@inproceedings{robertson-leone-2024-dataset,
title = "A Dataset for Multi-Scale Film Rating Inference from Reviews",
author = "Robertson, Frankie and
Leone, Stefano",
editor = "Abercrombie, Gavin and
Basile, Valerio and
Bernadi, Davide and
Dudy, Shiran and
Frenda, Simona and
Havens, Lucy and
Tonelli, Sara",
booktitle = "Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.nlperspectives-1.16",
pages = "142--150",
abstract = "This resource paper introduces a dataset for multi-scale rating inference of film review scores based upon review summaries. The dataset and task are unique in pairing a text regression problem with ratings given on multiple scales, e.g. the A-F letter scale and the 4-point star scale. It retains entity identifiers such as film and reviewer names. The paper describes the construction of the dataset before exploring potential baseline architectures for the task, and evaluating their performance. Baselines based on classifier-per-scale, affine-per-scale, and ordinal regression models are presented and evaluated with the BERT-base backbone. Additional experiments are used to ground a discussion of the different architectures{'} merits and drawbacks with regards to explainability and model interpretation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="robertson-leone-2024-dataset">
<titleInfo>
<title>A Dataset for Multi-Scale Film Rating Inference from Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frankie</namePart>
<namePart type="family">Robertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefano</namePart>
<namePart type="family">Leone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gavin</namePart>
<namePart type="family">Abercrombie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davide</namePart>
<namePart type="family">Bernadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiran</namePart>
<namePart type="family">Dudy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simona</namePart>
<namePart type="family">Frenda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucy</namePart>
<namePart type="family">Havens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This resource paper introduces a dataset for multi-scale rating inference of film review scores based upon review summaries. The dataset and task are unique in pairing a text regression problem with ratings given on multiple scales, e.g. the A-F letter scale and the 4-point star scale. It retains entity identifiers such as film and reviewer names. The paper describes the construction of the dataset before exploring potential baseline architectures for the task, and evaluating their performance. Baselines based on classifier-per-scale, affine-per-scale, and ordinal regression models are presented and evaluated with the BERT-base backbone. Additional experiments are used to ground a discussion of the different architectures’ merits and drawbacks with regards to explainability and model interpretation.</abstract>
<identifier type="citekey">robertson-leone-2024-dataset</identifier>
<location>
<url>https://aclanthology.org/2024.nlperspectives-1.16</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>142</start>
<end>150</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Dataset for Multi-Scale Film Rating Inference from Reviews
%A Robertson, Frankie
%A Leone, Stefano
%Y Abercrombie, Gavin
%Y Basile, Valerio
%Y Bernadi, Davide
%Y Dudy, Shiran
%Y Frenda, Simona
%Y Havens, Lucy
%Y Tonelli, Sara
%S Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F robertson-leone-2024-dataset
%X This resource paper introduces a dataset for multi-scale rating inference of film review scores based upon review summaries. The dataset and task are unique in pairing a text regression problem with ratings given on multiple scales, e.g. the A-F letter scale and the 4-point star scale. It retains entity identifiers such as film and reviewer names. The paper describes the construction of the dataset before exploring potential baseline architectures for the task, and evaluating their performance. Baselines based on classifier-per-scale, affine-per-scale, and ordinal regression models are presented and evaluated with the BERT-base backbone. Additional experiments are used to ground a discussion of the different architectures’ merits and drawbacks with regards to explainability and model interpretation.
%U https://aclanthology.org/2024.nlperspectives-1.16
%P 142-150
Markdown (Informal)
[A Dataset for Multi-Scale Film Rating Inference from Reviews](https://aclanthology.org/2024.nlperspectives-1.16) (Robertson & Leone, NLPerspectives-WS 2024)
ACL