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Abstract
We present the results of Shared Task "Dialect to MSA Translation", which tackles challenges posed by the diverse
Arabic dialects in machine translation. Covering Gulf, Egyptian, Levantine, Iraqi and Maghrebi dialects, the task
offers 1001 sentences in both MSA and dialects for fine-tuning, alongside 1888 blind test sentences. Leveraging
GPT3.5, a state-of-the-art language model, our method achieved a BLEU score of 29.61. This endeavor holds
significant implications for Neural Machine Translation (NMT) systems targeting low-resource languages with linguistic
variation. Additionally, negative experiments involving fine-tuning AraT5 and No Language Left Behind (NLLB) using
the MADAR Dataset resulted in BLEU scores of 10.41 and 11.96, respectively. Future directions include expanding the
dataset to incorporate more Arabic dialects and exploring alternative NMT architectures to further enhance translation
capabilities.

1. Introduction

Arabic, a language spoken by over 420 million peo-
ple globally, boasts a rich tapestry of dialectal vari-
ations. This linguistic landscape comprises both
Modern Standard Arabic (MSA), the formal vari-
ant employed in official domains such as govern-
ment communications, national media, and edu-
cation, and a myriad of regional dialects used pre-
dominantly in everyday interactions (Harrat et al.,
2017). The differences between these dialects,
which range from subtly distinct to completely un-
intelligible (Abdul-Mageed et al., 2022), pose a
formidable challenge for machine translation sys-
tems.

Historically, the focus of machine translation sys-
tems has been predominantly on MSA. This causes
those systems to struggle to capture the intricate dif-
ferences inherent in dialects. Consequently, achiev-
ing accurate translation between these linguistic
variants remains paramount. Addressing this chal-
lenge is crucial to enhance communication and
comprehension within the Arabic-speaking world.

In the field of Natural Language Processing
(NLP), dialect identification and translation are two
critical areas of research. This paper concen-
trates on the latter, specifically examining the perfor-
mance of various models in translating sentences
from diverse Arabic dialects into MSA. This inves-
tigation is set in the context of the second shared
task at The 6th Workshop on Open-Source Arabic
Corpora and Processing Tools (OSACT6), which
aims to address the complexities of dialect transla-
tion.

In particular, we examined the performance
of three distinct methods. Firstly, we fine-tuned
the AraT5 transformer model (Nagoudi et al.,
2022) using diverse corpora sourced from MADAR

(Bouamor et al., 2018a). Secondly, we explored the
inference capabilities of the NLLB model (Costa-
jussà et al., 2022). Lastly, we employed a prompt-
ing technique with GPT3.5 to facilitate dialect-to-
MSA translation. By comparing these three meth-
ods, we aim to evaluate the strengths and limita-
tions of each approach and identify the most effec-
tive solution for dialect-to-MSA translation. Our
investigation provides valuable insights into the
challenges of dialect translation and highlights the
potential of state-of-the-art language models in ad-
dressing these challenges.

Task 2: Dialect to MSA Machine Translation
The objective of this task is to develop a model that
converts Arabic from five (Gulf, Egyptian, Levantine,
Iraqi, and Maghrebi) dialects to MSA. Participants
can use any resources available to develop their
systems.

2. Related Work

Over the past decade, advancements in the field of
dialect to Modern Standard Arabic translation have
been notable, driven by the imperative to foster
communication and comprehension across varied
Arabic dialects and the standardized form of the
language (Mohamed et al., 2024). Despite these
strides, challenges persist in achieving high-quality
translations (Abdelali et al., 2024).

A study by (Al-Sabbagh, 2024) scrutinized the
performance of Google Translate in translating
Egyptian Arabic adjuncts, revealing low BLEU
scores and various issues, including literal transla-
tions of idiomatic adjuncts and misinterpretation of
dialectal adjuncts.

In addressing the translation challenges within
NMT systems for Arabic dialects, (Moukafih et al.,
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2021) investigated multitasking learning strategies,
yielding noteworthy enhancements in BLEU scores
for Algerian Modern Standard Arabic and Moroccan
Palestinian dialects.

Recent efforts have focused on developing mod-
els that deal with translating single dialects to
MSA. For instance, (Sghaier and Zrigui, 2020) pro-
posed a rule-based machine translation system for
translating Tunisian dialect to MSA, achieving a
BLEU score of 55.22. Furthermore, (Sallam and
Mousa, 2024) assessed the performance of AI chat-
bot ChatGPT in responding to health queries in
Tunisian and Jordanian Arabic dialects. Their study
revealed that GPT-4 exhibits slightly better perfor-
mance than ChatGPT1, with above-average scores
in Jordanian Arabic but average scores in Tunisian
Arabic. However, responses in both dialects fell sig-
nificantly short compared to English, emphasizing
the importance of linguistic and cultural diversity in
AI model development, particularly in healthcare.

A comprehensive evaluation conducted by
(Kadaoui et al., 2023) assessed Bard and ChatGPT
for machine translation across ten Arabic varieties,
encompassing Classical Arabic (CA), MSA, and
country-level dialectal variants. Their findings in-
dicated that Large Language Models (LLMs) may
face challenges with dialects possessing minimal
public datasets but generally outperform existing
commercial systems in dialect translation. How-
ever, instruction-tuned LLMs still trail behind com-
mercial systems like Google Translate in CA and
MSA translation. Their human-centric study also
underscored Bard’s limited ability to adhere to hu-
man instructions in translation contexts.

In conclusion, these studies underscore the ne-
cessity for continued research and development
aimed at enhancing the linguistic inclusivity of LLMs
and addressing the distinctive hurdles associated
with translating diverse dialects to MSA.

3. Data

3.1. Shared Task Data
We conducted thorough evaluations on both the
validation and test sets provided for this shared
task.

3.1.1. Validation Dataset

The validation dataset provided in this shared task,
comprised a total of 1001 source-to-target exam-
ples, evenly distributed among dialects as follows:
200 Egyptian, 200 Maghrebi, 200 Levantine, 201
Gulf, and 200 Iraqi examples.

Notably, some examples featured Arabised text,
where English words were transcribed using Arabic

1We refer GPT-3.5 as ChatGPT in our work.

letters, as demonstrated below:
{ "id": 419221,
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"English translation": "Yes, I love you too much, come
where is half a Dinar"

In this instance, the source sentence incorpo-
rates English phrases represented in Arabic script,
while the corresponding target sentence reflects
the translation into Modern Standard Arabic. Such
instances posed unique challenges during evalua-
tion and were included in the validation dataset to
assess translation quality comprehensively.

Moreover, the validation dataset includes 22 sen-
tences with a length greater than 128 characters,
further enriching the evaluation process and high-
lighting the model’s ability to handle complex lin-
guistic structures

3.1.2. Test Datasets

The test dataset, comprised 1888 examples, each
presenting its own unique linguistic challenge.
These examples were distributed across different
dialects as follows: 314 Egyptian, 343 Maghrebi,
568 Levantine, 77 Iraqi, and 586 Gulf.

The source sentences provided cover a broad
spectrum of topics and linguistic structures, reflect-
ing the rich diversity of Arabic dialects. They en-
compass both everyday conversational phrases
and more formal expressions, offering a compre-
hensive representation of language usage in real-
world scenarios.

Among these sentences, 45 exceed a length of
128 characters, presenting additional complexity to
the translation task. Furthermore, the dataset in-
cludes instances of words with repeated characters,
as exemplified by:
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Despite these challenges, the diversity in con-
tent and language enriches the dataset, enabling
a thorough evaluation of the model’s proficiency in
handling various linguistic features and contexts.

3.2. Finetuning Dataset
The MADAR Arabic Dialect Corpus and Lexicon
(Bouamor et al., 2018a), utilized in our study to
fine-tune the models, represents a comprehen-
sive resource designed to facilitate research in
machine translation, particularly focusing on the
translation challenges presented by Arabic dialects.
The dataset consists of 25 parallel translations for
25 cities having 2,000 sentences each, in addition
to their MSA equivalents and is divided into train-
ing, development, and test sets. This dataset is
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Dialect Region Cities Included

Egyptian Cairo, Alexandria

Gulf Doha, Jeddah,
Muscat, Riyadh

Iraqi Baghdad, Basra,
Mosul

Levantine Aleppo, Amman, Beirut,
Damascus, Jerusalem, Salt

Maghreb Algiers, Fes, Rabat,
Sfax, Tunis

Table 1: MADAR Dataset Dialect Divisions

instrumental in understanding the linguistic diver-
sity across the Arabic-speaking world, featuring a
collection of text samples from a wide array of cities,
each with its unique dialectical characteristics. For
the purpose of our experiments, the dataset was
meticulously organized into five distinct groups (as
specified by the task), each representing a major
geographical and dialectal region within the Arab
world. This division was used in dialect specific
finetuning.

4. Methodology

4.1. Supervised Models
NLLB. NLLB model is designed to bridge language
gaps by extending translation support to a wide
array of languages, with a particular focus on those
with limited resources. It employs an innovative
conditional compute model based on the Sparsely
Gated Mixture of Experts framework, along with
curated datasets and training techniques tailored
for low-resource languages. In our assessment, we
evaluated the NLLB 3.3B model in two scenarios:
with fine-tuning on the development dataset and
without fine-tuning on the test dataset.
Supervised NLLB. We finetuned NLLB 3.3B. Uti-
lizing the MADAR Parallel Corpus Dataset, which
contains data from various Arabic dialects trans-
lated into Modern Standard Arabic (MSA) (Bouamor
et al., 2018a).
AraT5. AraT5 is a state-of-the-art language model
specifically designed for understanding and gen-
erating Arabic text. Building upon the T5 (Text-
to-Text Transfer Transformer) architecture (Raffel
et al., 2023), which treats every text-based task
as a "text-to-text" problem, AraT5 is fine-tuned to
excel in processing and generating Arabic content
across a wide range of tasks. These include text
summarization, question answering, text classifica-
tion, and translation. The model has been trained
on a diverse corpus of Arabic text, enabling it to
grasp the nuances of the language, including its
dialects and classical forms.

Supervised AraT5. In the initial phase of our ex-
periments, the model was deployed for translation
tasks without any prior fine-tuning. This approach,
however, did not yield successful outcomes in gen-
erating translations, primarily attributable to the
constraints of the model’s training. Specifically,
the model was architected to facilitate machine
translation from dialectal Arabic to English, with
no inherent training to support translation from vari-
ous dialects into Modern Standard Arabic (Nagoudi
et al., 2022).

To address this, a subsequent stage of fine-
tuning was implemented, utilizing the MADAR
dataset as a foundational corpus. This dataset
was anticipated to enhance the model’s dialectal
comprehension and translation efficacy. However,
the results fell short of expectations, which revealed
a lower than anticipated BLEU score.
AraT5-finetuned dialect-specific. Recognizing
the need for a more tailored approach to capture the
characteristics of each Arabic dialect, the models
were fine-tuned separately for each specific dialect
contained in this task. This refined strategy was
predicated on the hypothesis that dialect-specific
fine-tuning would enable the model to more accu-
rately learn and replicate the unique linguistic fea-
tures and idiomatic expressions inherent to each
dialect. This method was designed to fix the early
problems the model had when trying to translate in
a general way. By doing this, we hoped to make
the translations better overall and get higher scores
on translation quality tests (BLEU scores).

4.2. Zero-Shot Models

We evaluate GPT3.5 (Ouyang et al., 2022) exten-
sively to translate various dialects into modern stan-
dard Arabic. Especially, we evaluate GPT3.5 in
zero and few-shot settings. We choose three ex-
amples in the few-shot setting as (Kadaoui et al.,
2023) show it as the optimal setting across a wide
range of Arabic to English translation tasks. We
provide more details about our prompt in Table 2.
Zero-shot. We evaluate GPT3.5 in a zero-shot
setting with a simple prompt asking the model to
translate dialectal Arabic into MSA. We provide the
zero-shot prompt template in Table 2.
Few-Shot. We also use GPT3.5 in the 3-shot set-
ting by providing three examples from each dialect.
We keep the example static throughout the dialect.
Our 3-shot prompt can be found in Table 2.
Few-Shot with Self-Correction. We find that de-
spite providing examples there seem to be issues
with the translation. To address this issue, we exper-
iment with a modified prompt that asks the model
to find its mistakes and correct itself. We provide
a step-by-step guide to do the task. Our refine-
ment process improves our score by approximately
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Shot Prompt

Zero-shot

Translate the given input text from {dialect} Arabic dialect into
Modern Standard Arabic (MSA).
{dialect}:{input}
MSA: []

Few-Shot

Translate the following input text from {dialect} Arabic dialect into
the Modern Standard Arabic (MSA). The output should be in
Arabic script only.
Here are some examples:
{examples}
{dialect}:{input}
MSA: []

Few-Shot with Self-Correction

Following is the Modern Standard Arabic (MSA) translation from
{dialect} Arabic.
{dialect}: {input}
MSA: {msa}
Please correct the MSA translation for the input in {dialect}. An
accurate translation should consist solely of Modern Standard
Arabic (MSA) words and accurately translate the given input.
Here are some examples:
{examples}
Here is a step-by-step guide to do the task:
1. Identify any mistakes in the translation.
2. Correct the mistakes by replacing them with the correct MSA
words or phrases.
3. Provide the final corrected MSA translation.
Generate only the corrected MSA translation; no additional
information is needed. If no changes are required, then produce
the same translation.
{dialect}: {input}
Corrected MSA: []

Table 2: Zero-shot, few-shot, and self-correcting prompt templates. We format the prompt with appropriate
input and examples before feeding it to ChatGPT.

2 points in terms of BLEU score. We report our
self-correction prompt in Table 2.

4.3. Experimental Setup

We initially explored the efficacy of zero-shot
prompting for Arabic dialect-to-Modern Standard
Arabic translation tasks. While zero-shot prompting
of GPT3.5 provided a solid baseline, we further in-
vestigated the impact of increasing the prompt com-
plexity through a three-shot prompting approach.
Remarkably, our experiments revealed a substan-
tial improvement in BLEU scores when transitioning
from zero-shot to three-shot prompting. By incorpo-
rating additional context and refining the prompts,
the model gained a deeper understanding of the
translation task, resulting in more accurate and flu-
ent translations.

5. Results

BLEU score obtained using several models is
recorded in Table 3. Our results show that GPT3.5
outperformed the other models in dialectal Arabic
to MSA translation, with a BLEU score of 29.61.

The NLLB 3.3B Base model achieved a BLEU
score of 11.96. However, the fine-tuned NLLB
yielded a BLEU score lower than that of the base
NLLB model without fine-tuning of 9.00.

There could be several reasons for this unex-
pected result:

• Heterogeneous dataset: Fine-tuning the NLLB
model on the entire dataset while specifying
the source language as "arb_Arab" is inaccu-
rate, considering the dialectal variations within
the MADARA dataset.

The MADAR dataset is diverse, comprising
data from multiple Arabic dialects, which may
have contributed to a decline in performance
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owing to the substantial differences among
each dialect.

• Lack of dialect-specific fine-tuning: The fine-
tuning process did not involve separate fine-
tuning for each dialect. This could have led to
the model being unable to learn the specific
characteristics of each dialect, resulting in a
lower BLEU score.

On the other hand, the AraT5 fine-tuned model
achieved a BLEU score of 9.41 across all dialects.
However, when fine-tuned specifically for each di-
alect, there was a notable improvement, with a
BLEU score of 10.41.

These results suggest that GPT3.5 is more effec-
tive in capturing the features of dialectal Arabic and
translating them into MSA compared to the other
models.

The lower BLEU scores for the NLLB 3.3B Base
and AraT5 finetuned models may be due to the
complexity and variability of dialectal Arabic, which
can make it challenging to generalize from the train-
ing data.

The highest BLEU scores were achieved through
iterative improvements to the prompting strategy
applied to GPT-3.5. Initially, the model’s perfor-
mance was enhanced by incorporating examples of
dialect-to-Modern Standard Arabic translations into
the prompt, resulting in a BLEU score of 28. Sub-
sequently, further refinement was achieved by inte-
grating step-by-step instructions for self-correction
within the prompt framework. This iterative ap-
proach culminated in the attainment of the highest
BLEU score on the test dataset, reaching 29.61.

Model BLEU

NLLB-3.3B finetuned 9.00
AraT5 finetuned 9.41
AraT5-finetuned dialect-specific 10.41
NLLB-3.3B 11.96
ChatGPT (0-shot) 21.84
ChatGPT (3-shot) 28.00
ChatGPT (3-shot) with self-Correction 29.61

Table 3: BLEU score on the Test dataset.

6. Conclusion

Our experiments highlight the challenges in dialec-
tal Arabic to MSA translation, particularly in deal-
ing with heterogeneous datasets and the impor-
tance of dialect-specific fine-tuning. Our results
also demonstrate the potential of using state-of-the-
art language models like GPT to improve translation
performance. Future work could involve exploring
different fine-tuning strategies such as the mixture
of experts to improve the BLEU score further.
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