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Abstract

Modeling long user histories plays a pivotal
role in enhancing recommendation systems, al-
lowing to capture users’ evolving preferences,
resulting in more precise and personalized rec-
ommendations. In this study, we tackle the
challenges of modeling long user histories for
preference understanding in natural language.
Specifically, we introduce a new User Embed-
ding Module (UEM) that efficiently processes
user history in free-form text by compressing
and representing them as embeddings, to use
them as soft prompts to a LM. Our experiments
demonstrate the superior capability of this ap-
proach in handling significantly longer histories
compared to conventional text-based methods,
yielding substantial improvements in predic-
tive performance. Models trained using our ap-
proach exhibit substantial enhancements, with
up to 0.21 and 0.25 F1 points improvement
over the text-based prompting baselines. The
main contribution of this research is to demon-
strate the ability to bias language models via
user signals.

1 Introduction

In recent years, Large Language Models (LLMs)
have proven their versatility in various language
tasks, from translation to reasoning (Bubeck et al.,
2023). Scaling up models and data has played
a crucial role in unlocking their potential (Ope-
nAI, 2023; Anil et al., 2023; Touvron et al., 2023).
LLMs have also been adapted for conversational
tasks, instruction following, and reasoning using
techniques like Instruction-Tuning (Mishra et al.,
2022; Wei et al., 2022a; Sanh et al., 2022), RLHF
(Ouyang et al., 2022), and Chain-of-Thought (Wei
et al., 2022b). Trained on extensive internet data,
these LLMs excel in generalization. They can
quickly adapt to new tasks with in-context learning
and are capable of not only answering questions
but also reasoning about their responses.

∗Correspondence to: ksayana@google.com

Figure 1: Overview of our User History Modeling Ap-
proach. The user history’s textual features are processed
through the User Embedding module and combined
with the task prompt and subsequently passed through
the language model.

The usage of LLMs has evolved beyond tradi-
tional NLP tasks to encompass tasks demanding
reasoning (Qiao et al., 2023), long-form generation
(Ouyang et al., 2022), creativity (Kumar, 2023),
and demonstrated remarkable proficiency in these
areas. LLMs have been applied to search, retrieval,
ranking, chat, personalization, recommendation
systems, and others (Yasunaga et al., 2023; Ouyang
et al., 2022; Salemi et al., 2023). One practical use
case for LMs is understanding user preferences
to generate recommendations, a task that extends
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beyond text to encompass audio and visual modali-
ties in real-world scenarios, as exemplified by plat-
forms like YouTube1, Spotify2 among many others.

Recent research has predominantly concentrated
on examining smaller segments of user history by
selecting representative samples from a users’ his-
tory (Salemi et al., 2023). Mu et al. (2023) uses
learned gist tokens to compress prompts while Li
et al. (2023) uses prompt rewriting based on en-
tries retrieved from a users’ profile. This leads to
the critical question How can we effectively utilize
longer user histories? To achieve this, we em-
ploy an embedding-based technique to compress
the user’s entire history, creating a sequence of
representative user embedding tokens. This embed-
ded representation enhances our ability to compre-
hend user preferences and subsequently generate
predictions that align more closely with their in-
terests. Further, since the User Embedding Mod-
ule (UEM) module is co-trained with the LM, the
representations are learned in-context for the spe-
cific tasks. Our research demonstrates the advan-
tages of this approach, particularly in its capacity
to incorporate longer user history into LMs, re-
sulting in more robust user preference understand-
ing. Compared to the naive approach of concate-
nating user history and incurring O(n2) compute
cost for self-attention, our approach demonstrates
a cheap way to incorporate history metadata as an
embedding thus dramatically reducing the required
compute. As a result longer user histories can be
easily incorporated within LMs. Our empirical
findings demonstrate the ability of our approach
to accommodate significantly larger histories com-
pared to traditional text-based methods, resulting
in improved predictive performance.

2 Approach

Following text-to-text approach of T5 (Raffel et al.,
2020), we frame all tasks as text generation condi-
tioned on the input. Formally, given a sequence
of query input tokens denoted as X, we model
the probability of output Y as Prθ(Y |X), where
θ represents the weights of the model. Prior
studies have established two primary prompting
strategies: text-based prompting, where textual
instructions are prepended to the input (Mishra
et al., 2022; Chung et al., 2022; Wei et al., 2022b),
and soft-prompting, which adds a set of train-

1youtube.com
2spotify.com

able tokens as a prefix to the input tokens of the
models (Lester et al., 2021; Li and Liang, 2021).
Prior soft-prompting uses a fixed task-specific soft-
prompt to achieve parameter-efficient fine-tuning
for various language tasks, maximizing the like-
lihood Prθ(Y |[K;X]), with K trainable tokens.
We extend this idea to personalization. More
specifically, using the User Embedding Module
(UEM), we generate a personalised soft-prompt
conditioned on the users’ history. This setup aims
to maximize the likelihood of the label Y, given
Prθ(Y |[PrUEM (U);X]), where PrUEM (U) are
the soft prompts generated by the UEM based on
user history U and prefixed to the query input X .
In our task definition, U corresponds to the movie
metadata, X represents the task instruction, and Y
represents genre preferences.

Overall, given a task instruction X , the LM em-
beds these tokens to a matrix Xe ∈ Rn×e, where n
represents the token count and e represents the em-
bedding dimension of the LM. The textual user
history H = {hi}pi=1 is converted into embed-
dings U = {ui}pi=1 with SentenceT5 (Ni et al.,
2022). Each history item ui is a composite of three
distinct embeddings: (i) title & genre, (ii) rating,
and (iii) description. The collective history of ‘p’
items is expressed as U ∈ Rp×3s, where s corre-
sponds to the embedding dimension of SentenceT5.
These embeddings undergo processing within a
transformer network (UEM). To ensure dimension
alignment with e, a linear projection layer is intro-
duced atop the transformer, mapping the dimension
3s to e, thereby yielding PrUEM (U) ∈ Rp×e.

Following Lester et al. (2021), we also incor-
porate ‘k’ task-level soft prompts, denoted as
Pe ∈ Rk×e. Both the user and task prompts
are concatenated with the input embedding, result-
ing in a unified embedding matrix, represented as
[Pe;PrUEM (U);Xe] ∈ R(k+p+n)×e. This com-
posite embedding flows through the LM, maximiz-
ing the probability of Y, and concurrently updating
all parameters within both model components. The
model is illustrated in Figure 1.

3 Experiments

Implementation. As described in §A, we use the
MovieLens dataset (Harper and Konstan, 2016) in
conjunction with movie descriptions. For the em-
beddings U discussed in §2, we format the text
in the following manner: (i) title and genre - The
movie {movie_title} is listed with genres
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{genres}, (ii) rating - The movie is rated
with {rating} stars, and (iii) description -
{movie_description}. In the case of the text-
only baselines, we input the concatenated strings
instead of the embeddings. The dataset i split into
117k/5k/5k for train, validation and test sets respec-
tively. Unless specified, we use the FlanT5 (Chung
et al., 2022) series of models for all experiments,
training them for 10k steps with a batch size of
128. Text-history models use a learning rate of 1e-
2, while embedding-history models use 5e-3. Our
user embedding model consists of 3 transformer
layers with 12 attention heads, 768d embeddings,
and 2048d MLP layers, adding 65M parameters.
We use 20 tokens for task-level soft prompts k.

Evaluation. Although the task is framed in a text-
to-text format, the model’s output can be processed
by a verbalizer to extract the genres. While conven-
tional metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and COMET (Rei et al., 2020)
are used for evaluating generative text, they lack
granularity in understanding the task performance.
However, given the straightforward genre extrac-
tion by the verbalizer, we treat the task as a multi-
label classification problem and present weighted
precision, recall and F1 scores across all labels3.
Our initial findings indicate that these scores offer
a more interpretable assessment, both at the genre
level and for the overall task evaluation, compared
to token-level metrics.

3.1 Main Results

We present the results from our proposed approach
in Table 1. The results demonstrate that incorporat-
ing a larger history significantly enhances the mod-
els’ understanding of the user preferences. Com-
pared to the text-only models, we observe F1 im-
provements of 0.21 and 0.25 in performance for the
base and large models, respectively. To assess per-
formance against text-only models with a compara-
ble history size, we train a model with only 5 his-
tory items. The results reveal slightly poorer perfor-
mance, likely due to the extremely limited context
window of the history (5 tokens) compared to the
text-only model (over 1000 tokens). Unlike conven-
tional language models, LongT5 (Guo et al., 2022),
is trained with Transient Global Attention, allowing
it to efficiently process longer text sequences. How-
ever, it’s essential to consider that this extended

3There are 19 genres with a high skew among the classes.
We use sklearn.metrics.classification_report

capability comes at the cost of increased memory
and longer training times. While FlanT5 models
can be effectively trained on v3-8 TPUs, LongT5
necessitates v3-32 TPUs and requires 4x the train-
ing time of a FlanT5 model of comparable size,
especially when dealing with input sequences of
16k tokens (equivalent to 50 history items). More
importantly, the serving latency is also correspond-
ingly increased, which could make these models
impractical for production use.

BASE LARGE

Counting
Baselines

precision 0.330
recall 0.273
f1 0.192

precision 0.276 0.257
recall 0.287 0.273Text Hist. 5
f1 0.273 0.261

precision 0.275 0.281
recall 0.297 0.290Emb. Hist. 5
f1 0.252 0.215

precision 0.541 0.568
recall 0.523 0.558LongT5 50
f1 0.529 0.557

precision 0.407 0.400
recall 0.405 0.399Emb. Hist. 50
f1 0.396 0.381

Emb. Hist. 100
precision 0.416 0.459
recall 0.413 0.441
f1 0.404 0.444

Table 1: Model performance using proposed User Em-
bedding Module. Counting Baselines refers to counting
the three most frequently occurring genres across the
entire user history.

3.2 Ablations

Effect of History Length. To assess the impact
of the history size, we conduct a series of ablations
by increasing the users’ history passed to UEM.
The results are presented in Figure 2 (ref. Table 4),
revealing an improvement in model performance
with an increase in the number of history items. It’s
worth noting that incorporating 50 history items in
textual form results in an input of nearly 16k tokens.
While methods like LongT5 (Guo et al., 2022),
ALiBi (Press et al., 2022), and ROPE (Su et al.,
2021) allow for extrapolation to longer sequences,
this remains computationally intensive.

Choice of LM. In our experiments, we chose
FlanT5 as the language model for our task. We also
conducted experiments with both the base T51.1
(Raffel et al., 2020) and a LM adapted T5 model
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Figure 2: Comparison of model performance with in-
creasing User History.

(Lester et al., 2021) to find the best starting point for
our training. The results presented in Table 2 shows
that FlanT5 has the best performance, mainly due
to the instructional nature of our task prompts.

BASE LARGE

T51.1

precision 0.282 0.322
recall 0.292 0.324
f1 0.208 0.267

T5LMAdapted

precision 0.353 0.398
recall 0.374 0.397
f1 0.338 0.378

FlanT5
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Table 2: Comparison of model performance with vari-
ous choices of Language Models.

Size of UEM. For the user embedding module,
we experimented with different sizes by changing
the number of layers in the transformer block. We
found that gradually making UEM bigger improved
the performance of both the base and large models
(see Table 3). However, we also recognize that the
task itself may not require a very complex solution,
so further increasing the size of the module may not
be justified. We believe that different tasks might
need different levels of complexity, and we plan to
explore this in future research.

4 Related Work

In prior research, UserAdapter (Zhong et al., 2021)
introduced a trainable token for each user, facili-
tating sentiment classification specialization using
RoBERTa. Expanding upon this, UserIdentifier
(Mireshghallah et al., 2022) demonstrated that em-
ploying random userIDs effectively captures user-
specific information. HuLM (Soni et al., 2022)

BASE LARGE

1 Layer
precision 0.391 0.395
recall 0.381 0.384
f1 0.346 0.347

2 Layers
precision 0.399 0.380
recall 0.392 0.367
f1 0.384 0.365

3 Layers
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Table 3: Comparison of model performance with vari-
ous sizes of User Embedding Module. All the models
use the same history size of 50.

pretrained a LM conditioned on higher-order data
states associated with humans. Further, Salemi
et al. (2023) employed retrievers like Contriver and
BM25 to select representative input histories to
prompt an LM to generate personalized outputs.
Mu et al. (2023) utilized gist tokens to condense
input prompts into a set of tokens, reducing compu-
tational overhead for recurring task instructions. Li
et al. (2023) employed prompt rewriting, identify-
ing relevant items for individual users, summariz-
ing the information, and synthesizing key attributes
to prompt the model. Our approach distinguishes
itself by utilizing entire user histories, compressing
them into contextually learned embeddings.

5 Conclusion & Future Work

In this study, we addressed several critical chal-
lenges in modeling user history for preference un-
derstanding. We introduced a User Embedding
Module that processed user history as freeform
text, generating token embeddings for each history
item. This approach greatly simplified user history
tracking and enabled the incorporation of longer
user histories into the language model, and allowed
their representations to be learned in context. Our
empirical results demonstrated the capability of
this approach to handle significantly larger histo-
ries efficiently compared to traditional text-based
approaches, resulting in improved predictive perfor-
mance. For future work, we would like to explore
more parameter efficient approaches like LoRA
(Hu et al., 2022) for finetuning LMs with UEM,
which would improve both training and serving for
these models. This approach can be easily extended
to multimodal signals using modal specific embed-
dings and tying them together with UEM, and we
plan to explore this direction for future work.
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Limitations

While we argue and demonstrate in this work that
using a UEM is an efficient way to encode long
user histories with easier extensions to multimodal
inputs, we acknowledge that text prompting can
be further optimized, by using text-to-text prompt
compression models. These trade-offs could be
further studied. The simplicity of the UEM archi-
tecture leaves a lot of headroom as demonstrated
by LongT5 baselines in Table 1. Our presentations
for U are using generic semantic embeddings with
the use of SentenceT5 (Ni et al., 2022), these can
be further improved with the use of domain spe-
cific embeddings. Our experiments are using LMs
that are <1B parameters, which are usually consid-
ered smaller family of LLMs. It would be a good
future direction to consider larger models with pa-
rameter efficient tuning techniques. Furthermore,
our research has primarily focused on preference
understanding, and hasn’t been tested on tasks ex-
tending to areas such as rating prediction or item
recommendation. We expect our conclusions here
are likely apply to these tasks. We plan to address
these limitations and pursue these avenues in our
future research efforts.

Ethics Statement

The datasets and models utilized in this study are
based on publicly available and open-source re-
sources. While we acknowledge the inherent ethi-
cal considerations associated with language mod-
els, we do not anticipate any additional ethical con-
cerns arising from the datasets and models devel-
oped in the course of this research.
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A Dataset

In the MovieLens dataset (Harper and Konstan,
2016), the available metadata for assessing a
movie’s rating is confined to its title and associ-
ated genres. However, such limited information
proves inadequate for both human evaluators and
language models in generating predictions unless
they possess prior knowledge about the movies.
For instance, when considering the Star Wars series
within the MovieLens dataset (Harper and Konstan,
2016), namely Star Wars: Episode IV - A New
Hope (1977), Star Wars: Episode VI - Return of the
Jedi (1983), and Star Wars: Episode I - The Phan-
tom Menace (1999), all three films share identical
genre classifications, namely Action, Adventure,

and Sci-Fi. Nonetheless, a closer inspection re-
veals noteworthy disparities in their mean ratings,
with "Episode IV" and "Episode VI" accumulat-
ing ratings of 4.12 and 4.14, respectively, while
"Episode I" registers a markedly lower rating of
3.06.

In reality, a viewer’s decision to watch a movie
is contingent upon a multifaceted array of meta-
data beyond the movie genres. Variables such as
the cast, crew, production studio, among others,
play pivotal roles in this determination. In con-
temporary times, movie trailers have emerged as
potent tools for piquing an individual’s interest in
a movie. In the context of textual language models,
we equate the concept of a gist as a close ana-
logue to a movie trailer. The gist encapsulates the
fundamental essence of the movie’s content while
withholding explicit plot details, a characteristic
akin to that of a trailer. Consequently, we propose
the incorporation of such supplementary data4 into
the MovieLens dataset (Harper and Konstan, 2016)
to facilitate more nuanced and informed predictive
assessments. While it is acknowledged that this
augmentation may not encompass the entirety of
a viewer’s decision-making process, it represents
a stride closer to the intricacies involved in real-
world movie-watching choices.

After merging the MovieLens dataset (Harper
and Konstan, 2016) with movie descriptions and fil-
tering out users with fewer than 20 recorded movie
views, our dataset comprises 14.4M reviews, span-
ning 8.2k unique movies, and involving a total of
127k users. We then divide this dataset into three
subsets: 5k users for both the development and test-
ing sets, and the remaining 117k users for the train-
ing set. To create gold labels, we aggregate genres
along with their corresponding ratings across each
user’s viewing history. Only genres with a mini-
mum of three ratings are considered. Based on this
aggregated information, we identify the three most
preferred genres (with an average rating >3.5) and
the three least preferred genres (with an average
rating <3) for each user. The resulting output is
structured in a text-to-text format as follows: The
user likes to watch movies with genres
{liked_genres} and doesn't like to watch
movies with genres {disliked_genres}5.

4Metadata sourced from https://www.
kaggle.com/datasets/stefanoleone992/
rotten-tomatoes-movies-and-critic-reviews-dataset/

5In cases where the set of liked_genres or
disliked_genres is empty, the text is adjusted accordingly.
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B History Length Ablation Results

BASE LARGE

Emb. Hist. 5
precision 0.276 0.257
recall 0.287 0.273
f1 0.273 0.261

Emb. Hist. 20
precision 0.319 0.321
recall 0.328 0.326
f1 0.275 0.281

Emb. Hist. 30
precision 0.353 0.390
recall 0.364 0.390
f1 0.337 0.367

Emb. Hist. 50
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Emb. Hist. 100
precision 0.416 0.459
recall 0.413 0.441
f1 0.404 0.444

Table 4: Comparison of model performance with in-
creasing User History.
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