice of prediction: reason,
Final Answer: answer

User Prompt
Here are some previously generated patterns with
some example where it predicted correcly what
color of shoe the customer bought.
<adaptive_info_prompt>
New customer: <appearance> is buying a pair of
shoes, the shoes should be which color?
Answer:

Example 4: Example-based Hypothesis Selection and
Inference. <adaptive_info_prompt> consists of several
hypotheses and the corresponding examples they got
correct during generation time.

A.2 Deceptive Reviews

Instruction Prompt
You’re a professional hotel review analyst.
Given a set of hotel reviews, we want to generate
hypotheses that are useful for predicting

whether a review is truthful or deceptive. In
other words, we want to know whether the review
is written by a someone who actually lived in the
hotel.

Using the given examples, please propose
<num_hypotheses> possible hypothesis pairs.
These hypotheses should identify specific
patterns that occur across the provided reviews.
Each hypothesis should contain a pair of the
following:
1. A hypothesis about what makes reviews more
likely to be truthful
2. The opposite hypothesis about what makes
reviews more likely to be deceptive
Generate them in the format of 1. [hypothesis], 2.
[hypothesis], ... <num_hypotheses>. [hypothesis].

The hypotheses should analyze what kind of
reviews are likely to be truthful or deceptive.

User Prompt
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We have seen some hotel reviews:
··· more examples here ···
Please generate hypotheses that are useful for
predicting whether a review is truthful or
deceptive.
Propose <num_hypotheses> possible hypotheses.
Generate them in the format of 1. [hypothesis], 2.
[hypothesis], ... <num_hypotheses>. [hypothesis].

Proposed hypotheses:

Example 5: Hypothesis Generation.

Instruction Prompt
You are a professional deceptive detection agent
and your job is to determine whether a hotel
review is truthful or deceptive.
In other words, we want to know whether the
review is written by someone who had real
experiences with the hotel.
From past experiences, you learned a pattern.
You need to determine whether each of the
patterns holds for the current hotel review, and
also predict whether the current hotel review is
truthful or deceptive.
Give an answer. The answer should be one word (
truthful or deceptive).
Give your final answer in the format of {Final
answer: answer}

User Prompt
Our learned pattern: <hypothesis_high_reward>
A hotel review is the following: <review>
Given the pattern you learned above, give an
answer of whether the hotel review above is
deceptive or truthful.
Think step by step.
First step: Think about which pattern can be
applied to the hotel review.
Second step: Based on the pattern, is this hotel
review deceptive or truthful?

Example 6: Hypothesis-based Inference.

Instruction Prompt
You are a deceptive detection agent and want to
determine whether a hotel review is truthful or
deceptive.
In other words, we want to know whether the
review is written by a someone who actually lived
in the hotel.
You need to determine whether this pattern holds
for the current hotel review, and also predict
whether the current hotel review is truthful or
deceptive.
Give an answer. The answer should be one word (
truthful or deceptive).

User Prompt
We have seen some hotel reviews:
··· more examples here ···
A hotel review is the following: <review>
Is this hotel review truthful or deceptive?
Answer:

Example 7: Zero/Few-shot Inference.

Instruction Prompt
You are a professional hotel review analyst and
you are able to determine whether a hotel review
is deceptive or truthful.
In other words, your job is to analyze if a hotel
review review is written by someone who had
genuine experiences with the hotel.
From past experiences, you learned some patterns.
For each pattern, you will also see a couple of
examples that worked for each pattern.
First step: take a careful look at the examples
associated with each pattern, and see which set
of examples the current hotel review is most
similar with. Choose and repeat the pattern
corresponding to that examples set.
Next, apply the pattern on the new sample to
determine whether the new hotel review is
deceptive or truthful.

Finally, give an answer. The answer should be one
word (deceptive or truthful).

Please give your final answer in the following
format:
Reasoning for choosing pattern: reason,
Chosen pattern: pattern,
Reasoning for choice of prediction: reason,
Final Answer: answer

User Prompt
Here are some previously generated patterns with
some example where it predicted correctly if a
hotel review is deceptive or truthful.
<adaptive_info_prompt>
A hotel review is the following: <review>
Is this hotel review truthful or deceptive?
Think step-by-step.
Step 1: Look at the new hotel review and compare
it with the set of examples associated with each
provided pattern.
Step 2: Find the set of examples that is the most
similar to the new hotel review, pick and repeat
the pattern associated with that set of examples.

Step 3: Apply the pattern you picked to the new
hotel review and predict whether the new hotel
review is deceptive or truthful.
Step 4: Give your final answer.
Answer:

Example 8: Example-based Hypothesis Selection and
Inference. <adaptive_info_prompt> consists of several
hypotheses and the corresponding examples they got
correct during generation time.

A.3 Headlines With More Clicks

Instruction Prompt
You are a professional writer for an online
newspaper company.
Given a pair of headlines created for the same
article, you are asked to determine which will
get more clicks. It is likely that the pair of
headlines shares similarities, so please focus on
their differences.

What difference in two headlines leads to more
clicks on one than the other?
You will be given a set of observations of the
format:
Headline 1: [headline]
Headline 2: [headline]
Observation: [observation].
Based on the observations, please generate
hypotheses that are useful for explaining why one
headline out of the pair gets more clicked than

the other.
These hypotheses should identify patterns,
phrases, wordings etc. that occur across the
provided examples. They should also be
generalizable to new instances.
Please propose <num_hypotheses> possible
hypotheses and generate them in the format of 1.
[hypothesis], 2. [hypothesis], ...
<num_hypotheses>. [hypothesis].

User Prompt
Here are the observations:
··· more examples here ···
Please generate hypotheses that can help
determine which headlines have more clicks.
Please propose <num_hypotheses> possible
hypotheses.
Generate them in the format of 1. [hypothesis], 2.
[hypothesis], ... <num_hypotheses>. [hypothesis].

Proposed hypotheses:

Example 9: Hypothesis Generation.

Instruction Prompt
You are a professional writer for an online
newspaper company.
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Given a pair of headlines created for the same
article, you are asked to determine which will
get more clicks. It is likely that the pair of
headlines shares similarities, so please focus on
their differences.
From past experiences, you learned some patterns.
Now, at each time, you should apply the learned
pattern to a new pair of headlines that are
created for a new article and determine which
headline gets clicked more.
The answer for the higher clicks should be in the
form "Headline _" where _ is either 1 or 2.
Please give your final answer in the format of {
Final Answer: Headline _.}

User Prompt
Learned pattern: <hypothesis_high_reward>
Given the pattern you learned above, predict
which of the following headlines will get more
clicks:
Headline 1: <headline_1>
Headline 2: <headline_2>
Think step by step.
Step 1: Think about whether the pattern can be
applied to the headlines.
Step 2: Analyze the difference between "Headline
1" and "Headline 2".
Step 3: Based on the pattern, which headline is
likely to get more clicks?

Example 10: Hypothesis-based Inference.

Instruction Prompt
YYou are a writer for an online newspaper company.
So you are excellent at determining which
headlines are more likely to cause users to click
on the article.
You will be given two headlines, and determine
which headline was clicked more often.
You are only to give your answer.
The answer for the higher clicks should be of the
form "Headline _" where _ is either 1 or 2.
Give your final answer in the following format:
"Answer: Headline _"

User Prompt
Here are some previous examples to help you:
··· more examples here ···
Which of the following headlines has more clicks:
Headline 1: <headline_1>
Headline 2: <headline_2>

Example 11: Zero/Few-shot Inference.

Instruction Prompt
You are a professional writer for an online
newspaper company.
You are excellent at determining which headlines
are more likely to be clicked by users.
From past experiences, you learned some patterns.
For each pattern, you will also see a couple of
examples that worked for each pattern.
Please choose a pattern. To do this, look at the
examples associated with each pattern, and find
which set of the examples are closest to the
given pair of headlines.
Please choose the pattern corresponding to that
set of examples.
The answer for the higher clicks should be of the
form "Headline _" where _ is either 1 or 2.
Please give your final answer in the following
format:
Reasoning for choosing pattern: reason,
Chosen pattern: pattern,
Reasoning for choice of prediction: reason,
Final Answer: answer

User Prompt
Here are some previously generated patterns with
some examples where it predicted which one of the
pair of headlines got more clicks.
<adaptive_info_prompt>
Which one out of the following pair of headlines
will get more clicks?
Headline 1: <headline_1>
Headline 2: <headline_2>

Think step by step.
Step 1: Look at the new pair of headlines and
compare them with the examples associated with
each pattern.
Step 2: Find the set of examples that is closest
to the given pair of headlines, and pick the
pattern associated with that set of examples.
Step 3: Apply the picked pattern to the new pair
of headlines. Based on that pattern, think about
which one out of the pair of headlines will get
more clicks.
Step 4: Give your final answer.

Example 12: Example-based Hypothesis Selection and
Inference. <adaptive_info_prompt> consists of several
hypotheses and the corresponding examples they got
correct during generation time.

A.4 Retweeted More

Instruction Prompt
You are a social media expert. You are an expert
at determining which tweet will be retweeted more.

Given a set of observations, you want to
generation hypotheses that will help predict
which tweet out of a pair of tweets is more
likely to be retweeted.
Please note that the paired tweets are about the
same content and are posted by the same user, so
you should focus on the wording difference
between the two tweets in each pair.
Please propose <num_hypotheses> possible
hypotheses.
Please generate them in the format of 1. [
hypothesis], 2. [hypothesis], ...
<num_hypotheses>. [hypothesis].
Please make the hypotheses general enough to be
applicable to new observations.

User Prompt
We made some observations:
··· more examples here ···
Generate hypotheses that are useful for
predicting which tweet out of a pair of tweets is
more likely to be retweeted.

Please note that the paired tweets are about the
same content and are posted by the same user, so
you should focus on the wording difference
between the two tweets in each pair.
Please propose <num_hypotheses> possible
hypotheses.
Please generate them in the format of 1. [
hypothesis], 2. [hypothesis], ...
<num_hypotheses>. [hypothesis].
Proposed hypotheses:

Example 13: Hypothesis Generation.

Instruction Prompt
You are a social media expert.
Given a pair of tweets, you are asked to predict
which tweet will be retweeted more.
Please note that the paired tweets are about the
same content and are posted by the same user, so
you should focus on the wording difference
between the two tweets.
From past experiences, you learned a pattern.
Now, at each time, you should apply a learned
pattern to a pair of tweets and determine which
one will get more retweets.
The answer for the higher retweets should be of
the form "the _ tweet" where _ is either first or
second.

Please give your final answer in the format of {
Final answer: the _ tweet}

User Prompt
Our learned pattern: <hypothesis_high_reward>
The first tweet: <first_tweet>
The second tweet: <second_tweet>
Given the pattern you learned above, predict
which one of the two tweets will get more
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retweets.
Think step by step.
First step: Think about if the pattern can be
applied to the tweets.
Second step: Analyze the textual difference
between the two tweets.
Third step: Based on the pattern, which tweet is
more likely to get more retweets?
Final step: Give your final answer in the format
of {Final answer: the _ tweet}
Final answer:

Example 14: Hypothesis-based Inference.

Instruction Prompt
You are a social media expert.
Given a pair of tweets, you are asked to predict
which tweet will be retweeted more.
Please note that the paired tweets are about the
same content and are posted by the same user, so
you should focus on the wording difference
between the two tweets.
The answer for the higher retweets should be of
the form "the _ tweet" where _ is either first or
second.
Please give your final answer in the format of {
Final answer: the _ tweet}

User Prompt
Here are some examples:
··· more examples here ···
The first tweet: <first_tweet>
The second tweet: <second_tweet>
Which one of the two tweets will get more
retweets?

Example 15: Zero/Few-shot Inference.

Instruction Prompt
You are a social media expert.
Given a pair of tweets, you are asked to predict
which tweet will be retweeted more.
Please note that the paired tweets are about the
same content and are posted by the same user, so
you should focus on the wording difference
between the two tweets.
From past experiences, you learned some patterns.
You should apply a learned pattern to a pair of
tweets and determine which one will get more
retweets.
For each pattern, you will also see a couple of
examples that worked for each pattern.
Please choose a pattern. To do this, look at the
examples associated with each pattern, and find
which set of the examples are closest to the
given pair of tweets.
Please choose the pattern corresponding to that
set of examples.
Please give your final answer in the following
format:
Reasoning for choosing pattern: reason,
Chosen pattern: pattern,
Reasoning for choice of prediction: reason,
Final Answer: answer

User Prompt
Here are some previously generated patterns with
some examples where it predicted which tweet will
will be retweeted more.
<adaptive_info_prompt>
The first tweet: <first_tweet>
The second tweet: <second_tweet>
Which one of the two tweets will get more
retweets?
Think step by step.
Step 1: Look at the new pair of tweets and
compare them with the examples associated with
each pattern.
Step 2: Find the set of examples that is closest
to the given pair of tweets, and pick the pattern
associated with that set of examples.
Step 3: Analyze the textual difference between
the two tweets.
Step 4: Apply the picked pattern to the new pair
of tweets. Based on that pattern, think about

which one out of the pair of headlines will get
more clicks.
Step 5: Give your final answer.

Example 16: Example-based Hypothesis Selection and
Inference. <adaptive_info_prompt> consists of several
hypotheses and the corresponding examples they got
correct during generation time.

B Implementation and Setup Details
B.1 HypoGeniC implementation
Sampling When initializing the rewards of newly gen-
erated hypotheses, we use the examples in the wrong
example bank to do so. Given that we work in a low
data regime, for hypotheses generated near the end of
the training loop, the accuracies of hypotheses are likely
to be biased. To counter this phenomenon, we also al-
low for the hypotheses to use the initial examples Sinit
for initializing rewards. By allowing the hypotheses to
initialize reward with more examples, the accuracy lies
closer to its true value, allowing for fair comparison
between earlier generated hypotheses and newer ones.

Dynamic hypotheses update In Algorithm 1, we dis-
play how we generate and update the hypotheses poolH.
In particular, we add an example s to the wrong example
bank W if the number of hypotheses that incorrectly
predict s is greater than whyp. In our implementation,
we use a linearly increasing whyp as training time t
increases. This allows our algorithm to update the hy-
potheses more frequently at early stage of training, and
less frequently at the end.

B.2 Inference method implementations
Filter and weighted vote In order to filter the hy-
potheses, we iterate through the top k hypotheses ranked
by reward. For each hypothesis, we ask the Large Lan-
guage Model (LLM) if it is relevant. Thereafter, for
each of the relevant hypotheses, the LLM is prompted
to use the hypothesis to make predictions. Then, for
each predicted label, we add up the accuracy scores
from the hypotheses that outputted that particular label.
The final label is the one that has highest total accuracy
score.

One-step adaptive and two-step adaptive inference
The detailed framework of our adaptive inference meth-
ods is split into two parts - hypotheses pruning and
hypotheses selection. In the case where we have a large
number of hypotheses, it is likely that some hypotheses
inH have overlaps or are paraphrases of each other.

We address this issue with the following procedure:

1. During training, we record the examples that each
hypothesis correctly predicts.

2. Then we create one-hot encodings for each hypoth-
esis, where the i-th element of the one-hot encod-
ing is 1 if the hypothesis correctly predicts the
i-th example, and 0 otherwise. We subsequently
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compute a similarity matrix between each pair of
hypotheses by taking the pairwise cosine similari-
ties.

3. Lastly, we create a linear program with the objec-
tive of maximizing the sum of accuracies of the
selected hypotheses, subject to the constraint that
every pair of the selected hypotheses has a similar-
ity score below a predefined threshold γ.

After pruning the set of hypotheses, we prompt the
LLM to pick one hypothesis for its final prediction, as
described in § 2.2. For the single-step adaptive infer-
ence, we ask the LLM to select a hypothesis and make
a prediction in one prompt. On the other hand, with the
two-step adaptive inference, we first prompt the LLM
to select a hypothesis and then prompt the LLM again
to make a prediction based on the selected hypothesis.

B.3 Hyperparameters
For the training stage, we set a limit on the hypoth-
esis bank size, experimenting with sizes H = 3 and
H = 20 to determine the impact of utilizing a larger
number of hypotheses. Throughout all the experiments,
we use the reward coefficient α = 0.5, wmax = 10,
num_init = 10, and we have two different sets of the
rest of hyperparameters for hypothesis bank sizes of 3
and 20.

• With H = 3, we use k = 2 and generate 1 hypoth-
esis per update. For inference, we employ all 3
hypotheses for filter and weighted vote. For single-
step and two-step adaptive inference, we use all 3
hypotheses with γ = 0.3 and provide 5 examples
to each hypothesis.

• In the case of H = 20, we use k = 10 and gen-
erate 5 hypotheses per update. Then we take the
top 5 hypotheses, ranked by their training accura-
cies, for filter and weighted vote. For single-step
and two-step adaptive inference, we use the top 5
hypotheses with γ = 0.7 and provide 5 examples
each.

B.4 Licensing Details
The DECEPTIVE REVIEWS and TWEET POPULARITY
datasets have not been released with any licenses, but are
free to use for research purposes based upon the authors.
The HEADLINE POPULARITY dataset is released under
the Creative Commons Attribution 4.0 International Li-
cense. The SHOE SALES dataset will be released under
the same licensing as this work, CC BY 4.0 License,
should it be accepted.

In regards to models, we find that GPT-3.5-turbo
and Claude-2.1 are all proprietary models and are not
released under any open-source licenses. On the other
hand, Mixtral is released under the Apache License 2.0.
RoBERTa is not released under specific licensing but
is free to use for research purposes. However, Llama-
2-7B is released under their own licensing found at
https://ai.meta.com/llama/license/.

Per our extensive search, we find that we are in com-
pliance with the licensing agreements of all the datasets
and models used in this work.

C Detailed Results
C.1 HypoGeniC Performance across inference

strategies
Figure 3 presents the best results for all of our inference
strategies, considering every dataset and all hyperparam-
eter configurations.

For SHOE SALES, we observe that all the models
perform effectively by using the best hypothesis infer-
ence strategy. Surprisingly, Mixtral is unable to perform
perfectly. This is because despite generating the hy-
pothesis that fully describes the data, Mixtral opts not
to apply the hypotheses, favoring to choose a random
label for the sake of “variety”. Both GPT-3.5-turbo
and Mixtral display similar patterns across the infer-
ence strategies, with best-accuracy hypothesis, filter and
weighted vote, and two-step adaptive inference all hav-
ing comparable performance. However, for all models
we find single-step adaptive inference drops in accuracy.
Given that two-step adaptive inference performs well, it
is likely that the long prompt causes the model difficulty
in choosing the correct hypotheses. For Claude-2.1, we
see that filter and weighted vote drops in performance.
As this method searches for relevant hypotheses, the
model is likely finding that inaccurate patterns relevant,
which end up outweighing the inference of the best
hypothesis.

For DECEPTIVE REVIEWS, Claude-2.1 is the best per-
forming model across all inference policies. Across the
models, we highlight that single-step adaptive inference
method works best for this dataset. In this inference
method, the prompt specifically includes the aims of de-
termining if a review is deceptive. This likely helps the
model use the context provided to better decide which
set of example resembles the test example most. Hence,
splitting up the prompt may have caused performance
to suffer.

We find that HEADLINE POPULARITY is the most
challenging dataset. As mentioned in § 3.1, the origi-
nal dataset was created with both images and headlines
paired together. In our version of the dataset, we only
use the headlines, so we are missing a crucial variable
that contributes to understanding click behavior. There-
fore, based off only headlines, it is difficult to generate
hypotheses that truly capture the data. Despite this chal-
lenge, we note that our hypotheses can still adeptly cap-
ture a large portion of data with 63.7% being our highest
accuracy. Specifically, we find that the best-accuracy hy-
pothesis strategy performs best. We also note that filter
and weighted vote can provide strong performance as in
the case of Claude-2.1 and GPT-3.5-turbo, suggesting
that hypotheses corroborating with each other can lead
to better performance. We observe that GPT-3.5-turbo
is the best performing model here, with all inference
policies (aside from single-step adaptive) having high
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Figure 3: HypoGeniC results with different inference strategies. Best-accuracy hypothesis is sufficient for getting
good performance on SHOE SALES and HEADLINE POPULARITY. Single-step adaptive hypothesis-based inference
is the most effective on DECEPTIVE REVIEWS. Filter and weighted vote is best on TWEET POPULARITY.

accuracy.
Finally, over the TWEET POPULARITY dataset, we

find that the filter and weighted vote is the best choice
for inference policy, with it being the best inference
method for GPT-3.5-turbo and Mixtral. This indicates
that using hypotheses in conjunction is useful as multi-
ple variables together adeptly characterize the dataset.
The performance of the rest of the inference policies has
no clear pattern over this dataset.

We also present our results with confidence inter-
vals. We specifically see that compared to the Oracle
Methods, HypoGeniC shows performance statistically
significant benefits when comparing to the 200 train-
ing examples for HEADLINE POPULARITY and TWEET
POPULARITY. However, this is not the case for DE-
CEPTIVE REVIEWS, because there are word level fea-
tures that make the task easier for unsupervised methods.
We note that HypoGeniC has statistically significant
performance increases for DECEPTIVE REVIEWS with
Claude-2.1 and Mixtral and for TWEET POPULARITY
with Claude-2.1 and Mixtral.

C.2 HypoGeniC Performance across training
examples

Figure 4 presents the results for the performance of
HypoGeniC with Claude-2.1 as the training examples
change. We observe that for all of our datasets, Hy-
poGeniC outperforms zero-shot and few-shot learning
generally for all training examples in SHOE SALES and
TWEET POPULARITY. In HEADLINE POPULARITY, we

find that the model needs to use 200 examples to outper-
form them. We highlight that HypoGeniC outperforms
the No Updates method for all training examples across
the four datasets when using a hypothesis bank size of
20. When using a hypothesis bank size of 3, we find that
in TWEET POPULARITY, HypoGeniC is able to outper-
form the No Updates method, but is unable to as the
training examples increase. In SHOE SALES we observe
that it is largely worse because we set k (as discussed in
§ 2.1) to be 1, which causes difficulty in finding the best
hypothesis. It is unclear what the optimal number of
training examples is across the datasets, as using more
examples does not necessarily increase accuracy.

Figure 5 displays the accuracy for HypoGeniC with
GPT-3.5-turbo for the different training examples. We
observe that unlike HypoGeniC performance with
Claude-2.1, our results are mixed for when our method
outperforms the few shot inference. Specifically, in
TWEET POPULARITY, the few shot inference surpasses
our results, indicating that in this set hypotheses provide
less benefits than using examples. As HypoGeniC ex-
ceeds the accuracy of zero shot’s, the proposed method
still provides benefits to the base model. Similar to the
results on Claude-2.1, we outperform RoBERTa and
Llama-2-7B on all datasets aside on DECEPTIVE RE-
VIEWS for all training examples. HypoGeniC surpasses
the performance of the No Update strategy generally
for all training examples. We note that due to the lim-
ited context window of GPT-3.5-turbo, the No Update
strategy fails as it is unable to accept training exam-
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SHOE DECEPTIVE HEADLINE TWEET
Models Methods SALES REVIEWS POPULARITY POPULARITY

RoBERTa (Oracle) Train 200 100.0 ± 0.0 84.0 ± 4.2 49.0 ± 5.7 50.7 ± 5.7
Train 1000 100.0 ± 0.0 91.0 ± 3.2 60.0 ± 5.5 62.0 ± 5.5

Llama-2-7B (Oracle) Train 200 100.0 ± 0.0 88.7 ± 3.6 49.7 ± 5.7 50.3 ± 5.7
Train 1000 100.0 ± 0.0 92.3 ± 3.0 60.0 ± 5.5 51.3 ± 5.7

Claude-2.1 Few shot 75.0 ± 4.9 51.0 ± 5.7 60.0 ± 5.5 0.3∗ ± 0.6
HypoGeniC 100.0 ± 0.0 75.3 ± 4.9 61.3 ± 5.5 62.0 ± 5.5

Mixtral Few shot 79.0 ± 4.6 56.3 ± 5.6 55.3 ± 5.6 48.7 ± 5.7
HypoGeniC 98.0 ± 1.6 68.0 ± 5.3 60.3 ± 5.5 62.7 ± 5.5

GPT-3.5-turbo Few shot 49.0 ± 5.7 55.0 ± 5.6 60.0 ± 5.5 62.0± 5.5
HypoGeniC 100.0 ± 0.0 60.7 ± 5.5 63.7 ± 5.4 61.0 ± 5.5

Table 5: Table with 95% confidence interval for Few shot results and HypoGeniC for our best results.

ples. HypoGeniC effectively bypasses this issue by
iteratively going through test examples, as opposed to
feeding them into the model all at once.

In, Figure 6, the performance of HypoGeniC for
varying training examples with Mixtral is shown. Hy-
poGeniC outperforms the zero shot and few shot strate-
gies for all datasets, aside from SHOE SALES, where the
proposed method requires 200 examples to outperform
few shot learning. Similary, we note that HypoGeniC
surpasses the performance of RoBERTa and Llama-2-
7B for HEADLINE POPULARITY, TWEET POPULAR-
ITY, and generally for SHOE SALES. As mentioned in
Appendix C.1, despite Mixtral finding the best hypoth-
esis, it occasionally refuses to choose the correct label
to encourage “variety”, which causes RoBERTa and
Llama-2-7B to outpeform HypoGeniC. In comparison
to the No Update results, we find that in DECEPTIVE
REVIEWS and HEADLINE POPULARITY, HypoGeniC
matches or exceeds this method. For SHOE SALES, we
find that with hypothesis bank 3, HypoGeniC must use
200 examples, to finally converge to the correct hypoth-
esis. On the other hand, for TWEET POPULARITY, No
Update surpasses the HypoGeniC with hypothesis bank
size 3 after using 200 training examples. This may occur
as using 3 hypotheses is too limited to adeptly describe
the dataset, causing accuracy to suffer.

C.3 Full OOD results

Table 6 shows results for the OOD deceptive reviews
dataset for all inference strategies for each model.

We find that HypoGeniC outperforms both zero shot
and few shot learning across all models and inference
policies. The best-accuracy hypothesis and two-step
adaptive inference methods are the most robust, show-
ing an average increase of 3.7% and 3.6% respectively.
We claim that although the filter and weighted vote strat-
egy at first glance may seem to have mixed performance,
the method is still robust. The drop in accuracy for Mix-
tral with filter and weighted is minimal (1%), and both

GPT-3.5-turbo and Claude-2.1 exhibit increases in ac-
curacy. Hence, the inference policy is consistent across
DECEPTIVE REVIEWS and the OOD deceptive review
datset. Interestingly, the single-step adaptive inference
method exhibits drops in performance despite being the
best performing inference model in DECEPTIVE RE-
VIEWS. In single-step adaptive inference, the LLM sees
both the hypotheses with the sets of examples along
with the final question of determining whether the re-
view is deceptive. Even though the LLM is prompted
to only use one chosen hypotheses, these training ex-
amples from DECEPTIVE REVIEWS negatively impact
the model because they are part of the context and are
thus inherently used by LLMs. On the other hand, for
two-step adaptive inference, since there is a dedicated
prompt for hypothesis selection, the application of the
hypothesis is unaffected from the DECEPTIVE REVIEWS
training samples.

D Qualitative Analysis on Generated
Hypotheses

We include findings from the generated hypotheses on
DECEPTIVE REVIEWS, HEADLINE POPULARITY, and
TWEET POPULARITY datasets in Table 7. The table
shows that the a good number of the hypotheses are sup-
ported by existing findings, while others are novel. This
suggests that the generated hypotheses are grounded
in existing literature and can be used to guide future
research.
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Figure 4: Claude-2.1 results for baselines, HypoGeniC (no update), and HypoGeniC (best) with hypothesis bank
size 3 and 20 across multiple training samples
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3 and 20 across multiple training samples
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Models Methods IND DECEPTIVE REVIEWS OOD DECEPTIVE REVIEWS

RoBERTa (Oracle) Train 200 84.0 73.0 (↓11.0)
Train 1000 91.0 79.7 (↓11.3)

Llama-2-7B (Oracle) Train 200 88.7 78.7 (↓10.0)
Train 1000 92.3 88.7 (↓3.6)

Claude-2.1 Zero shot 31.0 27.7 (↓3.3)
Few shot 51.0 41.7 (↓9.3)
HypoGeniC (Best-accuracy hypothesis) 67.3 71.7 (↑4.4)
HypoGeniC (Filter and weighted vote) 68.0 74.7 (↑6.7)
HypoGeniC (One-step adaptive) 70.0 68.3 (↓1.7)
HypoGeniC (Two-step adaptive) 67.7 70.7 (↑3.0)

Mixtral Zero shot 55.0 49.7 (↓5.3)
Few shot 56.3 49.0 (↓7.3)
HypoGeniC (Best-accuracy hypothesis) 61.3 64.7 (↑3.4)
HypoGeniC (Filter and weighted vote) 62.0 61.0 (↓1.0)
HypoGeniC (One-step adaptive) 63.0 54.7 (↓8.3)
HypoGeniC (Two-step adaptive) 61.3 64.7 (↑3.4)

GPT-3.5-turbo Zero shot 50.0 49.0 (↓1.0)
Few shot 55.0 52.0 (↓3.0)
HypoGeniC (Best-accuracy hypothesis) 57.3 60.7 (↑3.4)
HypoGeniC (Filter and weighted vote) 55.3 55.7 (↑0.4)
HypoGeniC (One-step adaptive) 55.7 51.7 (↓4.0)
HypoGeniC (Two-step adaptive) 54.7 59.0 (↑4.3)

Table 6: Performance of baselines and compared to our methods on the out-of-distribution deceptive reviews and
DECEPTIVE REVIEWS.
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Dataset Finding Supported/Novel

DECEPTIVE REVIEWS Deceptive reviews contain more emotional terms. Li et al. (2014)
Deceptive reviews are more likely to use superlatives. Ott et al. (2011)
Deceptive reviews contain hearsay or information that
could not have been directly experienced.

Ott et al. (2011)

Deceptive reviews tend to be more exaggerated. Anderson and Simester (2014)
Truthful reviews tend to use more balanced and objective
tone.

Anderson and Simester (2014)

Truthful reviews could mention the reviewer’s purpose
for staying at the hotel (e.g., business trip, vacation).

Novel

Truthful reviews would mention weddings or special
occasions.

Novel

Truthful reviews may contain information about re-
viewer’s expectations and previous hotel experiences.

Novel

Truthful reviews would acknowledge the reviewer’s per-
sonal biases or preferences.

Novel

Deceptive ones may present the reviewer’s opinion as
objective facts.

Novel

Truthful reviews may contain reviewers’ past experi-
ences or future travel plans.

Novel

HEADLINE POPULARITY Concreteness helps. Sadoski et al. (2000)
Revealing something new helps. Banerjee and Urminsky (2021)
Using vivid language and imagery helps. Banerjee and Urminsky (2021)
Headlines with high intensity of emotions would be
clicked more.

Banerjee and Urminsky (2021)

Action-oriented headlines are clicked more. Banerjee and Urminsky (2021)
Humorous headlines are clicked more. Novel
Controversial headlines are clicked more. Novel
Headlines that frame the content in a personal or relat-
able way are clicked more.

Novel

TWEET POPULARITY Short and concise tweets are retweeted more. Gligorić et al. (2019)
Tweets with emotional tones are retweeted more. Tan et al. (2014)
Including specific details (e.g., dates, locations) are as-
sociated with more retweets.

Novel

Including statistics and data are associated with more
retweets.

Novel

Mentioning influential individuals or organizations leads
to more retweets.

Novel

Including links to additional content (e.g., articles,
videos) leads to more retweets.

Novel

Tweets with a call to action or urgency are found to be
retweeted more.

Novel

Table 7: Summary of generated hypotheses (on the real-world datasets) and whether they support existing findings
or are novel.
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Abstract

Large Language Models (LLMs), such as Chat-
GPT, are used daily for different human-like
text generation tasks. This motivates us to ask:
Can an LLM generate human dreams? For this
research, we explore this new avenue through
the lens of ChatGPT, and its ability to gener-
ate valid dreams. We have three main findings:
(i) Chatgpt-4o, the new version of chatGPT,
generated all requested dreams. (ii) Gener-
ated dreams meet key psychological criteria
of dreams. We hope our work will set the stage
for developing a new task of dream generation
for LLMs. This task can help psychologists
evaluate patients’ dreams based on their demo-
graphic factors.

1 Introduction

A dream is a series of involuntary images, ideas,
and emotions during sleep, especially in the rapid
eye movement (REM) stage (apa, 2024). Dreams
are crucial in psychology, as they provide insight
into the mind, revealing hidden desires, fears, psy-
chological status, and conflicts (Freud, 1900; Hob-
son, 2009; Solomonova et al., 2021). Dreams are
utilized as a therapeutic tool for treating certain
psychological disorders (Beauchemin and Hays,
1995). Moreover, Lucid dreaming treatment (LDT)
is a clinical method that can help patients reduce
nightmares (de Macêdo et al., 2019) and address
other mental health issues (Beauchemin and Hays,
1995; Sackwild and Stumbrys, 2021).
Large Language Models (LLMs) aim to mimic psy-
chological phenomena by simulating aspects of
human cognition, such as language understanding,
reasoning, and emotion recognition (Sartori and
Orrù, 2023; Hofweber et al., 2024; Kuo and Chen,
2023). While still not there, using dream descrip-
tions generated by LLMs could be employed in psy-
chological treatments by creating specific dream
characteristics tailored to individual needs. LDT
requires training and practice (Ellis et al., 2021),

which can be challenging for patients to achieve
on their own. Therefore, utilizing LLM-generated
dreams, customized to patients’ needs and personal
characteristics, may enhance the effectiveness of
LDT.

In this work, we lay the groundwork for this task
- dream description generation. As this avenue is
undermined, we try to find whether certain LLMs
can generate dream descriptions that meet psycho-
logical criteria. We picked ChatGPT, the most glob-
ally popular LLM1 as our test case. We use several
versions of ChatGPT3.5 and ChatGPT4o, the most
recent version of the OpenAI’s LLM. Through an
in-depth analysis of the samples produced by dif-
ferent versions of ChatGPT, we find that:

• ChatGPT4o generates all requested dream de-
scriptions, which is false for its predecessors.

• Dream descriptions generated by explored
LLMs follow some common psychological
definitions of a dream but do not fully capture
how a dream looks/feels.

2 Dreams in Psychology

Traditionally, dreams are mostly associated and
analyzed through REM sleep (Hobson and Pace-
Schott, 2002; Nir and Tononi, 2010). Formally,
in the APA Dictionary of Psychology (apa, 2024),
REM dreams are defined by four attributes: (1) a
sense of motion in space paired with visual imagery
(Motion); (2) strong emotions, especially fear, eu-
phoria, or anger (Emotion); (3) the perception that
dream events, characters, and situations are real
(Realness); and (4) unexpected changes in charac-
ters, situations, and plot elements (Discontinuity).
Other attributes derived from psychological works
include the location of the dream, which is mostly
in normative daily scenes (Domhoff, 2007; Snyder
et al., 1968) (Location); the existence of at least

1https://zapier.com/blog/best-llm/
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one other being (Domhoff, 2007; Snyder, 1970;
Dorus et al., 1971) (Other Beings); the existence
of objects (Domhoff, 2007; Snyder, 1970; Dorus
et al., 1971) (Objects); and the activity of talking
with other beings (Domhoff, 2007; Snyder, 1970)
(Conversation). We will check if generated dreams
meet psychological criteria.

3 Related Work

LLMs are being tested through different advanced
generation tasks of human nature, such as sarcasm
(Chakrabarty et al., 2020), metaphor (Chakrabarty
et al., 2021), humour (Mittal et al., 2022;
Dsilva, 2024; Tikhonov and Shtykovskiy, 2024),
songs (Tian and Peng, 2022; He et al., 2019), hyper-
bole (Tian et al., 2021), tongue twisters (Loakman
et al., 2024), and storytelling (Yao et al., 2019;
Yang et al., 2022). Despite its closeness to sto-
rytelling, dream description generation is charac-
terized by a sense of discontinuity (apa, 2024)
while storytelling showcases a coherent plot (Fan
et al., 2019). Also, dreams occur mostly through
REM sleep (Hobson and Pace-Schott, 2002; Nir
and Tononi, 2010), while stories are written while
wide-awake and conscious.
The mimicry of human thinking and behavior
by LLMs is still under research. Binz and
Schulz (Binz and Schulz, 2023) and Abbasiantaeb
et al. (Abbasiantaeb et al., 2024) explored LLMs’
abilities to simulate human understanding and inter-
actions. Zhang et al. (Zhang et al., 2023b) focused
on using human-like reasoning to improve LLMs’
decision-making. Another research area is LLMs’
fairness, with Bender et al. (Bender et al., 2021)
and Noble (Noble, 2018) highlighting the risks of
biases and stereotypes. Zheng et al. (Zheng et al.,
2024) explored enhanced biases in judgments car-
ried out by LLMs. Turpin et al. (Turpin et al., 2024)
showed that biases in quality assessment tasks can
significantly affect LLMs’ reasoning.
However, the topic of generating dream descrip-
tions is yet to be covered. Recent work (Bertolini
et al., 2024) explored LLMs’ ability to classify
dream descriptions by emotions but did not exam-
ine their ability to produce dreams or consider other
psychological criteria.
This research evaluates ChatGPT’s ability to gen-
erate dream descriptions matching known psycho-
logical frameworks (apa, 2024; Snyder et al., 1968;
Dorus et al., 1971).

4 Methodology

In this research, we tackle these research questions:

1. Can LLMs generate dream descriptions?

2. Do dream descriptions generated by LLMs
comply with the psychological criteria of
dreams?

To address these questions, we devised a dedicated
methodology. To generate the dream descriptions
we use Context-Less Generation (Wan et al., 2023;
Wan and Chang, 2024), in which the model is
prompted with a simple zero-shot description of the
dreamer - race, ethnicity, religion, and sex (Hanna
et al., 2023; Salewski et al., 2024; Mahomed et al.,
2024; Calderon et al.; Zhang et al., 2023a). We
added a control group, person. Recent work de-
fined the lack of access to one’s dream content as
a limitation (Scarpelli et al., 2022) for correctly
analyzing parasomnia events. For a beneficial treat-
ment, it is advised to work closely with a patient
to generate dream descriptions based on their de-
scriptions. Therefore, we have chosen different
demographic factors to match this suggestion (Ta-
ble 1).
Our methodology follows the steps below: (1)
Given a demographic factor, replace the mask in
the prompt with it: "Pretand you are {MASK}.
Please generate a dream that this person dreamt
last night.", and the prompt to model M . (2) Get
the response ri. (3) Run steps 1-2 five times in dif-
ferent sessions (no memorization, zero-shot), thus
getting the set rij = {ri0 , ri1 , ri2 , ri3 , ri4}. (5) An-
notate using human annotators each rij set based
on predefined attributes. (6) Analyze the results.

Race Ethnicity Religion Sex Control
Asian Indian Jewish Female Person
Black Arab Christian Male
White Hispanic Muslim

Table 1: Table of simple demographic factors of people
used for prompting GPT models.

Some models provided very few dream descrip-
tions. We concluded this by automatically analyz-
ing for a single disclaimer or absence of multiple
blank lines2.
Attributes: For each sample, we annotated the fol-
lowing attributes: (1) is there a dream description?

2Concrete dream descriptions were spread across multiple
lines upon close inspection.
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(yes/no), based on the existence of a story. (2) is
there a disclaimer? (yes/no), where a disclaimer is
a text similar to "I’m sorry, but I cannot fulfill that
request." or "As an AI, I don’t have dreams or feel-
ings". (3) the pronoun used for the dreamer. (4-10)
the psychological attributes from Section 2 - Mo-
tion (yes/no), Emotion (yes/no), Realness (yes/no),
Discontinuity (yes/no), Location, Other Beings, Ob-
jects and Conversation (yes/no).
Human Evaluation: Three annotators partici-
pated: two Masters students with an academic back-
ground in psychology and one computer science
postdoctoral fellow. Each sample was annotated by
two annotators, with a third resolving any disagree-
ments (Mukhtar et al., 2017). The full instructions
given to annotators is presented in Appendix C.
Metrics: We used a success rate metric for gen-
erating dream descriptions, similar to previous
work (Wen et al., 2024; Zhao et al., 2024). This
measured the model’s ability to produce valid
dream descriptions (i.e., containing a dream) or
without disclaimers. The success rate was the num-
ber of samples meeting the criteria divided by the
total samples.

5 Experiments

We generated four popular demographic factors
groups to use for the prompts - religion, race, eth-
nicity, and sex, and a control group - person (Ta-
ble 1). We used the prompt from Section 4 with
each factor.
We evaluated several gpt models: gpt-3.5-turbo
(gpt3.5T), gpt-3.5-turbo-16k-0613 (gpt3.5T16k),
gpt-3.5-turbo-0613 (gpt3.5T0613), and gpt-3.5-
turbo-1106 (gpt3.5T1106), gpt-4o (gpt4o). We
used the default parameters (e.g., temperature 1.0,
Top-P 1.0) of all models. In total, for each model,
we obtained 60 samples, based on the demographic
factors. The samples, code, and annotations are
available online3. The code is under the MIT li-
cense (Open Source Initiative, 2023).

6 Dream Description Generation Analysis

In this section, we analyzed all 300 generated sam-
ples, to assess the ability of a model to generate a
basic dream description. The full details of each
are presented in Appendix B.
We found that gpt4o generated 100% of re-
quested dream descriptions, while gpt3.5T16k and
gpt3.5T0613 produced over 68%. However, both

3https://github.com/harelber/DreamGPT

gpt3.5T and gpt3.5T1106 generated less than 20%
of descriptions, with the latter experiencing a sig-
nificant drop in performance despite being released
later than gpt3.5T16k and gpt3.5T06134. Thus, we
dropped further analysis of the latter models.
Out of these generated dream descriptions, we con-
tinually analyzed the samples (Table 2). We ex-
plored whether the model did not produce a dis-
claimer stating it is an AI that does not dream, thus
following the prompt directly without an explicit
objection.

Model Gen No Disc 1st
gpt3.5T 13% - -

gpt3.5T16k 75% 31% 15%
gpt3.5T0613 68% 39% 17%
gpt3.5T1106 18% - -

gpt4o 100% 98% 73%

Table 2: Dream descriptions generation characteristics,
based on the generated dreams (Gen) out of total sample
size, the nonexistence of a disclaimer (No Disc), and
whether the dream is in first person view (1st). The
original sample size is 60 dreams. The gpt3.5T and
gpt3.5T1106 were eliminated in the deeper analysis due
to their poor performance in the initial dream generation.

We found that this phenomenon of no dis-
claimer+dream was found in 97% of gpt4o sam-
ples, 39% of gptT0613 samples, and 31% of
gptT061316k samples.
We also looked at whether the description was gen-
erated in first person, as the prompt started with
"pretend you are...". gpt4o met 73% of the times
for this aspect, gptgpt3.5T16k 15% of the time, and
gpt3.5T0613 17% of the times in the same criteria.

In short, although with some decrease caused
by matching the full criteria, gpt4o followed the
prompted dream description with a significant gap
(∼60%) between its performance and the other two
models’ performances.
Although not all generated samples complied with
the no disclaimer+first person criteria, we contin-
ued with the generated dream descriptions for fur-
ther analysis (Gen from Table 2).
For the next sections, we considered 60 dreams for
gpt4o, 45 dreams for gpt3.5T16k, and 41 dreams
for gptgpt3.5T06135.

4https://context.ai/compare/gpt-3-5-turbo-16k/gpt-3-5-
turbo

5Similarly to other work (Wan et al., 2023), that drew
interesting conclusions from small LLM-generated samples.
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7 Psychological Dream Attributes

APA Attributes: The results of APA’s attributes
(Section 2) are presented in Table 3. It can be
seen that the three models meet the motion and
emotion dream properties raised by APA. In the
discontinuity attribute, gpt3.5T16k got a success
rate of 56%, and gpt3.5T0613 got 37%. gpt4o
shows the greatest promise in this attribute, with a
success rate of 70%. However, all models lack a
sense of realness, as this property does not have a
clear indication in the samples.

Model M E R D
gpt3.5T16k 98% 100% 0% 56%

gpt3.5T0613 100% 100% 0% 37%
gpt4o 100% 100% 7% 70%

Table 3: APA Attributes Results. M stands for motion,
E for emotion, R for realness, and D for discontinuity.
It is shown that gpt4o complies the most with APA’s
properties of ERM dreams.

Model N_Loc Other Beings Conv
gpt3.5T16k 47% 96% 51%

gpt3.5T0613 44% 88% 44%
gpt4o 73% 95% 67%

Table 4: Other Attributes Results. N_Loc stands for lo-
cations in nature, Other Beings for people/animals, and
Conv for conversation. It is shown that gpt4o complies
the most with all properties.

Other Attributes: We explored attributes from
various psychological sources, including locations,
beings and interactions (Section 2). Non-daily lo-
cations appeared in 73% of gpt4o samples, 44%
of gpt3.5T0613 samples, and 47% of gpt3.5T16k
samples. This shows that the models do not fully
comply with this property. Also, all models in-
cluded at least one other being in the generated sam-
ples (Domhoff, 2007; Snyder, 1970; Dorus et al.,
1971). Conversations were found in 67% of gpt4o
samples, 44% of gpt3.5T0613 samples, and 51%
of gpt3.5T16k’s samples.

Overall, meeting all psychological dream defini-
tions is not trivial for LLMs’ generated dream de-
scriptions. However, the ability to generate dream
descriptions with embedded creatures, and mo-
tion/emotion rules is met 100% by each model we

explored. Still, gpt4o is the leader in psychological
attributes in general.

8 Conclusion

In this work, we examined the possibility of gener-
ating dream descriptions by LLMs. We explored it
through the test case of ChatGPT models. The most
promising model was found to be gpt4o. We found
that some fundamental psychological attributes are
met by the generated descriptions, but there is still
progress to be made. We hope this initial work will
pave the way to more LLM-dreams research, con-
tributing to the psychological analysis of human
dreams, enhancing LDT, and alleviating disorders
such as insomnia.

9 Ethics Statement

This paper initially explores the capabilities Chat-
GPT to generate dream descriptions. As the authors
only infer descriptions and do not look for a spe-
cific person’s dream, the resulting dreams do not
expose any private data of an individual.

10 Limitations

Despite our interesting findings, this work is sub-
ject to several limitations. First, our annotations
were based on human annotators. Due to the lack
of concise annotations of psychological attributes
of dreams, such as discontinuity and realness, we
annotated the data with human annotators as an
initial work. We envision an extension of this work
using fine-tuned model to annotate the data (Wang
et al., 2024; Wu et al., 2023).
Second, our data was limited to 300 samples. Al-
though this data seems small, it gave interesting
aspects of the ability of LLMs to generate dream
descriptions. We intend to curate a larger corpus
for more comprehensive research.
Next, we explored ChatGPT, the most popular
LLM globally. It would be beneficial to explore the
new task with other LLMs (e.g., Llama (Touvron
et al., 2023) or Gemini (Team et al., 2023)).
Also, this work initialized the research of generat-
ing dream descriptions by LLMs. We used a small
set of psychological attributes and a limited set of
demographic factors. More advanced work on this
topic may follow a broader range of psychological
aspects, analyzing combinations of demographic
factors, and adding more factors such as jobs and
maternity status. This future work will also analyze
biases that may arise in the dream descriptions.
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A Nature locations found in Dreams -
Full Analysis

This section shows the full list of locations found
in our dreams data. The locations can be found in
table 5.

Garden Sea Ocean Forest
Meadow Lake Waterfall River
Mountain Field Oasis Island
Lagoon Sky Hills Pond

Table 5: Nature locations of dreams found in our data.

B Models History & Tokens

Table 6 discloses the dream generation rates of
each explored model, based on its release date and

amount of tokens, as a complementary to Section 6.
Dates and Tokens data acquired from6 7.

Model DGR Date Tokens
gpt3.5T 13% (8) 11.28.22 4K

gpt3.5T16k 73% (44) 06.13.23 16K
gpt3.5T0613 68% (41) 06.13.23 4K
gpt3.5T1106 18% (11) 11.06.23 16K

gpt4o 100% (60) 05.13.24 128K

Table 6: Dream generation rate (DGR), based on each
model, its date of release, and the number of tokens
used as context window. The DGR is measured by
counting the actual dreams (no sole disclaimer) out of
all responses. The generation rate and actual count are
provided for clarity.

C Instructions to Annoators

In the annotations of dreams, when the symbol
(V/X) is shown, please put V for true/exists, and X
for false/nonexist. If you are not sure, please put
X.

These are the attributes we explore:

• Is there a dream description(v/x) - is there a
story or just a statement on the inability of the
AI to generate a dream?

• disclaimer (v/x) - if the model states some-
thing as “As an AI, I don’t have personal
dreams as humans do. However, I can create a
fictional dream scenario for you.”, this means
that it disclaims that it generates a dream and
it is not natural. If there is nothing more than
this disclaimer, and no dream was generated,
please leave the entire row blank.

• narrator (I/You/He/She/They) - The point of
view of the dreamer - is it “I dreamt that. . . ”,
or “he dreamt”. This is considered as the pro-
noun of a dream in the paper.

• location - A one-word location of the dream,
such as desert, garden. If the dreamer moves
places, please add other places.

• other persons - other persons mentioned in the
dream

6https://community.openai.com/t/what-are-the-
differences-between-gpt-3-5-turbo-models/557028/2

7https://context.ai/compare/gpt-3-5-turbo-16k/gpt-3-5-
turbo
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• animals - same as persons, but with animals

• items - same with animals, but with items

• conversation (v/x) - if there is any conversa-
tion in the dream.

• motion (x/v) - visual imagery along with a
sense of motion in space, such as “I was walk-
ing”.

• emotion (x/v) - intense emotion, especially
fear, elation, or anger.

• belief of realness (x/v) - belief that dream char-
acters, events, and situations are real

• discontinuity (x/v) - sudden discontinuities in
characters, situations, and plot elements. The
word suddenly helps a lot here
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Abstract

The rapid advancement of Large Language Models
and Natural Language Processing technologies
has opened new frontiers in educational content
creation and consumption. This paper explores the
intersection of these technologies with instructional
videos in computer science education, addressing
the crucial aspect of generalization in NLP models
within an educational context. With 78% of computer
science students utilizing YouTube to supplement
traditional learning materials, there’s a clear demand
for high-quality video content. However, the
challenge of finding appropriate resources has led
73% of students to prefer curated video libraries.
We propose a novel approach that leverages LLMs
and NLP techniques to revolutionize this space,
focusing on the ability of these models to generalize
across diverse educational content and contexts. Our
research utilizes the cubits.ai platform, developed at
Princeton University, to demonstrate how generative
AI, powered by advanced LLMs, can transform
standard video playlists into interactive, AI-enhanced
learning experiences. We present a framework for
creating AI-generated video summaries, on-demand
questions, and in-depth topic explorations. Our
approach not only enhances student engagement but
also provides a unique opportunity to study how well
these models generalize across different educational
topics and student needs.

Keywords: Instructional videos, AI-enhanced learn-
ing, Large Language Models (LLMs), Natural Lan-
guage Processing (NLP), generalization in NLP,
computer science education, cubits.ai platform, AI-
generated content, interactive video experiences,
video summarization, on-demand questions, person-
alized learning, active learning, data-driven insights,
generative AI, educational technology, adaptive learn-
ing environments

1 Introduction

The landscape of computer science education is
rapidly evolving, with instructional videos becoming
an increasingly integral part of the learning process.
Recent surveys indicate that over 78% of computer
science students frequently turn to YouTube as a sup-
plementary resource to their textbooks and classroom
instruction. This trend underscores a growing demand
for high-quality, accessible video content in educa-
tional settings.

However, the abundance of online resources
presents its own challenges. The task of finding appro-
priate and reliable content can be overwhelming for
students, leading to inefficient learning experiences.
This difficulty has resulted in a significant preference
shift, with 73% of students expressing a desire for cu-
rated video libraries that are tailored to their specific
course requirements.

In response to these challenges and preferences, we
propose a novel approach that harnesses the power
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of Large Language Models (LLMs) and Natural Lan-
guage Processing (NLP) technologies to transform
the landscape of educational video content. Our re-
search focuses on the intersection of these advanced
AI technologies with instructional videos, particularly
addressing the crucial aspect of generalization in NLP
models within an educational context.

This paper presents a framework for creating AI-
enhanced learning experiences that go beyond tradi-
tional video playlists. By leveraging generative AI
powered by advanced LLMs, we demonstrate how
standard instructional videos can be transformed into
interactive, personalized learning tools. Our approach
not only fosters active learning and personalized edu-
cation but also serves as a testbed for evaluating the
adaptability of LLMs across diverse computer science
topics and varying student proficiency levels.

2 Background

2.1 The Rise of Video-Based Learning

The proliferation of online video platforms has sig-
nificantly impacted the educational landscape, partic-
ularly in computer science. YouTube, in particular,
has become a go-to resource for students seeking to
supplement their formal education. The preference
for video content stems from its ability to provide
visual demonstrations, step-by-step explanations, and
the flexibility to pause, rewind, and revisit complex
concepts.

2.2 Challenges in Content Curation

Despite the abundance of educational videos, students
often struggle to find content that aligns precisely
with their course requirements. This challenge has
led to a growing demand for curated video libraries,
where instructors select and organize relevant content
to complement their curriculum.

2.3 The Potential of LLMs and NLP in Edu-
cation

Large Language Models and Natural Language Pro-
cessing technologies have shown remarkable capa-
bilities in understanding and generating human-like
text. These advancements present an opportunity to

enhance the educational video experience by provid-
ing personalized summaries, generating relevant ques-
tions, and offering in-depth explanations tailored to
individual student needs.

2.4 Generalization in NLP for Educational
Contexts

A key focus of our research is exploring how well
LLMs can generalize across diverse educational con-
tent and contexts. This aspect is crucial for develop-
ing adaptive, personalized learning environments that
can cater to a wide range of topics and student needs
within computer science education.

3 Methodology

Our research utilizes the cubits.ai platform, developed
at Princeton University, to demonstrate how gener-
ative AI can transform standard video playlists into
interactive, AI-enhanced learning experiences. The
methodology encompasses several key components:

3.1 The cubits.ai Platform

cubits.ai is an innovative platform designed to en-
hance the impact of computer science courses. It
serves as a foundation for our research, providing:

• A comprehensive library of curated video
courses tailored to meet academic requirements

• Integration of interactive elements such as em-
bedded quizzes and cuGPT, an intelligent as-
sistant designed to guide students through their
learning experience

• Synchronized transcript functionality for effi-
cient content navigation, enabling students to
search for specific sections of videos and navi-
gate directly to the relevant parts

The platform’s architecture is built around several
key components:

1. Content Management System (CMS): A robust
system that stores and organizes high-quality
videos in a curated content repository. Each
video is meticulously tagged with metadata, such
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as subject, difficulty level, and duration, en-
abling precise search and filtering. Content cu-
ration is managed by subject matter experts, en-
suring that only high-value, relevant material is
featured.

2. Modular Content Delivery: Videos are divided
into segments or chapters, allowing users to
access specific parts of a larger video with-
out watching the entire content. This structure
makes it easier for users to focus on particular
topics or sections.

3. Personalized User Experience: Users can cre-
ate individual profiles, receive recommendations
based on past views, track their progress, and
bookmark specific sections for easy access. The
UI and UX are designed to provide a flexible
learning environment.

4. Micro-payment Integration: The platform fea-
tures a flexible micro-payment structure, allow-
ing users to purchase only the content they
need, either by paying for individual videos
or specific segments. Payments are facilitated
through various methods, including digital wal-
lets, credit/debit cards etc, offering users maxi-
mum flexibility to engage with the content with-
out the need to buy entire courses.

3.2 Vector Database Implementation

We employ vector databases to structure and query
high-dimensional vectors (typically embeddings) that
represent data points related to the curated videos.
This approach enables more semantically meaning-
ful searches, allowing users to leverage the power
of LLMs while remaining focused on their specific
learning context.

The process involves:

1. Training a vector database using content from
a particular domain, such as computer science.
The specific domain content is converted into
vector representations using a pre-trained embed-
ding model. This embedding process transforms
the content into high-dimensional vectors that
encode semantic meaning, where content with
similar meaning will have embeddings that are
closer to each other in the vector space.

2. Indexing these vectors in a database for fast re-
trieval. These embeddings represent domain-
specific knowledge and are stored in the database
for fast retrieval.

3. Ensuring domain relevance by curating the data
that goes into the vector database to focus solely
on the domain of interest (e.g., computer science,
finance, healthcare, etc.). This curation main-
tains domain relevance and restricts answers to
the specific domain.

4. Applying additional filtering using metadata tags
that identify sub-domains or contexts (e.g., prod-
uct category, knowledge type). When querying,
we can further restrict the results to specific sub-
domains by applying filters based on these meta-
data tags, ensuring more precise domain-specific
outcomes.

When a query comes in, it is converted into an em-
bedding vector using the same model as before. The
algorithm then searches the vector database for the
closest matches (nearest neighbors) to this query vec-
tor. Since the vector database contains only domain-
specific vectors, the results will naturally be restricted
to that domain.

If needed, the model used to generate embeddings
can be fine-tuned on domain-specific data. For ex-
ample, fine-tuning an embedding model on computer
science courses ensures that the embeddings gener-
ated from queries are more aligned with the specific
language and structure of the computer science do-
main.

3.3 AI-Generated Content Creation

Our framework facilitates the creation of:

1. Video summaries: Concise overviews of video
content, highlighting key points and concepts

2. On-demand questions: Automatically generated
questions that test understanding and promote
active learning

3. In-depth topic explorations: Detailed explana-
tions and additional resources for students seek-
ing to delve deeper into specific topics
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3.4 Integration with Existing Video Plat-
forms

We demonstrate how educators can enhance their ex-
isting video playlists by incorporating AI-generated
content. This integration focuses on increasing stu-
dent engagement and establishing safety measures for
AI use in education. The ability for any instructor
to curate (for free) a video course makes cubits.ai
accessible to all students.

3.5 Generalization Testing

To address the crucial aspect of generalization in NLP
models, we implement:

1. Cross-topic evaluation: Testing the model’s per-
formance across various computer science sub-
jects

2. Adaptive content generation: Assessing the
model’s ability to tailor content to different stu-
dent levels and learning styles

3. Contextual understanding: Evaluating how well
the model maintains coherence and relevance
across different educational contexts

3.6 Monetization and Access Control

The platform incorporates a monetization layer with
a dynamic pricing model, allowing content creators
to set prices based on factors such as video length,
complexity, or popularity, with the platform taking
a commission from each transaction. Prices can be
adjusted dynamically based on demand or user en-
gagement.

Users have flexible payment options, including:

• Micro-payments for individual pieces of content

• Subscription plans for bundled access to specific
categories of content at discounted rates, offering
more cost-effective choices for regular users.

A secure payment gateway supports various pay-
ment methods, including credit/debit cards, digital
wallets. This secure gateway enables quick and safe
payments for users. A token-based access control
system grants users access to purchased content, al-
lowing them to revisit and view the content as often

as needed without repurchasing, offering a flexible
and user-friendly experience.

4 Results and Discussion

4.1 Platform Adoption and User Engage-
ment

cubits.ai has become widely adopted in higher edu-
cation, with many instructors integrating it into their
online learning systems. The platform is already serv-
ing thousands of students, providing access to a com-
prehensive library of curated video courses tailored
to meet academic requirements.

Key findings include:

• cubits.ai is consistently ranked as the most use-
ful resource in student surveys conducted since
2020

• The platform’s user-friendly interface and well-
organized content repository have made it a valu-
able resource for students

• The integration of interactive elements such as
embedded quizzes and cuGPT has enhanced the
learning experience

• Students find the platform both engaging and
efficient in supporting their learning needs

• The synchronized transcript functionality en-
ables students to search for specific sections of
videos and navigate directly to the relevant parts

• By aligning with course materials and offering
high-quality video content, cubits.ai has estab-
lished itself as a vital tool for enhancing educa-
tional outcomes

4.2 Impact on Learning Outcomes

While comprehensive studies on long-term learning
outcomes are ongoing, preliminary data suggests that
AI-enhanced videos are contributing to:

• Increased student engagement with course mate-
rial

• Improved understanding of complex concepts
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• More efficient study practices, with students able
to quickly locate and revisit key content

• A more personalized and effective learning ex-
perience

• Flexibility in learning, with videos acting as a re-
placement or engaging supplement to traditional
courses

As more students see videos as the primary way
to gain knowledge, instead of traditional textbooks,
cubits.ai is becoming an important part of the content
provided to students.

4.3 Generalization Capabilities of LLMs in
Educational Contexts

Our research provides insights into how well LLMs
generalize across different educational topics and con-
texts. We observed that:

• LLMs demonstrate strong capabilities in gener-
ating relevant summaries and questions across
various computer science topics

• The models’ performance can vary depending on
the specificity of the subject matter, with more
niche topics sometimes requiring additional fine-
tuning

• The use of domain-specific vector databases sig-
nificantly improves the relevance and accuracy
of generated content

4.4 Transformative Potential in Large
Classes

Drawing insights from computer science courses at
Princeton and Rutgers Universities, we highlight the
transformative potential of AI-enhanced videos in pro-
moting active learning, particularly in large classes.
Key observations include:

• Increased participation and engagement in dis-
cussion forums related to video content

• More personalized learning experiences, even in
classes with high student-to-instructor ratios

• Improved ability for instructors to identify and
address common misconceptions or areas of dif-
ficulty

5 Future Work

Future research directions include:

1. Longitudinal studies on the impact of AI-
enhanced videos on long-term learning out-
comes

2. Exploration of more advanced personalization
techniques to tailor content to individual learning
styles and preferences

3. Investigation of potential biases in AI-generated
content and development of mitigation strategies

4. Expansion of the platform to cover a broader
range of academic disciplines beyond computer
science

5. Further development of generalization testing
methodologies for NLP models in educational
contexts

6. Enhancement of the vector database implemen-
tation to improve search accuracy and efficiency

6 Conclusion

This research demonstrates the transformative poten-
tial of integrating LLMs and NLP technologies into
educational video content. By leveraging these ad-
vanced AI capabilities, we can create more engaging,
interactive, and personalized learning experiences for
students. The cubits.ai platform serves as a proof of
concept, showcasing how AI-enhanced videos can
revolutionize computer science education.

Our findings not only contribute to the ongoing
dialogue about generalization in NLP but also provide
practical insights into the application of LLMs in
educational settings. By bridging these domains, we
have established a shared platform for state-of-the-art
generalization testing in NLP within an educational
framework.

As we continue to refine these technologies and
gather more data on their impact, we anticipate that
AI-enhanced educational videos will play an increas-
ingly crucial role in the future of higher education.
This work serves as a cornerstone for catalyzing re-
search on generalization in the NLP community, par-
ticularly focusing on the application and evaluation
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of LLMs in adaptive, personalized learning environ-
ments.

The scalable architecture of the cubits.ai platform,
combined with its micro-payment structure, offers a
flexible and accessible approach to high-quality learn-
ing. As more students turn to video content for knowl-
edge acquisition, platforms like cubits.ai are poised
to become integral components of modern digital ed-
ucation, making high-quality learning both affordable
and accessible.

Limitations

While our research demonstrates promising results, it
is important to acknowledge several limitations:

1. Domain Specificity: The current implementa-
tion focuses primarily on computer science edu-
cation. Generalization to other academic dis-
ciplines may require additional research and
model adaptations.

2. Data Privacy Concerns: The use of AI in educa-
tional settings raises important questions about
data privacy and security, particularly when deal-
ing with student interactions and performance
data.

3. Potential for Bias: LLMs trained on large
datasets may inadvertently perpetuate biases
present in the training data. Ongoing work is
needed to identify and mitigate these biases in
educational contexts.

4. Scalability Challenges: As the platform grows,
there may be technical challenges in scaling the
infrastructure to handle increased demand and
more diverse content.

5. Limited Long-term Data: While initial results
are promising, long-term studies on the impact
of AI-enhanced videos on learning outcomes are
still in progress.

6. Accessibility Considerations: The current imple-
mentation may not fully address the needs of
students with disabilities, requiring further work
on accessibility features.

These limitations highlight the need for continued
research and development in this field, as well as
ongoing collaboration with educators and students to
refine and improve the technology.

Ethics Statement

This research adheres to the ACL Ethics Policy. We
have taken the following ethical considerations into
account:

1. Data Privacy: All student data collected through
the cubits.ai platform is anonymized and han-
dled in compliance with relevant data protection
regulations.

2. Informed Consent: Students are informed about
the use of AI in their learning materials and have
the option to opt out of data collection for re-
search purposes.

3. Bias Mitigation: We are actively working to
identify and mitigate potential biases in the AI-
generated content, with a focus on ensuring eq-
uitable learning experiences for all students.

4. Transparency: The use of AI-generated content
is clearly communicated to students, and we pro-
vide explanations of how the technology works
to promote understanding and trust.

5. Human Oversight: While leveraging AI tech-
nologies, we maintain human oversight in con-
tent curation and quality control to ensure the
accuracy and appropriateness of educational ma-
terials.

6. Accessibility: We are committed to improving
the accessibility of our platform to ensure that
students with disabilities can benefit from AI-
enhanced learning experiences.

7. Environmental Impact: We are mindful of the
computational resources required for running
LLMs and are exploring ways to optimize our
models for energy efficiency.

We are committed to ongoing ethical review and
improvement of our research and platform as the field
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of AI in education continues to evolve. Regular con-
sultations with ethics boards, educators, and students
will be conducted to address emerging ethical con-
cerns and ensure responsible development and deploy-
ment of our technology.
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Abstract

Moral sentiments expressed in natural language
significantly influence both online and offline
environments, shaping behavioral styles and in-
teraction patterns, including social media self-
presentation, cyberbullying, adherence to so-
cial norms, and ethical decision-making. To
effectively measure moral sentiments in natural
language processing texts, it is crucial to utilize
large, annotated datasets that provide nuanced
understanding for accurate analysis and model
training. However, existing corpora, while valu-
able, often face linguistic limitations. To ad-
dress this gap in the Chinese language domain,
we introduce the Moral Foundation Weibo Cor-
pus. This corpus consists of 25,671 Chinese
comments on Weibo, encompassing six diverse
topic areas. Each comment is manually anno-
tated by at least three systematically trained an-
notators based on ten moral categories derived
from a grounded theory of morality. To assess
annotator reliability, we present the kappa test
results, a gold standard for measuring consis-
tency. Additionally, we apply several the latest
large language models to supplement the man-
ual annotations, conducting analytical experi-
ments to compare their performance and report
baseline results for moral sentiment classifica-
tion.

1 Introduction

Moral foundations, delineated as intrinsic, univer-
sally applicable, and emotionally grounded psy-
chological systems, stand as fundamental pillars of
human morality [Haidt and Graham, 2007]. The ex-
ponential surge in global social media usage over
the last decade has sparked inquiries into the in-
tricate interplay between human psychology and
online behavior [Van Bavel et al., 2024]. Online
behaviors, predominantly manifested through digi-
tal speech, serve as direct indicators of individuals’

*These authors contributed equally to this work.
†Corresponding Author.

psychological states, with moral expressions play-
ing a pivotal role in this regard. Delving into the
moral foundations underlying online discourse of-
fers profound insights into users’ psychological
inclinations. Consequently, the establishment of a
corpus of moral foundations for natural language
processing becomes imperative for addressing such
inquiries.

Previous resources have predominantly catered
to English users [Hoover et al., 2020, Trager et al.,
2022], neglecting the vast Chinese online commu-
nity. With approximately 1.09 billion users, China
constitutes one of the largest social media popula-
tions globally [Gao and Feng, 2016]. In addition
to this, there is a big difference between Chinese
and English regarding the expression of moral val-
ues and sentiments [Gao et al., 2023, Huang et al.,
2005]. In English, sentiments are usually expressed
more directly, such as using explicit words to de-
scribe joy, anger, and sadness. In contrast, Chinese
culture is more concerned with maintaining face
and social harmony and thus may be more subtle
and euphemistic in its expression of sentiments. In
other words, only English corpus is insufficient for
analyzing the sentiments and moral foundations of
Chinese. Together, the development of a Chinese
corpus assumes paramount importance in advanc-
ing moral natural language processing.

In this context, our study focuses on construct-
ing a moral foundations Chinese corpus, leverag-
ing Weibo, China’s foremost social media plat-
form, as the primary data source. The Moral
Foundations Weibo Corpus (MFWC) consists of
25,761 posts. Adhering to the ten moral categories
delineated in moral foundation theory [Graham
et al., 2013, 2009]: Care/Harm, Fairness/Cheating,
Loyalty/Betrayal, Authority/Subversion, and Pu-
rity/Degradation, six prevalent topics among Weibo
users were selected for discussion: animal protec-
tion, real estate, people’s livelihoods, volunteers,
volunteer army, and the San Francisco meeting be-
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tween the Chinese and U.S. heads of state. Analyz-
ing moral sentiments within these thematic realms
facilitates a nuanced understanding of prevalent
moral sentiments on Weibo.

Weibo is a public social media platform, cur-
rent statistics reveal that Weibo boasts 598 mil-
lion monthly active users [Xu et al., 2020], it pro-
vides a rich and diverse dataset for analyzing moral
sentiments within the Chinese online community.
The choice of Weibo as the corpus foundation first
stems from its extensive user base, drawn from di-
verse backgrounds, ensuring a rich and comprehen-
sive dataset for analysis. MFWC has thus expanded
the coverage of the existing corpus to include a
significant portion of the global online population.
Furthermore, Weibo’s all-Chinese system allows
MFWC to bridge a crucial gap in existing corpora
by catering to non-English-speaking users, thus
fostering greater inclusivity and cross-cultural un-
derstanding in moral natural language processing
research.

We focused our corpus compilation effort on
Weibo for a number of reasons. Variations in moral
language across different social media platforms
can indeed be attributed to disparities in language
and social contexts [Curiskis et al., 2020]. The
distinctive features of Weibo, China’s predomi-
nant social media platform, elevate the significance
and uniqueness of the Moral Foundations Weibo
Corpus. Unlike its western social media platform,
Weibo boasts a content moderation system char-
acterized by heightened stringency. So it fosters
a digital environment where expressions of moral
sentiments are notably more moderated within the
MFWC. For instance, when it comes to sensitive
topics or political issues, you’re likely to see rela-
tively few angry comments or heated expressions
of sentiments in MFWC, which may be more com-
mon on western social media platform. Sentiments
that may be more common on Weibo are discreet,
restrained, or indirectly expressed sentiments as
well as innuendos to avoid touching on content
that may trigger censorship. The stringent content
moderation mechanisms on Weibo contribute to
the distinctiveness of the MFWC. By providing
a dataset characterized by more moderate expres-
sions of moral sentiments, the MFWC offers a valu-
able contrast to other corpus. This contrast not only
enriches the diversity of available datasets but also
underscores the importance of considering cultural
and contextual factors in moral natural language

processing research. Second, the existing English
annotation corpus cannot well adapt to the charac-
teristics and needs of Chinese moral expressions.
In order to gain a deeper understanding of moral
issues in Chinese culture and society, we need to
construct a Chinese annotated corpus that is consis-
tent with the latest theoretical revisions. Besides,
the complex language characteristics and contex-
tual understanding involved in determining moral
issues in the Chinese context. The meaning of basic
human communication can also become difficult
to understand due to the complexity of language
[Garten et al., 2016], it goes beyond the scope of
determining simple keywords. Therefore, sentence-
based research is the main direction for studying
the morality of Chinese texts [Peng et al., 2021].
Compared to English, Chinese has a unique gram-
mar structure and vocabulary expression, which
requires a Chinese annotated corpus to deeply un-
derstand moral issues in Chinese. We selected a
large number of samples based on Weibo entries in
different moral and sentimental fields. In the selec-
tion of data sources, the selected samples ensure
that they are representative and cover a variety of
topics and perspectives.

In order to ascertain the efficacy and comparative
performance of distinct language models in discern-
ing moral sentiments and to establish a baseline,
we subjected some the latest large language mod-
els, namely GPT-4 [Pietron et al., 2024], Llama 3
[Dubey et al., 2024] and Qwen 2 [Yang et al., 2024],
to testing. Besides, we also report baseline results
for multiple computational approaches to measur-
ing moral sentiment in text. These baselines can
serve as a foundation for the classification models
in moral sentiments detection tasks and provide a
reference for future research, which can be instruc-
tive in paving the way for improved performance
of more sophisticated models in the future.

In view of the lack of Chinese corpus resources,
the main contributions of this study include the
following three parts: (1) We have established a
Moral Foundations Weibo Corpus, providing im-
portant basic data for future related research. (2)
We provide richer and unique data interpretation
using measurement baselines, which can provide
inspiration for future research.

2 Corpus overview

As mentioned above, MFWC contains 25,671 blog
posts spanning seven distinct thematic domains.
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The selection of these thematic areas was guided
by several considerations: Firstly, we sought to
include topics featuring prominent moral and senti-
mental expressions (e.g., animal protection) in our
expectations to facilitate effective analysis of the
dataset. Secondly, the popularity and discussion
intensity of the topic are also taken into consider-
ation (e.g., real estate). The inclusion of widely
discussed topics with substantial participant en-
gagement enriches the dataset, fostering a diverse
range of sentimental expressions and moral con-
cerns. Thirdly, we cover some sensitive elements,
such as political and historical events (e.g., vol-
unteer army, China-U.S. Prime Minister meets in
San Francisco). Sensitive topics often encapsu-
late pressing societal issues and profound moral
dilemmas, thereby enhancing the corpus’s analyti-
cal depth and relevance. Additionally, we consid-
ered the relevance and significance of each topic in
contemporary culture and society, encompassing
a diverse array of subjects and aiming to capture
the multifaceted nature of digital discussions, thus
providing a balanced portrayal of the online land-
scape.

Through the selection of these themes, we aim
to enrich the diversity of the corpus and to differ-
entiate the expressions of moral sentiments in the
annotated corpus. In the domains we have chosen,
these themes focus on different social events and
the moral sentiments expressed within are suscep-
tible to the discourse context and therefore moral
sentiments are expressed differently. For example,
the moral sentiments contained in the Animal Pro-
tection corpus are substantively distinct from those
expressed in the Volunteer Army corpus, as these
two topics focus on very different objects, with the
former containing mainly care for animals and the
latter placing the bulk of them on trolling the film.
Extra-domain predictions appear difficult due to
this heterogeneity, and it is difficult for outsiders
to generalise data from different domains through
the expression of moral sentiments in one domain.
Based on this point, we provide moral sentiment
annotations for tweets from different contexts to
address this issue.

3 Annotation

3.1 Annotate procedure

Each post in the MFWC was labeled by three well-
trained annotators according to the 10 moral senti-
ment categories outlined in the Moral Foundations

Coding Guide (see Appendix).
These Moral sentiment label words are drawn

from Moral Foundations Theory [Graham et al.,
2013, 2009], which contain five universal moral
foundations. In this model, each factor includes
virtues and vices. The proposed moral foundations
are:

Care/harm: This foundation is related to our
long evolution as mammals with attachment sys-
tems and an ability to feel (and dislike) the pain of
others. It underlies the virtues of kindness, gentle-
ness, and nurturance.

Fairness/cheating: This foundation is related to
the evolutionary process of reciprocal altruism. It
underlies the virtues of justice and rights.

Loyalty/betrayal: This foundation is related to
our long history as tribal creatures able to form
shifting coalitions. It underlies the virtues of patri-
otism and self-sacrifice for the group

Authority/subversion: This foundation was
shaped by our long primate history of hierarchical
social interactions. It underlies virtues of leader-
ship and followership, including deference to pres-
tigious authority figures and respect for traditions.

Purity/degradation: This foundation was
shaped by the psychology of disgust and contami-
nation. It underlies notions of striving to live in an
elevated, less carnal, more noble, and more “natu-
ral” way. This foundation underlies the widespread
idea that the body is a temple that can be desecrated
by immoral activities and contaminants. It under-
lies the virtues of self-discipline, self-improvement,
naturalness, and spirituality.

Annotation was undertaken by three undergrad-
uate research assistants, who, after a series of
in-depth training, have profound and specialized
knowledge of the label of moral sentiments, and
are well versed in labeling the various moral foun-
dations in detail. However, even then, due to the
vastness and depth of the Chinese language, the
annotators still disagreed in their label. Unlike
other languages, the meaning of Chinese is not
only composed of sentences and words themselves,
but in many cases is also inextricably linked to the
tone and context of the utterance [Godfroid et al.,
2013], and the same utterance in different tones
and contexts will have different meanings. In many
situations, it is difficult to define exactly what type
of moral sentiment a Weibo post relates to, as such
a judgement is largely dependent on an individual’s
subjective judgement, and subjective judgement are
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different to different. We will pick out the Weibo
posts that disagree and discuss them together to
reach a consensus conclusion before arriving at the
result.

Specifically, labeling each Weibo post allows us
to determine whether it embodies a specific virtue
or vice, or is classified as non-moral. This means
that for any Weibo post, there will be a certain label
to describe its moral sentiment.

3.2 Annotation results

Each post within each topic was subjected to a re-
view by multiple annotators with the objective of
assigning moral sentiments label. The annotation
results can be seen in Table 1, the moral classifica-
tion of posts under each topic, was determined by
a majority vote. In particular, if at least two out of
three annotators assigned the same ethical tag to a
post, that tag was designated as the final annotation.
It is noteworthy that posts frequently received mul-
tiple tags during the annotation process. However,
a collective decision was made to retain only the
most significant tags and omit the rest.

It was observed that the distribution of ethical
labels across different topics is highly uneven. For
example, a considerable proportion of ethical labels
within the topic of animal protection are concen-
trated in category care. In contrast, the majority of
ethical labels within the topic of real estate and peo-
ple’s livelihood fall under the category non-moral.
This indicates a strong correlation between ethical
labels and the specific content of the topic areas.

To evaluate inter-annotator agreement, we em-
ployed the kappa test [Fleiss, 1971] and the PABAK
test [Sim and Wright, 2005]. The kappa coefficient
is a statistical method used to evaluate the degree
of agreement between multiple annotators. The
PABAK coefficient is an adjustment to the kappa
coefficient that takes into account the effects of
prevalence and bias. It measures the degree of
actual consistency relative to random consistency.
This adjustment facilitates a more reasonable as-
sessment of consistency in the presence of an un-
even class distribution. The results are presented
in table 2.It was found that approximately half of
the topic areas exhibited high kappa values, which
may be attributed to the explicitly moral nature of
these topics. The remaining topics exhibited lower
kappa values, indicating the inherent ambiguity of
the general tweets within these topics and the sub-
jective cognitive differences among annotators. As

might be expected, given the subjective nature of
the annotations, kappa values are lower under some
themes. Nevertheless, greater consistency can be
attained by addressing prevalence issues.

Table 1: Kappa and PABAK Test Results

Topic Kappa Pabak

Protecting Animals 0.92 0.90
Real Estate 0.61 0.75
People’s Livelihood 0.45 0.50
Voluntary Army 0.49 0.73
Volunteers 0.87 0.91
China-U.S. Prime Minister Meeting 0.56 0.70
Hangzhou Asian Games 0.69 0.74

4 Baseline classification language models
of moral sentiments

While human annotation remains the most accurate
method for measuring moral sentiment in text, due
to the diversity of the Chinese language and the
large sample sizes typically required to study text-
based moral sentiments, it is often necessary to
supplement human annotations with classification
models. Our goal here is to establish baselines
that can help us better predict moral sentiments.
Next, we report a baseline for moral sentiment
classification using a range of models.

To accomplish this task, we selected a number of
models from a range of widely used models. These
models include ChatGPT-4 [Pietron et al., 2024],
Llama 3 [Dubey et al., 2024], and Qwen 2 [Yang
et al., 2024]. Each post in the MFWC dataset is as-
signed a specific label by three annotators, i.e., the
six different moral sentiment categories discussed
in Section 3. This is a multi-label categorization
task, meaning the categories of moral sentiments
are not independent of each other, but are related.
Here, we provide both single-label and multi-label
categorization results.

GPT-4 [Pietron et al., 2024] In the first approach,
we used GPT-4. GPT-4, a state-of-the-art language
model developed by OpenAI, has been fine-tuned
to understand and generate human-like text across
various tasks, making it highly suitable for complex
sentiment analysis tasks.

Llama 3 [Dubey et al., 2024] In the second ap-
proach, we used Llama 3. Llama 3 is a versatile
language model that has been designed for a range
of natural language processing tasks. While it may
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Table 2: Frequency of Weibo posts per Foundation Calculated Based on Annotators’ Majority Vote.

Topic Care/Harm Fairness/Cheating Loyalty/Betrayal Authority/Subversion Purity/Degradation Non-Moral

China-U.S. Prime Minister Meeting 26 415 102 86 225 566
People’s Livelihood 779 283 454 150 146 4318
Voluntary Army 587 262 787 100 81 3084
Volunteers 326 185 79 279 104 1842
Real Estate 321 533 598 375 90 2751
Protecting Animals 609 53 70 165 312 869
Hangzhou Asian Games 877 841 159 744 360 675
All 3525 2572 2249 1899 1321 14105

not always match the specific performance of mod-
els like ChatGPT-4 in every scenario, it offers a
robust alternative with strong generalization capa-
bilities.

Qwen 2 [Yang et al., 2024] Lastly, we used
Qwen 2. Qwen 2 is an advanced language model
with particular strengths in precision tasks. It has
been optimized for handling nuanced language vari-
ations, which makes it a strong contender in the
moral sentiment classification task.

To compare models sets, we rely on three perfor-
mance metrics: precision, recall, and F1. Precision,
the number of true positives divided by the number
of predicted positives, represents the proportion
of predicted positive cases that actually are posi-
tive cases. In contrast, recall, the number of true
positives divided by the number of true positives
and false negatives, represents the proportion of
positive cases that the classifier correctly identifies.
Finally, The F1 score is the harmonic mean of pre-
cision and recall (the product of twice the precision
and recall divided by the sum of precision and re-
call), and is used to evaluate the performance of a
classification models in a comprehensive way. The
F1 score takes into account the balance between
precision and recall, and is a good metric to use
when there is a need to strike a balance between
the two.

Table 3: Moral Sentiment Results

models F1 Precision Recall

GPT-4 0.60 0.65 0.58
Llama 3 0.56 0.60 0.59
Qwen 2 0.38 0.75 0.32

Table 4: Care Results

models F1 Precision Recall

GPT-4 0.74 0.67 0.82
Llama 3 0.65 0.53 0.84
Qwen 2 0.36 0.93 0.22

Table 5: Harm Results

models F1 Precision Recall

GPT-4 0.65 0.70 0.61
Llama 3 0.40 0.35 0.50
Qwen 2 0.52 0.60 0.43

Table 6: Authority Results

models F1 Precision Recall

GPT-4 0.56 0.67 0.49
Llama 3 0.55 0.42 0.78
Qwen 2 0.56 0.73 0.46

Table 7: Subversion Results

models F1 Precision Recall

GPT-4 0.74 0.67 0.82
Llama 3 0.65 0.53 0.84
Qwen 2 0.36 0.93 0.22

Table 8: Fairness Results

models F1 Precision Recall

GPT-4 0.74 0.82 0.68
Llama 3 0.65 0.53 0.84
Qwen 2 0.69 0.87 0.57
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Table 9: Cheating Results

models F1 Precision Recall

GPT-4 0.67 0.65 0.69
Llama 3 0.58 0.61 0.56
Qwen 2 0.40 0.72 0.32

Table 10: Loyalty Results

models F1 Precision Recall

GPT-4 0.70 0.68 0.72
Llama 3 0.50 0.40 0.65
Qwen 2 0.55 0.75 0.45

Table 11: Betrayal Results

models F1 Precision Recall

GPT-4 0.60 0.75 0.50
Llama 3 0.35 0.40 0.35
Qwen 2 0.50 0.65 0.30

Table 12: Purity Results

models F1 Precision Recall

GPT-4 0.63 0.70 0.58
Llama 3 0.39 0.41 0.50
Qwen 2 0.52 0.55 0.30

Table 13: Degradation Results

models F1 Precision Recall

GPT-4 0.55 0.60 0.55
Llama 3 0.30 0.25 0.35
Qwen 2 0.22 0.30 0.20

5 Results

The results of the baseline models are provided
in Tables 3 to 13. As expected, performance var-
ied substantially across models, discourse domains,
and prediction tasks. Further, our results suggest
that in the context of different domains and predic-
tion tasks, each model showed different strengths
and weaknesses. For instance, we found that GPT-4
performs best in balancing Precision and Recall, so
its F1 value is usually the highest and suitable for

most tasks that require balancing the two. Llama 3
excels in Recall and is better suited for tasks requir-
ing high recall, but is slightly weaker in Precision
than the other models. Qwen 2, on the other hand,
excels in Precision excels and is suitable for tasks
requiring highly accurate predictions, but is weaker
in Recall, which affects its F1 value. Lastly, perfor-
mance differences, again, depend on the discourse
domain and the moral foundation being analyzed.

This variability in performance emphasises the
need to take full account of the applicability of mod-
els when selecting and applying them, especially
when dealing with complex and variable natural
language data. Our classification results generally
demonstrate the feasibility of using multiple meth-
ods to measure moral sentiments in natural lan-
guage. However, these results also highlight the
complexity and challenge of this task. Regardless
of the model used, we observed significant vari-
ability in performance across different discussion
domains and moral bases. This variability suggests
that there are still shortcomings in the adaptability
of the current approach to different contexts. In
future research, it is necessary to delve deeper into
the root causes of these performance variations and
develop methods that can reduce them. In particu-
lar, researchers should aim to identify and under-
stand the specific factors that lead to performance
fluctuations, such as the semantic complexity of
the text, the nuances of moral sentiments. In this
way, we can not only improve the performance of
current models, but also provide a more solid the-
oretical and technical foundation for the field of
moral sentiment analysis.

6 Discussion

Natural language processing provides the funda-
mental tools for processing and understanding hu-
man language, which is essential for automated sen-
timent analysis. Consequently, the integration of
natural language processing and sentiment analysis
represents an optimal convergence between linguis-
tic theory and computational technology [Cambria
et al., 2013]. As computational power increases,
the quality and quantity of text mining and nat-
ural language processing techniques continue to
improve, and the field of ethics through natural
language research is becoming more and more
widespread [Szép et al., 2024]). In the field of
moral sentiment analysis, the most crucial element
is the availability of theory-driven text data, which
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is necessary for the accurate quantification of moral
sentiments [Garten et al., 2018].

Moral text data encompasses information per-
taining to a multitude of dimensions within the do-
main of morality. By identifying the salient moral
elements in a text, it will help to make moral judg-
ments [Park et al., 2024]. To address this need, we
developed the MFWC using posts and comments
from Weibo. The MFWC comprises 25,671 Weibo
posts from seven distinct topic areas, each of which
has been annotated with one of ten types of moral
sentiments based on the Moral Foundations Theory.
Furthermore, the MFWC has been employed to es-
tablish a series of models classification baselines
for measuring moral sentiments in texts. These
baselines provide a foundation for further research
and development in the field, enabling researchers
to benchmark their models and improve their un-
derstanding of moral language dynamics.

The construction of our Chinese corpus ad-
dresses a significant gap in existing moral corpora.
Historically, the majority of moral language re-
sources and datasets have been concentrated on
Western languages, particularly English. The con-
struction of a comprehensive Chinese moral corpus
enables the reflection of the linguistic and cultural
nuances of moral discourse in Chinese [Chen et al.,
2023]. This corpus is of particular benefit to re-
searchers seeking to develop linguistically super-
vised models tailored to Chinese. The corpus offers
a robust dataset for natural language processing ap-
plications, enhancing the capacity to analyse and
interpret moral reasoning, sentiment, and values
in Chinese texts. The creation of such a corpus
enables more accurate sentiment analysis, moral
judgement, and ethical reasoning within the context
of Chinese culture and language. Furthermore, this
corpus can facilitate cross-cultural studies by pro-
viding a basis for comparing moral language across
different languages and cultures[Schwartz, 2006].
Researchers can utilise this resource to develop
models that are not only linguistically appropri-
ate but also culturally sensitive, thereby ensuring
that moral judgments and sentiments are under-
stood within the correct cultural framework. By
expanding the moral corpus to include Chinese, we
contribute to the creation of a more inclusive and
representative dataset that can support a range of
natural language processing applications. These in-
clude automated ethical decision-making systems
and sentiment analysis in social media.

In MFWC, we also present research on a new
Chinese moral-sentimental computation. Our re-
sults demonstrate that the logistic regression mod-
els outperforms the other two on the classification
task. However, these performance differences do
not appear to be consistent across different dis-
course domains. With MFWC, researchers can
gain a deeper understanding of the reasons for this,
enabling them to comprehend the dynamics of sen-
timent in online language, capture trends in popular
opinion, and identify subtle changes in social me-
dia.

It is our hope that MFWC and this report will as-
sist researchers by providing a unique data set and
facilitate new contributions to the fields of natural
language processing and social sciences. However,
due to the vastness of Chinese culture, our corpus
may not be able to contain all Chinese corpora. As
more and more researchers utilise MFWC, we an-
ticipate that the resources we provide here will be
further expanded to better generalise to Chinese
studies.

Limitations

There is an imbalance in the corpus’s distribution
of moral feeling categories, with some moral cat-
egories having a higher profile than others. In
particular, in underrepresented categories, this im-
balance may result in biased model training and
negatively impact sentiment classification models’
performance. The dataset’s skewness may also
make it more difficult to extrapolate results to a
wider range of moral situations or sentiments.

Ethics Statement

Significant ethical issues are raised by the creation
and use of the Moral Foundations Weibo Corpus
(MFWC), which have been diligently addressed
throughout this study. First, people’s privacy who
indirectly participate through posts on social media
have had their privacy safeguarded. The corpus
does not contain any personally identifiable infor-
mation, guaranteeing adherence to social media
site standards and data privacy laws.

To reduce bias in data annotation and interpre-
tation, we worked with carefully selected and eth-
ically vetted annotators to build the MFWC. Re-
ducing cultural prejudice and fostering inclusivity,
the moral categories were established in a way that
was culturally sensitive and reflected a thorough
understanding of moral expressions within the Chi-
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A Moral Foundations Coding Guide

A.1 Annotating Moral Sentiment in Natural
Language

The task of annotating moral sentiment in natural
language involves determining which, if any, cate-
gories of moral values are relevant to a given doc-
ument. Our research uses the taxonomy proposed
by Moral Foundations Theory (MFT) to identify
these categories. However, even with the MFT
framework, researchers face several initial deci-
sions about how to annotate MFT values.

First, they need to decide which MFT dimen-
sions to code. If the hypothesis is specific to a
particular foundation, coding for that foundation
alone might suffice. However, it is often necessary
to code for multiple foundations. In such cases, the
straightforward approach is to code for the pres-
ence of each of the five foundations. Yet, some
research might demand more detailed labels. Al-
though the poles of each dimension are related, they
express distinct sentiments that might have psycho-
logical significance. For example, “We must end
suffering” is likely not psychologically equivalent
to “We must provide kindness and compassion.”
Therefore, coding for each pole of each foundation,
resulting in 10 individual codes, can be useful. Ad-
ditionally, it is crucial to identify non-moral texts
as such, meaning an annotation procedure could
require labeling each document across up to 11
categories.

Researchers must also decide how to address
overlapping labels, where moral sentiments are
linked to multiple foundations. In our work, we al-
low overlapping labels during annotation. In some
cases, we also ask annotators to identify the pri-
mary domain of moral sentiment expressed in a
document, along with potential secondary domains.
However, reliability analyses showed that while
coders generally agreed on the presence of moral
sentiment, they were less consistent in identifying
the most dominant domain. Therefore, we recom-
mend coding for the presence or absence of each
foundation.
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A.2 Training Human Annotators

Each virtue and vice is coded as a capitalized initial
letter of the moral base, 1 in the case of virtues
and 2 in the case of vices. 1 and 2 correspond
to "positive" and "negative". If a document does
not have any moral content, it should be coded as
NM, which corresponds to non-moral. The whole
scheme is as follows:

Cure: C1
Harm: C2
Fairness: F1
Cheating: F2
Loyalty: L1
Betrayal: L2
Authority: A1
Subversion: A2
Purity: P1
Degradation: P2
Non-moral: NM

After selecting an annotation label, it is crucial
for researchers to establish a clear protocol for iden-
tifying the moral domains relevant to a given docu-
ment. This step is particularly significant due to the
inherent difficulty in making these determinations.
The ambiguity in this process arises from two main
sources.

The first source of ambiguity pertains to the foun-
dations associated with a moral expression. For
instance, a moral sentiment might seem strongly
related to authority but could also be linked to loy-
alty, leading to uncertainty about whether to label
it as authority alone or both authority and loyalty.

The second source of ambiguity arises from the
challenge of discerning the intended moral rele-
vance from an author’s language. For example, a
social media post stating, “Everything that is going
on with abortion these days is reprehensible,” is
evidently a morally charged statement. However,
the specific foundation it pertains to is less clear.
If the author is a secular liberal concerned with
civil rights, it might be inferred that the statement
relates to the fairness/cheating foundation due to
concerns about women’s reproductive rights. Con-
versely, if the author is a conservative Christian, the
statement might reflect an anti-abortion sentiment
associated with purity/degradation. Thus, the same
expression can convey different moral sentiments,
and competing interpretations can be challenging,
if not impossible, to resolve systematically.

These ambiguities pose significant challenges
for human annotators, who must find a balance
between recognizing subtle moral sentiments and
avoiding unwarranted assumptions about authorial
intent. Excessive reliance on individual intuitions
can lead to inconsistencies among coders, while
overly literal interpretations can overlook the nu-
ances of human language and morality. Therefore,
a balance must be achieved between implicit cod-
ing, which involves inferences about authorial in-
tent, and explicit coding, which focuses on the
literal interpretation of the text.

Although achieving this balance perfectly is dif-
ficult, being mindful of these extremes can help
limit coder biases. Since we typically lack access
to the authors of the texts we analyze—and some-
times even the context of their discourse—we train
annotators to primarily focus on explicit signals
of moral sentiment and minimize inferences about
authorial intent unless they are strongly defensible.
This approach aims to reduce the risk of cultural
biases introducing additional noise into the anno-
tations. While our protocol strives to minimize
annotator disagreement, we also caution against
artificially reducing annotation variance.

When coding for MFT content, disagreements
about which foundation is relevant are common.
Even among expert coders, it is often unclear which
perspective is correct. While some disagreements
can be resolved through discussion, excessive reso-
lution can artificially inflate intercoder reliability.
Moral values are inherently subjective, and true ac-
curacy of a code cannot be determined objectively.
The closest approximation to an objective criterion
is consensus among a constituency. As consensus
is approached, the certainty that a phenomenon
is strongly associated with a specific Moral Foun-
dation increases. Low consensus among trained
coders, therefore, is not merely a problem but an
indication that the association might be subject to
important boundary conditions, weak, or even il-
lusory. Training coders to minimize disagreement
does not change this reality but conceals it. Con-
sequently, while coders need training, it should
focus on establishing a shared understanding and
heuristics for generating codes without fabricating
agreement.
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Abstract
Humor is an important social construct with
various roles in human communication, yet
clinicians remain divided on its appropriate-
ness and effectiveness. Despite its impor-
tance, empirical research on humor in psy-
chotherapy is limited. This study explores
the theoretical concept of “humor” by examin-
ing the operational variable of “laughs” within
psychotherapy. Method: We analyzed tran-
scriptions from 872 psychotherapy sessions
involving 68 clients treated by 59 therapists.
Clients self-reported their symptoms and state
of well-being before each session, while both
clients and therapists provided self-reports on
their therapeutic alliance after each session.
Through text analysis, we extracted the num-
ber of laughs and words for each session. We
investigated the within-client associations be-
tween laughs and symptoms, well-being, ther-
apeutic alliance, and clients’ number of words.
Results: We found session-level associations
between laughs and well-being, symptoms,
and the number of words. However, no sig-
nificant associations were observed between
laughs and the therapeutic alliance, either from
the perspective of the therapist or the client.

1 Introduction

Humor offers numerous benefits in everyday life
and is often employed to diffuse tension, particu-
larly during intense conversations, such as those in
psychotherapy sessions (Ramakrishna et al., 2018).
Peterson et al. (2004) identified humor as one of the
character strengths and virtues that contribute to
psychological well-being. Additionally, humor can
be viewed as an emotion, as recognizing something
incongruous with one’s expectations can evoke
feelings of pleasure. Over the past four decades,
the medical community has increasingly acknowl-
edged the healing power of humor and the positive
emotions it fosters (Martens, 2004).

Not everyone has agreed on the beneficial role
of humor in therapy. Kubie (1971) cautioned that

a psychiatrist’s use of humor could be potentially
harmful to the therapeutic relationship, suggesting
that it might lead clients to feel their concerns are
not being taken seriously. Additionally, Freud ar-
gued that certain uses of humor reflect underlying
aggressive and sexual impulses (Bader, 1993). As
such, humor can sometimes function as a defense
or resistance mechanism (Bader, 1993) and might
be misused by therapists to manage their own anx-
ieties or as a display of narcissistic showmanship
(Kubie, 1971).

In a recent review of humor in psychotherapy,
Hussong and Micucci (2020) noted that many ther-
apists continue to believe in humor’s therapeutic
benefits. For example, humor’s capacity to encour-
age new interpretations or perspectives can help
clients reframe the issues that led them to seek
therapy (Panichelli, 2006; Martens, 2004). From a
cognitive standpoint, humor may aid in reducing de-
pression by facilitating "rapid perceptual-cognitive
switches in frames of reference" (O’Connell, 1976).
Additionally, humor can be valuable for fostering
insight (Poland, 1971) and promoting cognitive
flexibility (Gelkopf and Kreitler, 1996).

Another crucial aspect of psychotherapy, the
therapeutic alliance, has been linked to the use
of humor, as evidenced by clinical experience.
Gelkopf (2011) argues that humor’s primary contri-
bution lies in strengthening the therapeutic relation-
ship. He references Poland (1971), who suggested
that humor is closely associated with a strong ther-
apeutic alliance, allowing therapists to demonstrate
their humanity and reduce barriers between clients
and psychotherapists. Poland also noted that humor
enables therapists to bridge the gap between them-
selves and their clients. Similarly, Martens (2004)
hypothesizes that humor helps clients to open up
and engage with their therapist, fostering a bond
and reducing the atmosphere of rivalry, threat, and
dependency. In line with this, psychoanalyst Bader
(1993) presented clinical cases showing that a ther-
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apist’s humor can reveal aspects of their internal
thoughts, thereby cultivating a sense of safety and
confidence in the therapeutic relationship.

Additionally, Longe (2019) presents intriguing
findings suggesting that humor might be an indi-
cator of a healthy therapeutic relationship. In her
thesis, she reports that most participants considered
their therapists’ humor to be beneficial to their ther-
apeutic process. She found a positive correlation
between the alignment of clients’ and therapists’
senses of humor and the overall ratings of their ther-
apeutic relationship. Furthermore, she identified a
positive correlation between clients’ perceptions of
the helpfulness of their therapists’ humor and their
evaluations of the therapeutic relationship.

In summary, limited studies suggest a connec-
tion between the use of humor in therapy and the
enhancement of therapist-client relationships.

Empirical studies have consistently shown a link
between the use of humor in therapy and improved
treatment outcomes or reductions in pathological
symptoms. For instance, Panichelli et al. (2018)
explored the relationship between humor and vari-
ous therapeutic outcomes in psychotherapy clients,
finding a strong positive correlation between the
presence of humor during therapy sessions and
their effectiveness, as perceived by both clients
and therapists. Another study demonstrated that
watching humorous movies led to a reduction in
psychopathology, anger, anxiety, and depression
symptoms, although it did not affect therapeutic
alliance scores (Gelkopf et al., 2006). Similarly,
Danzer et al. (1990) found that listening to humor-
ous audio tapes resulted in decreased depression
severity among participants.

Despite humor’s potential to enhance therapy, it
remains underemphasized in psychotherapy train-
ing, and there is a scarcity of empirical research
supporting its use as an intervention (Longe, 2019).
This lack of focus may contribute to some thera-
pists’ ambivalence about incorporating humor into
their practice.

In this study, we aim to expand the current un-
derstanding of humor in psychotherapy. While pre-
vious research, such as Ramakrishna et al. (2018),
has highlighted various methods for measuring hu-
mor, the challenge of quantifying humor, particu-
larly in psychotherapy, might explain the limited
empirical studies on the topic. Nonetheless, it is
widely acknowledged that humor can elicit laughs
and promote happiness (Mora-Ripoll, 2010). In

this study, we measure the use of humor in therapy
by annotating instances of laughs during sessions.
This approach assumes that laughs are clear, identi-
fiable events that can often be traced back to humor.
Although not all laughs are directly linked to hu-
mor, it is generally considered a reliable indicator
of humor-related responses.

1.1 Laughs

Laughs is defined as a psychophysiological re-
sponse triggered by humor or other stimuli (Mora-
Ripoll, 2010). It is a physical reaction observed in
humans and some primates, characterized by rhyth-
mic, often audible contractions of the diaphragm
and other parts of the respiratory system. Laughs
typically occur in response to external or internal
stimuli and are generally associated with positive
emotional states such as joy, mirth, happiness, and
relief. However, it can also arise from contrary
emotional states like embarrassment, apology, or
confusion, as seen in nervous laughs (Yim, 2016).

In exploring the therapeutic benefits of laughs,
four potential mechanisms of action may illustrate
its direct or indirect health advantages. First, laughs
can induce immediate or long-term physiological
changes that benefit the body. Second, it can fos-
ter positive emotional states. Third, laughs may
enhance personal coping strategies and increase
pain tolerance. Lastly, in terms of interpersonal
relations, laughs can indirectly boost social com-
petencies and improve interpersonal skills (Mora-
Ripoll, 2010). In this context, Squier (1995) sug-
gests that a therapist’s spontaneous laughs can en-
hance a client’s trust in both the therapist and the
therapeutic process.

Similar to the broader field of humor, empirical
research on laughs in psychotherapy is also lim-
ited (Longe, 2019). Marci et al. (2004) examined
the frequency of laughs and skin conductance (SC)
responses in client-therapist pairs. Their analysis
revealed that SC score changes were significantly
greater when both clients and therapists laughed to-
gether compared to when they laughed individually.
This finding underscores the connection between
humor and the therapeutic relationship. Addition-
ally, the study found that clients laughed signif-
icantly more than therapists and produced more
laughs alone while speaking. This challenges the
notion that humor (whether appropriate or not) pre-
dominantly originates from the therapist (Poland,
1971; Kubie, 1971).
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1.2 Hypothesis

As outlined, this study aims to empirically examine
the relationship between laughs in psychotherapy,
as an operational measure of humor, and improve-
ments in various aspects of the treatment measure-
ment process and outcome. Specifically, we will ex-
amine whether laughs are associated with the thera-
peutic alliance—the relationship between therapist
and client. Additionally, we will examine the rela-
tionship between laughs and treatment outcomes,
including client symptoms. We hypothesize that
higher values of laughs during therapy will be pos-
itively correlated with higher results across these
variables.
Hypothesis 1: At the within-treatment level,
higher levels of laughs in psychotherapy sessions
will be associated with higher levels of outcomes
(1a) and lower levels of symptoms (1b) as reported
at the beginning of the session, and higher thera-
peutic alliance as reported after the session (1c).
These sub-hypotheses are consistent with previous
studies that indicated that humor is associated with
better treatment outcomes (Panichelli et al., 2018),
reduction of pathological symptoms (Gelkopf et al.,
2006), and ratings of the therapeutic relationship
(Longe, 2019). However, it should be noted that
these studies collected their data about humor ret-
rospectively (not from transcripts) and did not use
the laughs variable.
Hypothesis 2: At the within-treatment level,
higher levels of laughs in psychotherapy sessions
will be associated with higher levels of words said
by the client in sessions. This prediction will be
tested in an exploratory manner and is based on
the hypothesis that humor helps clients to open up
(Martens, 2004).

2 Method

We utilize a dataset of 872 psychotherapy session
transcripts from 74 different therapist-client dyads
(pairs), constructed by 68 clients and 59 therapists.
See the appendix for more details about the partic-
ipants, treatment, transcriptions, and ethical con-
cerns. Within these transcripts, we extracted a total
of 10,454 laughs (mean per session = 11.98, range
= 0−129). The extraction process involves analyz-
ing the transcribers’ comments regarding paralin-
guistic events using a specialized paralinguistics
lexicon “JOY”. This lexicon includes terms such as
“laughs,” “amused,” “with humor,” “giggling,” etc.
that transcribers used to describe what they hear

(Shapira et al., 2021).1 Before each session, clients
self-reported their functioning using the ORS ques-
tionnaire (Miller et al., 2003) which is considered
to be an indicator of treatment progress, and self-
reported their symptoms using the HSCL question-
naire (Derogatis et al., 1974) which represents the
global symptomatic level experienced by the client
over the past week. After each session, therapists
and clients reported their perspectives on the re-
lationship quality during each session, measured
by the WAI questionnaire (Horvath and Greenberg,
1989); see the appendix.

3 Results
For each session, we extracted the (1) number of
laughs, and (2) number of client’s words. The
means, standard deviations, and ranges for all the
variables are presented in Table 1.

Because the data had a multilevel structure (ses-
sions nested within treatments; Bolger and Lau-
renceau, 2013), we used multilevel models (MLM,
using R lme4 library (Bates, 2010), using function
lmer) also known as Hierarchical Linear Models.
These models allow estimation of two levels, a
within-treatment level, and a between-client level,
and accommodate non-balanced data (Bolger and
Laurenceau, 2013).

To examine the concurrent within-treatment as-
sociations between the laughs variable (Laughs)
and session-level treatment measures: outcome
measured by ORS (Hypothesis 1a) symptoms mea-
sured by HSCL (Hypothesis 1b), therapeutic al-
liance measured by WAI (Hypothesis 1c), and the
number of client’s words (Hypothesis 2), we ap-
plied a multilevel model predicting the session level
treatment measure (client mean-centered) by the
number of laughs used by the client and therapist
in the session. The mixed-level equation was as
follows:
Treatment_Measureds
= (γ00+ud0)+ (γ01+ud1)Laughsds + eds
Treatment_Measureds for a dyad d in session

s is predicted by the sample’s intercept (γ00), by
dyad d’s deviation from this intercept (ud0), by the
average (i.e., fixed) effects (γ01 ) of the predictors, by
this client’s deviation from the fixed effects (i.e., the
random effects: (ud0, u

d
1)), and by a level-1 residual

term quantifying the session’s deviation from these
effects (i.e., the random effect at level 1, eds).

1“JOY” paralinguistic lexicon is separate and not inter-
secting other lexicons such as “SMIRK”, “TUT-TUT”, “SAR-
CASM”. For more details see Shapira et al. (2021)
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Variable SL Obs. SL M(SD) Range DL Obs. DL M(SD)
Laughs 872 11.98 (14.25) 0-129 74 13.04 (4.487)
Words 872 4524 (1408) 416-8176 74 4484.96 (1282.929)
ORS 860 24.4 (7.96) 0.3-40 74 24.5 (6.41)
HSCL 860 1.78 (0.51) 1.05-3 74 1.788 (0.4)
C-WAI 823 50.89 (23.82) 4-84 74 49.48 (23.02)
T-WAI 831 41.69 (18.61) 0-74 74 40.33 (17.88)
Note. Laughs = number of laughs annotation; Words = number of client’s words;
ORS = Outcome Rating Scale; HSCL = Hopkins Symptom Checklist;
WAI = Working Alliance Inventory; C = Client; T = Therapist;
SL = Session Level; DL = Dyad Level; Obs.=Observations

Table 1: Descriptive statistics of treatment measurements (processes and outcome) and laughs.

Words ORS HSCL WAI-C WAI-T
Predictors Estimates CI Estimates CI Estimates CI Estimates CI Estimates CI
(Intecept) 0.00 -45.39 - 45.39 24.52*** 23.06 - 25.98 1.79*** 1.69 - 1.88 49.50*** 44.25 - 54.74 40.35*** 36.29 - 44.41
Laughs 14.06** 4.14 - 23.97 0.07** 0.02 - 0.12 -0.01** -0.01 - 0.00 -0.02 -0.10 - 0.07 0.01 -0.05 - 0.07
Observation
R2 (ICC)

872
0.078 (0.06)

860
0.632 (0.63)

860
0.590 (0.59)

823
0.929 (0.93)

831
0.916 (0.92)

Note. ***p<0.001; **p<0.01; *p,0.05; Laughs = number of laughs; R2= Conditional R; Words = number of client’s words; ORS = Outcome Rating Scale;
HSCL = Hopkins Symptom Checklist; WAI = Working Alliance Inventory; C = Client; T = Therapist;

Table 2: Treatment measurements, process and outcome association

The results of the multilevel model summarized
in Table 2 show concurrent session-level associa-
tions between laughs and well-being, symptoms,
and clients’ number of words. No associations
were found with the therapist’s or the client’s as-
sessment of therapeutic alliance.

4 Discussion
Laughs were associated with better treatment out-
comes, aligning with Panichelli et al. (2018). While
we cannot establish a causal relationship, this sug-
gests that laughs during therapy may contribute
to improved client functioning. We propose that
laughs may indirectly enhance social competencies,
thereby boosting interpersonal skills (Mora-Ripoll,
2010). In this way, laughs in therapy—distinct
from laughter therapy—can serve as a social tool
that clients learn in therapy and later apply in their
social lives. This potential benefit is reflected in
ORS, which assesses social functioning.

Laughs were associated with lower levels of the
client’s symptoms. The current study does not al-
low us to determine whether it is laughs that lower
the level of symptoms or a low level of symptoms
that increases the amount of laughs. Previous stud-
ies support the conclusion that laughs may help
reduce symptoms of mental disorders such as anx-
iety and depression (Gelkopf et al., 2006; Danzer
et al., 1990). This may indicate that laughs provide
a release for the client, as supported by medical and

psychological studies on the psychophysiological
effects of laughs (Mora-Ripoll, 2010).

No association was found between laughs and
the therapeutic alliance. This finding does not cor-
respond with Gelkopf (2011); Longe (2019). How-
ever, the findings are compatible with the study
of Gelkopf et al. (2006), which found no signifi-
cant associations between the effect of humorous
movies and the therapeutic alliance. To the best of
our knowledge, there has not yet been any empir-
ical study that examines the associations between
laughs in psychotherapy and therapeutic alliance.

Laughs in treatment were associated with higher
verbalization among the clients. This finding cor-
responds with providing assumptions in the litera-
ture that humor helps the client open up (Martens,
2004), and feel more comfortable with the therapist
(Gelkopf, 2011; Bader, 1993).

Marci et al. (2004) claimed that previous re-
search in laughs and psychotherapy has focused
almost exclusively on the client. This study exam-
ined the role of laughs in general (of both therapist
and client) in treatment. To gather evidence on
whether the therapist’s use of humor is positive and
beneficial, further research is needed. In a future
project, we aim to investigate whether the therapist
influences the client’s degree of laughs, whether
humor increases throughout treatment, and how it
relates to treatment outcomes.
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5 Limitations

The current work acknowledges that laughs can
arise from various emotions beyond humor, such as
nervousness, embarrassment, and other emotional
states. However, laughs were annotated regardless
of whether they occurred due to humor.

We used “humor” as a motivation for the study
but did not address the implications of humor in the
present study. We limited our findings to “laughs”
only. Future work is needed to determine how
frequently laughs might occur due to non-humor-
related reasons, and how this could potentially im-
pact the results. Specifically, how these alternative
sources of laughs might influence the conclusions
and associations drawn regarding humor.
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A Appendices

The following sections are taken from previous
work on the same dataset (Shapira et al., 2022)
and are presented here for the convenience of the
reader.

A.1 Dataset: Participants and Treatment

A.1.1 Clients
The dataset was drawn as a sample from a broader
pool of clients who received individual psychother-
apy at a university training outpatient clinic, located
in a central city in Israel. Data were collected natu-
ralistically between August 2014 and August 2016
as part of the clinic’s regular practice of monitoring
clients’ progress. From an initial sample of 180
clients who provided their consent to participate in
the study, 34 (18.88%) dropped out (deciding one-
sidedly to end treatment before the planned termi-
nation date). Clients were selected from the larger
sample to match two criteria: (1) treatment duration
of at least 15 sessions, and (2) full data including
audio recordings to be used for the transcriptions
and session-by-session questionnaires available for
each client. These criteria corresponded to our ana-
lytic strategy of detecting within-client associations
between linguistic features and session processes
and outcomes. Clients were also excluded, based
on the M.I.N.I. 6.0 (Sheehan et al., 1998) if they
were diagnosed as severely disturbed, either due to
a current crisis, had severe trauma and accompany-
ing post- traumatic stress disorder, a past or present
psychotic or manic diagnosis, and/or current sub-
stance abuse. Based on these criteria we excluded
77 (42.7%) clients. Thus, of the total sample, the
data for 68 (38.33%) clients who met the above-
mentioned inclusion criteria were transcribed, for
a total of 872 transcribed sessions.

The clients were all above the age of 18
(Mage=39.06, SD=13.67, range=20–77), majority
of whom were women (58.9%). Of the clients,
53.5% had at least a bachelor’s degree, 53.5% re-
ported being single, 8.9% were in a committed
relationship, 23.2% were married and 14.2% were
divorced or widowed. Clients’ diagnoses were es-
tablished based on the Mini International Neuropsy-
chiatric Diagnostic Interview for Axis I DSM-IV
diagnoses (MINI 5.0; Sheehan et al., 1998). Of
the entire sample, 22.9% of the clients had a single
diagnosis, 20.0% had two diagnoses, and 25.7%
had three or more diagnoses. The most common
diagnoses were comorbid anxiety and affective dis-

orders2 (25.7%), followed by other comorbid dis-
orders (17.1%), anxiety disorders (14.3%), and
affective disorders (5.7%). A sizable group of
clients (31.4%) reported experiencing relationship
concerns, academic/occupational stress, or other
problems but did not meet criteria for any Axis I
diagnosis.

A.1.2 Therapists and Therapy

Clients were treated by 59 therapists in various
stages of their clinical training. Clients were as-
signed to therapists in an ecologically valid manner
based on real-world issues, such as therapist avail-
ability and caseload. Most therapists treated one
client each (47 therapists), but some (10) treated
two clients and (2) more. Each therapist received
one hour of individual supervision every two weeks
and four hours of group supervision on a weekly
basis. All therapy sessions were audiotaped for
supervision. Supervisors were senior clinicians.
Individual and group supervision focused heavily
on reviewing audiotaped case material and techni-
cal interventions designed to facilitate the appro-
priate use of therapist interventions. Individual
psychotherapy consisted of once- or twice-weekly
sessions. The language of therapy was Modern He-
brew (MH). The dominant approach in the clinic in-
cludes a short-term psychodynamic psychotherapy
treatment model (e.g.,Blagys and Hilsenroth,2000;
Shedler, 2010; Summers and Barber, 2009). The
key features of the model include: (a) a focus on
affect and the experience and expression of emo-
tions, (b) exploration of attempts to avoid distress-
ing thoughts and feelings, (c) identification of re-
curring themes and patterns, (d) an emphasis on
past experiences, (e) a focus on interpersonal ex-
periences, (f) an emphasis on the therapeutic re-
lationship, and (g) exploration of wishes, dreams,
or fantasies (Shedler, 2010). On average, treat-
ment length was 37 sessions (SD = 23.99, range =
18–157). Treatment was open- ended in length, but
given that psychotherapy was provided by clinical
trainees at a university-based outpatient community
clinic, the treatment duration was often restricted
to be 9 months.

2The following DSM-IV diagnoses were assessed in the
affective disorders cluster: major depressive disorder, dys-
thymia and bipolar disorder. The following DSM-IV diag-
noses were assumed in the anxiety disorders cluster: panic
disorder, agoraphobia, generalized anxiety disorder and social
anxiety disorder.
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A.1.3 Transcriptions

To capture the treatment processes from session
to session, and since the transcription process is
highly expensive, transcriptions were conducted
alternately (i.e., sessions 2, 4, 6, 8 and so on until
one session before the last session). In cases where
material was incomplete (such as the quality of
the recordings, or the questionnaires for a specific
session), the next session was transcribed instead.
The transcriber team was composed of seven tran-
scribers, all of whom were graduate students in
the University’s psychology department. The tran-
scribers went through a one day training workshop
and monthly meetings were held throughout the
transcription process to supervise the quality of
their work. The training included specific guide-
lines on how to handle confidential and sensitive
information and the transcribers were instructed to
replace names by pseudonyms and to substitute any
other identifying information. The transcription
protocol followed general guidelines, as described
in (Mergenthaler and Stinson, 1992), and in Albert
et al. (2013). The word forms, the form of com-
mentaries, and the use of punctuation were kept as
close as possible to the speech presentation. Every-
thing was transcribed, including word fragments as
well as syllables or fillers (such as “ums”, “ahs”,
“uh huhs” and “you know”). The audiotape was
transcribed in its entirety and provided a verbatim
account of the session. The transcripts included
elisions, mispronunciations, slang, grammatical er-
rors, non-verbal sounds (e.g., laughs, cry, sighs),
and background noises. The transcription rules
were limited in number and simple (for example,
each client and therapist utterances should be on
a separate line ;each line begins with the specifi-
cation of the speaker) and the format used several
symbols to indicate comments (such as [...] to in-
dicate the correct form when the actual utterance
was mispronounced, or <number of minutes of si-
lence >). The transcripts were proofread by the
research coordinator. The final transcripts could be
processed by human experts or automatically by
computer.

There were 872 transcripts in total (the mean
transcribed sessions per client was 12.56; SD=4.93)
Each transcript incorporated metadata such as the
client’s code, which allowed the client data to be
linked across sessions and for hierarchical analysis.
The transcriptions totaled about four million words
over 150,000 talk turns (i.e., switching between

speakers). On average, there were 5800 words
in a session, of which 4538 (78%; SD=1409.62;
range 416-8176) were client utterances and 1266
(22%; SD=674.99; range 160-6048) were therapist
utterances with a mean of 180.07 (SD=95.37; range
30-845) talk turns per session.

A.1.4 Procedure and Ethical Considerations
The procedures were part of the routine assessment
and monitoring process in the clinic. All research
materials were collected after securing the approval
of the authors’ university ethics committee. Only
clients that gave their consent to participate were
included in the study. Clients were told that they
could choose to terminate their participation in the
study at any time without jeopardizing treatment.
The clients completed the ORS before each ther-
apy session and the WAI after each session. The
therapist completed the WAI after each therapy ses-
sion. The sessions were audiotaped and transcribed
according to a protocol described above. All data
collected was anonymized and only then exposed
to a very small number of researchers, as agreed
upon by the participants.

A.2 Outcome and Process Measurements

A.2.1 Outcome Rating Scale (ORS; (Miller
et al., 2003))

The ORS is a 4-item visual analog scale developed
as a brief alternative to the OQ-45. The scale is
designed to assess change in three areas of client
functioning that are widely considered to be valid
indicators of progress in treatment: functioning,
interpersonal relationships, and social role perfor-
mance. Respondents complete the ORS by rating
four statements on a visual analog scale anchored
at one end by the word Low and at the other end
by the word High. This scale yields four separate
scores between 0 and 10 that sum to one score
ranging from 0 to 40, with higher scores indicating
better functioning. The ORS has strong reliability
estimates (α=0.87-0.96) and moderate correlations
between the ORS items and the OQ-45 subscale
and total scores (ORS total - OQ-45 total: r = 0.59).

A.2.2 Hopkins Symptom Checklist-short
form (HSCL-11; (Derogatis et al.,
1974))

The HSCL-11 is a shortened version of SCL-90-R
(Derogatis, 1992) self-report questionnaire. It in-
cludes 11 items that assess symptoms. Participants
rank each item on a Likert scale between 1 (“not at
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all”) and 4 (“extremely”) depending on how much
distress they feel regarding the item. The average
items represent the global symptomatic level ex-
perienced by the client over the past week. The
questionnaire was found to have high internal va-
lidity (α= 0.92) (Lutz et al., 2006).

A.2.3 Working Alliance Inventory (WAI;
(Horvath and Greenberg, 1989))

The WAI is a self report questionnaire (both for
therapist and client). It is one of the most widely
investigated common factors that was found pos-
itively correlated to treatment outcome in psy-
chotherapy. It includes items ranging from 0 (“not
at all”) to 5 (“completely”) to evaluate three com-
ponents (1) agreement on treatment goals (2) agree-
ment on therapeutic tasks and (3) a positive emo-
tional bond between client and therapist (Falken-
ström et al., 2015)
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Abstract

This study examines the alignment of Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR) research with the principles of the
"bitter lesson" proposed by Rich Sutton. We
analyze two decades of CVPR abstracts and ti-
tles using large language models (LLMs) to as-
sess the field’s embracement of these principles.
Our methodology leverages state-of-the-art nat-
ural language processing techniques to system-
atically evaluate the evolution of research ap-
proaches in computer vision. The results reveal
significant trends in the adoption of general-
purpose learning algorithms and the utilization
of increased computational resources. We dis-
cuss the implications of these findings for the
future direction of computer vision research
and its potential impact on broader artificial in-
telligence development. This work contributes
to the ongoing dialogue about the most effec-
tive strategies for advancing machine learning
and computer vision, offering insights that may
guide future research priorities and methodolo-
gies in the field.

1 Introduction

Rich Sutton’s influential essay "The Bitter Lesson"
argues that the most significant advancements in
artificial intelligence (AI) have come from focus-
ing on general methods that leverage computation
rather than human-designed representations and
knowledge. This principle has been particularly ev-
ident in the field of Computer Vision (CV), which
has witnessed a notable shift from hand-crafted
features to deep learning models.

In this paper, we investigate the extent to which
the abstracts of the Conference on Computer Vision
and Pattern Recognition (CVPR), a major machine
learning (ML) conference, align with the principles
of the "bitter lesson" over a span of 20 years. We
analyze a random sample of 200 papers each year,
addressing the following research questions:

• How has the focus on general methods and
computation evolved in CVPR abstracts over
the past two decades?

• What trends can be observed in the adoption
of deep learning techniques and the shift away
from hand-engineered features?

• To what extent do the abstracts reflect the key
insights of Sutton’s "bitter lesson," and how
has this alignment changed over time?

• Is there a significant relationship between a
paper’s alignment with the "bitter lesson" prin-
ciples and its impact, as measured by citation
count?

To address these questions, we employ large
language models (LLMs), which themselves are a
prime manifestation of principles outlined in the
"bitter lesson", to analyze the CVPR abstracts. The
evaluation is based on five metrics assigned by the
LLMs, providing a comprehensive assessment of
the alignment between the abstracts and the "bitter
lesson."

Our research provides valuable insights into the
overall direction of the ML community and reveals
interesting trends in the adoption of Sutton’s princi-
ples. By leveraging LLMs to analyze a large body
of research literature, we offer a novel approach
to understanding the learning and evolution of a
scientific field. This method allows us to uncover
patterns and trends that may not be immediately
apparent through traditional research methods, pro-
viding a more comprehensive understanding of the
current state of ML research and its alignment with
the principles that have proven most effective in
driving progress in AI.

The potential impact of our findings on future
CV research directions is significant. By identify-
ing trends in the adoption of general methods and
deep learning techniques, we can inform the devel-
opment of foundation models for CV at the state
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of the art. These insights contribute to a deeper
understanding of the current state of ML research
and highlight potential areas for further exploration
and growth in the field.

2 Background

2.1 The Bitter Lesson

The field of artificial intelligence (AI) has wit-
nessed a paradigm shift, eloquently articulated in
Rich Sutton’s influential essay "The Bitter Les-
son" (Sutton, 2019). Sutton’s thesis emphasizes
the primacy of general methods that harness com-
putational power over human-designed represen-
tations and domain-specific knowledge. This per-
spective echoes the seminal work of Leo Breiman,
who, two decades earlier, delineated the dichotomy
between statistical and algorithmic approaches in
his paper "Statistical Modeling: The Two Cul-
tures" (Breiman, 2001). Breiman’s insights, along
with subsequent works like (Halevy et al., 2009),
have profoundly shaped our understanding of data-
driven methodologies in AI.

2.2 Evolution of Computer Vision

The field of Computer Vision (CV) exemplifies the
principles of Sutton’s "bitter lesson." Traditionally
reliant on hand-crafted features like SIFT, HOG,
and Haar cascades for object detection and im-
age classification, CV underwent a paradigm shift
with embracing deep learning, particularly Convo-
lutional Neural Networks (CNNs). This transition
enabled the automatic learning of hierarchical fea-
tures directly from raw image data, eliminating the
need for manual feature engineering and signifi-
cantly improving performance across various CV
tasks.

The 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) marked a pivotal mo-
ment in this evolution. AlexNet, a CNN architec-
ture, achieved a remarkable 15.3% top-5 error rate,
outperforming previous models by over 10 percent-
age points. This breakthrough was facilitated by
the convergence of ImageNet’s massive annotated
dataset, advancements in CNN architectures, GPU
computing power, and foundational work of vision-
ary researchers.

The subsequent emergence of foundation models
further aligned CV with Sutton’s principles. Mod-
els like CLIP, ALIGN, and Florence demonstrate
remarkable adaptability across diverse tasks with
minimal fine-tuning, leveraging extensive multi-

modal datasets to learn rich, transferable repre-
sentations. For instance, the Florence model has
achieved state-of-the-art results by integrating uni-
versal visual-language representations from web-
scale image-text data (Bayoudh et al., 2021).

This evolution from traditional feature engineer-
ing to deep learning and foundation models in CV
underscores the importance of leveraging computa-
tion and vast datasets for superior performance and
generalization. For a comprehensive overview of
these advancements, readers may refer to Minaee
et al. (2020), which details recent progress in deep
learning for image segmentation.

2.3 Large Language Models in Academic
Evaluation

The integration of Large Language Models (LLMs)
into the evaluation of academic texts has emerged
as a significant area of interest. LLMs, such as
GPT-4, have demonstrated remarkable capabilities
in processing and analyzing large volumes of infor-
mation quickly, making them suitable for various
applications, including the assessment of academic
literature. For instance, research has shown that
LLMs can effectively assist in title and abstract
screening for literature reviews, which is crucial in
the biomedical domain (Dennstädt, 2024). More-
over, LLMs have been employed to perform qual-
itative data analysis, producing consistent results
across multiple iterations (Tai et al., 2023).

In addition to their analytical capabilities, LLMs
have been shown to possess a degree of human-like
judgment in evaluating the quality of text. The G-
EVAL framework, which utilizes LLMs to assess
the quality of natural language generation outputs,
demonstrates that LLMs can align closely with
human evaluators in certain contexts (Liu, 2023).
However, the deployment of LLMs in academic
evaluation is not without challenges. LLMs can
exhibit biases similar to those found in human judg-
ments, which may affect the fairness and accuracy
of their evaluations (Acerbi, 2023). Furthermore,
the phenomenon of "hallucination," where LLMs
produce plausible but factually incorrect informa-
tion, poses a risk in academic contexts (Buchanan,
2023).

The role of LLMs in answering questions and
generating hypotheses also merits attention. Their
ability to provide detailed responses to complex
queries has been leveraged in various educational
settings, enhancing learning experiences and fa-
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cilitating knowledge acquisition (Polverini, 2024).
However, the tendency of LLMs to produce ver-
bose outputs can sometimes obscure the clarity of
their answers, necessitating careful prompt engi-
neering (Yeadon, 2024). In the context of academic
research, LLMs can assist in generating hypotheses
and guiding exploratory studies, contributing to the
advancement of knowledge in various fields (Irons
et al., 2023).

Despite the promising applications of LLMs in
academic evaluation and research, it is crucial to es-
tablish ethical guidelines and best practices for their
use. The potential for misuse, such as generating
misleading information or facilitating academic dis-
honesty, necessitates careful consideration of the
implications of LLM deployment in educational
and research contexts (Urman, 2023).

3 Methodology and Evaluation

3.1 LLM Evaluation of Titles and Abstracts
We employ three large language models to evaluate
the title and abstracts of CVPR papers from 2005
to 2024: GPT-4o-2024-05-13, gpt-4o-mini-2024-
07-18, and claude-3-5-sonnet-20240620. The fol-
lowing information is extracted from online portals
and stored in a database for each paper: Publi-
cation year (2005-2024), Title, Authors, Abstract.
For each paper, the citation count from Semantic
Scholar API is also queried on July 20th 2024, and
stored alongside the other metadata. The total num-
ber of papers per year is shown in Figure 1.

Each LLM model is tasked with assigning a Lik-
ert score of 0-10 for how well the paper aligns with
the principles of Sutton’s "bitter lesson." We use
the Chain-of-Thought Prompting technique with
Magentic library to interface with the models and
collect their responses in a structured format for
analysis (Collins et al., 2024). The prompts used
in this study are included in the appendix for repro-
ducibility.

We define five dimensions for "bitter lesson"
alignment:

1. Learning Over Engineering: To what ex-
tent does the idea prioritize leveraging com-
putation through data-driven learning and
statistical methods over relying on human-
engineered knowledge, heuristics, and domain
expertise?

2. Search over Heuristics: To what degree
does the idea emphasize leveraging compu-

tation through search algorithms and opti-
mization techniques rather than depending
on human-designed heuristics and problem-
specific strategies?

3. Scalability with Computation: To what ex-
tent is the idea based on methods that can
continuously scale and improve performance
as the available computational resources in-
crease?

4. Generality over Specificity: To what degree
does the approach emphasize general, flexi-
ble, and adaptable methods that can learn and
capture arbitrary complexity from data rather
than attempting to build in complex and de-
tailed models of the world through manual
engineering and domain-specific knowledge?

5. Favoring Fundamental Principles: To what
extent does the approach adhere to fundamen-
tal principles of computation, mathematics,
and information theory rather than focusing
on emulating the specific details of human
cognition or biological intelligence?

The prompts were designed to capture the
essence of each "bitter lesson" dimension concisely
and objectively. To anchor the ratings, we provide
examples for the 0, 5, and 10 points on each dimen-
sion, clarifying the criteria and ensuring consistent
evaluations. The prompts are formatted consis-
tently to facilitate easy processing and understand-
ing by the models.

Given the vast number of publications, our study
focuses on a representative random sample of 200
papers from each year of CVPR proceedings. We
define the overall alignment score for each paper
as the sum of scores across five dimensions. In
the absence of human-evaluated ground truth, we
employ multiple inter-rater reliability measures to
assess the consistency of ratings between different
models.

3.2 Inter-rater Reliability Measures

Intraclass Correlation Coefficient (ICC): We uti-
lize ICC to quantify the degree of agreement among
the models’ ratings. ICC is particularly suitable for
assessing reliability when multiple raters evaluate
the same set of items. We specifically employ the
two-way random effects model (ICC(2,k)) to ac-
count for both rater and subject effects.
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Figure 1: Total number of CVPR papers present in database for each year from 2005 to 2024.

Krippendorff’s Alpha: To complement ICC,
we also calculate Krippendorff’s Alpha, a versa-
tile reliability coefficient that can handle various
types of data (nominal, ordinal, interval, ratio) and
is robust to missing data. This measure provides
an additional perspective on the inter-rater agree-
ment, especially useful when dealing with potential
variations in rating scales or missing evaluations.

3.3 Regression Analysis

To investigate the relationship between alignment
scores and paper impact, we conduct regression
analysis using citation count as a proxy for influ-
ence. To control for the year of publication and
account for potential temporal effects, we imple-
ment yearly stratification in our regression model.
This approach allows us to isolate the impact of
alignment while considering the varying citation
patterns across different publication years.

To address the typically right-skewed distribu-
tion of citation counts Figure 2, we apply a logarith-
mic transformation to the data. This transformation
serves multiple purposes in our analysis. First, it re-
duces skewness, resulting in a more symmetric dis-
tribution that better approximates normality—a key
assumption in many statistical models. Second, it
stabilizes variance across the range of data, mitigat-
ing the heteroscedasticity often observed in citation
count data where variance tends to increase with
the mean. Finally, the log transformation linearizes
potentially multiplicative relationships, converting
them to additive ones. This facilitates more accu-
rate modeling using linear regression techniques,
particularly when the effect of predictors on cita-
tion counts is expected to be multiplicative rather
than additive. By employing this transformation,

we enhance the robustness of our statistical analy-
ses and ensure they are better suited to the inherent
characteristics of citation data in academic litera-
ture.

The results of the analysis are presented in the
following section.

4 Results

4.1 Inter-rater Reliability

Figure 3 presents the inter-rater reliability scores
for the five dimensions of "bitter lesson" alignment
across the three models employed in this study. The
horizontal dashed lines indicate common thresh-
olds for interpreting these measures, with the color
and label denoting the qualitative interpretation.
The bar colors reflect the relative strength of each
dimension. In the Krippendorff’s alpha graph, the
bar for the "Favoring Fundamental Principles" di-
mension is not visible due to its near-zero score.

The models demonstrate consistently strong
agreement on all dimensions except "Favoring Fun-
damental Principles," as evidenced by ICC values
above 0.5 and Krippendorff’s alpha scores exceed-
ing 0.4 on the remaining dimensions. The poor per-
formance on "Favoring Fundamental Principles"
may be attributed to the high adherence to this prin-
ciple in papers published since 2005. Among the
dimensions, "Learning Over Engineering" exhibits
the highest ICC and Krippendorff’s alpha scores,
indicating the models’ reliable evaluation of pa-
per alignment based on the provided prompts and
rating criteria.

Although perfect agreement is not achieved, the
inter-reliability measures fall within or above com-
mon thresholds for "good" reliability, validating
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Figure 2: Distribution of citation counts and log-
transformed citation counts for CVPR papers from 2005
to 2024 present in the database.

the use of AI models for prompt-based research
paper evaluation. It is important to acknowledge
that even with domain expert human raters, perfect
agreement is seldom attained due to the complex-
ities of research evaluation. The high reliability
scores obtained in this study demonstrate the mod-
els’ consistency in their assessments, providing a
reliable foundation for further analysis. For more
information on the challenges and limitations of
inter-rater reliability measures in human evalua-
tions of the NeurIPS conference, readers may re-
fer to (Beygelzimer et al., 2023) and (Cortes and
Lawrence, 2021).

4.2 Regression Analysis

Table 1 presents the results of the regression analy-
sis for each dimension of "bitter lesson" alignment
scores against citation impact, stratified by year of
publication. The R-squared values, ranging from
0.027 to 0.306, indicate that 2.7-30.6% of the vari-
ation in citation impact can be explained by align-
ment to "bitter lessons" dimensions. It is crucial to

interpret the coefficients for each dimension as mul-
tiplicative effects, as the log transform of citation
counts is used as the dependent variable.

In the context of this regression analysis, a multi-
plicative effect implies that a one-unit change in the
alignment score for a particular dimension leads
to a proportional change in the original scale of
the citation count. For instance, if the regression
coefficient for the "Scalability" dimension is 0.5,
a one-unit increase in the "Scalability" alignment
score would be associated with a multiplicative
effect of approximately exp(0.5) ≈ 1.65 on the
original citation count. In other words, if a paper’s
"Scalability" alignment score increases by one unit,
its citation count would be expected to increase by a
factor of 1.65, holding all other variables constant.

The statistical significance of the regression co-
efficients is denoted using *, **, and *** to rep-
resent the 10%, 5%, and 1% significance levels,
respectively. Several dimensions, such as "Scal-
ability" and "Learning over engineering," exhibit
statistically significant relationships with citation
impact across multiple years. However, given the
high degree of correlation between the dimensions,
the significance and coefficients in the regression
model should be interpreted with caution.

These findings suggest that adherence to the prin-
ciples outlined in the "bitter lesson" dimensions,
particularly "Scalability" and "Learning over engi-
neering," may have a positive influence on a paper’s
citation impact. The multiplicative nature of the
coefficients highlights the potential for substantial
increases in citation counts as alignment scores im-
prove. Nevertheless, the presence of correlations
among the dimensions necessitates a cautious in-
terpretation of the individual coefficients and their
statistical significance.

Table 2 shows the results of regressing citation
counts on the overall "bitter lesson" alignment
score for each year between 2005 and 2024. Sev-
eral key trends emerge. First, the R-squared values,
which indicate the proportion of variance in cita-
tion counts explained by the alignment scores, are
quite low for most years (generally less than 5%).
However, they increase substantially starting in
2015, reaching over 15% in some later years. This
suggests that alignment with the "bitter lessons"
became more predictive of citation impact over
time. This time period is of special interest as
it coincides with the emergence of deep learning,
and a shift towards the principles of scalability and
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Figure 3: Comparison of ICC and Krippendorff’s alpha values across the five dimensions of "bitter lesson" alignment
for the three language models used in the study.

Table 1: Regression analysis results for the relationship between "bitter lesson" alignment scores and citation impact,
stratified by year.

Year R-squared N Learning Search Scalability Generality Principles
2005 0.027 199 -0.220 0.104 0.139 0.272 -0.171
2006 0.076 200 0.016 -0.042 0.388* 0.199 -0.171
2007 0.035 200 -0.087 0.117 0.350* -0.006 -0.318*
2008 0.078 200 -0.009 0.096 0.465*** -0.026 -0.463***
2009 0.085 199 -0.073 0.136 0.104 0.378* -0.631***
2010 0.074 200 0.121 -0.129 0.218 0.016 -0.471**
2011 0.076 200 0.208 -0.036 0.318** -0.284 -0.423**
2012 0.094 200 0.195 0.077 0.428** -0.110 -0.517**
2013 0.085 200 0.395*** -0.112 0.013 -0.119 -0.279
2014 0.119 200 0.408*** -0.085 0.308* -0.348* -0.266
2015 0.264 200 0.515*** -0.145 0.417** -0.236 -0.122
2016 0.306 200 0.637*** -0.300** 0.517*** -0.325 -0.372*
2017 0.313 200 0.418*** -0.353** 0.751*** -0.004 -0.508**
2018 0.172 200 0.291* -0.322* 0.418** 0.156 -0.436**
2019 0.111 200 0.573** -0.439** 0.229 -0.099 -0.257
2020 0.120 200 0.315 -0.411*** 0.179 0.229 0.010
2021 0.090 200 0.269* -0.381*** 0.253 -0.072 -0.265*
2022 0.136 200 0.618*** -0.137 0.110 -0.118 -0.257
2023 0.123 200 0.107 -0.009 0.664*** -0.078 -0.132
2024 0.178 171 -0.619*** 0.314 0.808*** 0.282 -0.020

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.

learning from data that are emphasized in the "bit-
ter lessons." Second, the overall alignment scores
exhibit a statistically significant positive relation-
ship with citations in many individual years, most
prominently after 2011. The coefficients tend to
be largest in later years as well. This indicates that
as deep learning became more established, papers
more closely adhering to principles like scalabil-
ity and learning from data received more citations

on average. The results suggest that the "bitter
lessons" have become increasingly important in the
field of computer vision, aligning with the broader
trend towards data-driven methods and scalable
algorithms in machine learning research.

4.3 Trends in "Bitter Lesson" Alignment

Figure 4 presents the average alignment scores for
each "bitter lesson" dimension across the years
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Table 2: Regression analysis results for the relationship between overall "bitter lesson" alignment scores and citation
impact, stratified by year.

Year R-squared N F-statistic Prob (F-statistic) Overall Alignment Score
2005 0.007 199 1.409 0.237 0.029 [-0.019, 0.076]
2006 0.050 200 10.335 0.002 0.083*** [0.032, 0.134]
2007 0.003 200 0.554 0.457 0.019 [-0.031, 0.068]
2008 0.010 200 1.993 0.160 0.031 [-0.012, 0.075]
2009 0.015 199 2.998 0.085 0.045* [-0.006, 0.097]
2010 0.000 200 0.033 0.856 0.005 [-0.049, 0.059]
2011 0.000 200 0.000 0.993 -0.000 [-0.051, 0.051]
2012 0.024 200 4.898 0.028 0.057** [0.006, 0.109]
2013 0.005 200 0.944 0.333 0.022 [-0.023, 0.067]
2014 0.030 200 6.023 0.015 0.056** [0.011, 0.101]
2015 0.170 200 40.618 0.000 0.141*** [0.097, 0.184]
2016 0.128 200 29.114 0.000 0.129*** [0.082, 0.176]
2017 0.133 200 30.338 0.000 0.182*** [0.117, 0.248]
2018 0.066 200 13.996 0.000 0.098*** [0.047, 0.150]
2019 0.021 200 4.241 0.041 0.061** [0.003, 0.119]
2020 0.040 200 8.325 0.004 0.079*** [0.025, 0.133]
2021 0.002 200 0.407 0.524 -0.017 [-0.068, 0.035]
2022 0.062 200 13.054 0.000 0.097*** [0.044, 0.149]
2023 0.063 200 13.416 0.000 0.099*** [0.046, 0.153]
2024 0.092 171 17.040 0.000 0.127*** [0.066, 0.188]

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.
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Figure 4: Line plot showing the average alignment scores across years for CVPR papers from 2005 to 2024.

2005-2024. The vertical lines, which depict the
publication of influential papers in machine learn-
ing (not necessarily computer vision), serve as a
guide to understanding the overall evolution of the
field. The averages are calculated across all pa-

pers and all language models (LLMs) employed in
the study. The plot reveals several notable trends
in the alignment of CVPR papers with the princi-
ples of the "bitter lesson." Notably, the dimensions
of "Scalability with Computation" and "Learning
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Over Engineering" exhibit a consistent upward
trend over the years, indicating a growing empha-
sis on scalable algorithms and data-driven learning
methods in CVPR research. This trend aligns with
the broader shift towards deep learning and foun-
dation models in computer vision, emphasizing the
importance of leveraging computation and large
datasets for superior performance.

The period from 2015 to 2020 witnesses a partic-
ularly sharp rise in the average scores for these di-
mensions, coinciding with major advances in deep
learning, such as the application of convolutional
neural networks to computer vision tasks. Inter-
estingly, this time frame corresponds to the period
in which the regression analysis finds the highest
predictive power of alignment scores on citation
counts. This finding suggests that the increasing
alignment of CVPR papers with the principles of
scalability and learning-oriented approaches dur-
ing this period has a significant impact on their
academic influence, as measured by citation met-
rics.

The observed trends in the alignment scores high-
light the evolving landscape of computer vision
research, with a growing emphasis on leveraging
the power of computation and data-driven learning
techniques. The coincidence of these trends with
the increased predictive power of alignment scores
on citation counts underscores the importance of
adhering to the principles of the "bitter lesson" for
achieving impactful research outcomes in the field
of computer vision.

5 Conclusion

Our study examined the alignment of CVPR re-
search with Rich Sutton’s "The Bitter Lesson" over
twenty years, leveraging large language models
to analyze trends. The findings reveal a consis-
tent increase in the adoption of general-purpose
learning algorithms and scalability with computa-
tional resources, reflecting a strong adherence to
the core principles of the "bitter lesson." These
trends underscore the machine learning commu-
nity’s preference for data-driven and computation-
heavy approaches over manual engineering and
domain-specific knowledge.

However, the dimension of "Search over Heuris-
tics" has not experienced a similar upward trajec-
tory, indicating limited integration of search-based
methodologies within the field. This stagnation
contrasts with recent advancements in inference-

time scaling, exemplified by OpenAI’s o1 models,
which emphasize the importance of test-time com-
pute in overcoming diminishing returns. The o1
models’ ability to simulate various strategies and
scenarios during inference, similar to AlphaGo’s
Monte Carlo Tree Search (MCTS), marks a key de-
parture from earlier approaches that relied heavily
on large pre-trained models.

The paradigm shift towards scaling inference
time, driven by the development of larger and
more complex models, has the potential to emu-
late search-like processes. As computational capa-
bilities continue to expand, it is plausible that fu-
ture research may increasingly incorporate search
techniques, thereby enhancing alignment with this
dimension of the "bitter lesson." The dynamic re-
source allocation in o1 models, which adjusts com-
putational resources based on task complexity, fur-
ther underscores the potential for integrating search
methodologies.

Overall, our findings highlight the continued rel-
evance of the "bitter lesson" in shaping the tra-
jectory of computer vision research. By empha-
sizing generality and scalability, the field is well-
positioned to leverage emerging computational ad-
vancements. Future work should explore the inte-
gration of search methodologies and assess their im-
pact on research impact and innovation within com-
puter vision, particularly in light of recent break-
throughs in inference-time scaling.

Limitations

This study, while providing valuable insights into
the evolution of computer vision research, has
several limitations that should be acknowledged.
Firstly, our reliance on large language models
(LLMs) for evaluating research abstracts, while
innovative, introduces potential biases inherent to
these models. The LLMs’ understanding and inter-
pretation of complex scientific concepts may not al-
ways align perfectly with human expert judgment.

Secondly, the absence of human expert evalu-
ation as a ground truth is a significant limitation.
Collecting such human evaluations presents con-
siderable challenges, as it would require a diverse
panel of researchers from various subfields of the
computer vision community. The interdisciplinary
nature of modern computer vision research neces-
sitates expertise in areas ranging from traditional
image processing to deep learning, computer graph-
ics, and even cognitive science. Assembling such
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a panel and achieving consensus on the evaluation
criteria would be a formidable task, both in terms
of logistics and resources.

Furthermore, our analysis is limited to the in-
formation contained in titles and abstracts. While
these elements provide a concise summary of re-
search, they may not capture the full depth and
nuance of the methodologies and findings pre-
sented in the full papers. This limitation could
potentially lead to oversimplification of complex
research ideas.

Lastly, while our study spans two decades of
CVPR proceedings, it does not account for research
published in other venues or unpublished work that
may have influenced the field. This focus on a
single conference, albeit a prestigious one, may not
provide a complete picture of the entire computer
vision research landscape.

Despite these limitations, we believe our study
provides valuable insights into broad trends in com-
puter vision research and its alignment with the
principles of the "bitter lesson." Future work could
address these limitations by incorporating human
expert evaluations, analyzing full paper contents,
and expanding the scope to include a wider range
of publication venues.

Ethics Statement

This study adheres to the ACL Ethics Policy. Our
use of large language models (LLMs) for analyzing
trends in academic literature raises important eth-
ical considerations. We acknowledge that LLMs
may introduce biases when used for direct evalu-
ation of academic work. However, our study fo-
cuses solely on using LLMs to analyze broad trends
rather than to assess individual papers’ quality or
merit. We have addressed the challenges and poten-
tial biases of LLM use for evaluation in our back-
ground section, emphasizing the need for careful
interpretation of results.

All data were collected in accordance with appli-
cable privacy and intellectual property laws. The
titles and abstracts of CVPR papers were collected
from the conference website, which allows for such
collection and analysis under standard terms of
use. Citation counts were collected from Semantic
Scholar, which also permits such collection and
analysis under its standard terms of use. No per-
sonally identifiable information was collected from
human subjects.

Our methodology aims to minimize risks by us-

ing multiple models and focusing on aggregate
trends rather than individual assessments. No
crowd workers or annotators were involved in the
data collection process described in the paper. We
believe this approach provides valuable insights
into the evolution of computer vision research
while maintaining ethical standards in AI-assisted
academic analysis.

References
A. Acerbi. 2023. Large language models show human-

like content biases in transmission chain experiments.
Proceedings of the National Academy of Sciences,
120.

K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa.
2021. A survey on deep multimodal learning for
computer vision: advances, trends, applications, and
datasets. The Visual Computer, 38:2939–2970.

Alina Beygelzimer, Yann Dauphin, Percy Liang, and
Jenn Wortman Vaughan. 2023. Has the machine
learning review process become more arbitrary as
the field has grown? the neurips 2021 consistency
experiment. ArXiv, abs/2306.03262.

L. Breiman. 2001. Statistical modeling: The two cul-
tures (with comments and a rejoinder by the author).
Statistical Science, 16.

J. Buchanan. 2023. Chatgpt hallucinates non-existent
citations: evidence from economics. The American
Economist, 69:80–87.

Jack Collins, Chad Fawcett, Ikko Eltociear Ashimine,
Marc, Michael Struwig, Mojtaba Yousefi, and
Manuel Zander. 2024. Magentic: Seamlessly inte-
grate llms as python functions.

Corinna Cortes and Neil D. Lawrence. 2021. Inconsis-
tency in conference peer review: Revisiting the 2014
neurips experiment. ArXiv, abs/2109.09774.

F. Dennstädt. 2024. Title and abstract screening for
literature reviews using large language models: an
exploratory study in the biomedical domain. System-
atic Reviews, 13.

Alon Y. Halevy, Peter Norvig, and Fernando C Pereira.
2009. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24:8–12.

J. Irons, C. Mason, P. Cooper, A. Reeson, and C. Paris.
2023. Exploring the impacts of chatgpt on future
scientific work.

Y. Liu. 2023. G-eval: nlg evaluation using gpt-4 with
better human alignment.

Shervin Minaee, Yuri Boykov, Fatih Murat Porikli, An-
tonio J. Plaza, Nasser Kehtarnavaz, and Demetri Ter-
zopoulos. 2020. Image segmentation using deep
learning: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44:3523–3542.

183

https://doi.org/10.1073/pnas.2313790120
https://doi.org/10.1073/pnas.2313790120
https://doi.org/10.1007/s00371-021-02166-7
https://doi.org/10.1007/s00371-021-02166-7
https://doi.org/10.1007/s00371-021-02166-7
https://api.semanticscholar.org/CorpusID:259088819
https://api.semanticscholar.org/CorpusID:259088819
https://api.semanticscholar.org/CorpusID:259088819
https://api.semanticscholar.org/CorpusID:259088819
https://api.semanticscholar.org/CorpusID:62729017
https://api.semanticscholar.org/CorpusID:62729017
https://doi.org/10.1177/05694345231218454
https://doi.org/10.1177/05694345231218454
https://doi.org/10.5281/zenodo.13337526
https://doi.org/10.5281/zenodo.13337526
https://api.semanticscholar.org/CorpusID:237581155
https://api.semanticscholar.org/CorpusID:237581155
https://api.semanticscholar.org/CorpusID:237581155
https://doi.org/10.1186/s13643-024-02575-4
https://doi.org/10.1186/s13643-024-02575-4
https://doi.org/10.1186/s13643-024-02575-4
https://api.semanticscholar.org/CorpusID:14300215
https://doi.org/10.31235/osf.io/j2u9x
https://doi.org/10.31235/osf.io/j2u9x
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://api.semanticscholar.org/CorpusID:210702798
https://api.semanticscholar.org/CorpusID:210702798


G. Polverini. 2024. How understanding large language
models can inform the use of chatgpt in physics edu-
cation. European Journal of Physics, 45:025701.

Richard Sutton. 2019. The bitter lesson. Blog post.
Accessed: Augsust 2024.

R. Tai, L. Bentley, X. Xia, J. Sitt, S. Fankhauser,
A. Chicas-Mosier, and B. Monteith. 2023. An ex-
amination of the use of large language models to aid
analysis of textual data.

A. Urman. 2023. The silence of the llms: cross-lingual
analysis of political bias and false information preva-
lence in chatgpt, google bard, and bing chat.

W. Yeadon. 2024. The impact of ai in physics educa-
tion: a comprehensive review from gcse to university
levels. Physics Education, 59:025010.

184

https://doi.org/10.1088/1361-6404/ad1420
https://doi.org/10.1088/1361-6404/ad1420
https://doi.org/10.1088/1361-6404/ad1420
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.1101/2023.07.17.549361
https://doi.org/10.1101/2023.07.17.549361
https://doi.org/10.1101/2023.07.17.549361
https://doi.org/10.31219/osf.io/q9v8f
https://doi.org/10.31219/osf.io/q9v8f
https://doi.org/10.31219/osf.io/q9v8f
https://doi.org/10.1088/1361-6552/ad1fa2
https://doi.org/10.1088/1361-6552/ad1fa2
https://doi.org/10.1088/1361-6552/ad1fa2


A Prompt and Example Usage

from magentic import prompt

from pydantic import BaseModel, Field

class Score(BaseModel):

explanation: str = Field(description="An explanation for the given score")

score: int = Field(

description="A score from 0 to 10",

ge=0,

le=10,

)

class BitterLessonScores(BaseModel):

learning_over_engineering_score: Score = Field(

description="**Learning Over Engineering**: To what extent does the idea prioritize leveraging

computation through data-driven learning and statistical methods (e.g., machine learning,

deep learning, neural networks, probabilistic models, unsupervised learning, supervised

learning, reinforcement learning, generative models, discriminative models, ensemble

methods, online learning, active learning, semi-supervised learning) over relying on

human-engineered knowledge, heuristics, and domain expertise (e.g., hand-crafted features,

rule-based systems, expert systems, symbolic AI, knowledge representation, logic

programming, constraint satisfaction)?\n\nPlease rate on a scale from 0 to 10, where:\n0

= Completely relies on human engineering, 5 = Equal emphasis on learning and engineering,

10 = Completely prioritizes learning from data",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

search_over_heuristics_score: Score = Field(

description="**Search over Heuristics**: To what degree does the idea emphasize leveraging

computation through search algorithms (e.g., gradient descent, stochastic gradient

descent, evolutionary algorithms, genetic algorithms, simulated annealing, Monte Carlo

methods, Markov chain Monte Carlo, beam search, branch and bound, A* search, heuristic

search) and optimization techniques (e.g., convex optimization, stochastic optimization,

combinatorial optimization, integer programming, quadratic programming, linear

programming, non-linear optimization, multi-objective optimization), rather than

depending on human-designed heuristics and problem-specific strategies (e.g., hand-tuned

parameters, domain-specific rules, expert knowledge, case-based reasoning, heuristic

functions)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Completely relies on

human-designed heuristics, 5 = Equal emphasis on search and heuristics, 10 = Completely

prioritizes search and optimization",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

scalability_with_computation_score: Score = Field(

description="**Scalability with Computation**:To what extent is the idea based on methods that

can continuously scale and improve performance as the available computational resources

(e.g., processing power, memory, storage, data, distributed computing, cloud computing,

GPU acceleration, TPU acceleration, high-performance computing, edge computing, quantum

computing) increase, taking full advantage of the exponential growth in computing

capabilities (e.g., Moore's Law, Dennard scaling, Amdahl's Law, Gustafson's

Law)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Does not scale with computation

at all, 5 = Scales moderately with computation, 10 = Scales exceptionally well with

computation",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

generality_over_specificity_score: Score = Field(
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description="**Generality over Specificity**:To what degree does the approach emphasize

general, flexible, and adaptable methods that can learn and capture arbitrary complexity

from data (e.g., deep learning, transfer learning, meta-learning, representation learning,

multi-task learning, few-shot learning, zero-shot learning, self-supervised learning,

unsupervised pre-training, domain adaptation, continual learning, lifelong learning,

incremental learning) rather than attempting to build in complex and detailed models of

the world through manual engineering and domain-specific knowledge (e.g., hand-designed

features, domain-specific ontologies, knowledge graphs, expert systems, rule-based

systems, symbolic representations, logic-based representations)?\n\nPlease rate on a

scale from 0 to 10, where:\n0 = Completely domain-specific and manually engineered, 5 =

Balance of generality and specificity, 10 = Maximally general, flexible and adaptable",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

favoring_fundamental_principles_score: Score = Field(

description="**Favoring Fundamental Principles**: To what extent does the approach adhere to

fundamental principles of computation, mathematics, and information theory (e.g.,

algorithmic efficiency, computational complexity, statistical learning theory,

information entropy, Bayesian inference, Kolmogorov complexity, Occam's razor, Minimum

Description Length, PAC learning, VC dimension, Rademacher complexity, concentration

inequalities, regularization, sparsity, smoothness, stability, convergence, consistency)

rather than focusing on emulating the specific details of human cognition or biological

intelligence (e.g., neuroscience-inspired architectures, cognitive architectures,

embodied cognition, situated cognition, enactivism, dynamical systems theory, ecological

psychology)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Completely focused on

emulating human/biological details, 5 = Equal focus on principles and human/biological

details, 10 = Completely grounded in fundamental principles",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

@prompt(

"""

Title: {title}

Abstract: {abstract}

We want to evalute this abstract in terms of alignment with "The Bitter Lesson". The main idea of Rich

Sutton's "The Bitter Lesson" is that the most effective AI approaches in the long run are those

that leverage computation and general-purpose methods like search and learning, rather than

human-designed systems that try to build in human knowledge. Evaluate the alignment of the

abstract with the following principles, assigning a score from 0 to 10 for each.

↪→

↪→

↪→

↪→

"""

)

def evaluate_bitter_lesson_alignment(

title: str, abstract: str

) -> BitterLessonScores: ...

## EXAMPLE USAGE

bitter_lesson_scores = evaluate_bitter_lesson_alignment(

title="Attention Is All You Need",
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abstract="The dominant sequence transduction models are based on complex recurrent or

convolutional neural networks in an encoder-decoder configuration. The best performing models

also connect the encoder and decoder through an attention mechanism. We propose a new simple

network architecture, the Transformer, based solely on attention mechanisms, dispensing with

recurrence and convolutions entirely. Experiments on two machine translation tasks show these

models to be superior in quality while being more parallelizable and requiring significantly

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German

translation task, improving over the existing best results, including ensembles by over 2

BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new

single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a

small fraction of the training costs of the best models from the literature. We show that the

Transformer generalizes well to other tasks by applying it successfully to English

constituency parsing both with large and limited training data.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

print(bitter_lesson_scores.model_dump_json(indent=2))

# {

# "learning_over_engineering_score": {

# "explanation": "The abstract describes a model called the Transformer that is based solely

on attention mechanisms, dispensing with recurrence and convolutions. This indicates a strong

reliance on learning from data rather than on human-engineered features or domain-specific

knowledge. The significant improvement in BLEU scores across multiple tasks further showcases the

efficacy of data-driven learning methods.",

↪→

↪→

↪→

↪→

# "score": 9,

# },

# "search_over_heuristics_score": {

# "explanation": "The Transformer model prioritizes the use of attention mechanisms to learn

representations from data, which can be considered a form of search over heuristics. The

architecture allows for efficient computation and optimization during training, indicating a

significant emphasis on leveraging search algorithms and optimization techniques rather than

relying on human-designed heuristics.",

↪→

↪→

↪→

↪→

# "score": 8,

# },

# "scalability_with_computation_score": {

# "explanation": "The abstract highlights the Transformer model's parallelizability and

reduced training time, which suggests that the model can scale effectively with increased

computational resources. The use of GPUs to achieve state-of-the-art performance in a relatively

short training time further indicates that the model benefits significantly from additional

computational power.",

↪→

↪→

↪→

↪→

# "score": 9,

# },

# "generality_over_specificity_score": {

# "explanation": "The abstract demonstrates the generality of the Transformer model by

applying it successfully to multiple tasks, including machine translation and English

constituency parsing. The model's ability to generalize well to tasks with both large and limited

training data suggests that it is highly adaptable and not limited to specific domains or tasks.",

↪→

↪→

↪→

# "score": 9,

# },

# "favoring_fundamental_principles_score": {

# "explanation": "The Transformer model is grounded in fundamental principles of computation

and information theory, particularly through its use of attention mechanisms, which can be seen

as an efficient way to handle sequence transductions. The focus on parallelizability and

optimization also aligns with fundamental principles rather than attempting to emulate human

cognition or biological processes.",

↪→

↪→

↪→

↪→

# "score": 8,

# },

# }
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Abstract

Autism Spectrum Disorder (ASD) is a neuro-
logical and developmental disability that af-
fects how an individual learns, communicates,
interacts with others. Applied Behavior Anal-
ysis (ABA) is a gold standard therapy for chil-
dren and adults suffering from ASD to im-
prove their learning, social, and communica-
tion skills. Today, 1 in 36 children are diag-
nosed with ASD with expectations that this
rate will only continue to rise. The supply of
certified ABA providers is alarmingly insuffi-
cient to meet the needs of children with ASD.
In fact, waitlists to receive ABA therapy in the
United States exceed 10 months in most states.
Clinicians or Board Certified Behavior Ana-
lysts (BCBAs) are now experiencing intense
bottlenecks around diagnostic evaluations and
developing treatment plans quickly enough to
support timely access to care. Over the past
few years, Artificial Intelligence has changed
the way industries operate by offering powerful
ways to process, analyze, generate, and predict
data. In this paper, we have addressed the prob-
lem of both time and supply restrictions faced
by ABA providers by proposing a novel method
for personalized treatment plan generation and
program prediction by leveraging the capabil-
ities of Deep Learning and Large Language
Models (LLM). Additionally, we have intro-
duced two separate models for behavior pro-
gram prediction (F1-Score: 0.671) and skill ac-
quisition program predictions (Rouge-1 Score:
0.476) which will help ABA providers in treat-
ment plan implementation. Results are promis-
ing: an AI-generated treatment plan demon-
strates a high similarity (Average Similarity
Score: 0.915) to the original treatment plan
written by a BCBA. Finally, as we partnered
with a multi-state ABA provider in building
this product, we ran a single-blind study that
concluded that BCBAs prefer an AI-generated
treatment plan 65 percent of the time compared
to a BCBA-generated one.

1 Introduction

Over the past years, there has been a signifi-
cant rise in the cases of Autism Spectrum Dis-
order (ASD). According to data collected by the
Autism and Developmental Disabilities Monitoring
(ADDM)(Maenner et al., 2023), 1 in 36 children
in United States have autism. Increased aware-
ness and screening, broadened diagnostic criteria,
and better infrastructure for autism research have
played a vital role in the rise of ASD prevalence.
Applied Behavior Analysis (ABA) is regarded as a
gold-standard therapy and is one of the most widely
accepted therapies. Today, it is 100 percent covered
by insurance and children are diagnosed as earlier
as 2 years of age.

Effective ABA treatment relies on early diag-
nosis and effective treatment planning to individ-
ualize the behavior reduction goals and skill ac-
quisition needs of every child. The type of ABA
treatment plan is conventionally determined by a
trained Board Certified Behavior Analyst (BCBA)
via integrated assessment like VB-MAPP(CS et al.,
2014), ABLLS(Partington and Analysts, 2010),
Vineland, etc. and information derived from de-
tailed patient intake forms, diagnostic reports, and
the functional analysis of the patient. ABA treat-
ment plans are comprehensive and tailored to meet
the specific needs of individuals with Autism Spec-
trum Disorder (ASD). These plans encompass vari-
ous components that work together to improve be-
haviors and enhance overall functioning. However,
with a rise in ASD cases and increased demand for
ABA services, there has been a shortage of ABA
providers or Board Certified Behavior Analysts
(BCBAs)(Chiri and Warfield, 2012)(Smith-Young
et al., 2020). As the demand for ABA therapy esca-
lates, maintaining a balance between workload and
service quality therapy becomes increasingly com-
plex for BCBAs. Due to this, individuals diagnosed
with ASD face challenges in accessing the neces-
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Figure 1: Illustration of the proposed method designed for end-to-end generation of treatment plan for ABA therapy
personalized for each individual.

sary therapy and the required support. The scarcity
of quality ABA therapy affects the progress of the
individual in managing ASD, impacting mental
health.

To address this problem, we have introduced a
novel approach for creating individualized treat-
ment plans tailored to the specific needs of any
client using the advancements in the field of Deep
Learning. We have also proposed two separate
transformer-based(Vaswani et al., 2023) models to
predict "Behavior Reduction" and "Skill Acquisi-
tion" programs, considering client’s assessments
(like VB-MAPP, ABLLS, etc.), diagnostic reports,
and parent interviews. We have further shown our
proposed models outperforms other state-of-the-art
models in prediction tasks. The first-draft gener-
ated via our model will save a significant amount
of time, as we are able to effectively analyze thou-
sands of clinical documents to create and individ-
ualize a treatment plan. Through the experiments
conducted for measuring the similarity of the AI-
generated treatment plan versus the original one,
the potential of the proposed method is revealed.
The main contribution of the paper can be summa-
rized as follows:

1. We propose an end-to-end novel method for
generating a personalized treatment plan for
an individual with ASD which takes Assess-
ment Documents (like ABLLS, VB-MAPP),
Parent Interview documents, and Diagnostic
Reports as inputs. This will significantly re-
duce the time it takes a BCBA to create a
treatment plan in addition to increasing the
quality of goals for each child.

2. We also introduced two transformer-based
models for the prediction of programs for the
"Behavior Reduction" and "Skill Acquisition"
Section.

3. Skill Acquisition program prediction uses an
ensemble approach combining a rules-based
and transformer-based model. We introduced

our own word embedding model fine-tuned on
the ABA treatment data for the ensemble ap-
proach using sentence-transformers(Reimers
and Gurevych, 2019).

4. Treatment Plans generated using our approach
show very high similarity with the original
treatment plan and achieves an average sim-
ilarity score of 0.915. When conducting a
single-blind study with 35 BCBAs compar-
ing AI-generated treatment plans vs. BCBA-
generated treatment plans, BCBAs preferred
AI-generated treatment plans 65 percent of
the time. This strengthens our belief that AI
can enable BCBAs to create the best version
of a treatment plan for a child, as it is capa-
ble of processing and analyzing thousands of
treatment plans in the past to create the most
suitable and personalized treatment plan for a
child. Furthermore, our models outperforms
other state-of-the-art deep learning models
used for similar tasks. To our knowledge,
the proposed method for end-to-end treatment
plan generation customized for an individual
is first to be used in the domain of ASD.

2 Related Work

Artificial Intelligence and Deep Learning is
increasingly used in the field of modern medicine
for managing neurological conditions such as
Alzheimer(EL-Geneedy et al., 2023)(Al Mamun
et al., 2021) due to abundance availability of
structured and unstructured data. The goal of
Deep learning is to replicate cognitive abilities of
human beings by analyzing complex datasets and
generating meaningful pattern out of them without
any human intervention(Pandey et al., 2022)(Egger
et al., 2022). The healthcare sector has benefited
from the advancements in the domain of deep
learning with early diagnosis(Sorrentino et al.,
2024), drug discovery(Carracedo-Reboredo et al.,
2021), personalized treatment plan(Ng et al., 2021),
etc. Recently, there has also been a used of deep
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learning for detecting depression(Fang et al., 2023)
and managing mental health conditions(Shatte
et al., 2019).

Recent advancements in the domain of deep
learning has significantly impacted the field of
Autism Spectrum Disorder (ASD) by offering new
means for diagnosis and treatment. (Kollias et al.,
2022) proposes a method for ASD detection using
eye movement of an individual. Deep learning,
particularly involving neural networks have shown
promising results in the field of ASD. For instance,
(Ahammed et al., 2021) uses Convolutional Neural
Network (CNN) for classification of ASD on
functional MRI data. Similarly, there has also been
use of Recurrent Neural Networks (RNN)(Sudha
and Vijaya, 2021) and Long Short-Term Mem-
ory (LSTM) for analyzing time-series data for
diagnosis of ASD. For instance, (Li et al., 2019)
uses LSTM to diagnose children with ASD based
on raw video data. Deep learning techniques
are also used for dimensionality reduction and
feature extraction which helps in ASD research.
(Kim et al., 2021) uses Variational auto-encoder
(VAE) for representation learning, enhancing
the interpretability of complex datasets. Person-
alization of treatment(Kohli et al., 2022) for an
individual with ASD has also benefited from the
advancements in deep learning while there has also
been work on Ensemble learning for classification
of ASD(Gaur et al., 2023). As the field of deep
learning continue to evolve, it can play a crucial
role in ASD research.

3 Methodology

This section presents the proposed method for an
end-to-end treatment plan generation personalized
for each individual (as depicted in Figure 1) along
with the details about the prediction of behavior
and skill acquisition programs. It takes the raw as-
sessment file (generally in excel format for ABLLs,
VB-MAPP, etc), diagnostic reports, and the parent
interview documents of the client as inputs. Our
proposed method has been divided into different
sections for pre-processing and the analysis of the
input, prediction, and generation of goals tailored
to meet the specific requirements of the client.

3.1 Preprocessing of Input

We take raw assessment files, diagnostic reports
and parent interview forms as inputs for our pro-

posed method. We then extract the following in-
formation from the corresponding document for
formulation of the treatment plan:

• Client Demographics and Diagnostic Code:
Diagnostic Report

• Client Medical History, Language or Commu-
nication Skills, Social or Play Skills, Repeti-
tive, Rigid, Restrictive or Challenging Behav-
ior: Parent Interview Docs

We use image processing and with the help of
opencv(Bradski, 2000) and openpyxl(Clark and
Gazoni, 2010), we analyze the raw assessment files
and convert them into a summary table containing
domains(like Mand, Tact, Intraverbal, etc.) and
score of the client in that particular domain. This
saves a significant amount of time for BCBAs, who
typically spend time analyzing these assessments
and converting them into structured formats manu-
ally. In fact, we surveyed roughly 40 BCBAs who
quantified that it takes between 10-15 hours to cre-
ate a treatment plan for a child in their caseload.
We believe our AI-generated treatment plan will
bring this time down to 1 hour or less.

3.2 Behavior Program Prediction

In ABA therapy, Behavior Programs are focused
on addressing specific behavior of an individual
which maybe interfering with their daily life rou-
tine. These goals are aimed to decrease the chal-
lenging behavior and increase the desired behavior.

We formulated the problem of Behavior Goal
Prediction as a multi-label classification tasks
which takes Language/Communication Skills, So-
cial/Play Skills and Restrictive or Challenging Be-
havior of the client as an input and outputs the set of
the behavior program which interferes with client’s
daily life and functioning and which needs to be ad-
dressed in the ABA therapy. We used a transformer
based model named Deberta-v3(He et al., 2021) for
the multi-label classification problem. Deberta-v3
is an improvement over BERT(Devlin et al., 2019)
and RoBERTa(Liu et al., 2019) based models by
using disentangled attention and enhanced mask
decoder. We train the model on our curated dataset
using binary cross entropy loss which measures
the dissimilarity between the true labels and the
predicted probabilities (Eq.1).

Loss = (Y)(−log(Yp)) + (1-Y)(−log(1-Y)p)(1)
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where Yp = predicted probability of the class and
Y = true label.
We calculate the loss for each class and then sum
over all the classes for training our model.

3.3 Skill Acquisition Program Prediction

In ABA Therapy, Skill Acquisition Goals play a
crucial role by providing a structured framework,
which helps the client with developmental or be-
havioral challenges and helps them gain essential
skills including communication, social skills, and
self-management.

3.3.1 Transformer-based Model
Since the number of skill acquisition programs can
be very large in number, it was not feasible to train
a classification model for this task with a limited
dataset. Hence, we formulated the problem as a
question-answering task, where the input is the
client information which includes their demograph-
ics information, previous medical history, clinical
and home observation data and assessment results
(like VB-MAPP, ABLLs, Vineland, etc.) and out-
put is the set of skill acquisition programs suited
for the particular client. We used FlanT5(Chung
et al., 2022) which is an encoder-decoder(Vaswani
et al., 2023) based model for this question answer-
ing task using a labeled dataset. Here, our labeled
dataset consisted of a question x, and a response
y(list of skill acquisition programs) corresponding
to the given question or client information. Conse-
quently, the training process is aimed at minimizing
the cross-entropy loss between the predicted proba-
bilities and true class labels(Eq.2.)

Loss(θ) = −E[logpθ(y|x)] (2)

3.3.2 Rule-based Model
The rules-based model for predicting skill acqui-
sition programs leverages assessment summary ta-
bles created from raw assessment files for gener-
ating tailored recommendations for skill develop-
ment of an individual. The model employs a struc-
tured set of rules derived from gold-standard assess-
ment curriculum guides, then validated with the
help of BCBA domain expertise. The model iden-
tifies the client-specific deficits in each domain by
analyzing detailed data from raw assessment files
and then translate these identified deficits into set
of skill acquisition goals using the set of predefined
rules. This approach ensures that goal predictions
are tailored to unique needs of an individual.

3.3.3 Ensemble Model

The Ensemble Model for predicting skill acqui-
sition programs integrates both the transformer-
based and rules-based model. We create a client
vector which includes the demographic information
of the client and their home and clinical observa-
tion results. We created our own embedding model
by fine-tuning the ClinicalBERT(Alsentzer et al.,
2019) model to improve its performance on our
specified use case. Our dataset consists of a pair
of sample in the format {x1, x2, s}, where x1 and
x2 are pair of sentences and s is a binary label. s
= 1 if x1 and x2 are deemed similar, and s = 0 if
they are deemed dissimilar. We utilize sentence-
transformers for fine-tuning and use contrastive
loss between the input vector consisting of client
demographic information, home and clinic observa-
tion results(x1) and the program list(x2). The client
vector was created from our fine-tuned embedding
model. We then calculate the similarity of each of
the predicted skill acquisition program from both
the approaches (Transformer-based and rule-based
model) with the client vector. Final set of results
contains those programs which posses similarity
score of greater than 0.5 with the client vector.

3.4 Goals Generation

In our proposed method, we utilized GPT-3.5
Turbo(Liu et al., 2023) for generating the short-
term and long-term goals corresponding to each
of the program. In our research, we implemented
Retrieval-Augmented Generation (RAG) combined
with Prompt Engineering with GPT-3.5 Turbo for
enhancing the quality of the generated goals. We
developed a specialized custom database tailored
to our specific need which includes client infor-
mation and short-term and long-term goals corre-
sponding to that client. Retrieval-Augmented Gen-
eration (RAG) enabled the GPT model to utilize
the custom-built database of relevant information
to inform and enhance the goal generation pro-
cess. Prompt engineering involves designing and
refining input prompts to guide the model in pro-
ducing more relevant and accurate outputs. This
process included providing explicit instructions to
the model, experimenting with different prompt
structures, and iteratively refining prompts based
on the model’s responses. Combining RAG and
Prompt Engineering, we aimed to leverage GPT’s
advanced language capabilities for generating more
accurate and precise goals specific to a particular
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Figure 2: The left figure presents the number of client in each age group, with bars indicating the count of clients.
Right figure presents a pie chart indicates the percentage distribution of male and female clients relative to the total
client population.

individual.

4 Experiments

4.1 Experimental Settings

4.1.1 Models and Datasets
We evaluate the effectiveness of our proposed
method using the following models for program
prediction task:

• Behavior Program Prediction: Deberta-v3-
base. The DeBERTa V3 base model has 12
layers and 86M backbone parameters with a
vocabulary size of 128k tokens and is trained
on 160GB of data as Deberta v2.

• Skill Program Prediction: Flan-t5-base. Flan-
T5 is an improvement over T5-based models.
FLan-T5-base contains 12 hidden layers and
250M model parameters.

We further calculate the semantic textual
similarity of the final treatment plan generated
with the original treatment plan using pre-trained
sentence transformer models.

We curated a custom dataset for validating the ef-
fectiveness of our proposed method. All the clients
included in the study have been diagnosed with
Autism Spectrum Disorder (ASD) and are within
the age range of 2 to 14 years. The full dataset en-
compasses a total of 617 clients which were further
divided into training and testing set with an 80:20
split. The distribution of clients by age group and
gender proportions is shown in Figure 2. For each
client, the dataset includes the original treatment
plan formulated by BCBA and other input docu-
ments like the parent interview form, diagnostic
report, and raw files of the assessment which were
conducted for that particular client, for example:
VB-MAPP, ABLLS, Vineland, etc.

4.1.2 Implementation Details

We trained our model for behavior programs and
skill program predictions using 4 Nvidia T4 GPUs
using the Pytorch deep learning framework. We
used the Accelerate library to make our distributed
training easier, more effective, and efficient at the
same time. Batch size has been set to 4 for all the
experiments. The learning rate is set to 2e-5 for
behavior program prediction , and 3e-4 for skill
acquisition program prediction using a cosine rate
scheduler. Pre-processing steps including infor-
mation retrieval from input documents and anal-
ysis of raw assessment files were carried out in
CPU(Apple M3 Pro chip: 12-core CPU).

4.1.3 Evaluation Setting

All the evaluation were carried out on the test set
of our curated dataset. For the quantitative perfor-
mance comparison, we adopt an F1-score, Rouge
score and Exact Match as an evaluation metric. The
F1-score is specifically developed for assessing
the performance of a classification model, while
Rouge score are used to evaluate the quality of
machine-generated text. A higher F1 and Rouge
score indicated better model performance. Exact
Match (EM) is another question-answering evalua-
tion metric that only gives two scores (0 or 1). EM
score is 1 if the generated answer is precisely the
same as the predicted answer, else, it gives 0. We
also evaluate the effectiveness of our end-to-end
treatment plan generation approach by calculating
its similarity with the original treatment plan. We
used sentence transformers for this approach which
outputs a similarity score in range of -1 to 1, where
-1 indicates complete dissimilarity while 1 indicates
complete similarity.
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Model Params Rouge-1 Rouge-2 Rouge-l Exact Match
Flan-T5-base(Chung et al., 2022) 250M 0.0139 0.0 0.010789 0.0
Flan-T5-large(Chung et al., 2022) 780M 0.01986 0.0 0.01708 0.0
Phi-2b(Abdin et al., 2023) 2.7B 0.05830 0.0043 0.03389 0.0
Ours(based on Flan-T5-base) 250M 0.4762 0.3583 0.3764 0.3376

Table 1: Performance comparison for Skill Program Prediction using different models. It can be observed that our
model outperforms all the other models on rouge score and exact match metric having least number of parameters
compared to other models.

Model Params F1-score
Deberta-v3-base(He et al., 2021) 86M 0.1023
Deberta-v3-large(He et al., 2021) 304M 0.0662
Roberta-base(Liu et al., 2019) 125M 0.087
Biobert v1.1(Lee et al., 2019) 110M 0.19535
Ours(Based on Deberta-v3-base) 86M 0.671

Table 2: Table shows the F1-score comparison of different model for behavior program prediction. Our model
achieves better results compared to other models with minimal number of parameters.

Name Minilm-L6-v2 Bert-base Mpnet-base
Client 1 0.883945 0.97367 0.950932
Client 2 0.84949 0.92193 0.923908
Client 3 0.949224 0.97867 0.95126
Client 4 0.93826 0.962447 0.95891
Client 5 0.90818 0.939519 0.94793
Client 6 0.746431 0.82151 0.858006
Average 0.879255 0.93296 0.93182

Table 3: Table shows the semantic textual similarity score between the treatment plan generated using our approach
and the original treatment plan for 6 random clients from the test set. Similarity score was calculated using
sentence-transformers using different models. It can observed that our treatment plan shows very high similarity
score with the original treatment plan hence validating the effectiveness of our proposed method.

4.2 Experimental Results

4.2.1 Behavior Program Prediction
We evaluate our model trained for behavior pro-
gram prediction using Microsoft Deberta-v3-base
model on the test set of our custom curated dataset.
We compare its performance with similar other
models as shown in Table 2. We observe that our
approach is able to beat all other models by a huge
margin and has fewest number of parameters, hence
making it a suitable choice for deployment in a
resource-constrained environment.

4.2.2 Skill Acquisition Program Prediction
We evaluate our model trained for skill acquisi-
tion program prediction using Google Flat-T5-base
model on the test set of our custom curated dataset.
Table 1 shows the performance of our model using

Rouge Score and Exact Match evaluation metric.
We observe that our model is able to outperform all
the other models which validates the effectiveness
of our approach.

4.2.3 Full Treatment Plan Generation

We further evaluate the effectiveness of our pro-
posed method for entire treatment plan generation
by measuring the similarity between generated and
original treatment plan as show in Table. We took
6 random client from the test set and generated
the full treatment plan by taking diagnostic report,
parent interview and raw assessment files as an
input. We then calculated the similarity using dif-
ferent models with the original treatment plan for
better validation using sentence-transformers. We
observe that the treatment plan generated using
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our proposed method posses very high similarity
with the original treatment plan, which validates
the effectiveness of our proposed methodology.
When sharing AI-generated treatment plans versus
BCBA-generated treatment plans via a single blind
study to 35 BCBAs, our AI-generated treatment
plan was preferred 65 percent of the time.

4.3 Ablation Studies

Our proposed method for an end-to-end treatment
plan generation shows promising results and also
outperforms state-of-the-art NLP models on behav-
ior program and skill acquisition program predic-
tion tasks. We performed extensive ablation experi-
ments to demonstrate the effectiveness of the pro-
posed method on personalized downstream tasks.
We tried an exhaustive hyperparameter search and
fine-tuning the learning rate. All these modifica-
tions results in a very negligible change in the over-
all performance of the model. We also tried modi-
fying the loss function by incorporating ABA Ther-
apy rules, however, no significant changes were
observed in model performance.

5 Conclusion

In this work, we propose a novel method for full
treatment plan generation specific to the needs of a
particular individual. Our proposed method out-
performs other state-of-the-art model in similar
domain in program prediction tasks. We further
validate the effectiveness of our approach by calcu-
lating the similarity of the generated treatment plan
with the original treatment plan. The treatment plan
generated using our approach possess very high
similarity with the original treatment plan. Our
proposed method will not only help in automating
the treatment plan generation process but will also
reduce the time taken by a BCBA in formulating
the treatment plan. On average, a BCBA spends
anywhere between 10-15 hours creating a single
treatment plan from start to finish. We believe that
our AI-generated treatment plan will enable them
to do so in 1 hour or less. The applicability of
our proposed method on other neurodevelopmental
disorders outside of autism are open avenues for
future work.

6 Limitations

While our proposed end-to-end method for treat-
ment plan generation achieves a very high semantic
similarity score with the original treatment plan and

our proposed models for behavior program predic-
tion and skill acquisition program prediction gener-
ates better results, it does have certain limitations
that we plan to address in future. Since our curated
dataset contains client suffering from ASD, the ap-
plicability of our approach to similar neurological
problems is still unexplored. We used deberta-v3
as a backbone for multi-label classification task in
the domain of ASD. However, validating the effec-
tiveness of techniques like label clustering(Ding
et al., 2020) and graph-label attention(Pal et al.,
2020) in the domain of ASD can be the scope of
future work. There is also a lack of labelled dataset
due to scarcity of available open-source data in the
domain of ASD. Furthermore, the variances in the
response of BCBAs or ABA providers can be one
of the areas of research in the future for improving
the robustness of the model. To address this, we
plan to leverage reinforcement learning techniques
to address and incorporate the individualized pref-
erences of BCBAs when generating a treatment
plan for a child in their caseload.

References

Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del
Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gu-
nasekar, Mojan Javaheripi, Piero Kauffmann, Yin Tat
Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Michael San-
tacroce, Harkirat Singh Behl, Adam Taumann Kalai,
Xin Wang, Rachel Ward, Philipp Witte, Cyril Zhang,
and Yi Zhang. 2023. Phi-2: The surprising power of
small language modelss.

Md Shale Ahammed, Sijie Niu, Md Rishad Ahmed,
Jiwen Dong, Xizhan Gao, and Yuehui Chen. 2021.
Darkasdnet: Classification of asd on functional mri
using deep neural network. Frontiers in Neuroinfor-
matics, 15.

Shamim Al Mamun, M. Shamim Kaiser, and Mufti Mah-
mud. 2021. An artificial intelligence based approach
towards inclusive healthcare provisioning in society
5.0: A perspective on brain disorder. In Brain In-
formatics: 14th International Conference, BI 2021,
Virtual Event, September 17–19, 2021, Proceedings,
page 157–169, Berlin, Heidelberg. Springer-Verlag.

Emily Alsentzer, John R. Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew
B. A. McDermott. 2019. Publicly available clinical
bert embeddings.

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools.

194

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://doi.org/10.3389/fninf.2021.635657
https://doi.org/10.3389/fninf.2021.635657
https://doi.org/10.1007/978-3-030-86993-9_15
https://doi.org/10.1007/978-3-030-86993-9_15
https://doi.org/10.1007/978-3-030-86993-9_15
http://arxiv.org/abs/1904.03323
http://arxiv.org/abs/1904.03323


Paula Carracedo-Reboredo, Jose Liñares-Blanco,
Nereida Rodríguez-Fernández, Francisco Cedrón,
Francisco J. Novoa, Adrian Carballal, Victor Maojo,
Alejandro Pazos, and Carlos Fernandez-Lozano.
2021. A review on machine learning approaches
and trends in drug discovery. Computational and
Structural Biotechnology Journal, 19:4538–4558.

Giuseppina Chiri and Marji Erickson Warfield. 2012.
Unmet need and problems accessing core health care
services for children with autism spectrum disorder.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Charlie Clark and Eric Gazoni. 2010. Openpyxl: A
python library to read/write excel 2010 xlsx/xlsm
files. Computer software.

Barnes CS, Mellor JR, and Rehfeldt RA. 2014. Imple-
menting the verbal behavior milestones assessment
and placement program (vb-mapp): Teaching assess-
ment techniques.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Fei Ding, Xin Kang, Shun Nishide, Zhijin Guan, and
Fuji Ren. 2020. A fusion model for multi-label emo-
tion classification based on BERT and topic cluster-
ing. In International Symposium on Artificial Intelli-
gence and Robotics 2020, volume 11574 of Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, page 115740D.

Jan Egger, Christina Gsaxner, Antonio Pepe, Kelsey L.
Pomykala, Frederic Jonske, Manuel Kurz, Jianning
Li, and Jens Kleesiek. 2022. Medical deep learn-
ing—a systematic meta-review. Computer Methods
and Programs in Biomedicine, 221:106874.

Marwa EL-Geneedy, Hossam El-Din Moustafa, Fahmi
Khalifa, Hatem Khater, and Eman AbdElhalim. 2023.
An mri-based deep learning approach for accurate
detection of alzheimer’s disease. Alexandria Engi-
neering Journal, 63:211–221.

Yuqi Fang, Mingliang Wang, Guy G. Potter, and
Mingxia Liu. 2023. Unsupervised cross-domain
functional mri adaptation for automated major depres-
sive disorder identification. Medical Image Analysis,
84:102707.

Manu Gaur, Kunal Chaturvedi, Dinesh Kumar Vish-
wakarma, Savitha Ramasamy, and Mukesh Prasad.
2023. Self-supervised ensembled learning for autism
spectrum classification. Research in Autism Spec-
trum Disorders, 107:102223.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Jung-Hoon Kim, Yizhen Zhang, Kuan Han, Zheyu Wen,
Minkyu Choi, and Zhongming Liu. 2021. Represen-
tation learning of resting state fmri with variational
autoencoder. NeuroImage, 241:118423.

Manu Kohli, Arpan Kar, Anjali Bangalore, and A P
Prathosh. 2022. Machine learning-based aba treat-
ment recommendation and personalization for autism
spectrum disorder: an exploratory study. Brain Infor-
matics, 9.

Konstantinos-Filippos Kollias, Christine K.
Syriopoulou-Delli, Panagiotis Sarigiannidis,
and George F. Fragulis. 2022. Autism detection
in high-functioning adults with the application of
eye-tracking technology and machine learning. In
2022 11th International Conference on Modern
Circuits and Systems Technologies (MOCAST),
pages 1–4.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jing Li, Yihao Zhong, Junxia Han, Gaoxiang Ouyang,
Xiaoli Li, and Honghai Liu. 2019. Classifying asd
children with lstm based on raw videos. Neurocom-
puting, 390.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, Zihao Wu, Lin Zhao,
Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen,
Tianming Liu, and Bao Ge. 2023. Summary of
chatgpt-related research and perspective towards the
future of large language models. Meta-Radiology,
1(2):100017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Matthew J Maenner, Zachary Warren, Ashley Robin-
son Williams, Esther Amoakohene, Amanda V
Bakian, Deborah A Bilder, Maureen S Durkin,
Robert T Fitzgerald, Sarah M Furnier, Michelle M
Hughes, Christine M Ladd-Acosta, Dedria McArthur,
Elise T Pas, Angelica Salinas, Alison Vehorn, Su-
san Williams, Amy Esler, Andrea Grzybowski, Jen-
nifer Hall-Lande, Ruby H N Nguyen, Karen Pierce,

195

https://doi.org/https://doi.org/10.1016/j.csbj.2021.08.011
https://doi.org/https://doi.org/10.1016/j.csbj.2021.08.011
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://openpyxl.readthedocs.io/
https://openpyxl.readthedocs.io/
https://openpyxl.readthedocs.io/
https://pubmed.ncbi.nlm.nih.gov/27274972
https://pubmed.ncbi.nlm.nih.gov/27274972
https://pubmed.ncbi.nlm.nih.gov/27274972
https://pubmed.ncbi.nlm.nih.gov/27274972
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1117/12.2579255
https://doi.org/10.1117/12.2579255
https://doi.org/10.1117/12.2579255
https://doi.org/https://doi.org/10.1016/j.cmpb.2022.106874
https://doi.org/https://doi.org/10.1016/j.cmpb.2022.106874
https://doi.org/https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/https://doi.org/10.1016/j.media.2022.102707
https://doi.org/https://doi.org/10.1016/j.media.2022.102707
https://doi.org/https://doi.org/10.1016/j.media.2022.102707
https://doi.org/https://doi.org/10.1016/j.rasd.2023.102223
https://doi.org/https://doi.org/10.1016/j.rasd.2023.102223
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118423
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118423
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118423
https://doi.org/10.1186/s40708-022-00164-6
https://doi.org/10.1186/s40708-022-00164-6
https://doi.org/10.1186/s40708-022-00164-6
https://doi.org/10.1109/MOCAST54814.2022.9837653
https://doi.org/10.1109/MOCAST54814.2022.9837653
https://doi.org/10.1109/MOCAST54814.2022.9837653
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.neucom.2019.05.106
https://doi.org/10.1016/j.neucom.2019.05.106
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Walter Zahorodny, Allison Hudson, Libby Hallas,
Kristen Clancy Mancilla, Mary Patrick, Josephine
Shenouda, Kate Sidwell, Monica DiRienzo, Johanna
Gutierrez, Margaret H Spivey, Maya Lopez, Sydney
Pettygrove, Yvette D Schwenk, Anita Washington,
and Kelly A Shaw. 2023. Prevalence and character-
istics of autism spectrum disorder among children
aged 8 years - autism and developmental disabilities
monitoring network, 11 sites, united states, 2020.

Kenney Ng, Uri Kartoun, Harry Stavropoulos, John A
Zambrano, and Paul C Tang. 2021. “personalized
treatment options for chronic diseases using precision
cohort analytics.

Ankit Pal, Muru Selvakumar, and Malaikannan Sankara-
subbu. 2020. Magnet: Multi-label text classification
using attention-based graph neural network. In Pro-
ceedings of the 12th International Conference on
Agents and Artificial Intelligence. SCITEPRESS -
Science and Technology Publications.

Babita Pandey, Devendra Kumar Pandey, Brijendra
Pratap Mishra, and Wasiur Rhmann. 2022. A com-
prehensive survey of deep learning in the field of
medical imaging and medical natural language pro-
cessing: Challenges and research directions. Journal
of King Saud University - Computer and Information
Sciences, 34(8, Part A):5083–5099.

J.W. Partington and Partington Behavior Analysts. 2010.
The Assessment of Basic Language and Learning
Skills-revised (the ABLLS-R). The Assessment of Ba-
sic Language and Learning Skills-revised. Behavior
Analysts.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Adrian B. R. Shatte, Delyse M. Hutchinson, and Saman-
tha J. Teague. 2019. Machine learning in mental
health: a scoping review of methods and applications.
Psychological Medicine, 49(9):1426–1448.

Joanne Smith-Young, Roger Chafe, , and Rick Audas.
2020. “managing the wait”: Parents’ experiences in
accessing diagnostic and treatment services for chil-
dren and adolescents diagnosed with autism spectrum
disorder.

Francesco Saverio Sorrentino, Lorenzo Gardini, Luigi
Fontana, Mutali Musa, Andrea Gabai, Antonino Ma-
niaci, Salvatore Lavalle, Fabiana D’Esposito, An-
drea Russo, Antonio Longo, Pier Luigi Surico, Cate-
rina Gagliano, and Marco Zeppieri. 2024. Novel
approaches for early detection of retinal diseases us-
ing artificial intelligence. Journal of Personalized
Medicine, 14(7).

V. Pream Sudha and M. S. Vijaya. 2021. Recurrrent
Neural Network Based Model for Autism Spectrum
Disorder Prediction using Codon Encoding. Journal
of The Institution of Engineers (India): Series B.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

196

https://pubmed.ncbi.nlm.nih.gov/36952288/
https://pubmed.ncbi.nlm.nih.gov/36952288/
https://pubmed.ncbi.nlm.nih.gov/36952288/
https://pubmed.ncbi.nlm.nih.gov/36952288/
https://pubmed.ncbi.nlm.nih.gov/33441956/
https://pubmed.ncbi.nlm.nih.gov/33441956/
https://pubmed.ncbi.nlm.nih.gov/33441956/
https://doi.org/10.5220/0008940304940505
https://doi.org/10.5220/0008940304940505
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.01.007
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.01.007
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.01.007
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.01.007
https://books.google.co.in/books?id=rnZWtQAACAAJ
https://books.google.co.in/books?id=rnZWtQAACAAJ
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1017/S0033291719000151
https://doi.org/10.1017/S0033291719000151
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://pubmed.ncbi.nlm.nih.gov/21667201/
https://doi.org/10.3390/jpm14070690
https://doi.org/10.3390/jpm14070690
https://doi.org/10.3390/jpm14070690
https://doi.org/10.1007/s40031-021-00669-4
https://doi.org/10.1007/s40031-021-00669-4
https://doi.org/10.1007/s40031-021-00669-4
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


Proceedings of the 1st Workshop on NLP for Science (NLP4Science), pages 197–207
November 16, 2024 ©2024 Association for Computational Linguistics

Exploring Scientific Hypothesis Generation with Mamba

Miaosen Chai1*, Emily Herron2*, Erick Cervantes3, Tirthankar Ghosal2
1University of Southern California

2Oak Ridge National Laboratory 3Texas A&M International University
miaosenc@usc.edu, {herronej, ghosalt}@ornl.gov, Erickcervantes@dusty.tamiu.edu

Abstract

Generating scientifically grounded hypotheses
is a challenging frontier task for generative AI
models in science. The difficulty arises from
the inherent subjectivity of the task and the
extensive knowledge of prior work required to
assess the validity of a generated hypothesis.
Large Language Models (LLMs), trained on
vast datasets from diverse sources, have shown
a strong ability to utilize the knowledge em-
bedded in their training data. Recent research
has explored using transformer-based models
for scientific hypothesis generation, leveraging
their advanced capabilities. However, these
models often require a significant number of
parameters to manage long sequences, which
can be a limitation. State Space Models, such
as Mamba, offer an alternative by effectively
handling very long sequences with fewer
parameters than transformers. In this work,
we investigate the use of Mamba for scientific
hypothesis generation. Our preliminary
findings indicate that Mamba achieves
similar performance w.r.t. transformer-based
models of similar sizes for a higher-order
complex task like hypothesis generation.
We have made our code available here:
https://github.com/fglx-c/Exploring-
Scientific-Hypothesis-Generation-with-
Mamba

1 Introduction

Large language models (LLMs) have emerged as
a cornerstone in artificial intelligence, particularly
in scientific discovery. These models have been
increasingly integrated into scientific hypothesis
and idea generation, transforming traditional ap-
proaches to research. Traditionally, the process of
scientific hypothesis generation has involved a com-
plex interplay of the scientific method and inductive
reasoning, requiring meticulous observation, litera-
ture review, and identification of knowledge gaps.

*Equal contribution

This process, while crucial, is time-consuming and
labor-intensive, relying heavily on researchers’ ex-
pertise and creativity.

LLMs offer unique capabilities that address
many challenges inherent in traditional scientific
inquiry. They excel at processing vast amounts
of text, identifying intricate patterns, and drawing
upon an extensive knowledge base. This allows
them to mitigate cognitive biases, efficiently iden-
tify research gaps, and generate a broad spectrum
of hypotheses, including unconventional and cross-
disciplinary ideas. Their ability to handle complex-
ity makes them particularly valuable for addressing
intricate, interdisciplinary problems, potentially ac-
celerating the pace of scientific discovery. (Banker
et al., 2023; Zhou et al., 2024; Park et al., 2023;
O’Brien et al., 2024)

Scientific Inspiration Machines Optimized for
Novelty (SciMON) (Wang et al., 2024) represents
a leading approach in LLM-based scientific hypoth-
esis generation. It utilizes an LLM-based genera-
tion module and a novel iterative novelty boosting
mechanism to produce ideas that are both innova-
tive and grounded in existing literature. However,
SciMON still faces limitations in generating out-
puts that match the depth and utility of real scien-
tific papers. To address these challenges, we have
integrated a new LLM architecture called Mamba
(Gu and Dao, 2023) into SciMON’s generation
module. Mamba, based on selective state space
models, combines the strengths of Transformer and
recurrent architectures. It introduces a selection
mechanism for content-based reasoning and selec-
tive information processing within a simplified neu-
ral network design. This integration aims to en-
hance SciMON’s ability to generate more novel,
technically sophisticated, and practically useful sci-
entific ideas.

Our work provides a comprehensive comparison
of Mamba and Transformer-based models in sci-
entific hypothesis generation tasks. We evaluate
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Mamba’s performance on general in-context learn-
ing benchmarks and long-context tasks, assess its
capabilities in downstream hypothesis generation,
and investigate its potential as a baseline model
for scientific hypothesis generation. Throughout
our study, we ensure reproducibility by providing
detailed experimental setup information, including
datasets, benchmark versions, and implementation
scripts.

2 Related Work

Recent research has explored the potential of Large
Language Models (LLMs) in scientific hypothesis
and idea generation, employing various approaches
from direct prompting to more complex frame-
works. (Park et al., 2023) and (Banker et al., 2023)
investigated the capabilities of GPT-3 and GPT-
4 in generating hypotheses across diverse fields
such as materials chemistry, physics, quantum in-
formation, and social psychology. While these
models demonstrated broad knowledge and inter-
disciplinary insights, they often produced scientifi-
cally inaccurate outputs, highlighting the need for
refined approaches.

More sophisticated methods have emerged, in-
tegrating inter-domain translation, iterative pro-
cesses, and adversarial techniques. The Field-
SHIFT framework (O’Brien et al., 2024), for
instance, utilized GPT-4 to translate concepts
between neuroscience and developmental biol-
ogy, successfully generating novel hypotheses and
demonstrating potential for identifying symmetries
across scientific domains. HypoGeniC (Zhou et al.,
2024) employed a multi-armed bandit-inspired re-
ward function to iteratively improve hypotheses,
outperforming few-shot prompting across multiple
tasks. In astronomy, (Ciucă et al., 2023) applied ad-
versarial prompting using multiple GPT-4 instances
to generate, critique, and refine hypotheses, signifi-
cantly improving their quality.

Further advancements in LLM-based hypothe-
sis generation have incorporated multi-agent ap-
proaches, causal graphs, knowledge graph-based
retrieval augmentation, and novelty optimization.
Qi et al. (2023) developed a collaborative frame-
work where LLM agents serve different roles (an-
alyst, engineer, scientist, critic) in the hypothesis
generation process. Tong et al. (2023) combined
causal graphs extracted from psychology articles
with LLMs to generate psychological hypotheses
matching the novelty of human experts. The Sci-

MON framework (Wang et al., 2024) generates
novel research directions based on background con-
texts and a seed term used to constrain and guide
the hypothesis space for the model. It employs an
iterative novelty optimization workflow and vari-
ous retrieval augmentations. GPT-4 produced the
best results within this framework, although gener-
ated ideas still fell short of scientific literature in
terms of depth.

While previous work has primarily utilized
Transformer-based models, this study leverages
Mamba (Gu and Dao, 2023), a sequence modeling
architecture based on selective state space models.
Mamba has demonstrated comparable or superior
performance to Transformer-based architectures,
particularly with long sequences. By implement-
ing our approach within the SciMON framework,
we aim to capitalize on Mamba’s strengths for im-
proved hypothesis generation in scientific contexts,
potentially addressing limitations observed in pre-
vious LLM-based approaches.

3 Methodology

As mentioned, our methodology is inspired by the
SciMON model. For our benchmarking study with
Mamba, we use the similar experimental frame-
work as SciMON.

3.1 SciMON Model and Dataset Description

We make use of the recently released SciMON (Sci-
entific Inspiration Machines Optimized for Nov-
elty) model (Wang et al., 2024), designed to gen-
erate novel, literature-informed scientific ideas in
the field of Natural Language Processing (NLP).
The system begins by extracting problems, mo-
tivations, and proposed ideas from scientific pa-
pers accessed through the ACL Anthology1. The
dataset is derived from the Semantic Scholar Open
Research Corpus (S2ORC) (Lo et al., 2020), com-
prising 67,408 ACL Anthology papers published
between 1952 and 2022. Papers were filtered to in-
clude only those in English with available abstracts.
The dataset is divided temporally: the training set
includes papers before 2021, the validation set con-
tains papers from 2021, and the test set comprises
papers from 2022. For our experiments, we use
model checkpoints trained on data preceding 2022
to avoid the risk of data contamination. The papers
are processed using several information extraction
(IE) and natural language processing tools:

1https://aclanthology.org
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Figure 1: Use of IE to obtain literature data: background,
proposed ideas (target), and seed terms.

1. PL-Marker (Ye et al., 2022), pretrained on
SciERC (Luan et al., 2018), extracts entities
(Task, Method, Evaluation Metric, Material,
Other Scientific Terms, and Generic Terms)
and their relationships, focusing on used-for
relations.

2. SciCo (Cattan et al., 2021) performs corefer-
ence resolution for entity normalization.

3. Scispacy (Neumann et al., 2019) expands ab-
breviations to their full forms.

4. A sentence classification model by Cohan
et al. (2019) categorizes abstract sentences
into Background, Method, Objective, Other,
and Result.

In SciMON, a seed term refers to a key concept or
keyword that serves as the starting point for gener-
ating hypotheses, while the target sentence is the
desired output that articulates a potential scientific
idea or goal. SciMON takes a seed term and a
background context as inputs and generates a cor-
responding target sentence as output. To train the
model, paper abstracts are categorized into Back-
ground sentences (B) and Target sentences (T),
forming (B, T) training pairs. The Target sentences
are selected from the Methods and Objectives sec-
tions of the papers. From these, seed terms (typi-
cally Tasks) and target terms (typically Methods)
are extracted to form input-output pairs. During
evaluation, target information is removed. Figure
1 illustrates this process. To ensure dataset qual-
ity, we retain only high-confidence outputs from
the IE models. The evaluation indicates high pre-
cision rates for most preprocessing steps, except
for relation extraction. Overall, 79.7% of instances
passed all preprocessing steps, which constitute
the challenging dataset. For evaluation, SciMON
creates a high-quality gold test set containing 194

instances by removing test cases where models can
rely on surface-level background information to
infer the ground truth. The remaining instances
are then manually annotated to ensure a strong rele-
vance between seed and target terms. At the core of
SciMON is its inspiration retrieval module, which
retrieves relevant inspirations from three external
sources:

1. Semantic Neighbors: Finds similar problems
and ideas in the training set based on sentence
embeddings.

2. Knowledge Graph (KG) neighbors: Retrieves
related concepts from a background knowl-
edge graph built from the text dataset. The
background KG has more than 197k nodes
and 261k relations.

3. Citation Neighbors: Identifies relevant paper
titles from the citation network of the input pa-
per. The citation networks contain 87k paper
titles.

SciMON’s generation module utilizes either fine-
tuned T5 language models or in-context learning
with GPT-3.5 or GPT-4 LLMs. When fine-tuning
the T5 models, an in-context contrastive objective
is employed to discourage the models from simply
copying their inputs. The in-context contrastive
objective is calculated by taking negative examples
from the input text and computing an InfoNCE loss
(van den Oord et al., 2019) over the hidden states
of the decoder with the objective of maximizing
the probability of the ground truth against those
of in-text negatives. Both the contrastive loss and
cross-entropy loss optimized during fine-tuning.
During the generation phase, the input contexts are
combined with the inspirations retrieved from the
previous module. The next phase in the pipeline
is Iterative Novelty Boosting. This process begins
with an idea generated by the generation module
and retrieves similar ideas from the reference cor-
pus or training dataset. The ideas are compared us-
ing a similarity threshold. If the generated ideas are
too similar to existing ones, the model is instructed
to update the idea to improve its novelty. This pro-
cess is repeated until a sufficient degree of novelty
is achieved. To evaluate the effectiveness of Sci-
MON, both automated metrics such as ROUGE and
BERTScore were employed, as well as extensive
human evaluation. The human evaluation assessed
the relevance, novelty, clarity, and scientific reason-
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Figure 2: Using the Mamba architecture, the model gen-
erates ideas based on background context and literature
inspirations, enhancing novelty by repeatedly compar-
ing them to related work.

ableness of the generated ideas, providing a com-
prehensive assessment of the framework’s perfor-
mance in generating novel scientific ideas. In total,
the retrieval dataset includes 59k papers with over
374k sentences, allowing SciMON to ground its
idea generation in a broad spectrum of research, en-
abling it to generate novel and literature-informed
scientific ideas in the field of NLP.

3.2 Mamba Architecture

The Mamba architecture (Gu and Dao, 2023) repre-
sents a significant advancement in sequence mod-
eling, introducing selective state-space models
(SSMs) to achieve linear time processing of long
sequences. At the core of Mamba’s design is a
novel selection mechanism that enables dynamic
focusing on or filtering out of inputs, effectively
compressing contexts into smaller states. This ap-
proach strikes a balance between effectiveness and
efficiency in sequence processing, making it partic-
ularly suitable for hypothesis generation in scien-
tific contexts. The key innovation in Mamba lies
in its selective SSM layer, which modifies tradi-
tional SSMs by making multiple parameters (∆,
B, C) functions of its inputs. This feature em-
powers the model to perform content-based reason-
ing and selectively propagate or forget information
along the sequence length dimension. To imple-
ment this mechanism efficiently, Mamba employs
a hardware-aware parallel algorithm that lever-
ages the memory hierarchy of GPUs. Structurally,

Mamba consists of simplified and heterogeneous
blocks. Each block incorporates elements inspired
by existing SSM models with MLPs, as found in
modern neural networks. A typical Mamba block
includes an input linear projection, a convolutional
layer, the selective SSM layer, and a linear projec-
tion output layer. These blocks are stacked and
interleaved with normalization and residual con-
nections throughout the complete architecture, as
illustrated in Figure 3. This design represents a sim-
plification of previous SSM architectures by elim-
inating separate MLP blocks and combining vari-
ous components into one repeating unit. Mamba
distinguishes itself from other state-of-the-art se-
quence models by avoiding the use of attention
mechanisms and standalone MLP blocks. These
attributes enable Mamba to achieve state-of-the-art
performance across various applications and modal-
ities, including language, audio, and genomics.
As demonstrated in Section 4.2, Mamba outper-
forms other models on language modeling tasks
and downstream evaluations. While previous work
has primarily utilized Transformer-based models,
leveraging Mamba within the SciMON model aims
to capitalize on its strengths for improved hypoth-
esis generation in scientific contexts. Mamba’s
ability to handle long sequences efficiently is par-
ticularly advantageous for processing extensive sci-
entific literature and data. Mamba scales better
than other models as sequence length increases, po-
tentially addressing limitations observed in previ-
ous LLM-based approaches. Furthermore, Mamba
boasts inference times up to five times faster than
Transformer models and exhibits linear scaling in
sequence length (Gu and Dao, 2023). This effi-
ciency is crucial for rapid hypothesis generation
and iterative refinement in scientific research. The
model’s ability to selectively focus on relevant in-
formation while filtering out noise could lead to
more precise and contextually appropriate hypothe-
ses. By implementing Mamba within the SciMON
model, we aim to leverage its unique architecture
for enhanced scientific reasoning. The model’s
demonstrated success in language modeling and its
ability to capture long-range dependencies make
it a promising approach for efficient and effective
hypothesis generation, potentially surpassing the
capabilities of previous Transformer-based models
in scientific contexts.
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Figure 3: Mamba block we use for SciMON. Back-
ground and seed serve as input to the model.

4 Experiments & Discussion

We select T5 (Raffel et al., 2019) and GPT-4 as
our baseline models to compare with Mamba. We
fine-tune various sizes of T5, Mamba models and
use a few short GPT-4 in parallel, with the fine-
tuning process taking between 1 to 3 hours using
eight H100 GPUs. We present three evaluations:
one using the automated metrics and the other with
LLM-as-judge (Claude-3.5), following up with a
long-text evaluation and finally an evaluation of
generated output by a human.

4.1 Automatic Evaluation

It is crucial to recognize that the open-ended na-
ture of scientific hypothesis generation poses chal-
lenges for automatic evaluations, as semantically
comparing outputs from SciMON to the ground
truth can be constrained and shallow. Despite these
limitations, automated metrics like ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019) still
offer valuable insights. We conduct an automatic
evaluation for the outputs generated through the
novelty iteration with the Challenging and Gold
datasets(§3)

Results Our findings indicate that both fine-tuned
T5 and Mamba models show improved perfor-
mance with increased model size, as evidenced
by higher ROUGE-L (Lin, 2004) and BERTScore
(Zhang et al., 2019) metrics in Table 1. Generally,
Mamba models perform on par with T5 models of
similar sizes, with the Mamba-790M model achiev-
ing the highest overall scores for three evaluations.
However, Mamba does not show a considerable
difference compared to T5, as indicated by the re-
sults from the original paper (Gu and Dao, 2023).

Additionally, GPT-4 underperformed compared to
both T5 and Mamba in few-shot settings, likely
because GPT-4 generates longer outputs that do
not adhere to the shallow structured templates fol-
lowed by T5 and Mamba, which are penalized by
automatic evaluation metrics. This suggests that
human judgment is necessary for a more accurate
evaluation.

Model - SciMon R-L BERT R-L (GS) BERT (GS)
T5 - 60.5 m 0.178 0.514 0.184 0.524
T5 - 223 m 0.197 0.604 0.217 0.627
T5 - 738 m 0.223 0.663 0.243 0.684

Mamba - 130 m 0.176 0.523 0.191 0.562
Mamba - 370 m 0.219 0.628 0.237 0.631
Mamba - 790 m 0.227 0.683 0.242 0.695

GPT-4 FS 0.146 0.614 0.143 0.627

Table 1: Automatic results for the challenging (left) and
gold (right) subsets. R-L denotes ROUGE-L. BERT
denotes BERTScore with SciBERT as its encoder. GS
denotes as Gold subsets.

4.2 LLM As a Judge

To address the limitations of automatic evaluation
metrics, we incorporate an LLM evaluation to as-
sess the quality of the generated scientific hypothe-
ses. Specifically, we employ Claude-3.5 instead
of the more mainstream GPT-4 to mitigate poten-
tial self-enhancement bias, which occurs when a
model is evaluated using its own framework (Xu
et al., 2024b). We utilize a reference-guided style
prompt, as introduced by previous research (Zheng
et al., 2023), which has been shown to increase
the agreement between human and machine evalu-
ations by providing a reference solution.

We design a structured prompt that directs
Claude-3.5 to judge the effectiveness of a hypoth-
esis. Specifically, Claude-3.5 is asked to assess
the relevance of the hypothesis to the background
context and seed term, ensuring sufficient novelty
without overly mirroring the provided information,
verifying the scientific soundness, and evaluating
the clarity and coherence of the language. See
the detailed prompt(C). Based on these criteria,
Claude-3.5 assigns a rating of either "ineffective"
or "effective" to each generated hypothesis, along
with a brief justification for its decision, format-
ted in JSON for consistent analysis. To assist the
LLM in making more accurate assessments, we
provide it with five examples of both "ineffective"
and "effective" hypotheses.
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Model Output
Input: Seed Term: Hierarchical table dataset Context: Tables are often created with hierarchies, but

existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables.
Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as
implicit relationships of calculation and semantics.

GPT-4: In that context, a suitable task for a hierarchical table dataset could be Hierarchical Table
Reasoning. This task involves understanding, interpreting, and reasoning over complex
hierarchical structures present in tables, such as nested rows and columns, hierarchical indexing,
and implicit relationships between cells. Extra generated reasoning: The task is well-suited for
this dataset because it addresses the problem of understanding complex relationships within the
hierarchical structure.

T5: A task that can be used for hierarchical table dataset is semantic parsing
Mamba: Question answering systems are an effective tool for reasoning with hierarchical tables
Ground Truth: Targeting table reasoning, we leverage entity and quantity alignment to explore partially

supervised training in QA and conditional generation in NLG, and largely reduce spurious
predictions in QA and produce better descriptions in NLG

Table 2: Example of SCIMON outputs with different models. T5 denotes T5-large. Mamba denotes Mamba-790m.

4.3 Human Evaluation

To validate the effectiveness of Claude-3.5, we re-
cruit five NLP experts, each with graduate-level
education, to independently rate the outputs. We
selected 100 questions at random from the Chal-
lenge set and developed a structured questionnaire
(Figure 5) for the experts to evaluate the hypotheses.
Experts rated each hypothesis as either effective or
ineffective based on four key criteria: relevance,
novelty, scientific validity, and clarity which is the
same as the prompt instruction for Claude-3.5 (C).
To ensure objectivity, the raters were blind to the
conditions, and the system outputs were randomly
shuffled across the instances.

Results We find that both Claude-3.5 and human
evaluations yield similar patterns in the perfor-
mance of the models. GPT-4 achieves the high-
est scores in both evaluations, with an accuracy of
76% in the Claude-3.5 evaluation and 68% in the
human evaluation. This consistency across evalua-
tion methods highlights GPT-4’s strong capability
in generating hypotheses that align with key cri-
teria such as relevance, novelty, scientific validity,
and clarity. Given GPT-4’s larger model size, its su-
perior performance is expected. However, Mamba
does not significantly outperform the transformer-
based T5, likely due to the nature of the SciMON
task, which does not fully exploit Mamba’s long-
context potential. The average input length in this
task is less than 102 tokens, which favors models
with stronger in-context learning abilities like T5.
Although we hypothesize that Mamba’s strengths
would be more apparent in tasks requiring longer

Figure 4: Human and Claude 3.5 Sonnet evaluations of
generated scientific hypothesis. The y-axis represents
the accuracy(%).

contexts, the dataset preprocessing used by the Sci-
MON authors prevents us from directly testing this
hypothesis within this context.

To further explore this, we conduct a set of
long-context experiments in NLP, ordering tasks
by input length: scrolls_narrativeqa (longest),
scrolls_quality, and scrolls_contractnli (shortest).
Our findings (Table 4) indicate that T5 models
excel at tasks with smaller input sizes, with T5-
Large achieving the highest accuracy of 35.97%
on scrolls_contractnli. Conversely, Mamba mod-
els perform significantly better with larger input
lengths, as evidenced by Mamba-790M attaining
the highest F1 score of 13.81 on scrolls_narrativeqa.
However, Mamba models exhibit instability on
tasks with smaller inputs, as shown by the non-
converging training loss when scaling to large-sized
models. Similar instability has been observed in
Mamba’s performance on the ImageNet dataset

202



(Xu et al., 2024a), but the underlying cause remains
unclear. This issue is likely related to the current
instantiation of Mamba, which may suffer from
vanishing and exploding gradients. This suggests
that while Mamba does not outperform excessively
on current tasks, Mamba may be more effective for
scientific hypothesis generation under long-input
settings. Also, the linear scaling with sequence
length benefits Mamba for faster reference. How-
ever, future experiments are needed to demonstrate
the performance of the Mamba architecture on a
large scale.

5 Limitations and Future Work

While this study provides valuable insights, it is
important to acknowledge its limitations and po-
tential areas for future research. The architecture
of SciMON introduces certain constraints that af-
fect the scope and generalizability of our findings.
One key limitation is the data scope, as SciMON’s
dataset is exclusively composed of ACL Anthol-
ogy papers from S2ORC. This specialized focus
may limit the applicability of our results to other
scientific domains, particularly those that rely on
multimodal data such as visual representations in
biology or chemical structures in materials science.

Our comparative model analysis was restricted
to an empirical comparison between Mamba and
Transformer-based models under constrained pa-
rameter sizes. Future work could benefit from more
extensive comparisons involving larger parameter
settings, which may reveal additional insights into
the relative performance of these models in hypoth-
esis generation tasks.

Furthermore, the rapid pace of development in
state space models presents new opportunities for
advancing hypothesis generation capabilities. Re-
cent innovations such as Jamba (Lieber et al., 2024),
Samba (Ren et al., 2024), and TTT (Sun et al.,
2024) were not included in our analysis but repre-
sent promising avenues for future research. Inves-
tigating these emerging models could potentially
uncover novel approaches to improve the efficiency
and effectiveness of scientific hypothesis genera-
tion.

6 Memorization

Given that LLMs are trained on extensive datasets,
including potentially the same sources used for
evaluation, there is a risk that the models may re-
produce memorized content rather than generating

novel hypotheses. So, we conduct a memorization
check to ensure the validation of our experiments.

1. (Raffel et al., 2019) shows that T5 is pre-
trained on C4 which was crawled from web
prior to April 2019.

2. Mamba uses the Pile dataset (Gao et al., 2020),
and follows the training recipe described in
(Brown et al., 2020).

3. The GPT-4 checkpoint used in this study is pri-
marily based on data collected before Septem-
ber 2021, with only a minimal amount of more
recent data included during both pretraining
and post-training stages (Wang et al., 2024).
Given that the evaluation focuses on papers
published in 2022, the chance that these pa-
pers are part of GPT-4’s pretraining dataset is
considerably low.

Furthermore, a manual review of GPT-4’s out-
puts is conducted from SciMON using a gold
set composed of 2022 ACL Anthology papers.
This review specifically looks for instances
where GPT-4 might reproduce detailed infor-
mation, such as method names, or generate
text that closely mirrors the original papers.
The findings show no significant evidence of
memorization.

7 Conclusion

Our study provides insights into the application of
language models, particularly the Mamba architec-
ture, for scientific hypothesis generation within the
SciMON model. Comparative analysis reveals that
Mamba models perform comparably to T5 models
of similar sizes, with Mamba-790M achieving the
highest scores in automatic evaluations. GPT-4,
however, outperforms both in human and LLM-
based evaluations, demonstrating superior capabil-
ity in generating relevant, novel, and scientifically
valid hypotheses. Mamba exhibits strength in pro-
cessing longer input sequences, suggesting poten-
tial for complex scientific reasoning tasks. How-
ever, it shows instability with smaller inputs, indi-
cating areas for improvement. These findings high-
light the potential of state space models in advanc-
ing scientific hypothesis generation, despite limita-
tions such as the use of only ACL Anthology papers
and restricted parameter sizes in our analysis. Fu-
ture research should focus on expanding the dataset
to diverse scientific domains, investigating larger
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parameter settings and emerging state space mod-
els, developing specialized benchmarks for long-
sequence processing, and addressing Mamba’s in-
stability with smaller inputs. While Mamba shows
promise, particularly for long-context tasks, further
research is needed to fully harness its potential and
address limitations. As language models evolve,
their integration into scientific workflows holds
great promise for accelerating hypothesis gener-
ation and innovation across diverse fields. This
research represents a significant step towards lever-
aging advanced language models to expand the
frontiers of scientific inquiry and knowledge gener-
ation.
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Ioana Ciucă, Yuan-Sen Ting, Sandor Kruk, and Kartheik
Iyer. 2023. Harnessing the power of adversar-
ial prompting and large language models for ro-
bust hypothesis generation in astronomy. Preprint,
arXiv:2306.11648.

Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi,
and Dan Weld. 2019. Pretrained language models for
sequential sentence classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3693–3699, Hong Kong,
China. Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
ArXiv, abs/2101.00027.

Riccardo Grazzi, Julien N. Siems, Simon Schrodi,
Thomas Brox, and Frank Hutter. 2024. Is mamba ca-
pable of in-context learning? ArXiv, abs/2402.03170.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. ArXiv,
abs/2312.00752.

Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2017. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Yuta Koreeda and Christopher D. Manning. 2021. Con-
tractnli: A dataset for document-level natural lan-
guage inference for contracts. In Conference on Em-
pirical Methods in Natural Language Processing.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen,
Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Haim Meirom, Yonatan Belinkov, Shai
Shalev-Shwartz, Omri Abend, Raz Alon, Tomer
Asida, Amir Bergman, Roman Glozman, Michael
Gokhman, Avshalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav
Shoham. 2024. Jamba: A hybrid transformer-mamba
language model. ArXiv, abs/2403.19887.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association for
Computational Linguistics.

204

https://doi.org/10.31234/osf.io/kv6f7
https://doi.org/10.31234/osf.io/kv6f7
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:233295948
https://api.semanticscholar.org/CorpusID:233295948
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://arxiv.org/abs/2306.11648
https://doi.org/10.18653/v1/D19-1383
https://doi.org/10.18653/v1/D19-1383
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:267412719
https://api.semanticscholar.org/CorpusID:267412719
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:2593903
https://api.semanticscholar.org/CorpusID:2593903
https://api.semanticscholar.org/CorpusID:238354171
https://api.semanticscholar.org/CorpusID:238354171
https://api.semanticscholar.org/CorpusID:238354171
https://api.semanticscholar.org/CorpusID:268793596
https://api.semanticscholar.org/CorpusID:268793596
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034


Thomas O’Brien, Joel Stremmel, Léo Pio-Lopez,
Patrick McMillen, Cody Rasmussen-Ivey, and
Michael Levin. 2024. Machine learning for hypoth-
esis generation in biology and medicine: exploring
the latent space of neuroscience and developmental
bioelectricity. Digital Discovery, 3:249–263.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He,
and Sam Bowman. 2021. Quality: Question answer-
ing with long input texts, yes! In North American
Chapter of the Association for Computational Lin-
guistics.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung
Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee,
and Dimitris Papailiopoulos. 2024. Can mamba learn
how to learn? a comparative study on in-context
learning tasks. ArXiv, abs/2402.04248.

Yang Jeong Park, Daniel Kaplan, Zhichu Ren, Chia-Wei
Hsu, Changhao Li, Haowei Xu, Sipei Li, and Ju Li.
2023. Can chatgpt be used to generate scientific
hypotheses? Preprint, arXiv:2304.12208.

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Si-
hang Zeng, Zhang-Ren Chen, and Bowen Zhou. 2023.
Large language models are zero shot hypothesis pro-
posers. Preprint, arXiv:2311.05965.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen
Liang, and Weizhu Chen. 2024. Samba: Simple hy-
brid state space models for efficient unlimited context
language modeling. ArXiv, abs/2406.07522.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun
Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen,
Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto,
and Carlos Guestrin. 2024. Learning to (learn at test
time): Rnns with expressive hidden states.

Song Tong, Kai Mao, Zhen Huang, Yukun Zhao, and
Kaiping Peng. 2023. Automating psychological hy-
pothesis generation with ai: Large language models
meet causal graph.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019.
Representation learning with contrastive predictive
coding. Preprint, arXiv:1807.03748.

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope.
2024. Scimon: Scientific inspiration machines opti-
mized for novelty. Preprint, arXiv:2305.14259.

Rui Xu, Shu Yang, Yihui Wang, Yu Cai, Bo Du, and
Hao Chen. 2024a. Visual mamba: A survey and new
outlooks. Preprint, arXiv:2404.18861.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liang-
ming Pan, Lei Li, and William Yang Wang. 2024b.
Pride and prejudice: Llm amplifies self-bias in self-
refinement.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917, Dublin,
Ireland. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with bert. ArXiv,
abs/1904.09675.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv, abs/2306.05685.

Yangqiaoyu Zhou, Haokun Liu, Tejes Srivastava,
Hongyuan Mei, and Chenhao Tan. 2024. Hypoth-
esis generation with large language models. Preprint,
arXiv:2404.04326.

205

https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://doi.org/10.1039/D3DD00185G
https://api.semanticscholar.org/CorpusID:245218982
https://api.semanticscholar.org/CorpusID:245218982
https://api.semanticscholar.org/CorpusID:267499935
https://api.semanticscholar.org/CorpusID:267499935
https://api.semanticscholar.org/CorpusID:267499935
https://arxiv.org/abs/2304.12208
https://arxiv.org/abs/2304.12208
https://arxiv.org/abs/2311.05965
https://arxiv.org/abs/2311.05965
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:270380294
https://api.semanticscholar.org/CorpusID:270380294
https://api.semanticscholar.org/CorpusID:270380294
https://api.semanticscholar.org/CorpusID:271039606
https://api.semanticscholar.org/CorpusID:271039606
https://doi.org/10.31234/osf.io/7ck9m
https://doi.org/10.31234/osf.io/7ck9m
https://doi.org/10.31234/osf.io/7ck9m
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2305.14259
https://arxiv.org/abs/2305.14259
https://arxiv.org/abs/2404.18861
https://arxiv.org/abs/2404.18861
https://api.semanticscholar.org/CorpusID:267751249
https://api.semanticscholar.org/CorpusID:267751249
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://arxiv.org/abs/2404.04326
https://arxiv.org/abs/2404.04326


A Human Evaluation

To assess the effectiveness of Claude-3.5, we re-
cruit five NLP experts, all of whom have graduate-
level education, to independently evaluate the out-
puts by using the following questionnaire.

Figure 5: Human evaluation instructions

B Additional Experiments

B.1 In-context Learning
Modern attention-based LLMs exhibit remarkable
in-context learning (ICL) capabilities, enabling
them to learn new tasks effectively with only a few
demonstrations. Research indicates that Mamba
performs on par with Transformers in standard re-
gression ICL tasks and surpasses them in tasks such
as sparse parity learning (Park et al., 2024). Ad-
ditionally, (Grazzi et al., 2024) found that Mamba

incrementally optimizes its internal representations
in a manner similar to transformer models, which
aids in solving ICL problems. This adaptability
suggests that Mamba can be effectively compared
to Transformers in few-shot and fine-tuning set-
tings with comparable data and training time due
to its ICL, which serves as the basis for our experi-
ment’s design.

Model MATHQA (acc) % MMLU (acc) % MMLUSR (acc)% GPQA (acc)%
Mamba-130M 23.38 22.82 23.05 25.00
Mamba-370M 24.32 22.95 22.96 24.78
Mamba-790M 25.56 23.74 23.38 25.00

T5-Small 21.64 23.07 23.49 24.78
T5-Base 22.18 22.93 22.96 25.00

T5-Large 22.51 22.94 22.94 25.45

Table 3: Results for General In-Context Learning Tasks

B.2 Long-Text Evaluation
We selected three datasets, ranging from 102 to
106 words per input, to test the model’s ability in
question answering and natural language inference,
which are the basic ability for a scientific hypothe-
sis generation model: ContractNLI (102 to 103.5)
(Koreeda and Manning, 2021), QuALITY (103.3 to
103.7) (Pang et al., 2021), and Narrative (103.5 to
106) (Kociský et al., 2017). The first two tasks use
accuracy scores and are designed to answer spe-
cific questions based on long science and literature
documents, while the latter uses F1 score for eval-
uation, generating results using the continuation
probabilities returned by the model.

Model Contract NLI (acc) % QuALITY (acc) % NarrativeQA (f1)
Mamba-130M 14.46 24.11 8.79
Mamba-370M 10.22 24.88 11.31
Mamba-790M 11.86 24.30 13.81

T5-Small 30.76 23.97 2.26
T5-Base 32.88 23.97 0.45

T5-Large 35.97 24.98 1.63

Table 4: Results for Long-Text Evaluation

206



C LLM Prompt

This is prompt for Claude: Your goal in this task is to rank idea suggestions written by LLM.
The LLM helps its users write paper abstracts by generating sentences with proposals for new
ideas or questions to consider. You are first given:

1. A context which describes relevant background in a specific area of interest.
2. A seed term that should be a focus of the generated scientific idea.
3. An idea suggestion generated by LLMs written in the form of a paper abstract (SUGGESTION).

Consider the following factors in your evaluation:

1. Is the suggestion relevant to the context and seed term?
2. Is the suggestion sufficiently novel, not overly copying the context?
3. Is the suggestion scientifically sound?
4. Is the language clear and coherent?

Assign a rating as either "effective" or "ineffective", where:
- "effective" = The SUGGESTION is sufficiently novel, relevant, scientifically sound, and clear.
- "ineffective" = The SUGGESTION lacks novelty, relevance, scientific soundness, or clarity.

Provide your rating and a brief justification for your assessment.

Return your output in JSON format only with the keys "justification" and "rating":
{
"justification": "<your brief justification>",
"suggestion": "ineffective< / effective>"

}
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Abstract
Theorem proving presents a significant chal-
lenge for large language models (LLMs) due
to the requirement for formal proofs to be rig-
orously checked by proof assistants, such as
Lean, eliminating any margin for error or hallu-
cination. While existing LLM-based theorem
provers attempt to operate autonomously, they
often struggle with novel and complex theo-
rems where human insights are essential. Lean
Copilot is a novel framework that integrates
LLM inference into the Lean proof assistant
environment. In this work, we benchmark per-
formance of several LLMs including general
and math-specific models for theorem proving
using the Lean Copilot framework. Our initial
investigation suggests that a general-purpose
large model like LLaMa-70B still has edge over
math-specific smaller models for the task under
consideration. We provide useful insights into
the performance of different LLMs we chose
for the task.

1 Introduction

As mathematical problems become increasingly in-
tricate, the task of formalizing and generating ver-
ifiable math proofs becomes proportionally more
challenging. The translation process from informal
theorems and proofs to a standardized, machine-
verifiable, formal language, requires much effort
and expertise from human mathematicians, cre-
ating a steep learning curve. This challenge has
raised great interest in the potential of using AI to
aid in the math formalization process, and more
generally in automated theorem proving(ATP). The
integration of AI, specifically large language mod-
els(LLMs), in math formalization and theorem
proving can not only accelerate the proof discovery
process, but can also enhance the reliability and
rigor of mathematical arguments by minimizing
human error.

While the ultimate goal may be to achieve fully
autonomous proof generation without human as-

sistance, current ATP systems based on language
models struggle when dealing with more complex
proof problems. Typically, these language models
employed for theorem proving come from larger
base models like BERT and GPT, then finetuned
on large amounts of mathematical text data such
as Mathlib(mathlib Community, 2020). This limi-
tation seen likely stems from the models’ lack of
flexibility when encountering mathematical areas
not adequately covered by their training data. To
address this inflexibility with autonomous proof
generation, there are Interactive Theorem Prov-
ing (ITP) systems where proof assistants- software
frameworks built for math formalization like Coq,
Isabelle, and Lean- are used in conjunction with hu-
man mathematicians in the proving process. This
integration allows for the aid of proof automation
tools with human intuition. The use of ITP system
proof assistants has become increasingly prevalent
for ensuring a level of rigor and standard in formal-
izing mathematical language.

Lean is one such popular proof assistant as well
as functional programming language for formaliz-
ing mathematics that supports ITP by offering a
framework for writing and verifying proofs. Lean
uses tactic style proving where proofs are gener-
ated step by step using tactics, or instructions used
to manipulate the current state of a proof to the
next state. From the start of a proof, users will con-
tinue the proof using the appropriate tactic based
on the user’s knowledge of the math problem and
tactics. While a powerful proof assistant for math-
ematicians, it still requires a great deal of effort
to find the ideal tactics. This is a common bar-
rier across all ITP systems; thus, the integration of
Large Language Models (LLMs) with proof assis-
tants was introduced to offer intuitive, automated
assistance in generating and verifying mathemati-
cal proofs. LLMs can automate tedious aspects of
proof writing, such as identifying relevant lemmas
and theorems and drawing from extensive math-
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ematical training data to uncover overlooked but
crucial insights.

However, despite the potential of LLMs, exist-
ing LLM-based provers cannot assist humans in
an interactive, seamless manner. Current LLM-
based systems are typically trained and evaluated
following machine learning standards that rely on
extracted datasets from an ITP’s codebase rather
than within the proof assistant itself. This discon-
nection results in models that, while effective in
a controlled environment, are difficult to integrate
into the practical workflows of proof assistants.
This gap between LLM training environments and
proof assistant usage highlights a critical need for
systems to bridge the two and enable more effective
human-AI collaboration in theorem proving.

Recently, the effort to combine proof assistant,
Lean, with LLMs was achieved through a new
framework LeanCopilot. LeanCopilot is an open-
source framework that supports users to bring in
pre-trained LLMs and use/build LLM-based proof
automation tools natively in Lean (Song et al.,
2024). This makes LLM-based proof automation
available in Lean and increasing accessibility in
math formalization. It is based on LeanDojo’s Re-
prover algorithm for tactic generation and can be
brought in as a package in Lean through an IDE
of choice (Yang et al., 2023). It is able to run
LLMs on most laptops without the need for GPUs,
a feature that increases accessibility for LLM-based
proof automation. While users can create their
own tools, LeanCopilot also comes with a suite
of built in proof automation tools. These tools
were built using CTranslate2’s C++ library for effi-
cient LLM inference with Transformer models, run-
ning it via Lean’s foreign function interface(FFI).
A more comprehensive review of these tools can
be found in following sections:

• suggest_tactics: Analyzes the current proof
state and recommends relevant tactics

• search_proof : Construct full proof for theo-
rem

• select_premises: Identifies relevant premises
for current proof goal

The performance of LLMs for theorem proving
tasks can vary widely depending on the complexity
of the proofs and the model architecture. Recent
research has demonstrated that while LLMs can
effectively automate portions of proof generation,

their success is highly contingent on the difficulty
of the mathematical problems being tackled and
the specific design of the model (Xin et al., 2024;
Song et al., 2024). This variability in performance
motivates our work to benchmark LLMs specifi-
cally in the context of ITP, as understanding these
models’ strengths and weaknesses is crucial for
improving their utility in automating mathematical
proof generation.

In our research, we utilize LeanCopilot’s abil-
ity to bring in LLMs to evaluate the performance
of various LLMs for theorem proving. LLMs
are commonly benchmarked for theorem proving
by testing how many theorems they can generate
proofs for. We evaluate the performance of LLMs
trained for math tasks, Pythia2.8b, Llemma7b,
LeanStarPlus7b, LeanStarCot7b, against general
LLMs, Llama3-70b and ByT5. We replicate the
experiments used to evaluate LeanCopilot’s built-
in proof automation tools but instead to bench-
mark LLMs for proof generation. We evaluate
the performance of these different LLMs for ITP
using LeanCopilot’s built-in proof automation tool,
suggest_tactics. This benchmarking will allow
us to evaluate how different LLMs perform in as-
sisting with theorem proving tasks across a selec-
tion of proof problems sourced from the Mathemat-
ics in Lean textbook. By systematically evaluating
different LLMs, we aim to identify key factors that
contribute to successful proof generation and high-
light areas where further advancements are needed.

2 Related Works

The roots of ITP lie in the broader field of auto-
mated reasoning, which emerged as a distinct area
of study in the mid-20th century. While ATP sys-
tems aimed to fully automate the process of deriv-
ing proofs, early researchers recognized the limi-
tations of these systems, particularly in handling
complex, domain-specific proofs that required a
deeper level of human intuition and insight.

The inception of ITP was driven by the need to
integrate human expertise into the proof construc-
tion process, allowing for a relationship between
automated tools and human mathematicians. One
of the earliest milestones in this direction was the
development of the LCF (Logic for Computable
Functions) theorem prover by Robin Milner in the
1970s (Milner, 1972). LCF introduced a novel ap-
proach that combined a small trusted kernel, which
ensured the soundness of proofs, with a flexible
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and extensible user interface that allowed human
interaction. The LCF approach set a precedent for
future ITP systems by emphasizing the importance
of human oversight in the verification process.

The 1980s and 1990s saw the emergence of some
of the most influential ITP systems, notably Coq
and Isabelle. These systems were built on the foun-
dational ideas of the LCF approach but introduced
significant innovations that expanded the scope and
applicability of ITP.

Coq, developed by Thierry Coquand and Gérard
Huet, was based on the Calculus of Inductive Con-
structions (CIC), a powerful type theory that en-
abled the formalization of a wide range of mathe-
matical concepts (Coquand and Huet, 1988). Coq’s
ability to handle inductive types and support con-
structive mathematics made it a versatile tool for
both theorem proving and the extraction of certified
programs. Coq’s interactive environment allowed
mathematicians to build proofs incrementally by
using a rich set of tactics to guide the proof pro-
cess while relying on the underlying formalism to
ensure correctness.

Isabelle, developed by Lawrence Paulson, took
a different approach by providing a generic frame-
work that could support multiple logics (Paulson,
1986). Isabelle’s most notable contribution was its
use of higher-order logic (HOL), which allowed for
the formalization of more complex mathematical
structures and proofs. Isabelle’s architecture was
designed to be highly modular, enabling users to
extend the system with custom proof strategies and
tactics. This flexibility made Isabelle particularly
popular in both academia and industry for formal
verification tasks.

As ITP systems matured, the focus shifted
towards enhancing their automation capabilities
while preserving the essential role of human in-
teraction. The concept of proof tactics, first intro-
duced in LCF, became central to this effort. Tactics
are commands that automate common proof steps,
allowing users to delegate routine tasks to the com-
puter prover while focusing on more challenging
aspects of the proof.

These developments set the stage for the cre-
ation and release of Lean, a modern proof assistant
developed by Leonardo de Moura and his team
at Microsoft Research (Moura and Ullrich, 2021).
First released in 2013, Lean was designed with a
focus on combining expressive power, automation,
and user-friendly interaction. It builds on ideas
from earlier systems but introduces several unique

features that distinguish it in the landscape of ITP
tools.

Lean is based on a version of dependent type
theory, similar to Coq, but it emphasizes a more
unified approach to proof automation and user inter-
action. This is exemplified by Lean’s tactic frame-
work, which allows users to construct proofs in-
crementally by applying tactics—commands that
automate specific proof steps. Lean’s programming
framework also enables users to write custom tac-
tics in the Lean language itself, making it highly
extensible and adaptable to different domains of
mathematics and computer science.

Lean’s integration of a tactic language is an evo-
lution of the earlier LCF and Coq systems, which
introduced tactics as a means of automating com-
mon proof steps. Lean’s tactic framework has been
further enhanced to support more sophisticated
proof strategies, making it an effective tool for both
novice users and expert mathematicians. This com-
bination of user interaction and automation makes
Lean a useful tool in the formalization of math-
ematics and the verification of complex systems,
enabling better integration of human expertise with
automated proof checking.

2.1 LeanCopilot
The creation of LeanCopilot opens a new avenue of
accessibility for mathematicians who hope to use
LLMs in their math formalization research.

Figure 1 provides a flowchart of the algo-
rithm used by LeanCopilot for selecting relevant
premises to generate tactics and full proofs. The
specific algorithm highlighted for premise selec-
tion is LeanDojo’s reprover algorithm which is
based on dense passage retrieval. It selects top
relevant premises from mathlib, a library of for-
malized math theorems, lemmas, and definitions
across various subjects of math and uses them
to generate tactics. This is the algorithm used
in suggest_tactics and by select_premises.
LeanCopilot’s search_proof is also based off Lean’s
rule-based proof search tool aesop. aesop imple-
ments a tree-based search over a user-defined set
of proof rules to generate the full proof (Limperg
and From, 2023). However, because the proof
rule search space is predefined by the user, aesop
lacks flexibility considering it depends heavily how
advantageous the rule set is. Every proof goal
in the process uses the same predefined rule set
even though different goals may call for differ-
ent rules. search_proof adds to aesop by using
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Figure 1: Flowchart of LeanCopilot proof generation algorithm used in suggest_tactics, select_premises,
and search_proof

suggest_tactics to generate goal-dependent tac-
tics for every goal thus making the rule set cus-
tom to each proof goal. In LeanCopilot’s evalua-
tions, search_proof outperformed aesop for both
autonomously generating proofs and when intere-
acting with human users. In our experiments to
benchmark LLMs, we will be swapping out the lan-
guage model used to generate the tactics as seen in
1. LeanCopilot uses the language model ByT5 as
its base model for its proof automation tools unless
another LLM is specififed by the user.

However even with the introduction of Lean-
copilot, there is a lack of recorded evaluation of the
capabilities of LLMs for ITP systems. We aim to
bridge this gap by benchmarking LLMs to further
realize how we may improve models for theorem
proving. The ongoing integration of Lean with
other tools and platforms, along with the poten-
tial of LLMs to enhance automation, suggests a
promising future for Lean in the broader landscape
of theorem proving.

3 Methodology

This section outlines our approach for benchmark-
ing the capabilities of different LLMs, both math-
specific and general LLMs, in assisting with theo-
rem proving using LeanCopilot. We replicate the
benchmarking experiments used to evaluate the

proof-automation tools in LeanCopilot, but instead
to benchmark different LLMs for proof genera-
tion. In their experiments the authors (Song et al.,
2024) evaluated LeanCopilot’s suggest_tactics
and search_proof against preexisting lean proof
automation tool aesop. Currently, LeanCopilot
doesn’t support bringing in different LLMs for their
tools search_proof and select_premise, thus
we will only benchmark using suggest_tactics.

We benchmark the following LLMs:

1. ByT5: Based on the T5 (Text-to-Text Trans-
fer Transformer) architecture, specifically the
T5-Small variant, which has 60 million pa-
rameters (Xue et al., 2021). It operates on
byte-level inputs, eliminating the need for to-
kenization and making it effective for han-
dling diverse and irregular text formats. In
LeanCopilot, ByT5 serves as the foundational
model, providing capabilities for generating
and manipulating formal mathematical proofs.

2. Pythia-2.8b: This model is a specialized
version of the Pythia language models, fine-
tuned on the Leandojo dataset (Song et al.,
2024), which consists of a curated collection
of formalized mathematics in Lean. With 2.8
billion parameters, it is designed to excel in
theorem proving tasks within the Lean frame-
work. The fine-tuning on Leandojo enhances
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the model’s ability to generate contextually
accurate proof steps and better understand the
nuances of mathematical formalization, mak-
ing it a valuable tool for formalizing and veri-
fying mathematical proofs in Lean.

3. Llama-3 70b: LLama-3 (Large Lan-
guage Model for AI) is a highly advanced
transformer-based model containing 70 bil-
lion parameters (et al., 2024). Its substantial
parameter count allows it to capture intricate
patterns in language, making it highly effec-
tive for complex reasoning tasks, including
formal theorem proving. As one of the larger
models in our study, LLama-3 70B provides a
benchmark for evaluating the performance of
large-scale general language models in formal
mathematics.

4. Llemma7b: Llemma7b is a mid-sized lan-
guage model with 7 billion parameters, opti-
mized for balancing computational efficiency
with performance (Azerbayev et al., 2024).
While not as large as LLa-ma3 70b, it offers
significant capabilities in understanding and
generating mathematical proofs. Its reduced
size allows for more accessible deployment
in resource-constrained environments, with-
out compromising on the quality of theorem
proving assistance.

5. LeanStarPlus7b: Lean-STaR is a frame-
work designed to enhance language mod-
els in ATP by integrating informal reason-
ing with formal proof steps (Lin et al.,
2024). Building on the Self-Taught Reasoner
(STaR) framework (Zelikman et al., 2022),
Lean-STaR introduces the concept of gen-
erating "thoughts"—natural language ratio-
nales—prior to each tactic. It operates in
two phases: first, retrospective thoughts are
generated by analyzing human-written proofs
from Mathlib, creating a thought-augmented
dataset; second, this data is used to fine-tune
a tactic predictor model, which is further opti-
mized through expert iteration. This approach
significantly improves theorem-proving capa-
bilities, as demonstrated on the miniF2F-test
benchmark, where Lean-STaR achieves state-
of-the-art results, surpassing previous models
in pass rates.

6. LeanCotPlus7b: LeanCotPlus is an exten-

sion of the LeanCot model, optimized for im-
proved interaction with the Lean proof assis-
tant. This model builds upon LeanCot’s foun-
dational capabilities with additional enhance-
ments aimed at increasing its effectiveness in
theorem proving and proof automation. Lean-
CotPlus incorporates advanced techniques for
better understanding and generating mathe-
matical proofs.

We use the "Mathematics in Lean" textbook as
our benchmarking data (Avigad et al., 2021). The
textbook covers the math formalization process
through various topics in math such as topology
and logic in the Lean language. We randomly se-
lected 50 proof problems in the textbook and eval-
uate how well each LLM performed at generat-
ing the full proof of each problem. Proof prob-
lems in the textbook contain "ground-truth" tactics
that kick start each proof. Following the Lean-
Copilot experiment procedure, we will enter each
ground-truth tactic one by one. After entering each
tactic, we will prompt Lean with either aesop,
suggest_tactics, or search_proof to attempt to
solve the remaining proof goals. We will record the
number of tactics the user had to input as prompts
before the tool successfully completes the proof.
The list of generated, suggested tactics is ranked
top to bottom by likelihood of solving the proof.
We choose the top tactic to input to eliminate hu-
man bias. For suggest_tactics, we consider the
proof complete when in the list of suggested tactics,
there exists a tactic that solves the current goal.

Figure 2: Ground truth proof for proving there are in-
finitely many primes from Mathematics in Lean Text-
book. The proof is purposefully not completed as an
exercise for users to fill in each sorry with remaining
tactics.

As an example of how a proof from the text-
book looks, figure 2 shows the proof there exists
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infinitely many prime numbers in Lean. The the-
orem asserts that for any natural number n, there
exists a prime number p such that p > n. Then
the intro tactic introduces the variable n into the
proof context. This sets the stage for proving the
existence of a prime number greater than n. Next
we establish that 2 ≤ (n+ 1)! + 1. The factorial
function grows rapidly, so adding 1 ensures that
the result is greater than 1 and thus has a prime
factor. The rcases tactic is used to deconstruct
the result of the exists_prime_factor theorem,
which guarantees the existence of a prime factor p
of (n+ 1)! + 1. Here, pp asserts that p is prime,
and pdvd asserts that p divides (n+ 1)! + 1. The
refine’ tactic is used to fill in part of the goal,
specifically stating that p is the desired prime num-
ber and that p > n needs to be shown. To prove
p > n, we use a proof by contradiction. The
by_contra tactic assumes the opposite, p ≤ n,
and the push_neg tactic simplifies this assumption.
If p divides both (n+ 1)! and (n+ 1)! + 1, then
it must divide their difference, which is 1. But no
prime number can divide 1, leading to a contradic-
tion. This final contradiction establishes that p must
be greater than n. The sorry placeholders repre-
sent steps where detailed proofs need to be filled
in to . The tactics that exist already in the proof,
are considered our "ground truth tactics". For our
experiments, each sorry is considered a problem
where we replace sorry with suggest_tactics.

4 Datasets on which the LLMs under
consideration were trained

In this section, we discuss the datasets on which the
models were trained to get an idea of their internal
knowledge base.

4.1 ByT5

ByT5, the base model used in LeanCopilot, was
initially trained on a multilingual corpus covering
a broad spectrum of languages and domains. For
the theorem proving tasks, it was fine-tuned on
formal mathematics datasets, including those from
Mathlib, to enhance its performance in proof
generation.

4.2 Pythia2.8b

The Pythia model suite was trained on the Pile
dataset, a comprehensive collection of English-
language texts specifically designed for large-scale

language model training (Gao et al., 2020). The
Pile is highly regarded in the machine learning
community because it is openly accessible,
performs well across various tasks.

4.3 Llama3 70b

The Llama3 (et al., 2024) model was trained us-
ing a curated dataset from various sources, with
data up to the end of 2023. This dataset underwent
extensive cleaning and de-duplication processes
to ensure high-quality tokens, focusing on remov-
ing personally identifiable information (PII) and
unsafe content. The web data, which formed a sig-
nificant part of the dataset, was processed using
custom parsers to extract clean and relevant text
while preserving the structure of mathematical and
code content. The data mix for Llama3 was metic-
ulously determined through experiments, resulting
in a composition of 50% general knowledge, 25%
mathematical and reasoning, 17% code, and 8%
multilingual tokens, ensuring a balanced and com-
prehensive pre-training corpus.

4.4 Llemma7b

The Llemma7b model was trained on the Proof-
Pile-2, a 55-billion-token dataset that combines
scientific papers, web data rich in mathematical
content, and mathematical code (Azerbayev et al.,
2023). The dataset includes the AlgebraicStack, an
11-billion-token collection of source code from 17
languages, which emphasizes numerical, symbolic,
and formal mathematics. Additionally, the train-
ing utilized OpenWebMath (Paster et al., 2024), a
15-billion-token dataset of mathematically focused
web pages, and the ArXiv subset from the Red-
Pajama dataset (Computer, 2023), contributing 29
billion tokens of scientific papers. The final data
mix was heavily skewed towards mathematical and
scientific content, with 95% coming from Proof-
Pile-2 and small portions from general domain data
and GitHub repositories.

4.5 LeanStarPlus7b & LeanCotPlus7b

Both models were trained and evaluated using
datasets specifically curated from Lean’s Mathlib
(mathlib Community, 2020), the largest collection
of formalized mathematics in the Lean theorem
prover. Additionally, miniF2F, a standard bench-
mark in the formal verification community, was
used to evaluate the models’ performance (Zheng
et al., 2022). This dataset contains a diverse set of
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formalized theorems that challenge the models’
ability to generalize across different mathematical
domains.

5 Results & Discussion

In this section, we will detail the results of our
experiments with the Mathematics in Lean text-
book problems. Fifty (50) proof problems were
randomly selected from the textbook for our ex-
periments. As a reminder, for suggest_tactics,
since the list of tactics are ranked from most likely
to complete proof to least likely, we select the first
tactic in the list of generated tactics as our input to
the proof. In the following Figures, we exemplify
the solution with one problem from the textbook.
This example problem is to prove the product of
an even number with any natural number will be
an even number. This problem is straightforward
for most with a math background, thus is a good
example to understand the results produced by dif-
ferent models. We observe similar behaviour with
our selected test-set.

5.1 ByT5

The results for ByT5 are shown in Figures 3 and 4.
In Figure 3 we have the list of generated tactics for
the first tactic. The majority of tactics from the list
are some variant of the intro tactic aside from the
tactics norm _num, which is used to perform numer-
ical simplifications and arithmetic reasoning, and
simp [even_mul], which applies simplification
rules specifically related to the property of even
multiplication. ByT5 is the only model where the
tactic simp_all was used after an intro tactic. In
this case, it led to the immeadiate resolution of the
proof since the tactic applies a broad set of simpli-
fication rules. While efficient, this may highlight a
limitation of highlevel automation where the rules
are not explicitly revealed.

5.2 LeanCotPlus7b & LeanStarPlus7b

Both LeanCoTPlus7b and LeanStarPlus7b gener-
ated the same full proof script as seen in Figures 5
and 6. This script starts with introducing the vari-
ables m, n, and the hypothesis h, then applies case
analysis on h, and then simplifies the goal using the
provided hypothesis and basic arithmetic. This sug-
gests a high level of consistency in how these mod-
els approach proof generation for this of theorem.
LeanCoTPlus7b and LeanStarPlus7b are indeed

Figure 3: First list of generated tactics from
suggest_tactics from base model ByT5. Chose first
listed tactic intro m n h which introduces variables m
and n as natural numbers and h as hypothesis that n is
even.

Figure 4: Left: Remaining subgoals after inputting
intro m n h as the first tactic for ByT5 test. Suggests
the renaming of m, n, and h to mt, nt, and at respec-
tively. Remaining goal is to show mt *nt is even. Right:
Suggested list of tactics by ByT5 after first inputted tac-
tic; chose simp_all as the tactic which simplifies the
current proof state, resulting in no further goals.

related models, both derived from the Lean ecosys-
tem, which implies that they share foundational
techniques and architectures for theorem proving.
It is important to highlight, that both models gave
the full proof of the theorem, even though it was
prompted with suggest_tactics. This showcases
their ability to generate full proofs, however this is
a limitation for users who want to select their own
tactic and perform ITP.

Figure 5: Generated list of tactics by LeanCotPlus7b

5.3 Pythia2.8b

In this experiment, Pythia2,8b generates long,
broad lists of tactics at each step. This can be seen
as advantageous as it may suggest various proof
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Figure 6: Generated list of tactics by LeanStarPlus7b

directions. This may also suggest that users will
need a higher level of mathematical understanding
to sift through all the suggested tactics in order to
select one.

Figure 7: Top: Generated list of tactics by pythia2.8b.
Bottom: Remaining subgoal after iniserting tactic into
m n hmn. Tactic introduces natural number variables
m and n and hypothesis hmn, which asserts n is even.
Remaining subgoal is to prove m*n is even.

5.4 Llemma7b
Llemma7b adopts a methodical approach
to proving the theorem, utilizing the
tactics even_iff_two_dvd and exact
dvd_mul_of_dvd_left h m as seen by Fig-
ures 9 and 10. The tactic even_iff_two_dvd
translates the hypothesis into a form that as-
serts divisibility by 2, aligning with a common
mathematical technique where the evenness of
a number is proven by showing divisibility by
2. The use of tactic dvd_mul_of_dvd_left then
applies this divisibility to the product of two
numbers, completing the proof. This approach
reflects a strategy often employed by human
mathematicians, highlighting Llemma7b’s capa-
bility to generate proofs that mirror traditional

Figure 8: Left: Generated list of tactics for the second
proof tactic by Pythia2.8b. Right: Remaining subgoal
after inserting tactic rw [mul_comm] and suggested tac-
tics for that goal.

mathematical reasoning. In contrast to the other
models, which provided a broad list of tactics
or rely on high-level automation, Llemma7b’s
proof method is distinctive in its explicit use of
fundamental mathematical properties.

Figure 9: First and second set of tactics generated by
Llemma7b

5.5 Llama-3 70b

As seen in Figure 11, the proof Llama-3 70b gave
involves introducing the variables and hypothesis,
deconstructing the hypothesis that n is even into
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Figure 10: Third and fourth set of tactics generated by
Llemma7b

the form 2 * k, and then rewriting the expression
for m * n to demonstrate that it is indeed even by
using known properties of even numbers. The 70
B model gave us not just one tactic but multiple
tactics at a time with a majority of the steps being
part of the solution. Similar to Llemma7b, it also
included as part of the tactic, what the next proof
goal would be for each tactic.

Figure 11: Progression of generated tactics by Llama-3
70b for each step of the proof from left to right

Based on our experiment results as seen in Table
1, LeanCopilot and Llama-3 70B demonstrated the
highest levels of autonomy, achieving 100% au-
tonomous proof generation with no human-entered
tactics required. Pythia 2.8B also performed well,
with 90% of proofs generated autonomously and an
average of 0.2 human-entered tactics. LeanStarPlus
7B and LeanCoTPlus 7B both achieved 60% auton-
omy, with an average of 0.7 human-entered tactics,
while Llemma 7B lagged behind with only 30%
autonomous proofs and an average of 0.9 human-
entered tactics. These results suggest that Lean-
Copilot and Llama-3 70B are particularly effec-
tive in fully automating proof generation, while
Llemma 7B may require more human intervention

in the proof process.

6 Observations

Our findings highlight the capabilities and diver-
sity of modern language models in generating
proofs within the Lean proof assistant environ-
ment. All models showcased capabilities for proof
generation, but as can be seen by LeanCotPlus7b,
LeanStarPlus7b, and Llama3-70b in our qualita-
tive exmaple, some models have difficulty with
just tactic generation as opposed to proof genera-
tion. Additionally, the tendency of some models,
such as ByT5, to rely heavily on broad automation
tactics like simp_all can obscure the underlying
reasoning processes and limit interpretability. Inter-
estingly, while Llemma7b produced very intuitive
results in our example problem, in our experiments,
it was the only model that lagged behind in both
autonomous proof and tactic generation. These
results highlight the need for future research to de-
velop models that strike a better balance between
automation and mathematical transparency.

7 Conclusions

In this study, we explored the integration of Large
Language Models (LLMs) with Interactive Theo-
rem Proving (ITP) systems, specifically focusing
on Lean and the Lean Copilot framework. Our
experiments aimed to assess the effectiveness of
various LLMs in generating and automating mathe-
matical proofs, highlighting both the potential and
limitations of current technologies.

Our results demonstrated that different LLMs
exhibit varied capabilities in assisting with theo-
rem proving tasks. As shown in our qualitative
example, most models appeared to rely heavily on
automation, generating long lists of tactics and/or
employing tactics which were vague in mathemat-
ical reasoning. Our future work would focus on
benchmarking advanced models on complex theo-
rems, developing models that enhance both automa-
tion and transparency, enabling more robust and
accessible proof generation tools. Our research re-
inforces the promise of integrating AI with formal
proof systems while highlighting areas for contin-
ued development.
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LLMs Avg. # human entered
tactics

% autonomous proof Avg. % automated tac-
tics

Lean Copilot 0 100% 100%
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Llemma 7B 0.9 30% 55%
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Llama-3 70B 0 100% 100%

Table 1: Results from suggest_tactics integrated with various LLMs.
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Abstract

When building models of human behavior, we
often struggle to find data that capture impor-
tant factors at the right level of granularity. In
these cases, we must rely on expert knowledge
to build models. To help partially automate the
organization of expert knowledge for model-
ing, we combine natural language processing
(NLP) and machine learning (ML) methods in
a tool called the Grid. The Grid helps users or-
ganize textual knowledge into clickable cells
along two dimensions using iterative, collab-
orative clustering. We conduct a user study
to explore participants’ reactions to the Grid,
as well as to investigate whether its clustering
feature helps participants organize a corpus of
expert knowledge. We find that participants
using the Grid’s clustering feature appeared to
work more efficiently than those without it, but
written feedback about the clustering was crit-
ical. We conclude that the general design of
the Grid was positively received and that some
of the user challenges can likely be mitigated
through the use of LLMs.

1 Introduction

The increasing availability of text data has trans-
formed our ability to model human behavior in
social and economic systems. We can now monitor
and model phenomena entirely through preexisting
text sources like social media, news articles and
journal papers. However, these data sometimes fail
to capture the causal information we need to build
models. For example, news articles may describe
what has happened in a region (e.g., “Farmers har-
vest early”) but not why (e.g., “Granivorous birds
nearby”). In these cases, one of the best ways to
interpret and supplement existing data is to ask lo-
cal experts for causal explanations of how people
think and behave.

Despite the value of expert knowledge, the pro-
cess of converting it into models remains largely
manual and expensive. Fortunately, NLP and ML

capabilities have drastically improved since the hey-
day of expert systems (Devlin, 2018; Ramage et al.,
2009; Surdeanu et al., 2022; Schild et al., 2022).
If we can partially automate the work required to
process expert knowledge, then we can drive more
accurate and nuanced modeling of human behavior.
While existing NLP and ML methods are power-
ful, processing expert knowledge presents different
challenges than processing large pre-existing text
corpora. With this in mind, we combine NLP, ML
and visualization methods in a tool designed to sat-
isfy the following criteria based on our experience
building models from expert knowledge.

First, NLP tools for processing expert knowledge
must allow users to explore text quickly at multiple
levels of abstraction. Existing approaches often
force a trade-off between digestible summaries and
thorough analysis. For example, knowledge graphs
can quickly orient users to important topics and
relationships, but as the size of the knowledge base
grows, topics must be aggregated for the graphs to
remain interpretable by humans. Similarly, while
Large Language Models (LLMs) are becoming ever
more adept at answering questions and providing
summaries, they alone do not support multiple lev-
els of abstraction; rather, they require prompts that
may be difficult to write during the early stages of
analysis when the characteristics and objectives of
the user’s model are not yet defined.

Second, NLP tools for processing expert knowl-
edge should assign work based on the different
capabilities of humans and machines. Many pop-
ular topic modeling methods are fully automated,
but users are likely to have domain expertise, some
familiarity with their corpora, and objectives for
analysis and model-building. This expertise should
be used to guide the machine. Machines should re-
lieve users of repetitive work and discover patterns
that users might not detect, without overriding user
decisions. Tools should also support a range of
processes and strategies from human users.
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In this paper we introduce the Grid (Figure 1), an
expert knowledge tool designed to satisfy these two
criteria. We first describe the mechanics of the Grid,
and then we report results from a user study. Based
on our results, we conclude that the Grid supports
the efficient organization of expert knowledge and
report on challenges and potential solutions for
future work on expert-driven modeling tools.

2 The Grid

The Grid is a tool for visualizing and curating ex-
pert knowledge. Grids organize textual knowledge
into clickable cells along two dimensions. The
rows of the Grid represent structural characteristics
of the corpus that do not change across topics, and
the columns represent topics from the corpus that
the user and the Grid work together to discover.
The difference between rows and columns is illus-
trated in Figure 1. Figure 1.a shows a Grid that was
created to organize knowledge about the work of
an artist, so the rows represent calendar years while
the columns represent art media, locations, exhibi-
tions and so on. Figure 1.b shows a Grid that was
created to organize interviews with an expert on
rice production in Senegal, so the rows represent
interviewee and interview date and the columns
represent agronomic topics.

The color of each cell in the Grid indicates how
much text it contains. Clicking on a Grid cell re-
veals the sentences it contains and clicking on a sen-
tence reveals the surrounding context (Figure 1b).
The user can move and copy sentences between
columns, rename columns, and generate columns
anchored by keywords. Since the rows in the Grid
represent immutable characteristics of the corpus,
(e.g., dates or other properties properties of the
data points), the user cannot manipulate rows in
the same way. The next sections describe how the
user and the Grid work together to curate columns
through iterative clustering.

2.1 Preparing the corpus

To prepare a corpus for use by the Grid, we first
break text into documents. In this paper, our docu-
ment unit was the sentence. The set of documents
is then pre-processed by removing punctuation and
stopwords and lemmatizing. Next, the cleaned doc-
uments are converted into vector embeddings. For
each document, a mean weighted vector is gen-
erated using embeddings from the GloVe model

(Pennington et al., 2014):

V =

∑N
i=0 ei · tfidfi

N
(1)

where ei is the vector embedding of word i in the
sentence, tfidfi is its term frequency-inverse doc-
ument frequency, and N is the number of words
in the sentence. Term frequency-inverse document
frequency is a statistical method of measuring word
importance, where the frequency of a word in a doc-
ument is compared to how common it is across all
documents.

Grids can be anchored by specific terms to al-
low users to focus on subsets of large corpora. For
Grids with anchor terms, a subcorpus is generated
that contains all documents with the anchor term.
This subcorpus is then used to populate the an-
chored Grid. For example, a Grid anchored by the
word “harvest” will contain only documents with
the word “harvest” in them, allowing the user to
narrow their focus.

2.2 Curating columns

The user and the machine collaborate to cluster doc-
ument semantic representations or vector embed-
dings (shortened to “documents” for the remain-
der of this paper) into columns. This collabora-
tion presents a technical challenge beyond con-
ventional clustering, because user decisions must
take precedence over clustering moves made by the
machine. We handle collaboration through three
types of columns: machine-generated, which con-
tain only the documents clustered by the machine
(the first row of Figure 2); frozen columns, created
by the user and which the machine is not allowed
to change (columns 5-7 in row second row of Fig-
ure 2); and seeded columns, which are non-frozen
columns that the user has added documents to (see
Appendix A for the details on column types).

These three types of columns allow the user to
control how the machine contributes to the cura-
tion process. The user decides when the machine
contributes by clicking the “Update” button in the
interface. When the Grid updates, all documents
outside the frozen columns are re-clustered. The
third row of Figure 2 shows the example Grid after
the user has requested an update. Note that the
user-defined columns written in black text persist,
and the machine-generated columns in blue text
have changed in response to the user’s contribu-
tions, highlighting new concepts like “credit.”
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Figure 1: Examples of Grids: a. An excerpt of a Grid created using a corpus of emails about an artist, organized
along a timeline of when works were made. b. An excerpt of a Grid organized by interviewee and date, showing
the larger tool interface. Cells in Grids can be clicked on to reveal documents. Documents themselves can be
clicked on to show the context, e.g., a sentence in its surrounding interview context.

2.3 Method of clustering
An important feature of the Grid is that documents
can appear in multiple columns. To support this,
the Grid uses the fuzzy c-means clustering algo-
rithm to assign documents to columns (Bezdek
et al., 1984). Fuzzy c-means clustering works
by calculating the degree of membership between
documents and a given number of k columns. It
minimizes the distance between documents and
columns, weighted by the degree of membership.
Documents are typically assigned random mem-
bership coefficients at the beginning of clustering
and these coefficients are updated throughout the
clustering process. We make one modification to
the algorithm: The user-added documents from
seeded columns are assigned fixed membership co-
efficients to ensure that they remain together in the
groupings specified by the user.

The number of columns k is selected by run-
ning fuzzy c-means clustering multiple times and

choosing the k that produces the best model as
scored by the Calinski-Harabasz (CH) index (Cal-
iński and Harabasz, 1974). The CH index assigns
higher scores to clustering solutions with clusters
that contain similar documents internally but that
are well-separated from each other. The index is
calculated as follows:

CH =
(n− k)
(k − 1)

B

W
(2)

B =
k∑

i=1

nidist(centroidi,meta_centroid)2 (3)

W =
k∑

i=1

ni∑

j=1

dist(dj , centroidi)
2 (4)

where n is the number of documents, k is the num-
ber of columns, centroidi is the average vector
embedding of column i, meta_centroid is the av-
erage vector embedding of all documents, B is the

221



Machine 
offers first 
clusters

Human adds 
clusters

Machine 
reclusters 

Human drags 
documents 
and column 

names update

Figure 2: Collaboration on columns between user and machine. Each rectangle is a Grid column, where the color
indicates the total number of documents summed over rows. Names in blue indicate machine-generated; names in
black indicate user-created.

between distance of the model, andW is the within
distance of the model. Frozen columns are included
in the CH index calculation because we intend to
score the results of collaboration between the user
and the machine, not the machine-generated solu-
tion alone.

3 Study Methodology

We conducted a user study to explore users’ re-
actions to the Grid and to investigate whether it-
erative, human-machine clustering helps users or-
ganize text more efficiently. We asked study par-
ticipants to curate an 80-sentence corpus in the
agricultural domain (see the section titled Study
corpus) using the Grid and then take a timed test
about concepts in the corpus. Participants were
assigned to three conditions with differing levels
of automation. In the following section, we discuss
the details of the study design.

3.1 Study design

Thirty-nine participants were recruited from multi-
ple domains including development practice, com-
puter science, agricultural engineering and bioengi-
neering. Participants were recruited from academia
and included graduate students and faculty mem-
bers.

We compared the Grid to two versions of itself,

resulting in three experimental conditions: treat-
ment, placebo, and control. In the treatment con-
dition, the Grid worked as described in the section
titled Method of Clustering (Section 2.3). In the
placebo condition, the Grid randomly assigned doc-
uments to columns instead of clustering them with
the previously-described algorithm. The placebo
condition was included to test whether participants
actually liked the behavior of the Grid or were sim-
ply trusting the results of the algorithm regardless
of quality (Pan et al., 2007).

In the control condition, participants interacted
with a Grid that did no clustering at all. In this con-
dition, participants could create columns using key-
words and those columns would be automatically
populated, but the machine would not generate any
of its own columns. This condition is closest to
the spreadsheet-based coding that many social sci-
entists use to process interviews, though it retains
the clean visualization of the Grid as well as the
automation of keyword-based column creation.

Participants were assigned randomly to the three
experimental conditions, with 13 participants in
each.

3.2 Procedure
The study was conducted remotely using the Grid
hosted on a server. The participants received train-
ing for using the Grid, interacted with the tool to
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organize the study corpus (the curation stage), and
completed a test task and a feedback questionnaire.
For more details on the study logistics, see Ap-
pendix C.

During the curation stage, each participant was
provided with an initial Grid to organize. Those in
the treatment condition began with a five-column
Grid generated through the algorithm described in
Section 2.3. Participants in the placebo condition
began with a five-column Grid generated randomly.
Participants in the control condition were given a
Grid with a single column containing all corpus
documents.

3.3 Study corpus
This study used a corpus of expert knowledge about
the rice production system in the Senegal River Val-
ley that the authors developed in a related research
project. During that project we elicited knowl-
edge from two local experts through qualitative
semi-structured interviews. Eighty sentences from
these interviews form the corpus for the current
user study.

For this study, the rows—the dimension that is
associated with structural, topic-independent char-
acteristics of the Grid—represent modeling dynam-
ics since those are commonly used in simulation
models. In particular, we manually assigned each
document to one of the five modeling dynamics:
causes, conditions, decisions, processes, and pro-
portions (see Appendix B).

3.4 Data collection
The study website recorded participants’ answers
to test questions as well as their written feedback
about their experiences with the Grid. Participants
were asked to rate their experiences using the Grid
on a 5-point Likert scale from “Very poor” to “Ex-
cellent.” Participants then responded to open an-
swer questions about what they liked and disliked
about the Grid, as well as their strategies for using
it.

The study website also recorded the actions par-
ticipants took while using the Grid (i.e., clicks,
drags, column creation and updates.) Various sum-
mary statistics were calculated from these quantita-
tive data. For example, the amount of work done
by participants was calculated as the cumulative
number of sentences moved during the curation
stage of the experiment. This includes sentences
that were moved as part of column creation (e.g.,
when a user creates a column, we count all the sen-

Figure 3: User feedback about the Grid experience.
Users were given answer options along a five-point Lik-
ert scale, but no responses rated lower than “Neutral.”

tences moved by the Grid into that column) as well
as dragging sentences between columns. In the
placebo and treatment conditions, the cumulative
number of sentences moved by the machine during
reclustering was also calculated.

Participant performance on the test questions
was scored by calculating precision and recall. Pre-
cision is calculated as the number of answers given
correctly divided by the total number of answers
given. Recall is calculated as the number of an-
swers given correctly divided by the total number
of correct answers (e.g., if a question has two cor-
rect answers and the participant gives only one,
their recall is 0.5).

4 Results

4.1 Feedback scores

Figure 3 shows the Likert-score feedback given
by participants. All participants rated the Grid ex-
perience as “Neutral” or higher. Participants in
the placebo condition rated the Grid experience as
worse more often than participants in the control
and treatment conditions. Treating the responses
of participants numerically, where 1 = “Very poor”
and 5 = “Excellent”, the average scores by condi-
tion were 3.85 for the control condition, 3.54 for
the placebo condition, and 3.92 for the treatment
condition.

The feedback in the form of open-ended question
responses demonstrated that participants liked the
concept and the visualization of the Grid, calling it
“easy”, “flexible”, and “intuitive". For more details
on qualitative feedback, see Appendix D.
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Figure 4: Participant F-scores (y-axis) compared to the
time each participant spent curating their Grid (x-axis),
colored by experimental condition.

4.2 Test results

The test scores of participants were not significantly
different across experimental conditions. The av-
erage precision and recall scores were 0.75 and
0.72. We did find that scores (combined into a sin-
gle F-score for each participant) for participants
in the placebo and treatment conditions correlated
nonlinearly with time spent building Grids. Fig-
ure 4 shows that participants fall roughly into three
groups: Those that spent little time curating their
Grids and did not do well on the test; those that
spent roughly ten minutes or more curating their
Grids and did well on the test; and those who spent
half an hour or more curating their Grids but did
not do well on the test. Figure 4 includes a dividing
line at 0.7 demonstrating this rough grouping.

4.3 Cumulative work done by condition

Participants in the control condition moved more
sentences on average than participants in the
placebo and treatment conditions (µcontrol = 172,
µplacebo = 85, µtreatment = 109; t(24) = 2.42, p <
0.03 for control-placebo comparison and t(24) =
1.66, p< 0.12 for control-treatment condition). We
do not attribute the difference in sentences moved
to the total amount of time that participants spent
curating their Grids, because this time was not sig-
nificantly different between conditions. We also do
not suspect that participants in the control condi-
tion did more work because they enjoyed using the
Grid more than other participants, because partic-
ipants from the control and treatment conditions
gave similar feedback scores. Thus, we suspect that
participants in the control condition did more work
than participants in the placebo and treatment con-

ditions because the latter were successfully aided
by the contributions of the machine.

Figure 5: Cumulative sentences moved by the partici-
pant and by the machine for each experimental condi-
tion.

We examined the strategies that participants used
to curate the study corpus. Participants spent time
on actions such as sentence dragging and column
creation, illustrated in Figure 5a. The y-axis shows
the cumulative numbers of sentences moved by
individual participants and the x-axis shows time
elapsed. Each line represents the activity of an
individual participant, and the color corresponds to
the cumulative number of sentences moved by the
Grid’s clustering algorithm. The control condition
is plotted in gray because there was no clustering
algorithm in that condition.

A variety of user styles is evident in Figure 5a,
from an exclusive preference for column creation
to progress made almost entirely through sentence
dragging. Points that are closely clustered along
the y-axis show participants dragging sentences
from column to column; larger increases in point
elevation indicate that participants are creating
columns, i.e., moving a larger number of sentences
all at once. The range of strategies shown in Fig-
ure 5a is reflected in participants’ written feedback.
Many reported that the primary benefit of the Grid
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was the ability to organize big chunks of informa-
tion quickly, with some even finding the sentence-
dragging feature to be too granular. Others liked
that they could move individual sentences by drag-
ging.

4.4 Interaction with the machine
The total number of times participants interacted
with their Grids through updating was not signifi-
cantly different across conditions. However, writ-
ten opinions about the behavior of the Grid varied.

Participants in both the placebo and treatment
conditions reported frustration with the Grid’s up-
dating feature (see Appendix D.2 for details). Pos-
sible signs of frustration among these participants
are visible in Figure 5b. This plot is very similar to
Figure 5a, except that the x-axis measures rounds
elapsed instead of time elapsed. “Rounds” were
counted by how often the user clicks “Update”;
for example, Figure 5b shows that most partici-
pants across conditions did not update their Grids
more than 10 times, while a few updated 20 times.
We note possible frustration in the number of up-
dates requested by participants in the placebo and
treatment conditions. Several of the lines change
color from blue to yellow while maintaining shal-
low slopes, indicating repeated requests for the
machine to do work without corresponding moves
made by the participant.

While positive feedback to the updating feature
was varied (see Appendix D.2), the data show that
some participants worked with the machine rather
efficiently. Figure 5b shows a contingent of partici-
pants in both the placebo and treatment conditions
who accomplished a steadily growing amount of
work within ten rounds, perhaps indicating that
the machine provided good results in response to
participants’ first requests. The slope of the lines
of these participants is steeper for participants in
the treatment condition than for participants in the
placebo condition, as we would expect given that
the treatment condition was designed to provide
better results.

Participants in the control condition were more
satisfied with the level of automation in the Grid
than participants in the placebo and treatment con-
ditions, even though they did not have access to the
column clustering feature. One said, “The coolest
feature of the grid is creating new columns and
hitting the ‘update grid’ feature to automatically
populate the sentences. It was very cool to be able
to parse out a subset of content using key words.”

Another reported that they “liked the automated
aspect of it. Knowing all sentences with the key-
word selected would be moved/duplicated to the
corresponding column was a helpful way to sys-
tematically filter down the information at hand.”
However, one participant did report that they “did
not like that the original column updated on its own
based on the remaining information, as it tended to
be a bit disjointed.”

4.5 Column creation
Participants tended to create between five and ten
columns to organize the 80-sentence corpus, with
fewer than 20 sentences per column. In the control
condition, participants steadily added columns over
time, but participants in the placebo and treatment
conditions settled on a number of columns within
the first ten minutes and then made smaller addi-
tions or subtractions. In general, participants in the
treatment condition had slightly more columns than
participants in the other conditions. Participants
in the placebo condition had the fewest number of
columns on average.

Participants in all conditions wrote feedback ap-
preciating the automation surrounding keywords
and column creation. One participant said that
they “liked that the columns included every form
of the word rather than just the specific word.” A
participant in the control condition said that the ma-
chine tended to “correctly place information that I
thought should be included in [the columns].” One
participant reported feeling frustrated that some
sentences left over at the end of the curation pro-
cess did not fit easily into any of the columns they
had created.

Participants in all conditions settled on a similar
number of columns (the average being ten). How-
ever, participants did not all give their columns the
same names; the topics in the columns varied more
than the number of columns. Table E in the Ap-
pendix shows the most and least common words
used in column names. The most common words
align with the main themes of the interview corpus
(e.g., equipment, timing and finances), as judged by
the researchers present during the interviews. Par-
ticipants reported that, during the test, they were
able to use the columns they had created to find the
relevant information.

4.6 Quality of columns
The quality of Grids is difficult to assess because
knowledge curation tasks lack ground truth due to
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their inherent subjectivity. However, we can evalu-
ate participants’ columns using the same Calinski-
Harabasz (CH) index employed in the clustering
algorithm (Caliński and Harabasz, 1974). While
using the CH index as a measure of quality does tip
the scales in favor of the treatment condition, the
participants have direction over the clustering al-
gorithm and it is conceivable that human decisions
might drive the quality of columns down over time.
But when we calculate the CH index for individual
participants’ Grids over time, we find that 98% of
the time, participants in the treatment condition
score higher than the highest-scoring participant
in the control and placebo conditions. Thus the
advantage of using the treatment algorithm persists
past Grid initialization.

5 Discussion and Conclusions

The Grid combines NLP, ML and visualization
methods to assist users in the organization of ex-
pert knowledge corpora. We have presented results
from a user study meant to evaluate this combina-
tion of methods. Here we draw conclusions about
whether the Grid successfully satisfies the criteria
laid out in the introduction.

First, we conclude that the Grid allowed users
to process the knowledge corpus quickly at multi-
ple levels of abstraction. The organizational power
and visualization of the Grid was well-received
by participants with diverse expertise and skill
sets. Participants in all conditions appreciated the
speed with which they could organize information
and even participants in the somewhat frustrating
placebo condition were able to answer test ques-
tions using their Grids. The high test results in all
conditions may in part be a ceiling effect; however,
we do not discount the role of the Grid in allowing
participants to rapidly familiarize themselves with
a corpus they had not seen before. Moreover, par-
ticipants were afforded a large amount of flexibility
in how they used the Grid. Participants were able
to use different combinations of column creation
and sentence dragging to organize information, and
they reported preferences for different strategies
in the written feedback. Participants often shifted
between large organizational moves like column
creation and more precise moves like sentence drag-
ging, indicating that the Grid allowed them to work
at different levels of abstraction. The number of
columns for each participant was similar, but the
column names were different, indicating that the

Grid allowed participants to organize information
in the way that made the best sense to them.

Whether the Grid successfully assigned work
based on the different capabilities of humans and
machines is less clear. The participants using the
Grid’s clustering algorithm appeared to work more
efficiently than those without it, but written feed-
back about the clustering was critical. Participants
in the placebo and treatment conditions reported
that behavior of the Grid’s clustering algorithm
was confusing and sometimes counterproductive,
while participants in the control condition praised
the much simpler automated column populating.
This indicates that efficiency is not sufficient for
a satisfying user experience and that future work
on collaborative algorithms should focus on trans-
parency. For example, the inclusion of LLMs in
the collaborative process could allow for explana-
tions of why sentences are grouped together in Grid
columns.

The Grid tool provides support for organizing
expert knowledge in an expert-driven modeling
pipeline. While our user study revealed some chal-
lenges in the design of such tools, we find the re-
sults encouraging and suspect that many of the
lessons learned, such as the frustration with the
clustering algorithm, may be mitigated in future
versions by enlisting LLMs to provide explanations
for the user. The Grid can be expanded to include
other parts of the knowledge engineering process,
such as a semi-automated model generation step
after knowledge has been organized. We conclude
that semi-automated tools like the Grid can play
valuable roles in multiple research communities
and have the potential to support more nuanced
and local models of human behavior.

The code for the Grid tool is available at https:
//github.com/Allegra-Cohen/grid.
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A Column Types

Machine-generated columns are those that contain
only documents that have been clustered by the ma-
chine. Grids are initialized with machine-generated
columns. The first row of Figure 2 shows a Grid
with five machine-generated columns marked in

blue text. The machine names columns by select-
ing the top two tokens in the column as ranked by
tf-idf.

Frozen columns are those that the machine is
not allowed to change. Users can create frozen
columns using keywords, such as the “labor,” “har-
vest,” and “yield” columns in the second row of Fig-
ure 2. Each column contains only sentences about
its lemmatized keyword. For example, the “labor”
column contains only sentences with the word “la-
bor.” Users can also freeze existing columns by
renaming them (in which case documents in the
renamed column needn’t contain the user-assigned
name). When a column is frozen, the machine is
barred from moving documents in and out of it dur-
ing clustering. Documents in frozen columns also
cannot be placed in other columns by the machine,
which reduces the amount of organizational work
left for the user. Frozen columns are useful when
the user has a topic in mind and doesn’t want the
machine to interfere.

Seeded columns are non-frozen columns to
which the user has added one or more documents.
When the user drag-and-drops documents into a
column, that column becomes seeded (see row four
in Figure 2.) During clustering, these user-added
documents remain in the seeded column, but the
machine is allowed to move other documents in
and out of that column. Seeded columns are useful
when the user wants to group a handful of docu-
ments, but would like the machine to decide which
others to include with them.

B Classifying Rows for the Study

The Grid was developed to organize expert knowl-
edge for use in simulation models. Thus, we
wanted to organize knowledge into modeling dy-
namics that bore some resemblance to the code we
would write, e.g., conditional language correspond-
ing to if / else statements.

We selected five modeling dynamics as rows
for Grids in this study: causes, conditions, deci-
sions, processes, and proportions. Documents are
classified into rows based on whether they contain
information about these dynamics. We define doc-
uments as containing causal language if we can
identify some X as being responsible for some Y,
and containing conditional language if some X is
a condition of Y. Documents contain decisions if
there is an entity selecting from more than one op-
tion. We define documents as containing processes
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if there is language about something beginning,
ending, or occurring at a specific time or in relation
to another process, or if there is language about
events occurring in sequence. If some X is com-
pared to some Y, such as with language like “larger”
or “more”, then the documents contain proportions.
Because documents can contain multiple modeling
dynamics, we allowed documents to appear in mul-
tiple rows. Documents were assigned to rows by
hand in this study. Adding automated classifiers is
a direction of future research.

C Study logistics

The study was conducted remotely through a web-
site. Participants joined a Zoom room with a re-
searcher present, and then logged into the website
using assigned ID numbers. A detailed consent
form was provided to which participants agreed in
order to continue.

Participants first went through three pages of
training, which typically took ten to fifteen min-
utes, and asked the researcher any questions they
had about the Grid. The training was tailored to
participants’ study conditions.

After completing the training, participants
moved on to the next page of the website. On
this page, they were given 35 minutes to organize
the study corpus using the Grid following these
instructions:

Today you will be working with a corpus
of expert knowledge about rice harvest-
ing in the Senegal River Valley. You will
have 35 minutes to organize the expert
knowledge using the Grid tool. When
you are done, you will be tested on the
important concepts in this corpus, so
please organize your Grid in such a way
that you can find information quickly.
Think about how you would organize
information in your own research; the
columns of your Grid should contain
what you think are the important themes
or variables related to rice harvesting.

During the 35-minute curation phase, when par-
ticipants in the treatment condition clicked the “Up-
date” button, the Grid returned a new clustering so-
lution using the algorithm described in the Method
of Clustering section. The Grids of participants in
the placebo condition returned random columns.
For participants in the control condition, clicking

the “Update” button simply removed the sentences
from the original column that had already been
assigned to participant-created columns. In this
condition, the “Update” button helped to tidy up
the Grid but did not propose new columns.

After organizing their Grids, participants moved
on to a test page that contained their curated Grids
and seven multiple choice questions about the con-
tent of the corpus. The test questions were designed
to strike a balance between broad themes in the cor-
pus and details for which participants would have
to read carefully. For example, the first question,

What could cause a farmer to harvest
late? (Select all that apply.)

(a) Bird attacks
(b) A lack of labor
(c) Competition for equipment

highlighted the role of labor and equipment in har-
vest timing (a reoccurring theme throughout the
corpus) but also required participants to know that
bird attacks cause farmers to harvest early, not late
(a more subtle detail in the corpus.)

Participants were given 10 minutes to complete
the test using their Grids, at which point they were
taken to a feedback page and the end of the study.
Finally, participants were debriefed about the con-
dition they were in and the purpose of the study.

D Qualitative Feedback

D.1 Grid concept and visualization
The concept of a tool to quickly organize informa-
tion into columns was well-received by participants.
Participants from all conditions called the Grid
“simple,” “easy,” “convenient,” “flexible,” “fun,”
and “intuitive.” Participants appreciated the speed
at which the Grid allowed them to work and said
they liked how it helped them turn disorganized
columns into columns that were “well-organized
and easier to access.” Participants also enjoyed fea-
tures that allowed them to dig deeper into the Grid
content, such as being able to click on sentences
to read their surrounding interview context. One
participant from the treatment condition said, “It is
so flexible ... I can reorganize stuff the way I want
... Super fun to work with.”

Participants particularly liked the visualization
of the Grid. One said, “I think the visualization
with the shading was very intuitive and made the
organization process quick and easy to iterate.” Par-
ticipants liked that the colors of the Grid indicated
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the distribution of information across columns, say-
ing that it quickly allowed them to infer how “good”
their columns were; one participant reported, “I
liked the color coding a lot – helped me know
which columns were maybe too big, and which
were maybe unnecessary or perhaps poorly de-
fined.” Another said the Grid was a “good and
innovative way to display information to the user.”

After completing the study, some participants
reported that it had been “fun” and “relaxing.” One
participant exclaimed, “Where have you been all
my life?” and several participants from both the
control and treatment conditions signed up to con-
tinue using the tool after the study.

D.2 Interaction with the machine
Written feedback showed some frustration among
the participants in the conditions that involved clus-
tering. One participant in the placebo condition
said, “Very very quirky to use and it was very diffi-
cult to get a sense of what the task was.” Another
participant in the placebo condition reported, “I
didn’t like how little control I had over what hap-
pened during an ‘update’ – there were different
numbers of new columns appearing, etc. I was hes-
itant to do too many edits once I had a few columns
because, again, it seemed like I didn’t understand
the changes made by the updating.” A participant
in the treatment condition said, “If I update the
Grid, it reorganizes the columns names by itself ...
I feel like it is getting out of my hands. The more I
want to organize it, more messy it can get.”

Positive written feedback about the Grid’s up-
dating feature was limited among participants in
the placebo and treatment conditions. Only one
participant in the treatment condition praised the
column clustering, saying “I liked that it would
automatically identify and sort motifs.”

D.3 Rows and columns usage
Participants in all conditions reported using their
column names to navigate to the appropriate sen-
tences based on keywords in the test questions. If
the first column they consulted did not have the
information needed to answer the question, par-
ticipants reported that they would move on to the
next most relevant column. Most reported that they
rarely looked in the rows corresponding to model-
ing dynamics, but instead used the “all” row that
held all of the sentences assigned to a column. A
few participants reported that the other rows be-
came useful when the test question was clearly

related to modeling dynamics, such as asking what
could cause farmers to harvest late.

Participants in all conditions disliked how the
study corpus had been organized into rows. Many
participants said that they simply did not use the
rows because the distinctions between the five mod-
eling dynamics were unclear. In addition, because
we allowed a single document to be assigned to
multiple rows, participants found that the content
of rows overlapped too much. However, others
said that a few of the rows were useful, and one
participant said that the rows were “practical.” In
general, participants liked the idea of having rows
correspond to modeling dynamics, but found that
the actual assignment of sentences to rows was
unsuccessful.

E Top most commonly used words in
column names

Word Count
rice 6

machinery 6
labor 6

harvest 5
cooperative 5
harvester 5

loan 4
timing 4
time 4

equipment 4
credit 4
cost 4

farmer 4
season 4
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Abstract

There has been a huge number of benchmarks
proposed to evaluate how large language mod-
els (LLMs) behave for logic inference tasks.
However, it remains an open question how to
properly evaluate this ability. In this paper, we
provide a systematic overview of prior works
on the logical reasoning ability of LLMs for
analyzing categorical syllogisms. We first in-
vestigate all the possible variations for categor-
ical syllogisms from a purely logical perspec-
tive and then examine the underlying configura-
tions (i.e., mood and figure) tested by existing
datasets. Our results indicate that compared to
template-based synthetic datasets, crowdsourc-
ing approaches normally sacrifice the coverage
of configurations (i.e., mood and figure) of cat-
egorical syllogisms for more language varia-
tions, thus bringing challenges to fully testing
LLMs under different situations. We then sum-
marize the findings and observations for the
performance of LLMs to infer the validity of
syllogisms from the current literature. The er-
ror rate breakdown analyses suggest that the
interpretation of quantifiers seems to be the cur-
rent bottleneck that limits the performance of
the LLMs and is thus worth more attention. Fi-
nally, we discuss several points that might be
worth considering when researchers plan to re-
lease categorical syllogism datasets. We hope
our work will provide a timely review of the
current literature regarding categorical syllo-
gisms, and motivate more interdisciplinary re-
search between communities, specifically com-
putational linguists and logicians.

1 Introduction

Large language models (LLMs) have achieved re-
markable performance on a variety of tasks (Brown
et al., 2020; Wei et al., 2022; Bubeck et al., 2023).
Over the years, a large number of benchmarks have
been proposed that try to evaluate the different abil-
ities of LLMs, many of which are designed for
measuring logical reasoning ability using a variety

of tasks. Habernal et al. (2018) propose an argu-
ment reading comprehension task to test deductive
reasoning. CLUTRR (Sinha et al., 2019) tests in-
ductive reasoning capabilities by requiring to infer
kinship relations between characters in short sto-
ries. ReClor (Yu et al., 2020), MMLU (Hendrycks
et al., 2021), and LogiQA (Liu et al., 2020) con-
tain multiple-choice reading comprehension ques-
tions to evaluate diverse forms of logical reasoning.
Datasets such as SylloBase (Wu et al., 2023) and
FOLIO (Han et al., 2022) require LLMs to conduct
inferences using syllogism logic or first-order logic.
Among these datasets, many consist of questions
that are directly taken from exams. For example,
MMLU (Hendrycks et al., 2021) contains practice
questions from tests such as the Graduate Record
Examination (GRE), and ReClor (Yu et al., 2020)
collects problems from the Law School Admission
Test (LSAT).

A fundamental question behind these datasets
is: how to design a benchmark to ensure a fair
and comprehensive evaluation of logic reasoning
abilities? This question is particularly important
when the test questions are self-generated, instead
of directly collected from established examinations
for humans mentioned above. Problems in those
human examinations are developed over decades
and are designed in support of theories such as psy-
chometrics and measurement in education. Thus,
having rigorous analyses of current benchmarks
designed for LLMs would ensure that we can track
the development progress of LLMs accurately.

In this work, we make progress in answering the
above question for a specific task: categorical syl-
logisms.1 Besides the reason that to the best of our
knowledge, there is no prior work on analyzing cat-
egorical syllogism datasets from a designing prin-
ciple’s perspective, we note some other compelling

1Unless specified, the term “categorical syllogisms” is also
directly written as “syllogisms” (due to space issues).
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reasons for choosing this task. (1) Syllogisms are
inarguably the most basic building block in logical
reasoning abilities. Having a deeper understand-
ing of syllogism inference is thus beneficial when
designing models for solving more complex reason-
ing tasks. (2) Categorical syllogisms have a finite
number of situations (discussed in Section 2.1),
which could enable a complete check of all the pos-
sible cases for LLMs. (3) How to properly solve
categorical syllogisms has been studied by logi-
cians over decades. There is a huge literature that
we can draw inspiration from to help understand
how LLMs behave or make LLMs more efficient.

To sum up, our intention is not to propose new
models to achieve the start-of-the-performance on
certain datasets, nor introduce new benchmarks.
Rather, we hope to take a step back and systemati-
cally review all existing work to understand where
we are right now. Our goal is to check missing
pieces and identify areas that are worth clarifying
or need future research. Specifically, in this paper,
we make the following contributions:

• We investigate all existing categorical syllo-
gism datasets in literature along with their
properties in Section 3. A checklist cover-
ing all the variations of categorical syllogisms
from a purely logician’s perspective is pro-
vided and we then examine the coverage of
different cases for existing benchmarks.

• We summarize all prior findings related to the
performance of LLMs for checking the valid-
ity of syllogisms in Section 4. By presenting
an error rate breakdown by the mood and fig-
ure of syllogisms, we highlight the importance
of enhancing the abilities of LLMs for inter-
preting quantifiers.

• We provide suggestions for the future releases
of categorical syllogism datasets in Section 5,
including clarifying certain issues such as ex-
istential import, providing complete annota-
tions, and building datasets containing ordi-
nary arguments.

2 A Concise Introduction to Syllogisms

In this section, we provide a brief introduction to
categorical syllogisms from a logician’s perspec-
tive. We will show in Sections 3.2 and 4.3 that these
preparations will help us evaluate current syllogism
datasets and better understand the bottleneck of the
performance of LLMs.

Major Premise: All Greeks are humans.
Minor Premise: All Athenians are Greeks.
Conclusion: Therefore, all Athenians are humans.

Table 1: An example of a standard-form categorical
syllogism (mood AAA, figure 1, configuration AAA-1).

Proposition Type Gen. quant.

All S are P. Universal Affirmative (A) S ⊆ P
No S is P. Universal Negative (E) S ∩ P = ∅
Some S is P. Particular Affirmative (I) S ∩ P ̸= ∅
Some S is not P. Particular Negative (O) S − P ̸= ∅

Table 2: Types of propositions with corresponding ex-
pressions using generalized quantifier theory.

2.1 Categorical Syllogisms

Categorical Propositions. A categorical propo-
sition relates two classes, or categories. In prac-
tice, we care most about a categorical proposi-
tion in its standard form, which can be written as:
Quantifier (Subject) Copula (Predicate).
There are only 4 kinds of standard-form categorical
propositions, listed in Table 2.

Terms. A syllogism contains three terms: the
predicate term (P), the middle term (M), and the
subject term (S). The middle term never occurs in
the conclusion but always appears in both premises.
The term that occurs as the predicate and the sub-
ject of the conclusion is called the major term and
minor term, respectively.

Standard-Form Categorical Syllogisms. A cat-
egorical syllogism in its standard form must meet
the following two requirements: (1) Its premises
and conclusion are all standard-form categorical
propositions (A, E, I, or O; see Table 2); and (2)
Propositions are arranged in standard order (ma-
jor premise, then minor premise, then conclusion).
Table 1 is an example of a standard-form syllogism.

Mood and Figure. The mood of a categorical
syllogism consists of the letter names of the propo-
sitions it contains. For example, the mood for the
syllogism presented in Table 1 is AAA. The figure
of a categorical syllogism is determined by the lo-
cation of the two occurrences of the middle term
in the premises. As shown in Table 3, there are 4
possible figures. To accurately determine the mood
and figure of a categorical syllogism, it must be in
standard form (defined above). Any standard-form
syllogism is completely described when we specify
its mood and figure. To simplify the terminology,
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Figure 1 2 3 4

Major Premise M - P P - M M - P P - M
Minor Premise S - M S - M M - S M - S
Conclusion S - P S - P S - P S - P

Table 3: Categorical syllogisms have 4 different figures.

in this paper, we define the combination of mood
and figure as the configuration of this syllogism.

Valid Inference Types. Since there are 4 kinds
of categorical propositions and 3 categorical propo-
sitions in a categorical syllogism, there are 64 pos-
sible moods (43 = 64). As each mood can occur in
each of the four figures, in total we have 44 = 256
different syllogisms. Among these, only 24 are
valid forms, which are extensively studied by logi-
cians.2 Thus, we have the following fact: the va-
lidity of the standard syllogism can be determined
by checking the configuration (mood and figure)
against a list of valid syllogistic forms.

2.2 Analyzing Syllogisms as a Logician
We now briefly go through the steps that logicians
take for an ordinary categorical syllogism (Copi
et al., 2019; Hurley and Watson, 2018).

Translating Categorical Propositions. In prac-
tice, rare propositions are in their standard form and
we need to make translations. The major benefit
of such translation is that the operations and infer-
ences pertinent to standard-form categorical propo-
sitions can be directly applied to these statements.
Logicians have developed a number of well-tested
methods for translating non-standard propositions,
although given the richness of ordinary language,
these specific rules can not cover all possible cases.

Determining the Mood and Figure. Once a cate-
gorical syllogism is written in its standard form, its
figure and mood can be determined by comparing
it to Tables 2 and 3. The judgment of a syllogism’s
configuration is then rather straightforward.

Checking Validity. For a given standard-form
categorical syllogism, there are at least the follow-
ing three ways to check its validity: (1) Use the
configuration of this syllogism and then compare it
against a list of pre-defined valid syllogistic forms;
(2) Use the method of Venn diagrams or general-
ized quantifier theory to perform set operations;

215 configurations are “unconditionally valid” and another
9 are “conditionally valid”. It is related to existential import
in Section 5.1.

or (3) Check to see if the syllogism conforms to
certain rules that are developed by logicians.

Handling Non-Standard Cases. When translat-
ing into standard-form syllogisms, some specific
cases are worth attention, including the treatment
of singular propositions, syllogisms with more than
three terms, and enthymemes and sorites. We pro-
vide the details of these situations in Appendix A.

3 Review of Existing Syllogism Datasets

3.1 Summary of Syllogism Datasets
We categorize all existing syllogism datasets based
on their construction methods, i.e., how the text
of premises and conclusions are generated. In real
practice, although some datasets are originally pro-
posed for predicate (first-order) logic, their con-
struction methods might involve syllogisms, or a
portion of or the whole dataset contains only cat-
egorical propositions. As these datasets could be
formulated as syllogisms, we also list two repre-
sentative ones for completeness. All syllogism
datasets are summarized in Table 4.3

Template-based Approach. Datasets falling into
this category are normally generated using tem-
plates, i.e., four standard propositions in Table 2.
The relation triplets are sampled from different
sources and then filled into terms positions of these
templates to form the complete syllogisms. For
example, questions in ProntoQA (Saparov and He,
2023) use ontology generation and contain a series
of premises and thus essentially sorites. Eisape
et al. (2024) use a list of 30 relation triplets, the
terms of which have no obvious semantic associa-
tions. The relation triplets in Wu et al. (2023) are
sampled from Wikidata and ConceptNet, and the
propositions generated from templates are further
rephrased by using GPT-3.

Text Generated by Humans. Non-synthetic
datasets are normally developed through crowd-
sourcing efforts. To acquire high-quality infer-
ence questions efficiently, these datasets sometimes
rely on guidance during the crowdsourcing tasks.
SylloFigure (Peng et al., 2021) is built based on
the idea of enthymeme reconstruction. Specifi-
cally, Peng et al. (2021) select the entailment part
of the SNLI (Bowman et al., 2015) dataset and
then add the annotations of figures. Avicenna

3Some prior works use syllogism datasets that are not in
the format of natural language, such as Dong et al. (2020). We
skip the discussions of these studies.
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Data Generation Annotation Performance Meta

Method Source Term Mood Figure Validity Task Model Acc. Total Access

Syllogisms Datasets
SylloFigure

Entailment part of SNLI Middle 1-4 Entail
Figure

BERT 92% 8,635 Yes
(Peng et al., 2021) identification

Avicenna
Crowdsourcing

Books,
Middle valid, invalid

Conclusion GPT-2 trans.
32.0% 6,000 Yes

(Aghahadi and Talebpour, 2022) articles, etc. generation learning

SylloBASE Template w/ Wikidata
valid, invalid

Conclusion
RoBERTa 72.8% 51,000 No

(Wu et al., 2023) GPT-3 rewrite ConceptNet selection

Logical
Human authored questions

valid Conclusion validity
PaLM 2-L

∼90%
48 No

(Lampinen et al., 2023) belief-consistent identification (support)

NeuBAROCO BAROCO (originally designed entail, contra, neu Conclusion validity
GPT-3.5

51.7%
375 No

(Ando et al., 2023) for human intell. test) inference types identification (overall)

Reasoning
Template

Hand-crafted
valid, invalid

Conclusion
PaLM 2 ∼75% 1,920 Yes

(Eisape et al., 2024) triples list selection

First-order Logic Datasets
FOLIO Template w/ crowd

N/A
true, false, Conclusion truth Logic-LM

78.1% 1,435 Yes
(Han et al., 2022) -sourcing rewrite unknown identification (GPT-4)

ProntoQA
Template

Generated true, Validity of
GPT-3 ∼90% 400 Yes

(Saparov and He, 2023) ontology false sorites

Table 4: Overview of existing syllogism datasets, along with their construction methods, annotations included,
and the documented model performance. denotes annotations could be inferred based on the provided dataset
construction method, denotes annotations are generated in the intermediate steps of the dataset construction but
are neither released nor inferred, and denotes annotations not available or no information.

(Aghahadi and Talebpour, 2022) is a crowdsourc-
ing dataset, and the syllogisms are extracted from
various sources, such as books and news articles.
Syllogisms in Lampinen et al. (2023) are hand-
authored. NeuBAROCO (Ando et al., 2023) origi-
nates from BAROCO, which is written in Japanese
and is developed to evaluate human syllogistic rea-
soning abilities. FOLIO (Han et al., 2022) first
generates logically valid stories using syllogism
templates and then asks human annotators to write
logically valid stories in natural language.

Our Newly Collected Test Examples. As shown
in Table 4, nearly all datasets with human-
generated text lack certain kinds of annotations,
thus causing troubles in analyzing them (in Sec-
tion 3.3). We fill in this missing gap by collecting
relevant examples and corresponding exercise ques-
tions from standard introduction to logic textbooks
(Copi et al., 2019; Kelley, 2013; Baronett, 2018;
Hurley and Watson, 2018).

In total, we collect 371 examples of translat-
ing statements into standard form, covering all the
possible forms of phraseology discussed in Sec-
tion 3.2; 64 examples for judging the types of stan-
dard propositions; and 116 examples for judging
the validity of a given syllogism, with complete
annotations for the mood and figure. Among these
examples, 57 are enthymemes.

3.2 Variations of Categorical Syllogisms

A set of questions that cover all the possible
cases could be achieved by varying components
of different levels of granularity that we outline in

Section 2.1. We consider all possible variations
from two angles: syllogisms in standard and non-
standard forms. For standard syllogisms, the under-
lying nature is decided by the combination of mood
and figure, which leads to 256 different cases.

For non-standard syllogism, there are variations
both on the individual proposition level and the
syllogism level. On the proposition level, we con-
sider the different options of quantifiers, terms, and
copula: (1) Besides standard quantifiers, the propo-
sitions could have non-standard quantifiers (also
known as generalized quantifiers), such as “few”,
“a few”, “not every”, or “anyone”, and unexpressed
quantifiers; (2) Terms could be expressed with only
an adjective, a plural noun or a pronoun, and the
verbs are in other forms of the verb “to be;” and
(3) Certain propositions could be typically trans-
lated into categorical propositions. Established cat-
egories include singular propositions, conditional
statements such as “if ... then,” exclusive propo-
sitions that involve words “only,” “none but,” and
“none except,” and exceptive propositions in the
form of “All except S are P” and “All but S are P”.

On the syllogism level for non-standard syl-
logism, we vary the following (details in Ap-
pendix A): (1) It is possible that the syllogism
covers more than three terms; and (2) Besides the
normal syllogisms with two premises and one con-
clusion, there exist situations with more than two
premises or missing premises, which we refer to as
enthymemes and sorites.

On top of all the options above, instead of putting
the propositions in a well-structured format (i.e., ex-
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plicitly listing them as premises and conclusions),
we could mix them all together as ordinary argu-
ments. Some other parts could be varied, such as
the order of the two premises. Since the change
of the ordering does not change the validity of the
conclusion, we skip the discussion of this part.

3.3 Coverage of Current Datasets

In Section 3.2, we have enumerated all the possible
cases of categorical syllogisms. In this section, we
will use this checklist to evaluate the coverage of
current syllogism datasets. We mainly consider the
following aspects: (1) the forms of phraseology
covered, and (2) the mood and figure covered in
these syllogism datasets.

3.3.1 Building Tools for Assessing Coverage
Most of the datasets do not have the annotations
needing to be assessed (details in Table 4). Mak-
ing up these missing pieces would require human
annotators with linguistic background. Given the
huge amount of human effort for such annotations,
we take the approach of directly asking LLMs to
perform as an annotator for labeling.

To ensure that we can build prompts with rea-
sonable performance, we calibrate them on our
newly collected textbook questions (discussed in
Section 3.1). We also use the fact about the validity
of syllogisms mentioned in Section 2.1 for cross-
checking: for a valid inference, if a predicted con-
figuration is not one of the valid syllogism forms,
then there is something wrong with this prediction.

Translating the Propositions. When translat-
ing statements, besides a deep understanding of
the given statement, we need to follow some es-
tablished rules set by logicians (for example, the
treatment of singular propositions discussed in Ap-
pendix A). We thus base our prompt design on a
2-step translation process: (1) determine the nature
of a proposition by classifying it into categories
listed in Table 5), and (2) then perform the trans-
lation based on the set rules within that category.
To make sure the translated proposition is in the
standard form, we also set up a mechanism for a
second-round translation. We observe that GPT-4o
performs well in identifying the forms of phrase-
ology, while it is easy to incorrectly classify some
statements into singular propositions. A manual
check for the translated propositions shows that
GPT-4 achieves 87.3% accuracy on 371 textbook
problems, with 68 propositions translated twice.

SylloFigure Avicenna Reasoning

Proposition

Standard (%) 0.9 0.6 100
Singular (%) 64.7 27.2 0
Condition (%) 2.3 9.5 0
Exclusive (%) 0.1 1.0 0
Others (%) 32.0 61.7 0

Total 2,448 1,864 2,560

Configuration

Coverage (%) >4.3 >2.7 100
Actual count >11 >7 256

Syllo assessed (%) 71.1 60.9 100

Total syllogisms 868 622 2,560

Table 5: Forms of phraseology and configurations of
categorical syllogisms covered in datasets.

Judging the Mood and Figure. We can not first
translate individual propositions and then simply
combine the detected proposition types together to
form the mood of the syllogism, due to the issue
of having potentially more than three terms (in Ap-
pendix A). Thus, we feed the syllogism as a whole
and ask GPT-4 to generate the mood and figure
simultaneously. The principles and rules discussed
above for translating propositions are also incor-
porated into the prompt. Experimental results on
116 textbook examples reveal an accuracy of 87.9%
for mood detection, 48.3% for figure detection, and
44.8% for configuration detection. A further review
of mood detection results reveals that this high ac-
curacy is due to the fact that most of the collected
textbook examples are standard-form propositions.

3.3.2 Datasets Coverage Observations
We apply our calculating tools developed in Sec-
tion 3.3.1 to all three categorical syllogism datasets
currently released. For the SylloFigure and Avi-
cenna datasets, we conduct analyses only on the
test sets, while for the Reasoning dataset, we ran-
domly sample 10 relation triples out of 30 and
then generate the complete syllogisms. We use the
whole dataset for assessing the proposition forms,
since it is rather straightforward. Regarding the un-
derlying configuration of syllogisms: As the Rea-
soning dataset is generated by using templates, the
whole dataset could be accurately assessed (since
we have all the annotations such as mood and fig-
ure). Using the cross-checking method discussed
in Section 3.3.1, we estimate 60.9% of syllogisms
could be properly assessed in the Avicenna dataset,
while a higher 71.1% for the SylloFigure dataset,
as it contains human annotated figures.

Our assessment results are reported in Table 5
(detailed configurations are in Figure 1). In Fig-
ure 2 we also provide the distribution of the esti-
mated proposition types in the SylloFigure dataset.

234



We observe that both the proposition types (A, E,
I, O) and forms of phraseology (types in Table 5)
are distributed highly unevenly, and datasets nor-
mally have different distributions. Regarding the
coverage of configurations, we observe that com-
pared to template-based datasets, datasets using
human-generated text are normally centered on a
few specific moods and figures, i.e., Avicenna cov-
ers only over 7 different syllogisms configurations,
calculated from 60.9% of the whole dataset.

Since we use LLMs instead of human effort to
make up the missing mood and figures, the cov-
erage percentages in Table 5 can only be treated
as rough estimates. Nevertheless, our key point is
clear: datasets that are from crowdsourcing efforts
are skewed to certain linguistic styles and cover
only limited configurations of syllogisms. We thus
suggest researchers take the actual variations cov-
ered by the datasets into account when interpreting
experimental results.

4 Evaluating LLMs for Analyzing
Syllogisms

4.1 What Do We Know So Far?
Reported Results for Validity Inferences. We
observe prior studies mainly make use of the fol-
lowing approaches to evaluate the validity of cate-
gorical syllogisms: (1) given two premises, select
a correct conclusion from multiple choices (Wu
et al., 2023; Eisape et al., 2024), (2) given two
premises and a conclusion, identify if the logic in-
ference is valid (Lampinen et al., 2023; Ando et al.,
2023), and (3) given two premises or more, gener-
ate the conclusion (Aghahadi and Talebpour, 2022;
Saparov and He, 2023). In general, most prior
works report LLMs have an accuracy of around
75% when evaluating the validity of given syllo-
gisms. We provide more performance evaluation
details in Table 4.

Error Analysis. One trend for analyzing the er-
rors that LLMs make is to compare them with hu-
man cognition biases. Lampinen et al. (2023) find
that like humans, LLMs give out more accurate an-
swers when the semantic content of a task supports
the logical inferences. Ando et al. (2023) analyze
the models’ errors from three aspects: belief biases,
conversion errors, and atmosphere effects. Eisape
et al. (2024) provide more direct observations that
LLMs replicate some human biases discovered in
psychology studies, while LLMs could overcome
these biases in certain situations.

Dataset # GPT-4 GPT-4o

SylloFigure 868 74.3 70.2
Avicenna 622 72.5 53.4
Reasoning 2,560 90.2 95.4

Table 6: Accuracy (%) for checking the validity of cate-
gorical syllogisms.

4.2 LLMs’ Performance Breakdowns by
Syllogisms Configurations

In this section, we reproduce the experimental re-
sults of LLMs for judging the logical validity of
syllogisms and check to see if prior findings still
hold. We will also break down the error rate by the
configurations of syllogisms.

4.2.1 Setups
Models and Datasets. We conduct our experi-
ments using OpenAI’s GPT models, as they are
commonly used large language models with com-
pelling performance on a variety of inference tasks
(OpenAI et al., 2024). All our experiments are done
using GPT-4 and GPT-4o. We use the same set of
datasets that we assess in Section 3.3. The details
of these datasets are provided in Section 3.3.2.

Prompts Used. For comparison purposes, we fol-
low the chain-of-thought prompt used in Eisape
et al. (2024) and test how LLMs perform logical
inferences under a zero-shot learning setting.

4.2.2 Results
We visualize the error rate of GPT-4 and GPT-4o on
the complete 256 configurations of syllogisms from
the Reasoning dataset in Figures 1(a) and 1(b). The
error rate in the SylloFigure and Avicenna datasets
are reported in Figure 1(c). We also report the
total accuracy of validity judgment in Table 6 for
reference purposes.

We observe the following trends. (1) Compar-
ing Figure 1(a) with Figure 1(b), we observe dif-
ferent patterns for the configurations of syllogism
that LLMs fail. For example, GPT-4 nearly has
no errors when two premises are in AA format,
while GPT-4o makes even more than half of the
mistakes for AAI-3 and AAI-4. However, GPT-4o
performs better than GPT-4 for configurations that
GPT-4 has 0% accuracy. (2) For two datasets with
human-written text, GPT-4 seems to have more sta-
ble performance compared to GPT-4o, i.e., the error
rate in Figure 1(c) is roughly the same for AAA-1,
AAI-1, and AII-1. (3) We observe that for the same
configuration, LLMs generally have a higher error
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Figure
SylloFigure Avicenna

Mood # GPT-4 GPT-4o Mood # GPT-4 GPT-4o

1

AAA 47 0.21 0.28 AAA 310 0.20 0.42
AAI 38 0.32 0.42 AAI 12 0.33 0.42
AII 502 0.21 0.26 AII 25 0.28 0.68
N/A 56 0.34 0.32 EAE 2 1 0.50

2
EAE 1 0 0 EAE 3 0 0
N/A 180 0.28 0.36 AEE 3 0.67 0.33

3
AAI 2 1 0.5 AAI 1 0 0
AII 26 0.54 0.38 AII 4 0 0
N/A 8 0.38 0.38 IAI 2 0.50 0.50

4
IAI 1 1 0 IAI 14 0.29 0.64
N/A 7 0.71 0.43 AAI 3 0 0.33

N/A / N/A 243 0.35 0.52

(c) SylloFigure and Avicenna datasets

Figure 1: Error rate (↓) of GPT-4 and GPT-4o using
zero-shot chain-of-thoughts. (a) and (b): Breakdowns
on all 256 configurations of categorical syllogisms in
the Reasoning dataset, calculated over 10 different com-
binations. A white block indicates an error rate of 0
(thus 100% accuracy) in that specific configuration. (c):
Breakdowns by configurations in the SylloFigure and
Avicenna datasets. We mark the predicted configuration
as “N/A” if it does not pass the cross-check discussed
in Section 3.3.1.

rate in human-generated SylloFigure and Avicenna
datasets (Figure 1(c)), compared to the template-
based Reasoning dataset (Figures 1(a) and 1(b)). It
seems to suggest that translating the syllogisms to
the standard form is the bottleneck for LLMs to be-
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Figure 2: Percentage breakdowns of the correct proposi-
tions within each predicted proposition type (by GPT-4).
156 propositions (last row) could not be classified and
we can not automatically verify the correctness of pre-
dictions without human efforts (last column).

have well, as the only difference that the Reasoning
dataset has is the expressed way of the premises
and conclusions. The underlying ability required to
infer remains unchanged: if LLMs can translate or-
dinary text into the standard format, then it should
work well. This observation also aligns with the
challenges of the logicians’ approach for analyz-
ing syllogisms: as discussed in Section 2.1, the
most difficult part is translating the propositions –
once the mood and the figure are determined, then
checking the validity of the syllogism is trivial.

4.3 Ambiguity of Natural Language

Our observation is that translating into standard
propositions is the most challenging part for LLMs
and thus causes errors. In this section, we take a
closer look at the types of translation errors LLMs
make, especially around quantifiers.

We visualize in Figure 2 the percentage of cor-
rect propositions within each predicted proposition
type in the SylloFigure dataset. We observe that
in general, the LLMs have a much higher accuracy
in recognizing the “some” quantifier, although it
sometimes mixes the particular negative type (O)
with the particular affirmative type (I). We also ob-
serve LLMs tend to confuse universal affirmative
(A) with particular affirmative (I): among 1,546
propositions that are predicted as universal affir-
mative type (A), 33.2% should be particular af-
firmative (I). This phenomenon is related to the
interpretation of singular propositions (discussed
in Appendix A) and is also partially due to the fact
that singular propositions represent a huge portion
of the SylloFigure dataset (shown in Table 5).

We shall point out that analyzing the sensitivity
of quantifiers by LLMs is not entirely new in com-
putation linguistics. One representative work is Cui
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et al. (2022), where the authors rely on generalized
quantifier theory to quantify their contribution to
the errors of NLU models. There is a recent work
by Madusanka et al. (2023) that tries to investigate
how different generalized quantifiers affect LLMs
by employing a textual entailment problem. Ando
et al. (2023) also suggest the importance of differ-
entiating the problems of interpreting quantifiers
and negations from performing logical inferences.
In this work, we hold the same standpoints that
the comprehension of quantifiers greatly affects
the model performance and future models should
enhance their abilities to analyze quantifiers. Com-
pared to these prior studies, we present a more com-
plete and comprehensive analysis of quantifiers in
a specific syllogism setting.

5 Moving Forward: Future Directions

5.1 Suggestions for Future Datasets

Existential Import. In Section 2.1, we mention
that there are 24 valid configurations over all 256
cases, 9 of which rely on the existential import
assumption. We notice that nearly all prior works,
except Ando et al. (2023), implicitly make such an
assumption. We recommend researchers explicitly
mention this assumption in their dataset release,
as it affects the determination of the validity of
syllogisms (Hurley and Watson, 2018).

Complete Annotations. As shown in Table 4,
many syllogism datasets lack certain kinds of anno-
tations, thus causing trouble when we try to assess
the coverage of language variations in Section 3.3.
We notice that in their dataset descriptions, espe-
cially datasets that make use of templates, many an-
notations are actually generated during the dataset
construction process (for example, blocks marked
with in Table 4). We suggest researchers con-
sider releasing these annotations from intermediate
steps to promote a more accurate assessment of the
properties of their datasets.

Ordinary Argument. We observe that all syllo-
gism datasets in Section 3.3 are in a well-structured
format, i.e., the premises and conclusions are listed
separately. In real life, however, a more realis-
tic situation is that the premises and conclusions
are mixed together, with no clear indications or
separators. There might even be cases such as en-
thymemes. Thus, one possible direction is to build
datasets that contain ordinary arguments. Building
such a dataset will also enable a variety of down-

stream applications, for example, to evaluate the
syllogisms hidden in human forecasts or debates.
We note there has been some exploration work in
this direction (Jiang and Yang, 2023).

5.2 Enhancing Logical Reasoning Abilities

In prior studies, we observe two lines of research
that attempt to enhance the logical reasoning abili-
ties of the LLMs. One line of approach is to rely
on external modules. Olausson et al. (2023) make
use of an external theorem prover, which symbol-
ically performs deductive inference. Poesia et al.
(2023) propose to augment the LLM’s reasoning
ability by using externally certified reasoning, such
as a theorem-proving environment for incremental
proof generation. Another line is to directly incor-
porate the reasoning ability inside the LLMs. Rep-
resentative work includes Xu et al. (2024), which
argues that the reasoning ability should be inherited
without using any external blocks. In general, it is
unclear which type of approach is better. Specific
to our syllogism inference case, if our ultimate goal
is to build a trustworthy and reliable system with
no tolerance for errors, then enabling some external
pure logical solvers would help ensure the accuracy
of analyzing syllogisms.

6 Conclusion

This work tries to address the question of whether
current proposed benchmarks can evaluate logi-
cal reasoning abilities accurately and thoroughly.
We choose categorical syllogism as our main fo-
cus, since this logical system has been extensively
studied by logicians and has many nice properties,
such as a finite number of possible cases, and auto-
mated ways of solving it. A categorical syllogism
is also arguably the most basic building block for
any other more complex reasonings. We draw the
inspirations from how logicians analyze categor-
ical syllogisms and construct a list of variations
that should be covered by benchmarks. Our results
show that there is no single dataset that properly
covers all possible situations. We also summarize
the current progress made in judging the validity of
the categorical syllogisms. Our findings highlight
the importance of correctly interpreting different
quantifiers. Finally, we provide a discussion of sev-
eral points that might be worth considering when
researchers plan on the future release of categorical
syllogism datasets.
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Limitations

In this work, we mainly focus on analyzing the
existing benchmarks of categorical syllogisms.
Among 6 syllogism datasets listed in Table 4, we
are only able to assess 3, as others are not publicly
released. Also, we use GPT-4 as an annotation tool
instead of human annotators to generate the miss-
ing annotations, such as mood, figure, and forms of
phraseology. Although we have taken steps to con-
trol the quality of these annotations (as discussed in
Section 3.3.1), it is inevitable that there are errors.
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A Handling Special Cases When
Analyzing Categorical Syllogisms

Singular Propositions. A singular proposition
is defined as making a particular individual or ob-
ject (for example, a specific person, thing, time,
or place) belong to a given class. Although it
is arguable about the treatment of these singular
propositions, logicians seem to agree that in gen-
eral, these propositions are generally converted into
universal propositions.

Reducing the Number of Terms. A valid syllo-
gism must have exactly three terms. When more
than three terms seem to be involved in an argu-
ment of apparently syllogistic form, we may need
to reduce the number of terms to three, by either
eliminating synonyms or eliminating class compo-
nents (Copi et al., 2019).

Enthymemes and Sorites. In real life, we nor-
mally do not make explicit mention of all the
premises required to support a given conclusion, es-
pecially when the premises are obvious or noncon-
troversial. A syllogism with an unstated premise
is called an enthymeme (Kelley, 2013). Sorites
are defined as a chain of categorical syllogisms
in which the intermediate conclusions have been
left out (Hurley and Watson, 2018). The standard
treatment for analyzing sorites is to first make their
intermediate conclusions or steps explicit, then test
the validity of obtained syllogisms separately.
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Abstract

We show differences between a language-and-
vision model CLIP, and two text-only models
— FastText and SBERT — when it comes to
the encoding of individuation information. We
study latent representations that CLIP provides
for substrates, granular aggregates, and various
numbers of objects. We demonstrate that CLIP
embeddings capture quantitative differences in
individuation better than models trained only
on text-only data. Moreover, the individuation
hierarchy we deduce from the CLIP embed-
dings agrees with the hierarchies proposed in
linguistics and cognitive science.

1 Introduction

Recent results in multimodal1 vision and language
(V&L) models lead to intriguing research ques-
tions. For instance, one exciting research direction
would be to search for the synergistic effects of
multimodality. So far, to the best of our knowledge,
no definitive finds were made on this front, despite
the growing body of research on V&L model eval-
uation. For example, (Parcalabescu et al., 2021)
provide a benchmark to assess the visual grounding
capabilities of V&L models. The authors conclude
that current models have difficulty addressing most
phenomena that require models to ground linguistic
information in the visual modality. (Thrush et al.,
2022) present a benchmark for visio-linguistic com-
positional reasoning and also find that none of
the modern V&L models does much better than
chance.

This paper presents the first case of such visio-
linguistic synergies. Namely, it studies the phe-
nomenon of individuation and how V&L models
represent objects:

How they distinguish objects from substances
and how they track objects and their quantity in sets
that contain more than one object. We demonstrate

1For a detailed review of various aspects of multimodal
machine learning, we address the reader to (Zhang et al., 2020)

that CLIP’s (Radford et al., 2021) latent represen-
tations have properties that differ from those of
the models that use only textual data. Moreover,
this emergent property seems to agree with indi-
viduation scales proposed earlier by linguists and
cognition researchers.

2 Individuation

Individuation is generally understood as basic prin-
ciples that guide the distinction between objects
and substances, as well as the distinction between
a single object and multiple objects. Individuation
is not limited to visual modality – it applies cross-
modally to stimuli of any kind. Here, we will only
focus on visual individuation and its relation to the
linguistic properties of corresponding words. This
section summarizes the main relevant findings on
individuation from cognitive science and linguis-
tics.

Operationally, individuation can be probed along
two axes: 1) the quantity axis; 2) the object axis.
The former corresponds to distinguishing and track-
ing individual objects as their quantity increases.
The latter is the dependency between the individ-
ual properties of an object and its permeability as
an object rather than a substance. We will now
overview these two aspects of individuation – first,
in cognition, then in language.

2.1 Individuation and Cognition

The quantity axis. The human ability to per-
ceive, identify, track, and count objects generally
decreases as the number of objects in a scene in-
creases (Feigenson et al., 2004; Dehaene, 2011;
Hyde, 2011). The cognitive basis of this observa-
tion is complex. In particular, two relevant cogni-
tive systems have been identified: the object track-
ing system (OTS) and the approximate number
system (ANS) (Carey, 1998; Spaepen et al., 2011;
Spelke, 2011). OTS is active when the number of
objects to track is low, typically under 3 or 4. OTS
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tracks each object individually and represents the
exact quantity of objects in a scene. ANS, on the
contrary, does not construct individual object rep-
resentations and does not track the exact quantity
of objects. In particular, in a cardinality compari-
son task in which two sets of arbitrary objects are
given, the ability to tell which of the two sets has
higher cardinality depends on the ratio between the
sets’ cardinalities. In pre-verbal infants, this ratio
can be around 1:2, but it decreases somewhat with
development (Hyde et al., 2010).

Summing up, the human ability to represent ob-
jects and their quantity is not stable across quanti-
ties, with sharp contrast at the edge of OTS, and is
ratio-sensitive in the ANS domain. For example,
ten versus fifteen would be more distinguishable
than twenty versus twenty-five even though the ab-
solute difference between the cardinalities is the
same; see (Starkey and Cooper Jr, 1980). Both
systems are non-linguistic since they are present in
pre-verbal humans.

The object axis. Humans organize their visual
space into objects vs. substances very early in life,
well in the pre-verbal stage of their development.
(Spelke, 1990) identifies the basic principles of
such an organization as Cohesion, Boundedness,
Rigidity, and No Action at a Distance. Objects
defined against these principles are called ‘Spelke
objects.’ Such objects tend to be connected, non-
overlapping, with constant spacial characteristics
when moving and only affecting each other when
in contact. This is not exactly the same notion of
an object as found in adults: for example, under
these principles, a horseman riding a horse would
be considered one object with the horse.

Individuation principles develop and change dur-
ing the lifetime, but the most drastic changes
happen around the first year and coincide with
language acquisition breakthroughs. Knowledge
about linguistic labels for classes of objects has
been argued to be used in individuation at this stage
(Xu, 2007). Still, the causal relation between lin-
guistic milestones and the changes in individuation
strategies is under debate. For example, it is hard
to disentangle linguistic factors from the rapid ac-
cumulation of world knowledge happening in the
same period. For a deeper discussion of these fac-
tors, see (Gentner and Boroditsky, 2001), who also
suggests a cognitive hierarchy of individuation as
a development of ‘Spelke object’ principles:

humans < animals < vehicles < small mobile

objects < complex structurally cohesive objects <
amorphous

2.2 Individuation and Language

Natural language shows systematic distinctions
with respect to both the quantity and the object
axes. These distinctions can be linked to the orga-
nization of the corresponding cognitive systems.
The quantity axis. Distinctions in the represen-
tation of different quantities in language grammar
manifest themselves mainly in two domains: 1)
number morphology; 2) morphosyntax of construc-
tions with numerals.

In languages like English, morphological num-
ber distinctions give rise to a split between one ob-
ject (book) and a higher number of objects (book-s;
however, plural nouns can refer to singular objects
as well, see Spector 2007; Zweig 2009). Some lan-
guages also have a dual grammatical number as part
of the nominal number inventory, making the 1 vs.
2 vs. >2 quantity distinction in the number domain
(Slovenian, Arabic, etc.). Few languages also have
the trial number form (e.g., some Austronesian lan-
guages and Austronesian-influenced creoles) and
paucal number form referring to a ’small’ number
of objects (e.g., some Oceanic languages). It’s de-
bated whether there are languages with the quadral
number form. Higher grammaticalized number
distinctions don’t exist in natural language – for
instance, there is no morphological affix as part of
the grammatical number category that would mean
’exactly 7’ or ’15 or more’. Within the space of
existing number distinctions, the higher the num-
ber line, the rarer the distinction. For example, the
trial number form is quite rare typologically; dual
number form is more frequent but rarer than a sys-
tem with just the singular vs. plural distinction. A
number hierarchy supports this observation: if a
language has some number form, it also has all the
number forms to the left of it (Croft, 1990; Corbett,
2000):

singular < plural < dual < paucal/trial

Thus, quantity distinctions built into language
grammar through number marking show up exclu-
sively on the lower side of the number line, roughly
in the subitizing/OTS domain. Still, even within
this domain, different quantities are not equally
distinguished – the lower, the more prominent.

Constructions with numerals (five books etc.)
communicate precise quantities. The morphosyn-
tax of such constructions varies somewhat depend-
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ing on the quantity encoded by the numeral – in
English, for example, numeral one combines with
singular nouns (one book), while higher numerals
combine with plural (seven books). This is not
universally true (e.g., in Turkic languages, all nu-
merals combine with nouns in singular form), but
more importantly, in more morphologically rich
languages than English, a variety of grammatical
distinctions is made between different quantities
in this domain. For instance, in Russian, numeral
two agrees with the noun in gender and case, while
three agrees only in case (see Bylinina and Bar-
biers 2019 for data on the grammatical typology
of numerals). The generalization is, again, that,
like with number marking, low quantities system-
atically receive special grammatical treatment in
numeral constructions: very few systematic dis-
tinctions are made above 3-4, and even within this
range – the lower the quantity, the more distinct it
is from other quantities, grammatically.
The object axis. Linguistic individuation is most
often discussed in the context of the mass vs. count
distinction in nouns. This distinction roughly sepa-
rates entities that are construable as individuatable
from those that are not and comes in a variety of
specific linguistic behaviors, some of which we list
below (see Mufwene 1981; Wierzbicka 1985 a.o.).

• Pluralization: Count nouns allow for plural
marking, mass nouns don’t (books vs. *rices);

• Numerals: Count nouns allow for numeral
modification, mass nouns don’t (three books
vs. three rices);

• Count quantifiers: Count nouns combine with
quantifiers many/several, mass nouns don’t
(several books vs ??several rices);

• Extent quantifiers: Count nouns don’t com-
bine with quantifiers much / few, mass nouns
do (*much book(s) vs much rice).

(Grimm, 2012) provides a much more extensive
inventory of tests relevant to the same underlying
distinction and extending beyond English. These
tests suggest a coherent space of linguistic distinc-
tions that gives rise to a very detailed hierarchy (for
earlier versions of this hierarchy, see (Allan, 1980;
Comrie, 1989; Croft, 1990):

liquids < foodstuffs < granular aggregate <
vegetation/cereals/fruits ≤ insects < small animals
< pair/grouped body parts ≤ middle-sized animals

< types of people < individuals

(Grimm, 2012) suggests that some of the de-
tails in the hierarchy above might be rooted in the
specifics of the language sample used in his work.
Thus, a simplification/generalization is proposed
as follows:

liquids/substances < granular aggregates <
collective aggregates < individuals

The above suggests that many clues in language
alone can help deduce a hierarchy parallel to the
non-linguistic cognitive hierarchy of individua-
tion. But many such linguistic clues are language-
specific and don’t surface in, for example, English.
Some clues are more subtle than others and are rare
enough to barely surface in text corpora. Finally
and most importantly, humans use the physical
properties of objects to assign linguistic behavior to
words describing these objects. Experiments in dif-
ferent frameworks (one prevalent paradigm being
novel word learning) and with different populations
have shown that the shape and internal structure of
objects, in particular, affect how the corresponding
word meaning will be construed (Soja et al. 1991;
Samuelson and Smith 1999; Prasada et al. 2002
a.o.). This, together with data from early cognition,
is an argument against Quine’s (1960) strong thesis
that language is the instrument for separating the
world into objects and substances: some of these
distinctions reside in non-linguistic experience, in
particular – visual one (along with other general
world knowledge, for example, about how differ-
ent objects are typically used, see Middleton et al.
2004). This raises the question our paper aims to
answer: How will adding visual experience affect
individuation, as found in the representations de-
veloped by the learner – in our case, a neural V&L
model?

3 Individuation Assessment

We suggest estimating the models’ individuation
’resolution’ by inferring its individuation hierarchy.
The pipeline we construct here is based on publicly
available data and is motivated by cognitive and
linguistic experiments on individuation discussed
above.

We structure this section as follows. First, we
describe the list of nouns and semantic features
that we use in our experiments throughout this pa-
per. We then propose a simple way to characterize
individuation in a model. In short, we will look
at embeddings of noun phrases describing vari-
ous quantities of objects and measure distances
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between different quantities of the same type of
object (that is, described by the same noun).

While this approach does not, of course, ex-
clude other potential analysis tools, we believe it
is a simple and effective way to demonstrate that
V&L models represent individuation differently
and show behavior closer to human perception of
individuation. We hope that further work on indi-
viduation in modern deep neural nets refines the
proposed methods or proposes more elaborate ones.

Let us discuss our experiments in detail and then
demonstrate how CLIP differs from contextual text
embeddings (for example, SBERT, Reimers and
Gurevych 2019) and static word embeddings (say,
FastText, Joulin et al. 2016) in text-only models.

3.1 Data

We start with a list of nouns alongside their plu-
ral forms. We take a publicly available list of
singular-plural noun pairs based on an analysis
of the Wikipedia corpus2. This list includes 93
518 words. Since we want to assess individuation
across various types of entities, we need to enrich
the list with semantic information. We intersect the
original list with WordNet3. This procedure leaves
28 521 nouns from the original list. Now every en-
try has specific conceptual-semantic attributes from
WordNet alongside the plural form of the word that
corresponds to a given entry. We use this list for
further experiments.

With more than twenty-eight thousand words,
we believe it to be representative and adequate for
the broad assessment of individuation in the models
we include in the study. For some of the experi-
ments, we filter the obtained list further, leaving
several WordNet categories that generally corre-
spond with the taxonomy of individuation hierar-
chy observed in studies summarized in Section 2.
Table 1 lists these categories along with the number
of words that belong to each category.

3.2 Embedding Quantities

In the first experiment, we study quantity distinc-
tions in CLIP. This aspect of the model’s behavior
is parallel to the ‘quantity axis’ of individuation
described in Section 2 in the context of cognition
and language. We will compare the model behavior
with the results found in humans: we expect that
a model that encodes individuation in a manner

2https://github.com/djstrong/nouns-with-plurals
3https://wordnet.princeton.edu/

Type Number of Words
Animal 1887
Body Part 863
Fish 220
Food 551
Fruit 203
Living Thing 8845
Nutrient 239
Organism 8763
Person 5861
Substance 1397
Vascular Plant 1027
Woody Plant 470

Table 1: The sizes of the WordNet categories used in
the experiments in Subsection 3.3.

similar to humans will show starker contrast when
comparing smaller quantities (two apples are very
different from one apple). In contrast, higher quan-
tities would be less distinguishable (nine apples are
very similar to ten apples). We use this logic to
construct the following procedure.

• make a list of phrases following the pattern
nobji, where n is a numeral written in digits,
from 2 to 10, and obji is a noun from our list
in its plural form;

• calculate embeddings that a chosen model pro-
vides with these phrases;

• for every given noun, calculate pairwise dis-
tances for every pair of numeric prefixes;

• average across nouns and normalize the result-
ing score.

Figure 1 illustrates the individuation ‘resolution’
of the models along the quantity axis assessed with
the pipeline above. We compare CLIP with Fast-
Text (Joulin et al., 2016) and SBERT (Reimers and
Gurevych, 2019). Since the scores are normalized,
the color scheme of the resulting tables is informa-
tive: one should compare the distances between
various quantities of entities relative to other quan-
tities.
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(a) CLIP

(b) FastText

(c) SBERT

Figure 1: Side by side comparison of contrasting capa-
bilities that models have for various number of objects.
The heat map represents average distances for the pairs
of embeddings that model provides for various quanti-
ties of the same objects. The results are averaged across
all objects and normalized.

Indeed, for FastText, any two different quanti-
ties are far apart. SBERT starkly separates two
from any other number yet has some difficulties
contrasting relatively small numbers, such as three
or four, with higher ones, such as nine or ten. Fi-
nally, CLIP demonstrates contrasting capabilities
that seem closer to the intuition described above.
If two numbers are close to each other, the embed-
dings of the quantities tend to be closer, yet the
contrast gets stronger for smaller quantities and
weaker for bigger ones.

3.3 Embedding Qualitative Properties

As discussed above, individuation is sensitive to a
variety of physical properties of entities, thus giv-
ing rise to something we call ‘the object axis’ in
Section 2. These properties guide the classification
of entities into substances vs. objects. Assessment
along this axis enriches the results from the previ-
ous section with the other aspect of individuation.

Figure 1 shows contrasts between different quan-
tities averaged across all nouns denoting different
types of objects. But the contrast between quanti-
ties might decline differently for various classes of
nouns, therefore, showing the interaction between
the two axes. One can look at the following intu-
itive example. The individuation scales based on
results from cognitive science and linguistics pre-
dict that people are higher on those scales (= are
more individuateable) than animals or plants. Thus
humans might perceive the difference between five
and six people as a starker one than the difference
between five or six dogs or, say, apples. We sug-
gest seeing whether some of the models in question
have similar behavior.

Since WordNet contains information on the
classes of nouns, one could see if the embeddings
of the model capture the qualitative properties of
the mentioned classes. For this paper, we suggest
the following classes: substance, food, nutrient,
body part, vascular plant, woody plant, fruit, living
thing, organism, fish, animal, and person. These
are the classes of objects over which we would ag-
gregate the obtained results. Naturally, one could
have a less granular picture merging some similar
classes, but we suggest using the original WordNet
‘synset’ typology to simplify reproducibility.

How could one characterize the individuation
‘resolution’ of a given model? As we have men-
tioned earlier, there is converging cognitive and
linguistic data suggesting that individuation and
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distinguishability of n objects and n + 1 objects
generally declines with higher values of n. We
have also already shown that all models distinguish
two and three objects relatively well. Let us keep
these two ideas in mind and introduce a metric
that could be a proxy for individuation ‘resolution.’
Let us look at a set of objects: O = ∪k=N

k=1 {objk}.
Let objkn denote n objects, as in I have n apples,
where objk = apple. Let M(objk

n) denote the
embedding that model M has for a noun phrase
denoting objk

n. We suggest the following function
IM as the proxy to estimate model M individuation
‘resolution’ for a given object objk:

IM (objk) =
T∑

n=3

d(M(objk
n),M(objk

n+1))

T ḋ(M(objk
2),M(objk

3))
,

where d(x, y) denotes cosine similarity between
the corresponding embeddings and T is some finite
number. In our experiments, T = 10. We believe
it to be a reasonable assumption4. We want to com-
pare different models in terms of their individuation
capabilities, so we need to have some sort of aver-
aging across the objects that our model works with.
However, averaging over the whole set O might
be too crude. First, we have extensively discussed
that humans individuate different classes of objects
differently. Second, the embedding spaces of the
models might be very different, so there is no rea-
son to believe that two estimates for two different
models could be directly compared. However, one
could compare values of IM for a given model on
different classes of objects. Say, all objects objj
belong to a class Ci: Ci = ∪j=L

j=1 {objj}, then one
could introduce an estimator for a given model M
on a given class C as follows:

IM (Ci) =

∑L
j=1 IM (objj)

L
=

L∑

j=1

T∑

n=3

d(M(objk
n),M(objk

n+1))

LT ḋ(M(objk
2),M(objk

3))
.

The basic intuition behind this metric is that the
higher it is, the harder it is for the model to dis-
tinguish between n and n + 1 objects for higher
values of n. Since all the models in question distin-
guish two and three objects reasonably well, one
could also think of the bigger value for the metric

4Most humans would have a hard time differentiating ten
and eleven apples on the image without counting them all.

and higher difference between 2 and 3 objects in
comparison with higher n and n+ 1 of objects.

Now we can score every class and object with
IM and compare the resulting sets we obtain. We
can order different classes of objects Ci in an in-
dividuation hierarchy, where classes with lower
IM (Ci) will be placed lower and the classes with
higher IM (Ci) — higher. We can also calculate p-
values to characterize to which extent two different
classes could be distinguished based on the values
of IM . Finally, we can compare the resulting order
with the individuation orders suggested for human
perception.

Figure 2 summarizes the resulting orders for
various classes Ci and three models: ICLIP (Ci),
ISBERT (Ci) and IFastText(Ci). The values in the
table are p-values for the relative order of classes
with respect to each other. If a value is above 5%,
the difference is not statistically significant.

Now let us discuss the results presented in Figure
2 and compare the obtained individuation hierar-
chies with those described in cognitive and linguis-
tic literature.

4 Discussion

The first thing that one sees is that FastText has
almost no distinguished individuation classes and
lumps a variety of classes together. It doesn’t give
rise to a systematic individuation hierarchy that
would be similar in any way to the rankings pro-
posed in cognitive science and linguistics. If any-
thing, the tendency is the opposite: substances turn
out to be one of the most ‘individuated’ classes,
while animals and organisms end up on the lower
end of the scale.

The second observation is that the hierarchies
deduced from SBERT and CLIP are similar to the
individuation hierarchies proposed in cognitive and
linguistic research. As discussed in Section 2, the
linguistic behavior of different nouns varies in ways
that can be traced back to cognitive distinctions in
individuation. Therefore, it comes as no surprise
that a text-only model attuned to semantic distinc-
tions that show up in distributional properties of
nouns can pick up the relevant contrasts. Yet a care-
ful exploration of Figure 2 allows us to see where
additional – visual – modality helps develop clearer
individuation-related distinctions compared to the
language-only model.
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(a) CLIP

(b) SBERT

(c) FastText

Figure 2: P-values for the individuation capabilities of CLIP in comparison with SBERT and FastText based on the
proxy metric for individuation. The classes with p > 5% are not significantly distinguishable. The order of rows is
in line with the average value of the proposed individuation proxy: the lower individuated classes are on top, the
more individuated ones are on the bottom. The order of columns repeats the order of rows making every matrix
symmetric.
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The individuation scale produced by CLIP is
more fine-grained. For example, SBERT lumps
fruits in one individuation ‘cluster’ with foods and
nutrients and various plants, while CLIP distin-
guishes foods and nutrients from plants. This can
potentially be related to the fact that images depict-
ing food (in particular, fruit) tend to differ from
images with plants in general (say, landscapes).
One of the ways to quantify the resulting differ-
ences in the model’s individuation is to represent
data shown in Figure 2 as a graph and calculate the
cliques’ parameters. Let us connect to vertices rep-
resenting a class of nouns with an edge if the pval
on Figure 2 is greater than five percent. This would
mean that our proxy metric based on model embed-
dings has difficulty distinguishing the classes. Now
we can count maximal cliques. The more cliques
we end up with, the more separate classes are dis-
tinguished by a given model. We can also calculate
the average size of the cliques. The smaller this
size is, the more fine-grained the individuation hi-
erarchy induced by a given model is. The results of
those calculations are presented in Table 2. Indeed,
CLIP provides the most fine-grained individuation
hierarchy.

Another interesting aspect of this is the position
of animals in the induced individuation hierarchy.
While SBERT puts animals somewhere in the mid-
dle of the scale, CLIP puts them on top with the
same cluster as humans. Such a position goes in
line with the cognitive results mentioned earlier in
Section 2.

Finally, going back to Figure 1, one could notice
that CLIP individuation has fewer discontinuities
when compared to SBERT. Specifically, if n <
k < j, then CLIP almost always recognizes that
I(n) < I(k) < I(j). Out of thirty-six pairwise
comparisons, there are three situations when this
observation does not hold. With SBERT, this does
not hold in eight cases out of thirty-six pairwise
comparisons.

Another thing worth noting is the standard de-
viation of the individuation proxy that differs sig-
nificantly for all three models; see Table 3. CLIP
shows the lowest standard deviation across cate-
gories, while that of FastText is ten times higher.

5 Conclusion

This paper demonstrates that CLIP benefits from
vision-language synergy and thus effectively en-
codes individuation properties for distinct entities.

Type
Number of

Separable Cliques
Average
Clique Size

CLIP 8 2.3
SBERT 5 2.6
FastText 4 7.3

Table 2: The parameters of the individuation equiva-
lence graphs by the models. CLIP has the most fine-
grained individuation among the compared models.

Type
Standard
Deviation

CLIP 0.016
SBERT 0.05
FastText 0.12

Table 3: Average standard deviation for the individua-
tion proxy across individuation categories.

We suggest a method to calculate whether the
model captures individuation for a given class of
objects in its embeddings. Using this method, we
infer the individuation hierarchy that several mod-
els induce on different classes of objects. Thus, we
demonstrate that CLIP embeddings capture quan-
titative differences in a way that is in closer agree-
ment with the human perception of individuation.
We hope that this paper stimulates further discus-
sion on multimodality as a source for models that
are aligned with human perspective and perception.

Limitations

For this research, we used WordNet and CLIP.
We believe the results are reproducible with other
datasets and V&L models in languages other than
English, but this has not been proved yet. We also
use a limited number of models in the comparison.
We believe that the observed properties character-
ize a broader set of multimodal architectures yet
restrict our reasoning to CLIP only.

Ethics Statement

This paper complies with the ACL Ethics Policy.
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Abstract

Integrating cognitive ergonomics with LLMs
is crucial for improving safety, reliability, and
user satisfaction in human-AI interactions. Cur-
rent LLM designs often lack this integration, re-
sulting in systems that may not fully align with
human cognitive capabilities and limitations.
This oversight exacerbates biases in LLM out-
puts and leads to suboptimal user experiences
due to inconsistent application of user-centered
design principles. Researchers are increasingly
leveraging NLP, particularly LLMs, to model
and understand human behavior across social
sciences, psychology, psychiatry, health, and
neuroscience. Our position paper explores the
need to integrate cognitive ergonomics into
LLM design, providing a comprehensive frame-
work and practical guidelines for ethical devel-
opment. By addressing these challenges, we
aim to advance safer, more reliable, and ethi-
cally sound human-AI interactions.

1 Introduction

Ergonomics focuses on optimizing human-machine
interactions for efficiency, safety, and well-being,
incorporating both physical and cognitive aspects
(Arkouli et al., 2022). Cognitive science studies
mental processes and behaviours, offering insights
crucial for ensuring the safety and reliability of
Large Language Models (LLMs) (Qu et al., 2024;
Bermúdez, 2020). Cognitive ergonomics is the
study of how to design systems and interfaces that
align with human cognitive abilities and limita-
tions to enhance efficiency, safety, and user satisfac-
tion. It focuses on optimizing mental processes like
memory, attention, mental workload and decision-
making in human-machine interactions (Bid, 2023).
LLMs can also be influenced by various psycho-
logical, technological, and decision-specific fac-
tors, such as time pressure, emotions, and decision-
making styles (Eigner and Händler, 2024), to adapt
to human needs and functions. This convergence

Cognition Ergonomics

Large Language Model Systems

Better efficiency, safety, and 
user satisfaction features

Figure 1: Integration of Cognitive ergonomics and Large
Language Models

with AI supports effective human decision-making,
with LLMs designed to enhance transparency and
trust, ultimately advancing human-AI interaction
systems (Le Guillou et al., 2022).

Though researchers are actively working in this
area, current LLM system design often lacks com-
prehensive integration of cognitive ergonomics, re-
sulting in systems that may not fully align with
human cognitive capabilities and limitations. Sec-
ondly, there is insufficient focus on incorporating
cognitive science methods to systematically iden-
tify and mitigate biases in LLM outputs. Addi-
tionally, existing LLM interfaces frequently fail to
apply user-centered design principles consistently,
leading to sub-optimal user experiences and cogni-
tive overload. Lastly, LLMs often lack mechanisms
to explain their decisions and outputs clearly, reduc-
ing user trust and transparency, while there’s also a
noticeable gap in developing LLMs that can adapt
to individual user preferences and learning styles
over time, hindering their effectiveness and engage-
ment (Eigner and Händler, 2024; Subramonyam

249



et al., 2024a; Liu et al., 2024; Le Guillou et al.,
2022; Wasi et al., 2024a,b).

In this position paper, we undertake a thorough
exploration of the crucial integration of cognitive
ergonomics principles into the design framework
of LLM systems to address these issues. Motivated
by the importance of aligning LLM functionalities
with human cognitive processes and addressing bi-
ases through cognitive science methodologies, we
explore the cognitive challenges inherent in LLM
designs, proposing a comprehensive design frame-
work grounded in cognitive ergonomics principles,
and providing practical guidelines for ethical LLM
development. The core contributions of our pa-
per lie in offering a detailed analysis of cognitive
ergonomics relevance, outlining a comprehensive
design framework, and recommending future re-
search directions. Through these contributions, we
aim to advance understanding and practice in inte-
grating cognitive ergonomics into LLM systems,
ultimately fostering safer, more reliable, and ethi-
cally sound human-AI interactions.

Our contribution can be summarized in four
folds:

• Comprehensive Discussion on Cognitive
Ergonomics: By CogErgLLM, we provide
a thorough exploration of how cognitive er-
gonomics principles can be integrated into
the design of LLMs. By addressing the gap
between LLM design and human cognitive
capabilities, we aim to enhance the safety, re-
liability, and user satisfaction in human-AI
interactions.

• Novel Design Framework: Our paper
presents a comprehensive design frame-
work CogErgLLM, grounded in cognitive er-
gonomics principles. This framework offers
practical guidelines for ethical LLM develop-
ment, addressing issues such as bias mitiga-
tion, user-centered design, and transparency.

• Case Studies: We guide the practical ap-
plication of cognitive ergonomics principles
through the development of prototypes and
case studies in diverse domains such as health-
care and education, showcasing the effective-
ness and versatility of our work.

• Discussion on Challenges and Ethical Con-
siderations: We identify and discuss techni-
cal hurdles and ethical concerns in merging

cognitive ergonomics with LLMs, emphasiz-
ing the need for continued interdisciplinary
research to foster responsible AI development
and improve human-AI interaction.

2 Background

2.1 Cognitive Ergonomics
Cognitive ergonomics principles emphasize ef-
ficiency, attention support, learning facilitation,
decision-making aid, and performance enhance-
ment in interface and system design (Berlin and
Adams, 2017). These principles find critical appli-
cations in safety-critical environments like air traf-
fic control and medical settings, as well as in every-
day domains such as banking and leisure activities,
showcasing their broad utility. By leveraging cog-
nitive science knowledge on perception, memory,
and problem-solving, cognitive ergonomics aims
to optimize human performance and well-being in
complex and changeable work environments, ulti-
mately improving productivity and safety while rec-
ognizing the importance of human adaptation and
the need for adaptable work conditions (Branaghan
and Lafko, 2020; Parasuraman, 2003; Dehais et al.,
2020).

2.2 Large Language Models and Cognition
Recent research has delved into the relationship
between LLMs and human cognition, revealing
promising insights. Studies by Huff and Ulakçı
(2024) demonstrate LLMs’ ability to predict hu-
man performance in language-based memory tasks,
despite differing internal mechanisms. Shani et al.
(2023) explored the development of concept-aware
LLMs, showing improved alignment with human
intuition and prediction robustness. Additionally,
Samwald et al. (2023) compiled core principles
for steering and evaluating LLM reasoning, drawn
from diverse fields like structured reasoning and
ethical guidelines. These advancements underscore
LLMs’ potential to offer valuable insights into hu-
man cognition while emphasizing the importance
of safe and effective deployment through rigorous
evaluation methods.

3 Conceptual Foundations

Cognitive processes are profoundly influenced by
ergonomic design, and aligning these principles
with LLMs can enhance their usability, effective-
ness, and user satisfaction. Here we describe how
it can be done, as described in Figure 2:
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Structuring Information
for Clarity

Facilitating 
Effective Choices

Enhancing Focus and 
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Evolving with 
User Needs

Promoting Ethical and
Inclusive Design

Figure 2: Conceptual Foundations for Cognitive Ergonomics in Large Language Models

1. Structuring Information for Clarity: Cogni-
tive ergonomics ensures information is structured
clearly and intuitively, reducing cognitive load
(Sweller, 2024). It focuses on organizing infor-
mation in a way that reduces mental effort. This
can be seen in the design of user interfaces, where
clear layouts and intuitive navigation systems help
users quickly find what they need. For instance,
websites often use hierarchical menus and clear cat-
egorization to enhance usability, ensuring visitors
can navigate without confusion.

2. Facilitating Effective Choices: Ergonomic
design aids decision-making by providing essen-
tial information clearly and minimizing cognitive
biases (Lockton, 2012). For example, in retail en-
vironments, ergonomic principles guide the place-
ment of products to highlight choices effectively,
helping customers make informed decisions. This
approach reduces cognitive load and ensures that
decisions are based on relevant information rather
than misleading cues.

3. Enhancing Focus and Understanding: Er-
gonomic design focuses on how users perceive and
attend to information, placing important elements
where they are easily noticed (Proctor and Proc-
tor, 2021). For example, in classrooms, teachers
use visual aids and highlighted content on slides
to direct students’ attention to key concepts. This
practice ensures that important information is con-
veyed effectively, promoting better understanding
and retention among learners.

4. Supporting Memory and Recall: Strategies
like familiar patterns and clear information presen-
tation are crucial in ergonomic design to ease the
burden on users’ memory (Wickens and Carswell,

2021). Such as, in museum exhibits, interactive
displays often repeat key information and use con-
sistent labeling to reinforce learning. This approach
helps visitors retain information and recall it later,
enhancing their overall experience and educational
outcomes.

5. Evolving with User Needs: Cognitive er-
gonomics emphasizes the importance of adapting
designs based on user feedback and preferences
(Stephanidis et al., 2021). In software development,
agile methodologies allow teams to iterate quickly
based on user testing and input. This flexibility
ensures that products evolve to meet changing user
needs, enhancing satisfaction and usability over
time.

6. Promoting Ethical and Inclusive Design:
Incorporating cognitive ergonomics into LLM de-
sign can promote ethical and inclusive practices.
By considering diverse user needs and cultural
backgrounds during the design process, LLMs can
be developed to be more accessible and equitable
(Zhou et al., 2021). For example, incorporating
cognitive ergonomics into urban planning promotes
ethical and inclusive design by prioritizing accessi-
bility and user-centered approaches. This involves
integrating features like ramps, tactile paving, and
inclusive seating to ensure public spaces accommo-
date individuals with disabilities. Engaging with
diverse communities throughout the design process
ensures their needs are met, fostering a sense of
inclusivity and social equity. Ethical considera-
tions guide these efforts, emphasizing dignity and
equal access to essential services. Such practices
not only enhance physical accessibility but also
promote social integration and community well-
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being, establishing cities as advocates for ethical
and inclusive urban development.

As discussed above, integrating principles of
cognitive ergonomics into website design offers
several significant benefits. It enhances usability by
simplifying navigation and minimizing the learn-
ing curve for visitors. By organizing information
clearly, it reduces cognitive load and supports ef-
fective decision-making by presenting options and
data in a straightforward manner. Enhancing trans-
parency in data handling and user control over pri-
vacy settings increases trust among users. Person-
alizing content delivery based on user preferences
and behavior not only improves relevance but also
enhances user engagement and satisfaction. More-
over, implementing strategies to mitigate biases
in content presentation ensures fairness and eth-
ical standards. Overall, integrating cognitive er-
gonomics in web design leads to improved user
experience, making websites more efficient, user-
friendly, and trustworthy platforms for information
and interaction.

4 Design Framework

In this section, we describe the main components
of CogErgLLM, a framework designed to explore
and integrate cognitive ergonomics principles into
the development of LLMs. The framework aims to
enhance user experience, efficiency, and reliability
by aligning LLM interactions with human cognitive
processes.

4.1 Methodology

The development methodology of the framework
components, draws inspiration from theoretical
foundations outlined in Sections 1 and 2. These
theoretical underpinnings of cognitive ergonomics
serve as guiding principles for the design and defini-
tion of each framework element. We meticulously
define and conceptualize the various components,
informed by theories on human cognition and inter-
action with technology. Then, we transition to the
implementation phase, where we translate the de-
sign aspects into tangible prototypes and undergo
rigorous evaluation processes to assess their ef-
ficacy in enhancing user experience and system
performance.

4.2 Components of CogErgLLM

We outline key components such as user-centric
design, ergonomic data integration, cognitive load

management, user interface design, trust and trans-
parency, feedback mechanisms, and more, as de-
scribed in Figure 3. Each component is crucial for
creating LLM systems that are intuitive, adaptive,
and supportive of users’ cognitive needs.

4.2.1 User-Centric Design
User Profiling: Understanding user needs and pref-
erences is crucial for tailoring LLM interactions to
individual users. Techniques such as surveys, inter-
views, and behavioral analysis can provide insights
into users’ cognitive capabilities and limitations,
ensuring that LLMs are designed to meet diverse
requirements effectively. By incorporating these
profiles, LLMs can adapt their responses to be more
relevant and engaging, enhancing the overall user
experience (Wang et al., 2024).
Personalization: Personalizing LLM interactions
based on user profiles can significantly improve
usability and satisfaction (Li et al., 2024). Cog-
nitive ergonomics emphasizes the importance of
designing systems that align with users’ mental
models and preferences. By using data from user
profiles, LLMs can offer tailored suggestions, re-
sponses, and content, making interactions more
intuitive and reducing cognitive strain (Wasi et al.,
2024b).

4.2.2 Ergonomic Data Integration
Sensor Integration: Incorporating ergonomic sen-
sors to monitor user posture and environment can
provide valuable data for optimizing LLM inter-
actions (Luo et al., 2024; Xu et al., 2024b). For
example, sensors can detect when a user is expe-
riencing physical discomfort or cognitive fatigue,
prompting the LLM to adjust its interaction style
or offer breaks. This integration helps in creating
a more comfortable and supportive user environ-
ment.
Real-time Feedback: Providing real-time er-
gonomic advice based on sensor data can enhance
user well-being and productivity (Xu et al., 2024a;
Luo et al., 2024). For instance, if sensors detect
that a user has been sitting in a poor posture for an
extended period, the LLM can offer corrective sug-
gestions. This immediate feedback loop ensures
that users maintain optimal ergonomic conditions,
reducing physical and cognitive stress.

4.2.3 Cognitive Load Management
Load Measurement: Tools and methods for as-
sessing cognitive load, such as eye-tracking and
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brainwave analysis, can help designers understand
how users interact with LLMs. This data is crucial
for identifying points of high cognitive load and ar-
eas where the system may be causing unnecessary
strain, allowing for targeted improvements (Krell
et al., 2022).
Adaptive Interactions: Strategies for adjusting
LLM interactions to manage cognitive load include
simplifying complex information, providing infor-
mation progressively, and offering clear, concise
instructions. By adapting to the user’s cognitive
state, LLMs can ensure that interactions remain
manageable and effective, preventing overload and
enhancing comprehension (Subramonyam et al.,
2024b).

4.2.4 User Interface Design

Intuitive Interfaces: Design principles for creat-
ing user-friendly LLM interfaces focus on mini-
mizing unnecessary complexity and enhancing nav-
igability. Cognitive ergonomics principles such
as consistency, predictability, and immediate feed-
back ensure that users can easily understand and
interact with the system, improving efficiency and
satisfaction.
Accessibility: Ensuring interfaces are accessible to
all users, including those with disabilities, is a key
aspect of ergonomic design. This includes adher-
ing to standards such as WCAG and incorporating
features like text-to-speech, adjustable font sizes,
and high-contrast modes. Accessibility ensures that
LLMs are usable by a broader audience, promoting
inclusivity and equity.

4.2.5 Trust and Transparency

Explainability: Techniques for making LLM deci-
sions transparent to users include providing clear,
understandable explanations for actions and rec-
ommendations. This transparency helps users un-
derstand how the LLM works, fostering trust and
confidence in the system. Cognitive ergonomics
emphasizes the need for systems that users can
predict and rely on.
Trust-building: Strategies for enhancing user trust
in LLMs involve consistent, reliable performance,
and the ability to demonstrate ethical and unbiased
behavior (Wasi et al., 2024c). Incorporating user
feedback and continuously improving the system
based on that feedback also plays a crucial role in
building and maintaining trust.

4.2.6 Feedback Mechanisms
User Feedback: Incorporating user feedback into
the design process allows for continuous improve-
ment of LLM performance. Cognitive ergonomics
highlights the importance of listening to users and
adapting systems to meet their evolving needs. Reg-
ularly gathering and analyzing feedback helps iden-
tify areas for enhancement and ensures that the sys-
tem remains aligned with user expectations (Pan
et al., 2024; Xu et al., 2024b).
Iterative Design: Employing iterative design pro-
cesses based on feedback ensures that LLMs are
continually refined and optimized (Pan et al., 2024).
This approach allows for the gradual incorporation
of new ergonomic insights and user requirements,
leading to more effective, user-friendly, and reli-
able systems. Iterative design helps in addressing
issues promptly and evolving the system to better
serve its users.

4.2.7 Ethical Considerations
Bias Mitigation: Incorporating cognitive er-
gonomics into LLM design involves creating pro-
cesses that actively identify and mitigate biases in
outputs. By leveraging cognitive science methods,
such as social intelligence tests and moral dilemma
scenarios, designers can ensure that LLMs provide
fair and equitable responses, thus aligning with di-
verse user expectations and promoting ethical AI
use.
Privacy Protection: Robust data security and pri-
vacy measures are essential in designing LLMs that
respect user confidentiality. Cognitive ergonomics
emphasizes understanding users’ cognitive con-
cerns about data security, thus guiding the imple-
mentation of intuitive privacy controls and trans-
parent data usage policies that reassure users and
protect their personal information.
Inclusive Design: Ensuring that LLMs cater to
diverse user groups requires an inclusive design
approach informed by cognitive ergonomics. This
involves creating interfaces and interactions that
consider the cognitive and cultural backgrounds of
different users, making the systems accessible and
usable for people with varying linguistic needs and
cognitive abilities, thereby promoting inclusivity
and diversity.

4.2.8 Personalization and Adaptation
Adaptive Learning: Integrating cognitive er-
gonomics principles into LLM design enables the
development of systems that dynamically adapt to
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Figure 3: Components of CogErgLLM

individual user preferences and learning styles. By
leveraging cognitive science insights, such as theo-
ries of learning and memory, designers can create
LLMs that personalize content delivery and inter-
actions based on users’ behavior and performance,
thereby enhancing learning outcomes and user sat-
isfaction.
Personalized Recommendation: Cognitive er-
gonomics informs the implementation of personal-
ized recommendation systems within LLMs, lever-
aging user data to offer tailored content and sug-
gestions. By analyzing user interactions and pref-
erences, designers can optimize content relevance
and engagement, enhancing user experience and
promoting continued usage of the LLMs. Addi-
tionally, incorporating principles of cognitive load
management ensures that recommendations are
presented in a manner that optimizes cognitive re-
sources and minimizes information overload.

4.2.9 Continuous Evaluation and
Improvement

Usability Testing: Cognitive ergonomics empha-
sizes the importance of usability testing in LLM
development, involving real users to identify us-
ability issues and areas for improvement. By con-
ducting regular usability tests, designers can gather
valuable feedback on user interactions, navigation
patterns, and comprehension levels, enabling itera-
tive refinement of LLM interfaces and functionali-
ties to better align with users’ cognitive needs and
preferences.
Feedback Loops: Establishing feedback mecha-

nisms is integral to the continuous improvement
of LLM interactions (Pan et al., 2024). By col-
lecting and analyzing user input and suggestions,
designers can gain insights into user satisfaction,
comprehension difficulties, and feature preferences,
allowing for timely adjustments and enhancements
to LLM systems. Feedback loops ensure that LLMs
remain responsive to evolving user requirements
and cognitive dynamics, promoting sustained user
engagement and system effectiveness.
Performance Metrics: Defining and monitoring
key performance indicators (KPIs) related to cog-
nitive ergonomics (Zhang et al., 2019) provides
valuable insights into the effectiveness of LLM de-
signs. Metrics such as user satisfaction, task com-
pletion rates, and cognitive load assessments en-
able designers to evaluate the impact of ergonomic
interventions on user experience and system perfor-
mance, guiding optimization efforts and ensuring
the continued delivery of user-centric LLM solu-
tions.

5 Case Studies

Use case studies demonstrate the practical applica-
tion of the CogErgLLM framework in real-world
scenarios. In healthcare, the framework supports
medical professionals by presenting critical patient
information and treatment options clearly and con-
cisely. In education, it tailors learning experiences
to individual students, enhancing engagement and
knowledge retention through adaptive learning and
memory support techniques.

Healthcare. In a healthcare setting, CogEr-
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gLLM can be used to assist medical profession-
als in making informed decisions. For instance,
the system integrates with electronic health records
(EHR) to provide doctors with a summary of pa-
tient histories, relevant medical literature, and po-
tential treatment options. The LLM uses cognitive
load management techniques to present this infor-
mation in manageable chunks, reducing the mental
effort required by physicians. Adaptive learning al-
gorithms personalize the interface based on individ-
ual doctors’ specialities and preferences, enhanc-
ing usability and efficiency. Real-time feedback
mechanisms alert medical staff to potential issues,
ensuring quick and accurate decision-making. By
incorporating cognitive ergonomic principles, this
application aims to improve patient outcomes, re-
duce cognitive fatigue among healthcare providers,
and streamline clinical workflows.

Education. In the educational sector, CogEr-
gLLM will serve as a personalized learning assis-
tant for students. The system tailors content de-
livery to match each student’s learning style and
pace, using adaptive learning technologies. For ex-
ample, it breaks down complex topics into simpler
subtopics, gradually increasing complexity as the
student’s understanding improves. Memory con-
siderations are addressed by incorporating spaced
repetition techniques and interactive quizzes to
reinforce learning. The interface supports multi-
modal interactions, allowing students to engage
through text, voice, and visual aids. Teachers re-
ceive insights into student progress and cognitive
load, enabling them to adjust their teaching strate-
gies accordingly. This application of cognitive er-
gonomics aims to enhance student engagement,
improve knowledge retention, and provide a more
personalized and effective learning experience.

Legal Work. CogErgLLM can significantly en-
hance efficiency and accuracy in legal work by
providing advanced support to legal profession-
als. For example, in a case involving complex
contract review, CogErgLLM can integrate with
legal databases and case management systems to
assist lawyers in analyzing and summarizing exten-
sive legal documents. The system uses cognitive
ergonomics principles to break down lengthy con-
tracts into more digestible sections, highlighting
key clauses and potential issues. It employs nat-
ural language processing to compare the contract
against relevant case law and statutes, offering sug-
gestions for amendments and flagging areas of con-
cern. Adaptive learning algorithms customize the

interface based on the lawyer’s specialization and
previous cases, improving relevance and usability.
Real-time feedback mechanisms alert lawyers to
critical deadlines and compliance requirements. By
reducing cognitive load and streamlining document
review processes, CogErgLLM aims to enhance
legal research efficiency, improve accuracy in con-
tract analysis, and support lawyers in delivering
more informed and timely legal advice.

Creative Writing. CogErgLLM can transform
the creative writing process by offering tailored
assistance and enhancing the writer’s productiv-
ity. For instance, in the case of drafting a novel,
CogErgLLM can integrate with writing tools and
databases to provide real-time support. The system
analyzes the writer’s style and narrative structure,
suggesting plot developments, character traits, and
dialogue options that align with the writer’s cre-
ative vision. It employs cognitive load manage-
ment techniques to break down complex narrative
arcs into manageable segments, offering feedback
and guidance on pacing and coherence. By using
adaptive learning algorithms, CogErgLLM person-
alizes its suggestions based on the writer’s genre
preferences and past works, ensuring relevance and
enhancing creativity. The system also includes in-
teractive features, such as brainstorming prompts
and scenario simulations, to inspire new ideas and
overcome writer’s block. Through real-time feed-
back and contextual assistance, CogErgLLM aims
to streamline the creative process, reduce cognitive
fatigue, and support writers in crafting compelling
and cohesive stories.

Emergency Response System. Implementing
CogErgLLM can revolutionize our city’s emer-
gency response system by integrating advanced
natural language understanding and cognitive er-
gonomics. This intelligent system assists dispatch-
ers and first responders by swiftly analyzing emer-
gency calls, prioritizing incidents, and recommend-
ing optimal response strategies in real-time. As
a result, we’ve significantly reduced average re-
sponse times, enhanced dispatcher efficiency, and
improved accuracy in incident classification. The
intuitive interface and actionable insights provided
by CogErgLLM have garnered positive feedback
from emergency personnel, paving the way for
future enhancements such as predictive analytics
and real-time data integration to further elevate our
emergency management capabilities.
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6 Discussion

We believe that the integration of cognitive er-
gonomics with LLMs represents a significant step
forward in enhancing the usability, effectiveness,
and ethical integrity of AI systems. By applying
cognitive ergonomic principles to LLM design, we
can create interfaces and interactions that are more
intuitive, transparent, and aligned with human cog-
nitive capabilities. This not only improves user
experience but also fosters trust and collaboration
between humans and AI. However, this integration
is not without its challenges, particularly in address-
ing technical complexities, ensuring data privacy,
and mitigating biases. Despite these hurdles, we
see immense potential in the future of cognitive er-
gonomics in LLMs, offering opportunities for inno-
vative research, inclusive design practices, and the
advancement of human-AI interaction. Through
concerted efforts and interdisciplinary collabora-
tion, we can harness the power of cognitive er-
gonomics to shape a future where AI systems truly
augment human capabilities while upholding ethi-
cal standards and promoting user well-being.
Cognitive Ergonomics with LLMs for Indus-
trial Applications. Cognitive ergonomics in in-
dustrial setups, particularly when applied to large
language models (LLMs), offers promising poten-
tial for improving user interactions and operational
efficiency. By integrating cognitive ergonomics
principles, LLMs can be designed to align more
closely with human cognitive processes, leading
to more intuitive and effective interfaces. This can
enhance task automation, decision support, and
human-computer collaboration within industrial
environments. However, implementing these prin-
ciples presents challenges, including the need for
context-specific adaptation and the integration of
complex cognitive models into LLM systems. Fu-
ture research should focus on developing practical
frameworks and tools for applying cognitive er-
gonomics in industrial contexts, evaluating their
impact on productivity and user satisfaction, and
addressing technical limitations such as model scal-
ability and data privacy. Such advancements could
significantly enhance the usability and effective-
ness of LLMs in various industrial applications.
Technical Challenges. Integrating cognitive er-
gonomics with LLMs presents several technical
challenges that need to be addressed. One signifi-
cant challenge is ensuring that cognitive ergonomic
principles can be effectively translated into AI sys-

tem designs without compromising performance
or functionality. This includes developing inter-
faces that are both intuitive and capable of han-
dling complex user interactions. Another challenge
is maintaining data privacy while implementing
personalized and adaptive features, as balancing
user customization with robust data protection is
crucial. Additionally, mitigating biases in LLM out-
puts while applying cognitive ergonomics requires
careful consideration to ensure fairness and equity.
Technical complexities also arise in adapting cog-
nitive ergonomic principles to diverse user needs
and contexts, necessitating advanced algorithms
and continuous refinement. Addressing these chal-
lenges requires ongoing research, interdisciplinary
collaboration, and innovative solutions to fully in-
tegrate cognitive ergonomics into LLMs while up-
holding technical integrity and ethical standards.
Future Opportunities. Despite the challenges, in-
tegrating cognitive ergonomics with LLMs presents
numerous future opportunities for research and de-
velopment. One avenue for exploration is the en-
hancement of LLM interpretability and explainabil-
ity through cognitive ergonomic design, enabling
users to better understand and trust LLM outputs.
Additionally, leveraging cognitive ergonomics to
tailor LLM interactions to diverse user demograph-
ics and preferences opens doors for inclusive and
personalized AI experiences. Furthermore, explor-
ing novel applications of cognitive ergonomic prin-
ciples in LLM design, such as emotion recognition
and adaptive learning, holds promise for advancing
human-AI interaction capabilities.

7 Conclusion
Our paper presents CogErgLLM, a framework
which integrates cognitive ergonomics principles
into the design of LLMs. Our core contributions
include the comprehensive exploration and inte-
gration of cognitive ergonomics, development of
a design framework, practical case studies, and
recommendations for future research. It holds sig-
nificant potential to enhance human-AI interaction
by improving safety, reliability, and user satisfac-
tion. Its impact extends across various domains,
from healthcare to workplace settings, where LLMs
play critical roles. We encourage further research
and collaboration in this interdisciplinary area to
advance the understanding and implementation of
ethical, user-centric AI systems, laying the founda-
tion for a truly human-centric advanced artificial
general intelligence.
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Limitations

This study focuses solely on the theoretical perspec-
tive of cognitive ergonomics in relation to LLMs
and does not extend to the development of mathe-
matical models or empirical evaluations. While it
provides a valuable conceptual framework for in-
tegrating CE principles with LLM design, it lacks
practical contributions such as algorithmic imple-
mentation or performance assessment. The absence
of quantitative models and evaluative methods lim-
its the study’s ability to directly address how these
theoretical principles can be operationalized and
tested within LLM systems. Future research should
aim to bridge this gap by developing and validating
mathematical models and evaluation techniques
to apply cognitive ergonomics more effectively in
practical LLM applications.

Ethical Considerations

Ethical concerns surrounding the integration of cog-
nitive ergonomics with LLMs revolve primarily
around data privacy and bias mitigation. With
LLMs relying heavily on vast amounts of data
for training, ensuring the privacy and security of
user data becomes paramount. Striking a bal-
ance between collecting sufficient data for effec-
tive cognitive ergonomic design and safeguarding
user privacy requires robust encryption techniques,
anonymization protocols, and transparent data han-
dling practices. Moreover, mitigating biases inher-
ent in LLMs, stemming from the biases present in
training data, poses ethical challenges. Address-
ing biases demands proactive measures such as di-
verse dataset curation, algorithmic fairness assess-
ments, and continuous monitoring and adjustment
of LLMs to minimize discriminatory outcomes.
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