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Abstract

Geo-entity linking is the task of linking a loca-
tion mention to the real-world geographic loca-
tion. In this paper we explore the challenging
task of geo-entity linking for noisy, multilin-
gual social media data. There are few open-
source multilingual geo-entity linking tools
available and existing ones are often rule-based,
which break easily in social media settings, or
LLM-based, which are too expensive for large-
scale datasets. We present a method which rep-
resents real-world locations as averaged embed-
dings from labeled user-input location names
and allows for selective prediction via an inter-
pretable confidence score. We show that our ap-
proach improves geo-entity linking on a global
and multilingual social media dataset, and dis-
cuss progress and problems with evaluating at
different geographic granularities.

1 Introduction

The real-world geographic location of social me-
dia users is valuable data for many computational
social science tasks, including disaster response
(Kumar and Singh, 2019), disease surveillance
(Lee et al., 2013), analyzing language variation
(Huang et al., 2016), and comparing regional atti-
tudes (Rosenbusch et al., 2020). Many studies have
used Twitter (now known as X) data for such anal-
yses, focusing on geo-tagged tweets where each
tweet is associated with latitude and longitude co-
ordinates. However, geo-tagging with coordinates
was deprecated in June 2019 and even before then
only a small percentage of tweets (< 2%) was geo-
tagged (Kruspe et al., 2021).

It has thus become increasingly necessary to in-
fer location from user profiles and especially from
the free text Location field, in which a user may
enter anything they want to identify their location.
This field is frequently specified, with at least 40%
of users providing recognizable locations in over
60 different languages (Huang and Carley, 2019b).

The task of linking a location reference to the ac-
tual geographic location is known as geo-entity
linking (see Table 1 for examples). There are few
open-source multilingual geo-entity linking tools
available and existing ones are often rule-based
(Alex et al., 2016; Dredze et al., 2013), which may
break easily in noisy social media settings, or LLM-
based (Zhang et al., 2023), which are too expensive
for large-scale datasets.

In this paper, we investigate the task of geo-
entity linking for noisy, multilingual user-input lo-
cation references. Our work makes the following
contributions:

• We propose a method for geo-entity linking
of noisy and multilingual user input by rep-
resenting real-world locations with averaged
embeddings from labeled user-input location
names. Unlike previous methods, ours en-
ables selective prediction via an adjustable
threshold for cosine similarity scores, which
we analogize with confidence scores (§4).

• We compare performance of multiple varia-
tions of our proposed method on a global and
multilingual dataset, and show that all of them
outperform the leading baseline (§5).

• Through a manual annotation experiment, we
approximate accuracy upper bounds on our
dataset and show that our method is near the
upper bound at country- and administrative-
levels but quite far below at the city-level. We
discuss problems with geo-entity linking so-
cial media data at the city level (§6).

2 Related Work

Geo-entity linking, also known as toponym reso-
lution, seeks to link some mention of a geographic
entity to the correct entity in a target database. Pre-
vious approaches typically use some combination
of the mention’s text and/or context; knowledge
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User-input location Real-world location Type of noise

TURKEY/SİNOP Sinop, Sinop, TR Uncommon punctuation use
福島県いわき市 Iwaki, Fukushima, JP Non-Latin script

Catskills Hyde Park, New York, US Informal/alternative name
where the wild things are N/A Not a real location

Table 1: Examples of user-input location references, the real-world locations they should be linked with, and the
type of noise that the geo-entity linking model must be able to handle.

bases (e.g. gazetteer, Wikipedia) which contain fea-
tures such as population, location type, etc.; and co-
ordinates/geometric features. They may use some
mix of rule-based, unsupervised, and supervised
methods. The majority of prior work on geo-entity
linking has focused on data in the English language
and in the domain of news articles (Lieberman
and Samet, 2012; Speriosu and Baldridge, 2013;
Kamalloo and Rafiei, 2018; Cardoso et al., 2019;
Kulkarni et al., 2021; Cardoso et al., 2022; Sá et al.,
2022; Li et al., 2022; Sharma et al., 2023; Zhang
and Bethard, 2023). We note that the geospatially
grounded model GeoLM – which was trained only
on English data – was evaluated on geo-entity link-
ing in a way similar to our proposed method, by
ranking locations by cosine similarity between each
candidate and the query location (Li et al., 2023).
This is similar to our proposed NameGeo method,
although the authors did not explore using cosine
similarity thresholds for selective prediction or any
of the other variations that we investigate.

Some prior work has examined geo-entity link-
ing in historical texts (Smith and Crane, 2001; Ar-
danuy and Sporleder, 2017; Ardanuy et al., 2020),
which includes English, Spanish, Dutch, and Ger-
man data; and in web pages (Moncla et al., 2014),
which includes French, Spanish, and Italian data.

Most relevant to the current work are previous
studies which have examined geo-entity linking in
social media data. Alex et al. (2016) uses a rule-
based English system, Dredze et al. (2013) uses
a multilingual rule-based system, and Zhang et al.
(2023) uses a multilingual LLM-based system.

Entity-linking is the broader task of linking
some mention of an entity – which could be a per-
son, place, or organization – to the correct entity
in a target database. We note a similarity between
our proposed UserGeo method and one introduced
for entity-linking in FitzGerald et al. (2021), in that
they both represent entities using all mentions in
the training data. However, our method is simpler
as it does not involve model training. Addition-

ally, UserGeo represents an entity by averaging
mention embeddings instead of having a separate
embedding for each mention, which induces a more
holistic entity representation that can better handle
noisy mentions present in social media data.

Predicting user location, also known as user
geolocation, is a task distinct from geo-entity link-
ing social media data in that it seeks to determine
the location of a user using both text data and user
metadata, including post content, user bio, user lan-
guage, time zone, or social networks (Han et al.,
2012; Jurgens et al., 2015; Rahimi et al., 2015;
Huang et al., 2016; Rahimi et al., 2017; Izbicki
et al., 2019; Huang and Carley, 2019a; Luo et al.,
2020). The Location field is one of many features
used for location prediction, if used at all.

Geoparsing is the task of both identifying and
linking geographic entities in unstructured text
(Wang and Hu, 2019), essentially combining to-
ponym recognition (Hu et al., 2023) and geo-entity
linking. Geoparsers focused on standard English
texts (including news articles, Wikipedia, or scien-
tific papers) include CLIFF-CLAVIN (D’Ignazio
et al., 2014), TopoCluster (DeLozier et al., 2015),
CamCoder (Gritta et al., 2018), and DM_NLP
(Wang et al., 2019). Other geoparsers include
the Edinburgh geoparser for historical English text
(Grover et al., 2010), GeoTxt for English social
media data (Karimzadeh et al., 2013, 2019), and
Perdido for French texts (Moncla et al., 2014).

3 Task and Data

3.1 Geo-entity linking task

Given a target location database D, a training set
T containing user-input location name and ground
truth location pairs, and a test set of user-input
location names I , for each i ∈ I we model

argmax
d∈D

score(d, T, i)

to predict best matching geographic entity d,
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which is represented by a triple containing a city
name, primary administrative region name (e.g.
state, province), and country name. (The city and
administrative region names may be empty strings
if the entity is of a higher granularity, e.g. a coun-
try) The score() function evaluates the quality of d
as a match to user input i, given training data T .

We note that a user-input location name i may
contain multiple locations or no real locations. Pre-
dicted entity triples are allowed to be composed
of only empty strings (referred to as NULL), indi-
cating that no location could be predicted for the
given user input.

3.2 Data

Target location database. We use a modified ver-
sion of the GeoNames1 database, which contains
entity names and coordinates for over 11M coun-
tries, administrative regions, counties, and cities
across the globe. We filtered this database to ex-
clude cities with populations under 15K, since
tweets are more likely to come from more pop-
ulated areas. Our final target location database
contains 28,767 distinct locations: 252 countries,
3,947 administrative regions, and 24,568 cities.

Train and test dataset. We use data from the
TWITTER-GLOBAL dataset (Zhang et al., 2022).
The original dataset is described as containing data
from 15.3M tweets which are either tagged with
geocoordinates or Twitter Place objects and are
posted by users with a non-empty Location field.
The tweets were posted from 2013 to 2021 and
contain global and multilingual data.

We use only the 4.1M geocoordinate-tagged
tweets in TWITTER-GLOBAL, because geocoor-
dinates are much more reliable than Place objects.
Geocoordinates are meant to be the exact geolo-
cation of the user’s device and always specify a
precise latitude and longitude, while Place objects
are pre-defined geographic entities that the user
selects from a list and may be at any granularity,
from points of interest to countries (Kruspe et al.,
2021). Users may assign a Place to a post simply
because they are talking about it and not because
they are actually there. To identify the ground truth
location for each geocoordinate-tagged tweet, we
used the reverse-geocoder library to map the co-
ordinates to the closest city in our target location
database.2 There are tweets from 196 different

1https://www.geonames.org/
2https://github.com/thampiman/

reverse-geocoder

Figure 1: Tweet frequency for top 15 countries in the
geocoordinate-tagged subset of TWITTER-GLOBAL.

countries, although they are not evenly distributed
(see Fig. 1 for tweet distribution of the 15 most
frequent countries).

We note limitations to this data. Geo-tagged
tweets are not a random or representative sample
of all tweets and there have been shown to be bi-
ases in who uses geo-tagging. Huang and Carley
(2019b) show that less than 3% of Korean-speaking
users geo-tag their posts while more than 40%
of Indonesian-speaking users do. Certain coun-
tries like Turkey and Indonesia have very high
percentages of coordinate-tagged tweets out of all
geo-tagged tweets (53% and 67%, respectively),
where most countries have 15-30%. In addition,
users who have non-empty Location fields are
more likely to use geo-tags, and there is strong
homophily in geo-tagging behavior where users
tend to connect to friends with similar geo-tagging
preferences. Pavalanathan and Eisenstein (2015)
show that users who geocoordinate-tag their posts
versus have non-empty Location fields are measur-
ably different groups in terms of demographics like
age and gender.

It has also been shown that a non-empty Loca-
tion field does not always correspond to the geo-
taggged coordinates. Alex et al. (2016) find that in
their dataset, 40% of users have geo-tagged coordi-
nates within 10km of their specific Location, 70%
are within 100km, and 85% are within 1000km.
Despite these limitations, previous work studying
geo-entity linking and user geolocation has found
geocoordinate-tagged data to be useful, so we use
such data here.
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4 Methods

4.1 Proposed Method

We propose a method (referred to as UserGeo) that
computes embeddings for each location in the tar-
get database and then, to predict a location for some
user input, simply predicts the location with the
closest embedding. To compute the target location
embeddings, UserGeo uses training set T which
contains a pair (xt, yt) for each tweet t, where x is
the user-input Location field and y is the ground
truth location triple. To help supplement locations
with few user inputs, we additionally create a pair
(s(d), d) for each d ∈ D where s(d) is a string
representation of d, with comma-separated city,
primary administrative region, secondary adminis-
trative region, country name, and two-letter country
code, as applicable. UserGeo creates embedding
representation Zd for each location d ∈ D by aver-
aging all associated xt and s(d) embeddings:

Zd =
1

|{t : y = d}|
∑

t:y=d

e(xt)

where e(x) is the embedding for x from a pre-
trained language model.

Then, for each user-input Location field i ∈ I ,
its predicted location triple d̂i is the location em-
bedding Zd that it has the highest cosine similarity
with. If the cosine similarity with all location em-
beddings is below a given threshold t, then this
is interpreted as a low confidence score and no
prediction is made. In other words,

m = max
d∈D

c(Zd, e(i))

d̂i =

{
argmaxd∈D c(Zd, e(i)) if m ≥ t

NULL otherwise

where c(a, b) is the cosine similarity between
vectors a and b.

The motivation behind this method is that it lever-
ages millions of examples of user-defined location
names, essentially inducing a soft-alias location
name database.3 We note parallels between our
framework and two other methodological classes.
First, Bi-encoders obtain separate embeddings for

3We don’t investigate fine-tuned models, due to two main
disadvantages. First, it is unclear exactly what the fine-tuned
model would learn (e.g. learning regional slang, instead of
variable ways of expressing a location). Second, it is more
likely for the model to overfit to the training data and perform
poorly on countries that are not well-represented in it.

two sentences and then calculate cosine similar-
ity between them. Second, Gaussian Discriminant
Analysis classifies a point based on the minimum
distance to clusters learned from training data.

4.2 Baselines
We evaluate four variations of our method as base-
lines. NameGeo: for each location d ∈ D,

Zd = e(s(d))

. In other words, a zero-shot version of UserGeo
where each target location is represented only by
its embedded string name.

Different embedding models: we evaluate em-
bedding with three SBERT (Reimers and Gurevych,
2019) variants – the popular all-MiniLM-L6-
v2 model, the multilingually-trained paraphrase-
multilingual-miniLM-L12-v2 model, and the larger
all-mpnet-base-v2 model – and the geospatially
grounded GeoLM (Li et al., 2023).

Variants: there are multiple s(d) functions to
create different string representations of d that are
all included in Zd. The original s(d) represents d
as only "<city>, <admin2>, <admin1>, <country>,
<2-letter country code>". Here, if d is a country
then it is also represented as "<country>"; if d is a
primary administrative region, then it is also repre-
sented as "<admin1>", "<admin1> in <country>",
and as "<country> / <admin1>"; and if d is a city,
then it is also represented as "<city>", "<city> in
<admin2> in <admin1> in <country>", "<admin1>
/ <city>", and as "<country> / <city>".

Pruning: removing outlier user inputs xt from
each Zd. A user input is determined to be an outlier
if the squared Euclidean distance between e(xt)
and Zd is farther than a given threshold.

We also evaluate the only prior open-source tool
that was explicitly created for and evaluated on
broadly multilingual data. Carmen 2.0: uses a com-
bination of regular expressions and manually cu-
rated aliases to predict real-world locations (Zhang
et al., 2022).

5 Experiments

5.1 Experimental setup
Data. We divide the Twitter-Global data into a
90/10 split, with 3.7M examples in the training set
and .4M in the test set. We evaluate at three levels
of geographic granularity (city, primary adminis-
trative region, and country). A predicted triple is
correct at the country level if the predicted country
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Method Country Admin. City
CARMEN 2.0 43.5 27.3 9.8
all-MiniLM-L6-v2
NameGeo 59.8 37.7 14.3
UserGeo 67.8 44.2 14.8
all-mpnet-base-v2
NameGeo 60.9 38.3 14.9
UserGeo 67.4 43.7 13.9
paraphrase-multilingual-MiniLM-L12-v2
NameGeo 48.7 28.9 8.1
UserGeo 57.0 34.3 9.4
GEOLM
NameGeo 52.5 30.5 12.1
UserGeo 57.4 33.9 10.7

Table 2: Accuracy scores (%) at all three geographic
granularities for Carmen 2.0, and NameGeo and User-
Geo with different embedding models (all at threshold
of 0, i.e. predictions are made for all examples). The
highest score is bolded, the top 2 are underlined.

is a string match with the correct country; correct
at the administrative level if both predicted country
and administrative region are string matches with
the correct ones; and correct at the city level if pre-
dicted country, administrative region, and city are
all string matches with the correct ones. This hier-
archical string matching procedure has limitations
in that it does not remove all geographic ambiguity
(e.g. if there are multiple cities with the same name
in the same administrative region), but it should be
effective in the vast majority of cases.

Metrics. We use four metrics to evaluate meth-
ods. Accuracy is the percentage of examples for
which the method made a correct location predic-
tion. Since many models do not always predict a
location for all user inputs, we also evaluate cover-
age (the percentage of examples with a non-NULL

prediction) and precision (the percentage of cor-
rect non-NULL predictions, following the standard
definition of precision). For individual country per-
formance we also evaluate F1-score, since most
countries are uncommon.

5.2 Results
NameGeo, UserGeo, and Carmen 2.0. UserGeo
achieves the highest accuracy at the country and ad-
ministrative level, with gains over Carmen 2.0 of 25
and 17 points, respectively, and NameGeo achieves
the highest accuracy at the city level, with gains
over Carmen 2.0 of 5 points (Table 2). And while
Carmen 2.0 has a competitive precision-coverage
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Figure 2: Precision-coverage curves at the country
(a) and administrative (b) levels. Red points are Car-
men 2.0, purple are NameGeo, and cyan are User-
Geo. NameGeo and UserGeo are shown with four
different embedding models, where each point repre-
sents the precision and coverage at a threshold t ∈
{0, .1, .2, .3, .4, .5, .6, .7, .8, .9}. These curves demon-
strate how thresholds can be used to tradeoff between
precision and coverage with NameGeo and UserGeo.

tradeoff, especially at the country and administra-
tive level, its overall coverage is still quite low (see
Fig. 2, and Fig. 4 in Appendix). In other words, it
is often correct when it makes a prediction but it
does not often make a prediction. It also only has
a single precision-coverage point (similar to most
other prior tools). In contrast, our proposed meth-
ods demonstrate the ability to tradeoff between pre-
cision or coverage by choosing a different threshold
and can achieve a higher precision or coverage than
Carmen 2.0 at certain thresholds. The threshold
can be used to adjust the precision/coverage bal-
ance if, for a given application, it is more important
to get predictions correct or if it is more important
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User-input Carmen 2.0 NameGeo @0.5 UserGeo @0.5

TURKEY/SİNOP NULL "", Sinop, TR Boyabat, Sinop, TR
福島県いわき市 NULL Zhongshu, Yunnan, CN Iwaki, Fukushima, JP

Catskills NULL Catalca, Istanbul, TR Greenburgh, New York, US
where the wild things are NULL NULL NULL

Table 3: Error analysis of the same user-input examples as in Table 1 (see Table 1 for corresponding real-world
locations). Results from NameGeo and UserGeo are using the all-MiniLM-L6-v2 SBERT model. Empty strings
indicate that the model did not make a prediction at that geographic granularity, and NULL indicates that no
prediction was made.

to make more predictions.4

We conducted a manual error analysis com-
paring Carmen 2.0, NameGeo, and UserGeo and
observed trends in the types of errors made by
each method (see Table 3). First, Carmen 2.0
rarely makes predictions for user-inputs with unex-
pected punctuation or in non-Latin scripts. Second,
NameGeo often incorrectly predicts locations that
look superficially similar to the user input (e.g. it
predicts a location in China for a user input written
in Japanese, and a location named ’Catalca’ for the
user-input ’Catskills’). Third, UserGeo often cor-
rectly predicts locations for non-Latin inputs and
alternate/informal location names. And lastly, all
three models are frequently able to identify user-
inputs that are not real locations.

We compare country-level F1-scores5 across
countries for Carmen 2.0, NameGeo, and UserGeo,
for the 23 countries with more than 1,000 examples
in our test set, in order to investigate geographic
bias in our models (Liu et al., 2022). We observe
that the number of examples per country in the
training set – which may differ by multiple orders
of magnitude – does not appear to influence User-
Geo performance (see Table 6 in Appendix). This
suggests that an unbalanced training set doesn’t
negatively impact performance as it might for a
traditional supervised learning method.

Different embedding models. Across SBERT

bases, we find that the all-MiniLM-L6-v2 model
surprisingly performs better than the multilingually-
trained paraphrase-multilingual-MiniLM-L12-v2
model and it performs comparably with the larger
all-mpnet-base-v2 model (Table 2, Fig. 2). Anec-
dotally, we found that the multilingual model per-

4We note that these precision-coverage curves are valid
for only this dataset. Users would likely have to reevaluate
precision and coverage on a new dataset or domain in order to
choose an appropriate threshold.

5We use F1-score instead of accuracy here in order to better
represent rare countries.

forms worse for examples in Latin script; for ex-
ample, NameGeo with the multilingually-trained
model incorrectly predicts ("", Pukapuka, CK)
for user input "Kucukyali izmir" while NameGeo
with all-MiniLM-L6-v2 correctly predicts (Izmir,
Izmir, TR). On the other hand, it performs
better for non-Latin scripts; UserGeo with the
multilingually-trained model correctly predicts
(Dnipro, Dnipropetrovsk Oblast, UA) for "Дне-
пропетровск" and partially correctly predicts
(Varto, Mus, TR) for "ÈñJ. 	J¢�@ - AJ
»Q�K", while
UserGeo with all-MiniLM-L6-v2 only partially
correctly predicts (Pidhorodne, Dnipropetrovsk
Oblast, UA) and incorrectly predicts (Tabuk, Tabuk
Region, SA). We hypothesize that part of why the
improved performance for non-Latin scripts does
not outweigh the decrease in performance for Latin
script is that non-Latin user inputs are a minority
in this dataset; for a different dataset, it’s possible
that the performance of the multilingually-trained
model may be better than that of all-MiniLM-L6-
v2.

Regarding the GeoLM model, the only SBERT

model it outperforms is the multilingual one. Ad-
ditionally, the cosine similarity threshold does not
work effectively for GeoLM because the cosine
similarities between a user input and each target
location are very close; for example, the average
cosine similarity between a correct prediction and
an incorrect prediction for NameGeo with GeoLM
at the country-level is .95 and .92, respectively.
There is therefore a very limited range of values for
which to have a threshold. Fig. 2 demonstrates this
limited range with very short precision-coverage
curves for GeoLM.

Since the all-MiniLM-L6-v2 model performs the
best out of all the embedding models, we use it for
the rest of the experimental results.

Variants. Adding additional variants of the lo-
cation name improves performance for NameGeo,
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and in fact NameGeo+variants does better than
UserGeo at the city-level (see Table 4). However,
adding additional variants does not improve perfor-
mance for UserGeo, and UserGeo+variants does
marginally worse than UserGeo.

We investigate the impact of number of loca-
tion mentions in the training data on model perfor-
mance. Fig. 3 contains a plot of the number of
mentions in the training data per location versus
NameGeo/UserGeo accuracy. NameGeo does not
use any user inputs from the training data so it can
be considered a control for how training data af-
fects performance in UserGeo. We see that while
some training data is better than none (UserGeo
consistently outperforms NameGeo when number
of mentions is less than 1,000), it is not true that
more training data always continues to improve
performance (UserGeo and NameGeo have com-
parable performance when number of mentions is
greater than 1,000). This suggests that having more
variants or examples in a location’s averaged em-
bedding is helpful, but only to an extent. Few-shot
is better than zero-shot, but after a certain point
there are diminishing returns.

Pruning. We defined an outlier as an embed-
ding that was more than the average distance from
its centroid, where the average is calculated us-
ing all embeddings associated with the given loca-
tion. On average, 38% and 42% of embeddings in
each cluster were pruned for UserGeo and User-
Geo+variants, respectively.6

In general, removing outliers did not improve
performance and frequently made it worse (Table
4). This suggests that having more variety in the av-
eraged embeddings is good for performance, even
if it comes at the cost of noise.

We observed via error analysis that it is often
the case that user inputs close to the centroid will
be standard English spellings of the location, ones
within 1x average distance will include the location
spelled in different scripts or nearby/related loca-
tions, and ones more than 1x average distance will
not be very related to the location. For example,
for the country Armenia, user inputs less than .5x
average distance include "Yerevan, Armenia" and
"ARMENIA"; user inputs less than 1x average dis-
tance include "Armenia | Hayastan | Армения"

6We determined through preliminary analyses that the av-
erage distance was an appropriate threshold, e.g. with a thresh-
old of 2x the average distance, only 3% of embeddings in each
cluster were pruned on average and there was no improvement
in performance.

Method Country Admin. City
NameGeo 59.8 37.7 14.3
+variants 62.0 40.9 17.0
UserGeo 67.8 44.2 14.8
+pruning 63.5 41.4 13.2
+variants 66.0 43.7 15.3
+variants+pruning 65.2 43.4 13.9

Table 4: Accuracy scores (%) for variations of
NameGeo and UserGeo (all at threshold of 0); the high-
est score is bolded, the top 2 are underlined. The all-
MiniLM-L6-v2 SBERT model was used for all results.
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Figure 3: Average accuracy for a given number of men-
tions in training data (bucketed by ⌊log2 #mentions⌋),
for NameGeo and UserGeo with and without adding
location name variants. Location entities at all 3 geo-
graphic granularities are present in the plot.

and "Azerbaijan, Baku"; and user inputs more than
1x average distance include "Paris/Singapore" and
"Worldwide".

However, it is also frequently the case that user
inputs one may want to exclude are less than 1x
average distance and inputs one may want to in-
clude are more than 1x average distance. For ex-
ample, "Moscow" is less than 1x average distance
and "ARMENI, ABOBYAN." is more than 1x av-
erage distance. User inputs that are semantically
relevant (i.e. refer to the location) but stylistically
dissimilar (e.g. contain emojis or uncommon punc-
tuation uses) are often farther from the centroid
than user inputs that are less semantically relevant
but more stylistically similar (e.g. "New York" is
within 1x average distance of the centroid for the
country Gibraltar, while "G I B R A L T A R" is
not). These results suggest that the model is not
able to effectively differentiate between good noise
and bad noise, and thus it is better to not do pruning
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and to keep as many user inputs in the training data
as possible.

6 Accuracy Upper Bounds

To approximate an upper bound for accuracy scores
on our dataset, we conducted an analysis of a ran-
dom sample of user inputs to determine how many
contained references to actual locations. The per-
centage of examples which contain a location at
each granularity suggest an upper bound for accu-
racy, indicating the approximate proportion that a
geo-entity linker could be expected to connect to a
real geographic location. The first author manually
annotated 120 random examples from the training
set for whether or not the user input contained an
identifiable reference to a location at the country,
administrative, and/or city levels.7

We include results from this annotation in Table
5 as well as a comparison with our best performing
models’ accuracy scores. UserGeo is only 5 points
below the country-level upper bound and 14 points
below the administrative-level upper bound, indi-
cating that our current performance is fairly close
to the upper limit in terms of accuracy. In contrast,
NameGeo+variants is more than 30 points below
the city-level upper bound.

We discuss a few problems with evaluating geo-
entity linking at the city level for social media
data. First, the assumption of the geocoordinates as
ground truth is frequently untrue and especially so
at the fine-grained city level. Unlike news articles
or Wikipedia data, the place that a user puts on
social media is not necessarily the place where they
actually are. As Alex et al. (2016) have shown, only
70% of users have geocoordinates within 100km
of the place specified in their Location field. Sec-
ond, since we define ground truth as the closest
city to the geocoordinates with a population higher
than 15K, there will always be a mismatch between
ground truth and Location field if a user puts a
city with a lower population. Third, there is a dis-
connect between what is considered a city by a
database such as GeoNames versus by an everyday
person. Istanbul, Jakarta, Moscow, Gaborone, Lam-
pang, and Santa Ana are all names of both cities
and administrative regions in GeoNames – when
users put them in their Location field, it’s unclear

7We did not count coordinates as containing a location, as
we wanted to investigate the ability of the model to identify
natural language location references. If a location was named
that could be either an administrative region or a city, then the
example was marked as containing both.

Country Admin. City
Upper bound 72.5 58.3 49.2
NameGeo+variants 62.0 40.9 17.0
UserGeo 67.8 44.2 14.8

Table 5: Accuracy upper bounds and scores (%) for our
two best models, with highest scores bolded.

which one they are referring to.
We hypothesize that these problems contribute

to the poor performance of geo-entity linking tools
at the city level. We additionally acknowledge how
inferring location at the city level is more invasive
than inferring at the country or administrative level
because it predicts more fine-grained information
about the user. Therefore, due to mismatches be-
tween geocoordinates and user-defined Location
fields as well as the privacy concerns, we suggest
that researchers only predict city-level location if
it’s necessary for a given application and otherwise
use country- or adminstrative-level predictions.

7 Conclusion and Future Work

In this paper we introduced new methods for geo-
entity linking noisy, multilingual social media data
with selective prediction. Of our two best perform-
ing methods, one does not require any training
data (NameGeo+variants) while the other achieves
state-of-the-art performance at the country and ad-
ministrative levels (UserGeo). We also discussed
problems with geo-entity linking at the city level
for social media data, and suggested against doing
this unless necessary for the application.

This work is not without limitations. We do
not compare performance with LLM prompting
methods, as they are too expensive for large-
scale datasets and it’s currently unclear how much
prompt testing is necessary for a robust evalua-
tion. However, it would be a useful comparison
to know how LLMs perform at zero- or few-shot
geo-entity linking; we leave this for future work.
We also acknowledge that our methods rely heavily
on SBERT models, and thus are reliant on a third
party for sustaining them.

We plan to release a version of the UserGeo loca-
tion embeddings in future, although we will not re-
lease the current version due to concerns about the
TWITTER-GLOBAL data (e.g. unbalanced across
countries, unclear sampling methodology). We
also hope to further evaluate our method on other
domains with noisy location references, such as
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historical data, and to explore extensions of our
method so it may be used for the broader task of
geoparsing unstructured text.

8 Ethical Considerations

We discuss here ethical issues that may arise from
using any geo-entity linking tool on social media
data for a downstream application. When using a
geo-entity linking tool on social media data, there
is always the risk of de-anonymizing users through
the inference of sensitive location information. It is
generally recommended to use the lowest granular-
ity necessary for the application simply because it
is easier to correctly obtain than more fine-grained
data (Kruspe et al., 2021), but it is also true that
lower geographic granularities protect individuals
more due to being part of a larger aggregate (Dupre
et al., 2022). We also acknowledge the increas-
ing importance of geomasking techniques, which
aim to protect the privacy of individuals while pre-
serving spatial information in geodata. Lorestani
et al. (2024) survey the privacy risks of geocoded
data and present a taxonomy of current geomask-
ing techniques, and Gao et al. (2019) specifically
examine the efficacy of geomasking techniques for
protecting the privacy of Twitter users.
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A Appendix
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Figure 4: Precision-coverage curve at the city level. The
red point is Carmen 2.0, purple points are NameGeo,
and cyan are UserGeo.
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Country No. mentions in train data Carmen 2.0 NameGeo UserGeo
United States 1300869 .73 .77 .84
Indonesia 713967 .54 .73 .74
Turkey 237472 .57 .91 .91
Malaysia 218257 .49 .70 .70
Brazil 210428 .47 .78 .89
Japan 184647 .27 .48 . 92
Philippines 131152 .57 .69 .73
Thailand 70403 .55 .67 .64
Singapore 43996 .51 .54 .53
India 40656 .80 .91 .93
Canada 36990 .54 .83 .78
Saudi Arabia 34559 .40 .48 .73
Argentina 34104 .54 .72 .84
South Africa 27228 .59 .77 .80
Russia 21820 .53 .92 .91
Kuwait 17829 .48 .65 .59
Australia 14363 .53 .85 .86
Chile 14268 .80 .87 .89
Nigeria 12482 .80 .84 .87
Spain 11699 .40 .65 .79
Egypt 10979 .57 .72 .78
UAE 10918 .43 .71 .67
Pakistan 9423 .79 .86 .89

Table 6: Per-country country-level F1-scores for the 23 countries with over 1,000 examples in the test set. Results
from NameGeo and UserGeo are using the all-MiniLM-L6-v2 SBERT model. Both NameGeo and UserGeo
outperform Carmen 2.0 for each of the 23 countries. We also note that F1-score can vary significantly by country,
demonstrating the importance of evaluating per-country performance when using a geo-entity linker to investigate
social media users who are from or identify with particular countries.
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