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Abstract

Computational social science (CSS) practition-
ers often rely on human-labeled data to fine-
tune supervised text classifiers. We assess the
potential for researchers to augment or replace
human-generated training data with surrogate
training labels from generative large language
models (LLMs). We introduce a recommended
workflow and test this LLM application by
replicating 14 classification tasks and measur-
ing performance. We employ a novel corpus
of English-language text classification data sets
from recent CSS articles in high-impact jour-
nals. Because these data sets are stored in
password-protected archives, our analyses are
less prone to issues of contamination. For each
task, we compare supervised classifiers fine-
tuned using GPT-4 labels against classifiers
fine-tuned with human annotations and against
labels from GPT-4 and Mistral-7B with few-
shot in-context learning. Our findings indicate
that supervised classification models fine-tuned
on LLM-generated labels perform comparably
to models fine-tuned with labels from human
annotators. Fine-tuning models using LLM-
generated labels can be a fast, efficient and
cost-effective method of building supervised
text classifiers.

1 Introduction

Supervised text classification often relies on
human-labeled text data for training and validation.
Computational social science (CSS) researchers
frequently use these types of supervised models
to classify large quantities of text, ranging from
news articles on the internet to government docu-
ments (Grimmer et al., 2022; Lazer et al., 2020).
Collecting training and validation labels generated
by humans for these tasks, however, is expensive,
slow, and prone to a variety of errors (Grimmer and
Stewart, 2013; Neuendorf, 2016).

To address these limitations, prior research sug-
gests utilizing few-shot capabilities of generative

large language models (LLMs) to annotate text data
instead of human annotators (Gilardi et al., 2023).
Generative LLMs are faster and cheaper than hu-
man annotators and do not suffer from common
human challenges such as limited attention span
or fatigue. While this approach has its limitations
and generative LLMs do not excel at all text anno-
tation tasks (Pangakis et al., 2023), prior research
illustrates that there are numerous circumstances
where generative LLMs can produce high quality
text-annotation labels.1

Although past work suggests LLM few-shot an-
notation is highly effective, it may be cost pro-
hibitive in many settings. Research with text data
often involves classifying millions of documents
or text samples. For example, a recent CSS arti-
cle studies a data set of 6.2 million tweets labeled
on four dimensions (Hopkins et al., 2024), a task
that would have cost nearly $9,000 if using GPT-4
alone.2 Using a knowledge distillation approach
(Dasgupta et al., 2023; Gou et al., 2021; Hinton
et al., 2015), it may be possible to approximate the
performance of a larger “teacher” model (e.g., GPT-
4 (OpenAI, 2023), estimated to have over 1.7T
parameters (Schreiner, 2023)) with much smaller
and cheaper task-specific “student” models (e.g.,
BERT Base (Devlin et al., 2019), approximately
110 million parameters).

In this paper, we evaluate using generative LLMs
to create surrogate labels for fine-tuning down-
stream supervised classification models. Our ap-
proach involves first using a generative LLM to
label a subset of text samples and then fine-tuning
supervised text classifiers with the LLM-generated
labels. Using our outlined approach, we replicate
14 classification tasks from recently published CSS
articles. We compare several supervised classifiers
(i.e., BERT (Devlin et al., 2019), RoBERTa (Liu

1See Appendix A.1 for a longer discussion of automated
annotation research in CSS.

2Appendix A.2 elaborates on costs with LLM annotation.
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et al., 2019), DistilBERT (Sanh et al., 2019), XL-
Net (Yang et al., 2020), and Mistral-7B (Jiang et al.,
2023)) fine-tuned on varying quantities of either
human-labeled samples or GPT-4-labeled samples.
We benchmark the supervised classifiers’ perfor-
mance against GPT-4 and Mistral-7B few-shot la-
bels. In a series of ablation experiments, we also
explore whether GPT-4 outputs change over time
and how well the student models handle noise in
the GPT-generated text labels.

A small number of studies have utilized sim-
ilar approaches in related domains. Chen et al.
(2023b) use ChatGPT annotations to train various
Graph Neural Networks for a fraction of the cost
of human annotations. Golde et al. (2023) also
harness ChatGPT to create surrogate text data that
aligns with a specific valence (i.e., positive and
negative) and then subsequently fine-tune a super-
vised classifier using the synthetic text. Most analo-
gous to our approach here, Wang et al. (2021) train
RoBERTa (Liu et al., 2019) and PEGASUS (Zhang
et al., 2020) models on labels generated by GPT-3.
Despite strong performance across their analyses,
Wang et al. (2021), as well as the previously men-
tioned studies, exclusively evaluate closed-source
models (i.e., GPT-3 and ChatGPT) on popular, pub-
licly available NLP benchmark tasks (e.g., AG-
News, DBPedia, etc), which are plausibly included
in the training data for the generative LLM. As a
result, these analyses cannot offer a clear indica-
tion of performance because their results plausibly
suffer from contamination (Balepur et al., 2024; Li
and Flanigan, 2023; Magar and Schwartz, 2022;
Srivastava et al., 2024). Put otherwise, strong per-
formance may reflect memorization, which casts
doubt on the generalizability of the findings.

To compare supervised classifiers fine-tuned us-
ing LLM-generated labels against those fine-tuned
with labels from human annotators, researchers
must assess performance on tasks less likely to be
affected by contamination. To this end, all 14 of
the classification tasks we replicate are conducted
on labeled data sets stored in password-protected
archives. Each of the classification tasks in our cor-
pus are real CSS applications and contain human-
labeled ground-truth annotations.3

Our main contributions are as follows:
1. Across 14 classifications tasks, supervised

models fine-tuned with GPT-generated labels

3Table A2 and Table A3 include a full list of the data sets
and classification tasks.

Human Annotator

Generative
LLM

1) Validate few-shot
LLM on human-labels

2) LLM generates
training labels

3) Train supervised
model

4) Test model performance
on human-labeled data

Figure 1: Supervised text classification with LLM-
generated training labels.

perform comparably to models fine-tuned
with human-labeled data. The median F1
performance gap between models fine-tuned
using GPT-labels and models fine-tuned on
human-labeled data is only 0.039. While
supervised classifiers fine-tuned with LLM-
generated labels perform slightly worse than
classifiers fine-tuned with human labels, LLM-
generated labels can be a fast, efficient and
cost-effective method to fine-tune supervised
text classifiers.

2. Supervised models fine-tuned on GPT-4 gener-
ated labels perform remarkably close to GPT
few-shot models, with a median F1 difference
of only 0.006 across the classification tasks.

3. GPT-4 few-shot models and supervised classi-
fiers fine-tuned on GPT-4 generated labels per-
form significantly better than all other models
on recall, but noticeably worse on precision.

2 Methodology

Figure 1 shows our four-step workflow. First, we
validate LLM few-shot performance against a small
subset (n=250) of human-labeled text samples for
each task. We provide GPT-44 with detailed in-
structions to label the text samples into concep-
tual categories outlined in the original study.5 Be-
cause LLM few-shot annotation performance varies
across tasks and data sets, validation is always nec-
essary (Pangakis et al., 2023). As such, we validate

4We select GPT-4 as our main generative model due to
its high performance on popular leaderboard websites. In
Appendix E.1, we also explore few-shot performance of an
open-source model (i.e., Mistral-7B).

5We include all prompt details in the supplementary mate-
rial. We also include our code to query the GPT-4 API.
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Figure 2: Box plots of performance on test data across 14 tasks. Thick vertical line denotes median. Color represents
model type, with green corresponding to models fine-tuned on 1,000 human labels, orange to 250 human labels, red
to 1,000 GPT labels, and blue to a few-shot model.

each generative LLM on a subsample and then ad-
just the prompt to optimize performance on this
initial sample. This process is discussed in greater
detail in Appendix C.1. Using the validated prompt,
the second step in our workflow involves labeling
an additional 1,000 text samples per task using the
same generative LLM, which will later be used as
data to fine-tune the supervised classifier.

In the third and fourth steps, we fine-tune a va-
riety of supervised text classifiers and assess per-
formance against a held-out set of 1000 human-
labeled samples. Our supervised models include
a variety of BERT-family models (i.e., BERT,
RoBERTa, and DistilBERT).6 In Appendix E.1,
we conduct ablation experiments with XLNet and
Mistral-7B. Appendix C.2 describes on our hyper-
parameter tuning process and additional evaluation
details, including how multi-class tasks were split
into separate binary tasks. Ultimately, we compare
performance between text classifiers fine-tuned on
1000 LLM-generated samples, 250 human-labeled
samples, and 1000 human-labeled samples.

In addition to analyzing performance across dif-

6We select these models because of their low cost, speed,
and their frequent application in CSS (Büyüköz et al., 2020;
Terechshenko et al., 2020).

ferent model architectures and training sample
sizes, we also implement a variety of ablation ex-
periments to assess how robust the analyses are to
several sources of variance. First, we examine how
robust these models are to noisy GPT-generated
labels. Specifically, in Appendix E, we implement
a novel technique designed to measure noise in
GPT-generated labels and then compare supervised
models fine-tuned on GPT-generated labels with
noise against models fine-tuned on GPT-generated
labels without noise. In a second set of ablation
experiments, we replicate the GPT-4 few-shot la-
bels at different points in time. To account for the
potential of changing model weights in GPT-4, we
re-analyzed each task six months after our initial
analyses and compared results across time. Ex-
tended discussion and the results for these ablation
experiments are shown in Appendix E.

3 Results

Classification results for the BERT-family mod-
els and GPT-4 few-shot are shown in Table 1.7

In Figure 2, each box plot displays the range of
7We conduct few-shot classification by using the classifi-

cation instructions from the original study as a prompt for the
LLM.
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Model Training data Accuracy F1 Precision Recall

GPT-4 Few shot 0.88 0.59 0.51 0.80

BERT
Human annotation: 250 0.89 0.34 0.59 0.30
Human annotation: 1000 0.92 0.62 0.71 0.54
GPT-4 annotation: 1000 0.87 0.59 0.50 0.74

DistilBERT
Human annotation: 250 0.89 0.36 0.53 0.32
Human annotation: 1000 0.89 0.64 0.66 0.61
GPT-4 annotation: 1000 0.85 0.54 0.43 0.75

RoBERTa
Human annotation: 250 0.88 0.37 0.48 0.32
Human annotation: 1000 0.90 0.55 0.54 0.53
GPT-4 annotation: 1000 0.84 0.42 0.38 0.58

Table 1: Comparison of classification performance on held-out validation data. Median performance across 14 tasks
shown.

evaluation metrics across all 14 tasks for a given
model/training data combination. The thick ver-
tical line denotes the median performance metric
across all analyzed tasks. Across all 14 classifi-
cation tasks, DistilBERT and BERT fine-tuned on
1000 human-samples are the highest performing
models, with a median F1 score of 0.641 and 0.624,
respectively.8 Not far behind, however, is the GPT-
4 few-shot model (0.592 median F1) and BERT
fine-tuned on 1000 GPT-labeled samples (0.586
median F1). From this we draw two conclusions:
First, models fine-tuned on few-shot surrogate la-
bels from a generative LLM perform comparably
to models fine-tuned on human labels. Despite a
small performance gap, training supervised models
on LLM-labeled data can be a quick, effective, and
budget-friendly approach for constructing super-
vised text classifiers.

Second, models trained on surrogate labels from
GPT-4 demonstrate very similar validation per-
formance as labels from GPT-4 with few-shot
in-context learning. As each additional GPT-4
query incurs more expense, researchers can save
resources by avoiding classifying an entire data set
using a generative LLM and instead use them to
create training labels for a supervised model.

A secondary finding is that GPT few-shot models
and supervised models trained on GPT-generated
labels produce remarkably high performance on
recall.9 GPT-4 few-shot (0.8 median recall) as well
as DistilBERT and BERT fine-tuned on GPT-labels

8We use F1 as our primary evaluation criteria due to class
imbalance. Full results are shown in Table A4.

9Appendix D displays PR curves for each of the BERT-
family supervised models.

(both with 0.746 median recall) achieve signifi-
cantly better median recall than any model fine-
tuned with human labels. The opposite is true
for precision: BERT fine-tuned on human-labels
achieved the highest precision of the models tested,
which was 0.214 higher than median precision for
BERT models fine-tuned on GPT-4 labels. There-
fore, using surrogate training labels may be better
suited for tasks where recall is prioritized over pre-
cision.

4 Discussion

Surrogate labels from generative LLMs offer a
viable, low-resource strategy for fine-tuning task-
specific supervised classifiers, but a few points of
caution are worth emphasizing. As the variation
in our few-shot results indicates, there are cases
where GPT-4 performs poorly on classification
tasks. While advancements in LLM technology
and additional prompt engineering could mitigate
these concerns, it is essential that researchers vali-
date generative LLM performance against ground-
truth human-labeled data. Downstream supervised
classifiers will not mitigate bias or poor perfor-
mance in LLM few-shot labels. Thus, while genera-
tive LLMs can improve the classification workflow,
their application must remain human-centered.
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5 Limitations

Here, we identify three main limitations of our
analysis. First, as discussed in Section 4 and shown
in full detail in Table A4, there are various cir-
cumstances where supervised models fine-tuned on
LLM-generated labels fail to produce satisfactory
results. This may be due to inaccurate annotations
from GPT-4, poor performance from the supervised
classifier, or both. While it is possible that addi-
tional prompt engineering or hyperparameter tun-
ing could improve performance, it is essential to
stress that each of these optimization strategies rely
on human labels for comparison. As a result, we
argue that it is essential to center human judge-
ment as ground truth when optimizing models and
adjudicating between models.

A second, related limitation refers to understand-
ing the errors in the model outputs. Specifically, it
is possible that errors from a GPT-trained model
produces correlated but unobservable errors. Build-
ing a supervised classifier on top of GPT-4 labels
would magnify, rather than offset, any such biases.
This, too, underscores the importance of human val-
idation and error analysis. It is, of course, also es-
sential to minimize bias by human annotators. For
instance, recruiting human annotators from vary-
ing demographic backgrounds when conducting an
annotation project may diminish the potential for
correlated errors across annotators.

Finally, treating human labels as ground truth is
an additional limitation. Although most data sets
in our analysis employed multiple human coders,
it is of course possible that these annotators made
correlated errors. As a result, some disagreements
between human ground truth labels and surrogate
GPT-4 labels may stem from human error. Such
errors could bias performance metrics downward
for any of the models assessed. Because our pri-
mary interest is making comparisons across models,
however, we are mainly interested in their relative
performance. Because each model would suffer
from the same errors in the human labeled data,
we do not see this as a significant concern for this
analysis.

For the analysis in this paper, our reliance on text
classification tasks and data from peer-reviewed re-
search in high-impact journals helps to mitigate
concerns about data annotation quality. The anno-
tation procedures in each of these tasks received
IRB approval and was assessed by independent re-
viewers to be of quality enough for publication in

a high-impact journal. Still, it is important to ac-
knowledge that applied researchers should invest in
high-quality human labels, even if only to validate
generative LLM annotation performance.

6 Ethics Statement

Our research complies with the ACL Ethics Policy.
Specifically, our research positively contributes to
society and human well-being by providing tools
that can aid computational social scientists study-
ing the social world. Using the methods we intro-
duce and test will help scientists better understand
a wide range of complicated social problems. Be-
cause the techniques proposed and assessed in this
article require dramatically less resource expendi-
ture than alternatives, our results can help address
inequities in resources across researchers.

Due to the inherent risks of deploying biased
models, we stress the necessity of human valida-
tion throughout our paper. Given the ease and ef-
ficiency gains of using generative LLMs to train
supervised classifiers, we believe it is essential to
build rigorous testing and evaluation standards that
are human-centered. This is why we took great ef-
forts to center our analyses on data sets less prone
to contamination risks.

Moreover, our research and data analysis does
not cause any harm while also respecting privacy
and confidentiality concerns. As we discuss in our
data collection procedures in Appendix B, we con-
formed to each data repository’s usage and repli-
cation policies. Each of the original studies re-
ceived IRB approval and our analyses conformed
to the same safety protocols. All collected data was
anonymized by the original authors. Appendix C.3
provides additional details on human annotation
protocols, which were all conducted by the original
studies and received IRB approval.
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A Appendix: Prior automated annotation
research in computational social
science

A.1 Overview of automated annotation
research

A growing body of research studying automated
annotation claims that few-shot classifications from
generative LLMs can match humans on annotation
tasks (Chiang and Lee, 2023; Ding et al., 2022;
Gilardi et al., 2023; He et al., 2023; Mellon et al.,
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GPT-4: Entire Corpus (n=6.2m) GPT-4: n=1000 Crowdworker: n=1000 Trained Assistant: n=1000

$8,990 $15 $124 $187

Table A1: Comparing annotation costs applied to Hopkins et al. (2024).

2022; Pan et al., 2023; Rytting et al., 2023; Thapa
et al., 2023; Törnberg, 2023; Zhu et al., 2023;
Ziems et al., 2023). For example, Gilardi et al.
(2023) find that LLMs outperform typical crowd-
sourced human annotators: “[t]he evidence is con-
sistent across different types of texts and time peri-
ods. It strongly suggests that ChatGPT may already
be a superior approach compared to crowd anno-
tations on platforms such as MTurk.” Analyzing a
range of social science applications, Rytting et al.
(2023) similarly write, “GPT-3 can match the per-
formance of human coders [and in] some cases, it
even outperforms humans in increasing intercoder
agreement scores." Törnberg (2023) argues that
automated annotations by LLMs in his analyses
are even as accurate as annotations by human ex-
perts. While there are clearly circumstances where
automated annotation fails to accurately reflect hu-
man judgment (Kristensen-McLachlan et al., 2023;
Reiss, 2023), researchers can safely use automated
annotation procedures as long as they validate
against human labels not prone to contamination
(Pangakis et al., 2023).

A.2 Costs associated with implementing
automated annotation

While prior research demonstrates that automated
annotation can align with human reasoning in many
scenarios, directly using the strategies introduced in
prior studies to label an entire text corpus would be
cost prohibitive when applied to a typical CSS data
set, which often contain millions of observations.
Consider the cost for using GPT-4 to label a data
set of 6.2 million tweets, which is what Hopkins
et al. (2024) analyze. At the time of writing, GPT-4
costs $0.01 per 1k input tokens and $0.03 per 1k
output tokens, with 1000 tokens corresponding to
roughly 750 words.10 The prompt instructions to
replicate Hopkins et al. (2024) contained approx-
imately 500 words and the average tweet length
was around 25 words. Because the full corpus con-
tained 6.2 million tweets and the code to query
the OpenAI API was implemented in batches of
10 tweets, a full automated annotation to process

10See https://openai.com/pricing

the corpus in Hopkins et al. (2024) would require
620,000 batches fed into GPT-4. Each batch (i.e.,
750 words per input) corresponds to roughly 1,000
input tokens, per OpenAI’s suggested benchmark.
Since the outputs were standardized, the outputs
for these analyses tended to be around 150 tokens.

Thus, when broken down into tokens, the total
number of processed input tokens for this analysis
would be 1, 000× 620, 000 and the total processed
output tokens would be 150 × 620, 000. When
factoring the cost per token for input and output
tokens, the total cost comes to $8, 990 = (1, 000×
620, 000×0.00001)+(150×620, 000×0.00003).
While this is a loose estimate, it illustrates the chal-
lenges posed by the marginal per-sample cost of
automated LLM annotation for large-N CSS re-
search. Using our approach, labeling 1,000 text
samples and training a supervised classifier would
cost under $15.

Implementing our proposed workflow also re-
duces annotation labor costs. For example, hir-
ing crowd-source workers to label a subset of text
samples to serve as training observations would
still cost significantly more than using automated
annotation. Hopkins et al. (2024), for example,
hire MTurk workers and paid them $0.06 to $0.07
per task depending on the total number of anno-
tations ($15.00 per hour for six tasks per minute),
which extrapolates to 360 tasks per hour. Under
the standard assumption of three MTurk workers
per task and taking a majority vote, the entire anno-
tation time to label 1,000 tweets would have taken
slightly under three hours and cost $124. However,
due to serious data quality concerns about crowd-
workers (Chmielewski and Kucker, 2020; Douglas
et al., 2023; Veselovsky et al., 2023), a better cost
comparison is against trained research assistants
instead. Assuming 45 seconds per task and a $15
hourly rate, manually annotating 1,000 text sam-
ples would take 12.5 hours and cost approximately
$187.

Table A1 shows a comparison of these costs.
Not only is automated annotation remarkably faster
than human annotators, our procedures introduced
here can cost researchers less than 10% the cost
of typical alternatives. These efficiency gains are
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conservative in the sense that they disregard the
time to find, hire, and train the annotator.11

B Appendix: Data sets

In this section, we elaborate on the data sets used
in our analysis. Our corpus includes 14 classifica-
tion tasks across five data sets representing recent
applications in computational social science. To
avoid the potential for contamination, we rely ex-
clusively on data sets stored in password-protected
data archives (e.g., Dataverse). We draw from re-
search published in outlets across a spectrum of
disciplines ranging from interdisciplinary publica-
tions (e.g., Proceedings of the National Academy
of Sciences) to high-impact field journals in social
science (e.g., American Journal of Political Sci-
ence). To find these articles, we searched journals
for articles related to computational social science
that implemented some type of manual annotation
procedure. The human-labeled data from the origi-
nal study is treated as the ground truth. We discuss
the human annotation procedures in the original
studies at greater length in Appendix C.3.

It is important to note that while the raw data
(e.g., tweets and Facebook posts) may be included
in the LLM pretraining data, the accompanying la-
bels from the human annotators are certainly not
included in the pretraining data. This is because
the labels accompanying each text sample (e.g.,
whether a tweet referenced a specific racial identity
frame) are not public-facing. If the text without the
associated label is not included in the pretraining
data, there is no cause for concern that the annota-
tion task would suffer from contamination.

Table A2 and Table A3 contain the full details for
every task and data set. Overall, our data encom-
pass diverse degrees of class imbalance: Across
tasks, the mean positive class frequency is 16.2%,
the minimum is 0.04%, and the maximum is 61%.
The sources of labels are representative of common
approaches to annotation: 42.9% of tasks were
annotated by crowdsourced workers, 28.6% by ex-
perts, and 28.6% by research assistants.

Our replications involve fine-tuning supervised
classifiers using manually annotated data from the
replication data sets. For every replication clas-

11It is worth stressing here that validation against human-
created labels is still essential. Therefore, researchers may
want to prioritize their budgets for hiring domain experts to
code a small subset of data to serve as validation and test data,
as we demonstrate in Figure 1. Our cost efficiency calculations
are based on training data, not validation and test sets.

sification task, we conformed to each data repos-
itory’s replication policies. Each of the original
studies received IRB approval and our analyses
conformed to the same safety protocols, including
full anonymization and agreeing to not publicly
post the raw data without permission. As such, our
replication of each data set is compatible with its
intended usage.

Although all of the data sets were anonymized
before our replications, we manually reviewed each
data set to confirm privacy protections. One of the
data sets (Saha et al., 2023) contains hate speech,
but this is because it is a central part of the research
question from the original study. As a result, we
include examples of hate speech in that particular
replication. From manual review, no other data set
contained offensive material.

C Appendix: Additional methodological
details

C.1 Prompt tuning

As discussed in Section 2, for every task we ad-
justed each GPT-4 prompt with a human-in-the-
loop update procedure to optimize for accurate
annotations. This human-in-the-loop process in-
volved three steps. First, we used the generative
LLM to annotate a small subset of the text samples
per task (n=250).12 Second, we manually reviewed
instances where humans and the generative LLM
disagreed on the text’s label. Because our accuracy
at this stage hovered around 0.8, this usually en-
tailed manually reviewing roughly 50 text labels.
Third, we adjusted the prompt instructions to clar-
ify instances where automated annotation failed to
correctly align with human judgment.

The prompt tuning process should be minimal
(e.g., one or two iterations), because any further
efforts could lead to overfitting the prompt to a
small subset of the data (Egami et al., 2022). If
the prompt is overly tailored to a small subset of
the data, then the instructions may not generalize
to unseen data. Moreover, if the researcher makes
major changes to the prompt, there may be a mis-
match between the human annotator’s codebook
and the generative LLM’s instructions. Like the
previous concern, the differences in the instruc-
tions could lead to poor performance on a held-out
set. As a result, if there are substantial changes
made to the LLM’s prompt, then the researcher

12This subset of text samples was not included in the held-
out test set.
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Figure A3: Change in LLM annotation performance on training data after one round of prompt optimization

should also change the human codebook as well
and re-annotate new text samples. As such, these
procedures should not be resource or time intensive.
Instead, prompt tuning is intended to be a part of a
validation process of few-shot in-context learning.

Some researchers argue that small changes to
the LLM prompt instructions can dramatically
alter automated annotation performance (Reiss,
2023), whereas others claim that alterations have
a marginal effect (Rytting et al., 2023). To test
how variations in the prompt instructions affect
performance, we evaluated automated annotation
performance before and after the prompt tuning
process.

Figure A3 shows the distributions of change
in performance metrics after updating the LLM
prompt and re-annotating the same text sam-
ples. This analysis demonstrates whether and how
prompt optimization affects LLM annotation, hold-
ing constant the data and conceptual categories.
In most cases, prompt optimization led to minor
improvement in accuracy and F1—although recall
decreased in more cases than improved after updat-
ing the prompts. The small magnitude of change in
classification performance suggests that generative
LLMs are fairly robust to slight word changes in the
prompt, which aligns with prior work that conducts
similar experiments (Rytting et al., 2023). While
the magnitude of improvement was generally small,
researchers experiencing subpar LLM annotation
performance can use human-in-the-loop prompt op-
timization to ensure that their instructions are not
the cause of poor performance.

Qualitatively, the most common mistakes we ob-

served by the generative LLM during the prompt
optimization stage were false positives stemming
from the text sample containing language broadly
associated with the conceptual category of interest.
For example, one task focused on identifying im-
migration content in American political speeches
(Card et al., 2022). Initially, the generative model
consistently categorized a text sample as containing
an immigration reference if the speech mentioned a
foreign country or foreign national, irrespective of
whether the mention was connected to immigration
in any way. For the prompt-update process for this
task, changes in this case meant clarifying that any
reference to a foreign country or foreign national
did not warrant a positive class instance unless
it was explicitly referenced in relation to Ameri-
can immigration or immigration policy. While this
process was manual, we also believe that future
work could conduct these procedures algorithmi-
cally—plausibly using generative AI as well.

C.2 Hyperparameter tuning, evaluation, and
compute details

Our experiments involved varying the training data
used to fine-tune numerous supervised classifiers
(i.e., 250 human samples, 1000 human samples,
and 1000 GPT-labeled samples). To select each
supervised classifier, we implemented a grid search
over 18 possible hyperparameter combinations. In
particular, we optimized learning rate (1e-5, 2e-5,
and 5e-5), batch size (8 and 16), and epochs (2, 4,
and 6). We conducted our search on a subsample of
250 text samples per task and retained the best hy-
perparameters (in terms of highest F1) across each
task. We subsequently used the best-performing
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combination of hyperparameters for all applica-
tions of a specific model (see best-performing hy-
perparameter configurations in Table A5). Despite
not adopting a more exhaustive approach to hyper-
parameter tuning, we observe strong performance
across our classification tasks, with a few excep-
tions. Table A6 displays additional model hyper-
parameters that remained constant across tasks, as
well as basic information about each model’s archi-
tecture.

Overall, for each task we had a total of 2,500
labeled text samples labeled by both human anno-
tators and the LLM: (1) a training set of 1,000 text
samples; (2) two separate validation sets (both with
n=250); and (3) a test set (n=1000). Each of these
sets of data were labeled by humans and the gen-
erative LLM. The training set (n=1000) was used
to fine-tune the supervised classifiers. The first
validation set (n=250) was used to optimize the
generative LLM prompt and validate its few-shot
performance. The second, separate validation set
(n=250) was used to conduct our grid search. The
test set (n=1000) was used to assess the final per-
formance of the few-shot model and the supervised
models.

For all 14 tasks, evaluation was conducted on a
test set of 1000 held-out text samples that had pre-
viously been labeled by human annotators. To har-
monize the diverse range of annotation tasks into a
common framework for evaluation, we treat every
task dimension as a separate binary annotation task.
Thus, if an article included a classification task with
three potential labels, we split the annotation pro-
cess into three discrete binary classification tasks.
As is standard in binary classification evaluation,
we report accuracy, F1, precision, and recall for
every task and model.13 Table A4 displays the full
classification results across all tasks and models.

All of our supervised training analyses were im-
plemented in Python 3.10.12 with HuggingFace’s
Transformers (Wolf et al., 2020) and PyTorch li-
braries (Paszke et al., 2019). We conducted all data
preprocessing in Python Pandas (McKinney, 2011).
Our computing infrastructure was Google Colab,
where we used 215 T4 GPU compute units (roughly
421.4 GPU hours). As with our model selection,
we chose this computing environment due to its low
cost and ease of application. Any computational
social scientist could conduct the same analyses. In

13Because our tasks are all binary, there is no need to report
any multi-label classification metrics, like Macro-F1.

the supplementary material, we include all code to
run our supervised training procedures.

C.3 Additional details on human annotation
procedures

We introduce a novel corpus of labeled text data
for annotations. To create this data set, we compile
labeled data from recent studies, as detailed in A2.
As a result, we did not work with annotators to
generate any original data. We adopted materials
from these original studies instead. While we do
not report the instructions given to each study’s
human annotators, we do provide the prompt in-
structions that were used to query GPT-4 in the sup-
plementary material. These instructions were taken
directly from the original study’s human annotator
instructions. All additional details on the annota-
tion procedures (e.g., how they were recruited, pay-
ment, consent, and demographic characteristics)
can be found in the original studies’ supplementary
material.

While we do not describe each study’s proce-
dures in detail, we manually selected our annota-
tion studies due to their high-quality human label-
ing practices. All of the replicated studies were
approved by an IRB. These studies all deployed ei-
ther expert coders or numerous non-expert coders
of varying backgrounds. Because all of the human
annotation text is part of the peer-review process in
high-impact journals and due to the strict annota-
tion guidelines and principles these studies adhered
to, we conclude that the human annotations are of
high-quality.

D Appendix: Extended results

Figure A4 shows precision-recall (PR) curves for
each of the BERT-family models trained on either
human labels or GPT labels, pooling all classifica-
tion tasks. The decrease in performance for GPT-
generated labels compared with human labels is
small based on area under the curve (AUC). Thus,
supervised classifiers trained with GPT-generated
labels perform comparably to classifiers trained
with human-generated labels on these tasks. Across
models and tasks, precision appears to drop below
1.0 around 0.7 recall.

E Appendix: Ablation experiments

We conducted a variety of ablation experiments to
account for sources of variance. The next three
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Figure A4: Precision-recall curves across each BERT-family model
.

sections detail these experiments and their main
findings.

E.1 Comparing classifiers with different
model size and architecture

First, to account for variation in model architecture
and model size, we compare performance across
two additional language models for supervised clas-
sification (i.e., XLNet and Mistral-7B). These mod-
els are beyond the BERT-family models included
in the main analyses (i.e., BERT, DistilBERT, and
RoBERTa). In addition to a Mistral-7B supervised
sequence classification model, we also generate
few-shot labels using Mistral-7B using the same
procedures we employed in the GPT-4 few-shot
model.

The primary difference between the BERT-
family models and XLNet is the training objec-
tive. The BERT-based models are pretrained us-
ing a Masked Language Modeling (MLM) objec-
tive, whereas XLNet is an autoregressive model
that uses Permutation Language Modeling (PLM),
which involves learning context across input tokens
in any permutation order. In addition to being sig-
nificantly larger than the BERT models, Mistral-7B
utilizes a distinct type of attention in the pretrain-
ing process (i.e., grouped-query attention (GQA)
and sliding window attention (SWA)). We include
the Mistral-7B few-shot model as a smaller, open-
source alternative to GPT-4. Mistral-7B was se-
lected because the model weights are available for
download and it displays higher performance than
Llama-13B (Jiang et al., 2023).

Figure A5 shows the classification performance

from these additional models and compares them
to the results from BERT and GPT-4 few-shot in
the main analyses. The test set for these analyses
is the same as the main analysis shown in the pa-
per. Our results from examining these additional
models do not change the substantive conclusions
in the paper: Models trained on surrogate train-
ing labels perform comparably to models trained
with human labeled data. XLNet even performs
slightly better than the fully human labels. The
gap between Mistral-7b fine-tuned using human
labels and GPT-labels, however, is notably larger
than the other models, with a median difference of
0.12. Overall, BERT and GPT-4 still appear to be
the strongest performing models.

There is also a fairly sizeable gap between the
open-source (Mistral-7B) and closed-source (GPT-
4) few-shot models. Although it may be expected
from a significantly smaller and free-to-use model,
F1 scores for Mistral-7B are 0.16 worse, on aver-
age, than GPT-4. Mistral-7B also took significantly
longer to run than GPT-4. These findings further
reinforce the necessity of human validation.

E.2 Comparing classifiers with and without
noise

Our second set of ablation experiments involve
comparing supervised models trained on GPT-
generated labels with noise against GPT-generated
labels without noise. To measure noise in the GPT-
labels, we utilize the predicted token sampling
process of generative LLMs to gauge an LLM’s
“confidence” in the annotation of each text sample.
By introducing randomness in the LLM sampling
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process through the temperature setting and by re-
peatedly classifying the same text sample multi-
ple times, we identify text samples that cannot be
clearly classified into one of the annotation cate-
gories specified by the prompt instructions.14

Classifications that vary across iterations may
be “edge cases” and have a lower probability of
correct classification.15 This approach rests on the
core assumption that the full distribution of token
probabilities captures latent information about the
annotation’s classification. If, for example, the top
tokens are similar in probability, then choosing one
of these tokens may misrepresent the model’s an-
notation decision. Instead, measuring the variabil-
ity across iterations allows us to find these “edge
cases.” We call this measure of uncertainty in the
annotation label a “consistency score.” We define
an indicator function C(i) that is equal to 1 when
label i for a given task is equal to the LLM’s modal
classification, m, for task :

C(i) =

{
1 if i = m

0 otherwise

Given a vector of classifications, a, with length l for
a given classification task, consistency is measured
as the proportion of classifications that match the
modal label:

Consistency =
1

l

l∑

j=1

C(aj)

For these ablation experiments, we classify ev-
ery text sample three times at a temperature of 0.7
and measure each text sample’s consistency score.
Because there are only three iterations, each text
sample can only have two values for consistency
score: 0.67 and 1.0. Across all analyzed tasks,
classifications with a consistency of 1.0 show sig-
nificantly higher accuracy (19.4% increase), true
positive rate (16.4% increase), and true negative
rate (21.4% increase) compared to classifications
with a consistency less than 1.0. Roughly 85% of
classifications had a consistency of 1.0.

14Generative LLMs output a series of probabilities that cor-
respond to each token in its vocabulary. To select a specific
token from this probability distribution, generative LLMs sam-
ple a randomly selected token, weighted by its probability. The
temperature hyperparameter governs this sampling process. A
higher temperature setting flattens the probability distribution
and causes the sampling draw to become more uniform across
tokens. A lower temperature, however, isolates the sampling
to select only the most likely tokens.

15Accessing token log probabilities directly, once available,
will be an effective way to a similar analysis.

Table A7 shows supervised model performance
for BERT models fine-tuned on 1,250 training ob-
servations labeled by GPT-4 (i.e., labels with noise)
compared to BERT models fine-tuned on training
observations with a consistency score of 1.0 (i.e.,
labels without noise), which reduced our training
set to slightly more than 1000 samples per task.
Put otherwise, the second series of models involved
dropping about 250 text samples per task so that the
training set only retained annotations where GPT-4
consistently labeled the same category across all
iterations.

Our findings indicate that there are minimal dif-
ferences between models trained on labels with
noise and labels without noise. Models trained
without noise display, on average, 0.004 lower F1
score than models trained with noise. These results
suggest that the supervised models explored here
are fairly robust to noise in the labels.

E.3 Comparing GPT-4 few-shot performance
over time

Our final set of ablation experiments involved repli-
cating the GPT-4 few-shot model at different points
in time. An unsettling scenario involves the poten-
tial drift in capabilities as generative LLMs undergo
opaque changes and updates. Some research, such
as Chen et al. (2023a), claim that GPT-4 perfor-
mance is declining over time. To account for the
potential of changing model weights in GPT-4, we
re-analyzed each task six months after our initial
analyses and compared results across time.

Figure A6 shows evaluation comparisons of few-
shot tasks in both April 2023 and November 2023.
Our results do not suggest significant changes in
GPT-4 performance over time. If anything, Figure
A6 reveals a small increase in performance since
my initial experiments. Across the 14 tasks, accu-
racy improved by 0.007 and F1 increased by 0.022
when the same annotation procedures were carried
out in November 2023.

F Appendix: Miscellaneous additional
information

Additional sources:

• Robot image (used in Figure 1): https:
//commons.wikimedia.org/wiki/File:
Grey_cartoon_robot.png

• Human silhouette image (used in Fig-
ure 1): https://commons.wikimedia.org/
wiki/File:SVG_Human_Silhouette.svg
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Accuracy improves by

median value of 0.007

Precision improves by

median value of 0.033

F1 improves by

median value of 0.022

Recall decreases by

median value of 0.041
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Figure A6: Examining GPT-4 performance over time

Author(s) Title Journal Year

Card et al. Computational analysis of 140 years of US
political speeches reveals more positive but
increasingly polarized framing of immigration

PNAS 2022

Hopkins, Lelkes,
and Wolken

The Rise of and Demand for Identity-Oriented
Media Coverage

American Journal of Polit-
ical Science

2024

Müller The Temporal Focus of Campaign Communi-
cation

Journal of Politics 2021

Peng, Romero, and
Horvat

Dynamics of cross-platform attention to re-
tracted papers

PNAS 2022

Saha et al. On the rise of fear speech in online social me-
dia

PNAS 2022

Table A2: Replication data sources.
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Study # of tasks Annotation source Classification tasks

Card et al. (2022) 4 Research
assistants

Classify US congressional speeches to identify
whether the speech discussed immigration or immi-
gration policy, along with an accompanying tone:
pro-immigration, anti-immigration, or neutral.

Hopkins, Lelkes,
and Wolken (2024)

4 Crowd Classify headlines, Tweets, and Facebook share
blurbs to identify references to social groups defined
by a) race/ethnicity; b) gender/sexuality; c) politics;
d) religion.

Müller (2021) 3 Expert Classify sentences from political party manifestos for
temporal direction: past, present, or future.

Peng, Romero, and
Horvat (2022)

1 Expert Classify whether Tweets express criticism of findings
from academic papers.

Saha et al. (2020) 2 Crowd Classify social media posts into fear speech, hate
speech, both, or neither.

Table A3: Descriptions of replication classification tasks.
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Data set Task Model

Training data
Few shot Human: 250 Human: 1000 GPT: 1000

Ac. F1 Pr. Re. Ac. F1 Pr. Re. Ac. F1 Pr. Re. Ac. F1 Pr. Re.

Card et al.

Cat: Neg

GPT-4 0.85 0.65 0.54 0.83
BERT 0.88 0.58 0.74 0.48 0.87 0.56 0.65 0.49 0.81 0.56 0.47 0.72
RoBERTa 0.85 0.51 0.59 0.45 0.84 0.48 0.55 0.42 0.78 0.57 0.43 0.82
DistilBERT 0.86 0.56 0.61 0.51 0.86 0.58 0.61 0.55 0.81 0.58 0.47 0.74

Cat: Imm

GPT-4 0.81 0.81 0.74 0.90
BERT 0.85 0.84 0.79 0.89 0.86 0.86 0.81 0.91 0.84 0.83 0.76 0.91
RoBERTa 0.86 0.85 0.80 0.92 0.85 0.84 0.77 0.92 0.82 0.82 0.74 0.92
DistilBERT 0.85 0.84 0.80 0.88 0.84 0.84 0.79 0.89 0.82 0.82 0.73 0.92

Cat: Neut.

GPT-4 0.83 0.26 0.27 0.25
BERT 0.80 0.35 0.29 0.44 0.85 0.36 0.38 0.35 0.87 0.38 0.44 0.34
RoBERTa 0.88 0.30 0.46 0.23 0.88 0.00 0.00 0.00 0.84 0.33 0.33 0.34
DistilBERT 0.85 0.28 0.32 0.25 0.85 0.36 0.37 0.35 0.86 0.38 0.40 0.36

Cat: Pro

GPT-4 0.88 0.50 0.55 0.46
BERT 0.86 0.33 0.44 0.27 0.84 0.44 0.42 0.46 0.87 0.45 0.51 0.40
RoBERTa 0.87 0.37 0.51 0.30 0.84 0.37 0.41 0.34 0.85 0.41 0.43 0.39
DistilBERT 0.87 0.29 0.55 0.19 0.83 0.38 0.38 0.37 0.84 0.35 0.40 0.31

Hopkins et al.

Political

GPT-4 0.88 0.43 0.30 0.79
BERT 0.95 0.32 0.60 0.22 0.96 0.62 0.71 0.54 0.82 0.34 0.21 0.82
RoBERTa 0.84 0.37 0.23 0.85 0.96 0.62 0.73 0.54 0.84 0.37 0.23 0.85
DistilBERT 0.94 0.29 0.50 0.20 0.96 0.63 0.72 0.56 0.83 0.34 0.22 0.80

Gender

GPT-4 0.95 0.74 0.68 0.82
BERT 0.91 0.20 0.46 0.13 0.96 0.80 0.86 0.74 0.94 0.72 0.62 0.85
RoBERTa 0.91 0.08 0.44 0.04 0.95 0.73 0.78 0.68 0.92 0.67 0.54 0.87
DistilBERT 0.94 0.52 0.83 0.38 0.97 0.81 0.87 0.75 0.93 0.71 0.59 0.88

Race

GPT-4 0.96 0.57 0.41 0.92
BERT 0.97 0.00 0.00 0.00 0.98 0.56 0.71 0.46 0.98 0.64 0.54 0.77
RoBERTa 0.97 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.97 0.59 0.45 0.85
DistilBERT 0.97 0.00 0.00 0.00 0.99 0.71 0.77 0.65 0.97 0.54 0.46 0.65

Religion

GPT-4 0.98 0.61 0.47 0.88
BERT 0.98 0.21 1.00 0.12 0.99 0.73 0.75 0.71 0.98 0.61 0.48 0.82
RoBERTa 0.98 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.98 0.00 0.00 0.00
DistilBERT 0.98 0.00 0.00 0.00 0.99 0.69 0.67 0.71 0.97 0.53 0.37 0.94

Müller

Future

GPT-4 0.82 0.85 0.87 0.83
BERT 0.83 0.85 0.88 0.84 0.82 0.85 0.85 0.85 0.81 0.85 0.84 0.87
RoBERTa 0.84 0.87 0.87 0.88 0.82 0.85 0.86 0.85 0.82 0.86 0.84 0.87
DistilBERT 0.83 0.86 0.85 0.86 0.81 0.84 0.87 0.82 0.82 0.85 0.83 0.88

Past

GPT-4 0.91 0.74 0.66 0.84
BERT 0.94 0.83 0.74 0.93 0.95 0.83 0.80 0.85 0.93 0.79 0.71 0.89
RoBERTa 0.94 0.80 0.81 0.79 0.95 0.85 0.79 0.92 0.85 0.00 0.00 0.00
DistilBERT 0.94 0.79 0.77 0.80 0.94 0.80 0.79 0.82 0.93 0.79 0.68 0.96

Present

GPT-4 0.82 0.62 0.64 0.60
BERT 0.83 0.65 0.66 0.64 0.83 0.65 0.64 0.66 0.81 0.61 0.63 0.58
RoBERTa 0.84 0.66 0.71 0.61 0.84 0.68 0.68 0.67 0.83 0.61 0.68 0.56
DistilBERT 0.83 0.64 0.69 0.59 0.83 0.65 0.66 0.64 0.82 0.59 0.66 0.54

Peng et al. Critical

GPT-4 0.85 0.54 0.48 0.63
BERT 0.87 0.43 0.59 0.34 0.91 0.63 0.76 0.54 0.79 0.43 0.35 0.56
RoBERTa 0.88 0.44 0.61 0.34 0.87 0.62 0.54 0.73 0.78 0.43 0.34 0.59
DistilBERT 0.83 0.43 0.42 0.44 0.86 0.54 0.50 0.58 0.77 0.41 0.33 0.56

Saha et al.

CV

GPT-4 0.97 0.06 0.03 0.25
BERT 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.03 0.02 0.25
RoBERTa 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.05 0.03 0.50
DistilBERT 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.94 0.10 0.05 0.75

HD

GPT-4 0.88 0.35 0.28 0.45
BERT 0.91 0.17 0.24 0.13 0.92 0.41 0.45 0.38 0.90 0.21 0.24 0.19
RoBERTa 0.92 0.24 0.35 0.19 0.92 0.47 0.43 0.52 0.91 0.20 0.26 0.16
DistilBERT 0.91 0.26 0.32 0.22 0.91 0.40 0.38 0.42 0.91 0.28 0.33 0.25

Table A4: Complete task-by-task classification performance results. Ac., Pr., and Re. refer to accuracy, precision,
and recall, respectively.
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Study Task Hyperparameters

Card et al.

Classify immigration speeches learning rate (5e-05),
batch size (8), epochs (4)

Classify pro-immigration speeches learning rate (5e-05),
batch size (16), epochs (6)

Classify anti-immigration speeches learning rate (5e-05),
batch size (8), epochs (6)

Classify neutral immigration
speeches

learning rate (5e-05),
batch size (8), epochs (4)

Hopkins et al.

Classify race/ethnicity learning rate (5e-05),
batch size (8), epochs (4)

Classify gender learning rate (5e-05),
batch size (8), epochs (6)

Classify political groups learning rate (5e-05),
batch size (16), epochs (6)

Classify religious groups learning rate (5e-05),
batch size (8), epochs (6)

Müller
Classify past learning rate (5e-05),

batch size (8), epochs (4)

Classify present learning rate (5e-05),
batch size (8), epochs (4)

Classify future learning rate (2e-05),
batch size (8), epochs (6)

Peng et al. Classify criticism learning rate (5e-05),
batch size (8), epochs (6)

Saha et al.
Classify fear speech learning rate (5e-05),

batch size (8), epochs (6)

Classify hate speech learning rate (5e-05),
batch size (8), epochs (4)

Table A5: Hyperparameter settings per task.

BERT-
base

RoBERTa-
base

DistilBERT XLNet-
base

Mistral-
7B

# parameters 110m 125m 66m 110m 7b

# attention heads 12 12 12 12 32

Hidden dim. 768 768 768 768 4096

Feedforward dim. 3072 3072 3072 3072 14336

Table A6: Model architectures and additional hyperparameters.
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Data set and task BERT F1 score (train-
ing obs w/o noise)

BERT F1 score (train-
ing obs w/ noise)

Difference

Hopkins (AJPS): Political 0.340 0.344 -0.004

Hopkins (AJPS): religion 0.609 0.609 0.000

Hopkins (AJPS): gender 0.716 0.684 0.032

Hopkins (AJPS): race 0.635 0.640 -0.005

Muller (JOP): future 0.851 0.851 0.000

Muller (JOP): past 0.791 0.755 0.036

Muller (JOP): present 0.606 0.601 0.005

Card (PNAS): cat_imm 0.832 0.815 0.017

Card (PNAS): cat_anti 0.565 0.573 -0.008

Card (PNAS): cat_neutral 0.385 0.428 -0.043

Card (PNAS): cat_pro 0.448 0.436 0.012

Peng (PNAS) 0.431 0.444 -0.013

Saha (PNAS): CV 0.031 0.059 -0.028

Saha (PNAS): HD 0.210 0.276 -0.066

Table A7: Comparing BERT F1 score for models fine-tuned with and without noise
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