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Abstract

This study evaluates the ability of Large Lan-
guage Model (LLM)-based Subpopulation Rep-
resentative Models (SRMs) to generalize from
empirical data, utilizing in-context learning
with data from the 2016 and 2020 Ameri-
can National Election Studies. We explore
generalization across response variables and
demographic subgroups. While condition-
ing with empirical data improves performance
on the whole, the benefit of in-context learn-
ing varies considerably across demographics,
sometimes hurting performance for one demo-
graphic while helping performance for others.
The inequitable benefits of in-context learning
for SRM present a challenge for practitioners
implementing SRMs, and for decision-makers
who might come to rely on them. Our work
highlights a need for fine-grained benchmarks
captured from diverse subpopulations that test
not only fidelity but generalization.

1 Introduction

Natural language processing research has plunged
headlong into the new alchemical science of prompt
engineering (Liu et al., 2023). Ask OpenAI’s Chat-
GPT to “think step-by-step” and behold its im-
proved reasoning performance (Wei et al., 2023).
Tell it to behave as an expert and witness its exper-
tise increasing (Salewski et al.).

The responsiveness of foundation models to
prompt engineering has led researchers from di-
verse disciplines to explore their applications. This
is certainly true in political science, where several
recent studies investigate whether the malleability
of LLMs would allow them to simulate the atti-
tudes and behaviors of human subpopulations (Chu
et al., 2023; Jiang et al., 2022; Kim and Lee, 2023;
Simmons and Hare, 2023; Linegar et al., 2023).

Polling plays an important role in opinion ag-
gregation, acting as a cornerstone of governance
(Shapiro, 2011). The use of LLMs as subgroup

Figure 1: Description of a prompting strategy used for
both RQ 1 and RQ 2. For Study 1, |Dfs| = 0.

simulators has hypothesized benefits including de-
creased cost and increased sample sizes (Argyle
et al.). As response rates to traditional survey meth-
ods decline, social scientists are encouraged to
explore new methods (Ziems et al.). More than
a dozen examples of the subpopulation represen-
tative modeling approach are found in academic
research (Simmons and Hare, 2023), and the ap-
proach has already garnered attention at local (Tal)
and national levels (ION).

1.1 Limitations of LLMs as Subpopulation
Representative Models

While the potential benefits are considerable, apply-
ing LLMs as a substitute or complement for polling
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should be taken with caution. Recent work shows
that prompting LLMs with demographic informa-
tion leaves much to be desired. Bisbee et al. show
that when ChatGPT (gpt-3.5-turbo)1 is prompted
with demographic information from the ANES Sur-
vey2 and asked to complete a Feeling Thermome-
ter3, its responses are more extreme and less vari-
able than the responses collected from human par-
ticipants (Bisbee et al.). Santurkar et al. show that
overall fidelity4 to human response distributions
is low for OpenAI’s ChatGPT when the model is
not prompted with a demographic descriptor, that
prompting is more effective for some population
subgroups than others, and that the fidelity obtained
using demographic prompting, while higher than
without, is still far from perfect. These studies ex-
press a pessimistic stance about the potential of
LLMs for subpopulation representative modeling,
one that is rightly held based on the experimental
evidence to date.

1.2 In-Context Learning for Better Fidelity

We contend here that we should not be prematurely
pessimistic. As with chain-of-thought (Wei et al.,
2023) and expert prompting, perhaps a straight-
forward technique to improve the performance of
LLMs as subpopulation representative models has
been overlooked. A hallmark of LLMs is their ca-
pability for in-context learning (ICL; Brown et al.;
Dong et al. 2023). One popular mode of in-context
learning is few-shot learning, where task examples
are provided in the context window to condition
generation (Song et al., 2023). Few-shot learning
improves performance relative to prompting with-
out examples, on tasks including translation and
question answering (Brown et al.), clinical informa-
tion extraction (Agrawal et al., 2022), reading com-
prehension and natural language inference (Chowd-
hery et al., 2022), and improves factual accuracy
of model responses (Semnani et al., 2023).

The subpopulation representative modeling
(SRM) task involves predicting the distribution of
some response variables, such as candidate prefer-
ence (Palakodety et al., 2020), feeling thermometer
(Argyle et al.) or stance on divisive issues (Kim

1https://openai.com/blog/chatgpt
2The American National Election Studies (ANES) are na-

tional surveys of voters in the United States, conducted before
and after presidential elections, with data since 1948 (ANES)

3The ANES Feeling Thermometer measures respondent
affinity to various political groups in the United States.

4Santurkar et al. refer to this as alignment. We use “fi-
delity" since alignment take several meanings.

and Lee, 2023) for a population subgroup (target
demographic) identified by a combination of de-
mographic variables. Applying LLMs to this task
typically involves prompting the language model
with a natural language description of the demo-
graphic and adding instructions to encourage the
model to predict the response distribution. Impor-
tantly, this zero-shot approach does not leverage
observed data from the subpopulation other than
its demographic descriptors.

The most straightforward way to apply ICL to
the SRM task would be to condition the model
with data from the target subpopulation and demo-
graphic variables. With sufficient grounding in the
target task, we expect that models could become
representative. However, in this setup the practi-
tioner has gained little, since they have to provide
data from the target subpopulation and response
variables to elicit desirable performance.5 For this
reason, we expect that SRM practitioners would be
enthusiastic to use available data to improve per-
formance on unrelated subpopulations or unrelated
response variables. In other words, generalization
beyond the data presented in the few-shot examples
would allow practitioners to apply SRMs with im-
proved performance even if data was not abundant
for the subpopulation of interest.

1.3 The Importance of Generalization

For the subpopulation representative modeling task,
generalization can occur along two axes: (1) gen-
eralization across response variables and (2) gen-
eralization across demographics. If a model can
generalize across response variables, this means
that conditioning on observed response variables
improves fidelity for unobserved response variables.
If a model can generalize across demographics, this
means that conditioning on observed demographics
improves fidelity for unobserved demographics. If
these capabilities are demonstrated, the outlook for
subpopulation representative modeling via LLMs
may not be as dire as it seems. In-context learn-
ing could mitigate known issues such as extremism
(Bisbee et al.) or lack of representativeness (San-
turkar et al.).

Successful generalization alone does not imply
that LLMs are suitable for use as SRMs. How-
ever, we argue that if generalization were possible,
it would encourage further development of LLM-

5This setup could still be used for synthetic data genera-
tion for the subpopulation and response variables, similar to
missing data imputation in Kim and Lee (2023)
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Demographic Variables Response Variables
age The Democratic Party
race The Republican Party
gender Black Americans
income White Americans
education Hispanic Americans
political party Asian Americans

Muslims
Christians
Jews
Liberals
Conservatives

Table 1: Demographic and response variables used in
this study.

based SRM technology. Integrating LLMs into the
political infrastructure could have serious social
consequences. For that reason, we believe that ma-
chine learning practitioners, social scientists, and
policymakers should understand the viability of the
technology, as greater viability may translate to
an increased chance of real-world use. This moti-
vates our study of the generalization capabilities of
LLMs for the subpopulation representative model-
ing task.

Research Questions

We address the following research questions:

• RQ 1 (Generalization across Response Vari-
ables): How does the fidelity of LLMs to
some target demographic vary with the num-
ber of response variables from the target de-
mographic used for conditioning? We address
this in Section 3.

• RQ 2 (Generalization across Demograph-
ics): How does the fidelity of LLMs to some
target demographic vary with the number of
examples from other demographics used for
conditioning? We investigate this in Section 4.

2 Methods

This section documents methods shared across both
studies. Specific methods for each study are docu-
mented in Section 3 and Section 4.

2.1 Data

We use data from the American National Election
Studies (ANES). We used the time series cumu-

lative data file for the ANES Survey6, which con-
tains six demographic variables (age, race, gen-
der, income, education, and political party), and
11 Feeling Thermometer variables shown in Ta-
ble 1. The ANES Feeling Thermometer is a series
of ratings questions where survey participants rate
their affinity towards various political groups on a
continuous scale from 0-100. Across all years, the
ANES data contains 68,224 observations. We se-
lected observations from the years 2016 and 2020,
yielding 12,550 observations. After removing ob-
servations with missing values, the dataset used for
experiments contained 4,397 observations. See Ap-
pendix B for additional details on data processing
steps applied before prompting.

2.2 The Subpopulation Representative
Modeling Task

Subpopulation data consists of a number of obser-
vations of some set of variables V , with each obser-
vation corresponding to a single individual. Often,
this set of variables contains some subset Vd ⊂ V
that describe the demographic characteristics of
each individual, and some other subset Vb ⊂ V
capturing individual behaviors or attitudes. At a
high level, the goal for the SRM task might be to
approximate the distribution of Vb conditioned on
Vd. However, it is equally likely that practitioners
are interested in predicting a specific behavior and
have some other behavioral data available for con-
ditioning, requiring generalization across response
variables. We investigate this setting in Section 3.
Additionally, practitioners may have some paired
(demographic, behavior) data available for certain
demographic cells and want to predict the behav-
ior for other demographic cells. We investigate
generalization across demographics in Section 4.

2.3 Measuring Fidelity Error

We are interested in assessing how LLM fidelity to
some target demographic varies with the amount
of empirical data used to condition the model. We
use the term fidelity error (E) to refer to the gap
between the LLM response and ground truth data
observed from humans in the demographic of inter-
est. In our setting, the behavioral variables Vb are
Feeling Thermometer ratings across 11 political
groups. To explore generalization across response
variables, we select some Vbc ⊂ Vb to be used for

6available at https://
electionstudies.org/data-center/
anes-time-series-cumulative-data-file/
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E(d, Vc, Dfs) =
1

|Vp|
∑

vp∈Vp

|ŷ(d, Vc, vp, Dfs)− y(d, vp)| . (1)

E(d, nc, nfs) =
1

nr

∑

Dfs∼D(nfs,d)

1

|Vc(nc, d)|
∑

Vc∈Vc(nc,d)

E(d, Vc, Dfs). (2)

conditioning. The LLM is tasked to predict the
remaining variables Vp = Vb \ Vbc.

To obtain ground truth for Vb at the demographic
level, we obtain an average respondent profile for
each demographic cell by calculating the mean
responses for each of the 220 demographic cells in
the ANES data.

We define fidelity error for some target demo-
graphic d as the difference between the empiri-
cal mean and the LLM-predicted response, aver-
aged over the Feeling Thermometer variables in-
cluded in Vp. In general this error varies by the
conditioning variables (Vc), see Equation (1). The
term y(d, vp) is the empirical mean Feeling Ther-
mometer for demographic d towards group vp. The
term ŷ(d, Vc, vp, Dfs) is the LLM-predicted Feel-
ing Thermometer data for demographic d towards
group vp, conditioned on variables Vc and few-shot
data Dfs. In other words, Equation (1) describes
the fidelity error of the model conditioned on a
specific set of few-shot examples.

Equation (2) estimates the overall fidelity error
of the model by sampling nr sets of few-shot exam-
ples from the observed data. In our experiments we
used nr = 5. The term Vc(nc, d) is the set of sets of
conditioning variables having |Vc| = nc elements
that are available for demographic d. The term
Dfs(nfs, d) is the set of sets of few-shot examples
having |Dfs| = nfs elements that are available for
demographic d.

2.4 Generating LLM Responses

Our prompting strategy is briefly outlined here and
in Figure 1. In this study, we utilize OpenAI’s
gpt-3.5-turbo, accessed via the API. We adapt
a similar prompting strategy to Bisbee et al., alter-
ing prompts to accommodate Research Questions
1 and 2. This approach comprises a consistent
system prompt for directing the model’s behavior
and a variable user prompt, tailored for each re-
search question. For RQ 1, each query features
a single user prompt with an incomplete Feeling
Thermometer table. For RQ 2, we supply the model
with multiple user prompts, each paired with an ex-

ample model response which contains a Feeling
Thermometer table with ground truth data.

For a detailed view of our prompting setup, refer
to the Appendix A.

3 Generalization of In-Context Learning
Across Response Variables

This study investigates the generalization of in-
context learning across response variables (Re-
search Question 1). We are interested in finding
out to what extent increasing the number of condi-
tioning variables improves fidelity to unobserved
response variables.

3.1 Methods

Each prompt includes all demographic variables,
plus a subset of the behavioral variables Vbc ⊂ Vb.
We are interested in relating the number of behav-
ioral variables used for conditioning (|Vbc|) to the
fidelity error. For each demographic cell, we com-
pute the mean empirical response data. Then for
each possible value of |Vbc| ∈ [0, 10], we randomly
sample nr sets of conditioning variables. The em-
pirical mean response data for these variables are
presented in each prompt as a partially-completed
Feeling Thermometer table in CSV format, as
shown in Figure 8. The model then completes the
remaining rows of the table. For each prompt, we
parse the model-completed portion of the Feeling
Thermometer table into CSV format. We then cal-
culate the fidelity error for each prompt by compar-
ing these responses to the empirical mean response
data for variables Vp.

3.2 Fidelity Error Decreases with Increasing
Conditioning Variables

Figure 2 shows the relationship between number
of conditioning variables |Vbc| and the fidelity er-
ror for varying number of few-shot examples. In
general, in-context conditioning on observed be-
havioral variables improves fidelity to unobserved
behavioral variables, with error decreasing as the
number of conditioning variables increases.

21



Figure 2: Changes in the fidelity error depending on the |Vbc| averaged across all demographics. The fidelity
decreases as the number of conditioning variables increases. This pattern holds for every number of few-shot
examples checked.

Figure 3: Changes in the fidelity error (E) depending on the number of conditioning variables (|Vbc|) for different
racial groups. Error rates are lower in general for non-Hispanic Whites than for other racial groups.

3.3 Effectiveness of Response Variable
Conditioning Varies by Demographic

We can observe discrepancies in error rates be-
tween demographics. For example, error rates are
lower in general for non-Hispanic Whites than for
other racial groups (Figure 3), and for Democratic
party in comparison to the Republican one (Fig-
ure 4).

Reduction in error as a result of increased condi-
tioning varies by demographic. For instance, error
rates are roughly constant for |Vbc| < 6, then in-
crease for the non-Hispanic black demographic,
while continuing to decrease for the non-Hispanic
white demographic (Figure 3). This suggests that
conditioning on behavioral variables may be more
effective for some demographics than for others.

Refer to Appendix C for figures showing rela-
tionships between the fidelity error and number of
conditioning variables for other demographics.

4 Generalization of In-Context Learning
Across Demographics

4.1 Methods
In this study, we investigate the generalization of
in-context learning across demographics.

In this case, we select some empirical data
Dfs ⊂ D, {dfs ̸= d ∀ dfs ∈ Dfs} to be
used as few-shot examples. Each prompt was con-

structed by selecting a target demographic, as in
the previous study. Then |Dfs| ∈ {0, 2, 4, 6} few-
shot examples of complete demographic and Feel-
ing Thermometer information for non-target demo-
graphics were randomly selected.

Selecting few-shot examples naturally raises the
question of which examples to select. Few-shot
example selection can be viewed as an information
retrieval task, and many of the well-known methods
from IR are applicable here. These include seman-
tic similarity methods (Nan et al., 2023) as well
as classic information retrieval algorithms such as
max marginal relevance (MMR) (Carbonell and
Goldstein, 1998). Few-shot example selection is
also related to the problem of representative sam-
pling in the social sciences (Manheim et al., 1981);
stratified sampling by demographic could be ap-
plied (Barreto et al., 2018). Additionally, the recent
trend towards larger models and LLM-as-a-service
APIs has encouraged methods that maximize the
number of few-shot examples to be included when
the model input is restricted by total length (Sel).

However, the most straightforward approach is
to sample uniformly at random from the observed
data, and in this work we opt for this setup. Since
the use of LLMs for SRM is relatively new and
may be applied by practitioners who are not famil-
iar with the aforementioned methods, we think it
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Figure 4: Changes in the fidelity error (E) depending on the number of conditioning variables (|Vbc|) for different
political parties. Error rates are lower in general for Democrats than for Republicans.

is important to consider the performance of naive
methods. We are aware that the choice of sampling
method could influence the results of this study;
see the Discussion for commentary on the effects
of sampling strategy and our suggestions for addi-
tional experiments.

4.2 Fidelity Error Decreases with Increasing
Few-Shot Examples

Figure 6 shows fidelity error as it relates to the
number of few-shot examples. In general, fidelity
error decreases with increasing number of few-shot
examples.

4.3 Effectiveness of Few-Shot Learning Varies
by Demographic

We can again observe discrepancies in error rates
between various demographics, including race, age
income, and party. For instance, from Figure 5
it can be seen that not only the fidelity error for
non-Hispanic whites is smaller in general, but also
that in-context learning is more efficient for this
ethnicity.

We draw heavily on the prompting methods used
in Bisbee et al. - this was done intentionally, for the
sake of comparison. The key difference is the use
of conditioning based on ground-truth data. Bis-
bee et al.’s study is one of the sharpest criticisms
of LLM-based SRMs to date and raises important
questions about the viability of LLM-based SRMs.
If the deficiencies highlighted in this work are ame-
liorated by in-context learning, this would be an im-
portant consideration. We use similar methods so
that results are attributable to the use of in-context
learning, rather than differences in prompting strat-
egy.

5 Discussion: Subpopulation
Representative Modeling via In-Context
Learning

Recent criticisms have argued that Large Language
Models do not sufficiently represent the opinions
or behaviors of human subpopulations when these
subpopulations are specified in the context (San-
turkar et al.; Bisbee et al.). However, extant work
neglects the capability for models to learn via in-
context learning.

Our experiments demonstrate that LLMs can
learn the subpopulation representative modeling
task in-context. The experiments in Section 3 show
that providing the model with partial information
about subpopulation behavior improves model fi-
delity on unobserved response variables. Section 4
shows that providing the model with information
about other subpopulations can improve model fi-
delity to an unrelated subpopulation of interest.

In this experiment, we selected few-shot exam-
ples uniformly at random. This is only one of
several few-shot example selection strategies avail-
able to the practitioner (see Section 4, Methods).
We believe it is likely that the example selection
strategy has some influence over the performance
disparities between majority and minority groups.
Appendix Figure 13 shows that the ANES data is
imbalanced with repsect to the demographic vari-
ables – for example, approximately three fourths of
respondents were non-Hispanic white, as opposed
to Hispanic or non-Hispanic black. The minor-
ity categories account for approximately 1/8th of
the observations each. For a given target example,
the likelihood to select a few-shot example with
the same race is proportional to the distribution
of the data over the race variable. In general, it
is more likely that a randomly-selected few-shot
example will share demographic values with the
target example when the target example belongs
to the majority demographic. Assuming that the
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Figure 5: Changes in the fidelity error (E) depending on the number of few-shot examples (|Dfs|) for different
racial groups. Error rates are lower for non-Hispanic Whites. While with increased number of few-shot examples
the fidelity error for other race groups remain nearly constant, the fidelity rate for non-Hispanic white racial group
decreases.

Figure 6: Changes in the fidelity error depending on the
|Dfs| averaged across all demographics. The fidelity
decreases as the number of few-shot examples increases.
This pattern holds for every number of conditioning
variables checked.

similarity between few-shot examples correlates
to their utility for the predictive task, this dataset
bias could result in few-shot prompting being more
effective for majority groups. This applies both in
absolute terms, and in terms of the marginal benefit
of additional few-shot examples. We encourage
further investigation of the relationship between

demographic representation in the few-shot data,
performance discrepancies across demographics,
and few-shot example selection strategies, and plan
to explore this theme in future work.

These aggregate results seem promising for the
potential of LLMs to perform the subpopulation
modeling task. However, upon closer analysis, we
find that the effectiveness of in-context learning is
variable across demographics. While additional
conditioning data boosts performance for some
demographics, it has negligible or even deleteri-
ous effects for others. This result extends prior
work showing variation across demographics in
the exaggeration of stereotypical response patterns
(Bisbee et al.) and the fidelity of LLMs to human
responses without conditioning (Santurkar et al.).
The subgroup-specific effectiveness of in-context
learning for SRM presents challenges for SRM
practitioners, as well as decision-makers using the
results of SRMs. We suggest three directions for
future work. The inequitable performance of LLMs
on subpopulation simulation calls the ethicality of
the endeavor into question. In tasks like recidi-
vism prediction, theoretical results indicate mutual
unsatisfiability of model bias criteria (Kleinberg
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et al., 2016; Chouldechova, 2017). These impos-
sibility results influence why the field views ma-
chine learning models as appropriate for certain use
cases and possibly unfit for others. We encourage
similar investigation into the ethical nature of the
subpopulation representative modeling task. This
should take into consideration the dual-use nature
of subpopulation representative models – that they
could be leveraged for positive use cases (improv-
ing existing political representation processes) as
well as negative (used to steer misinformation cam-
paigns). Secondly, our results highlight the need
for fine-grained benchmarking for subpopulation
representative models, in terms of generalization
performance in few-shot settings as studied here, as
well as absolute performance in zero-shot settings.
Finally, we note that several approaches have been
proposed to ameliorate issues with existing subpop-
ulation representation techniques (Santurkar et al.;
Lahoti et al., 2023). We see potential for further
research in this area of improving subpopulation
representative model performance.
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A Prompting Setup

This section provides specific prompts used for our
study, further explaining Figure 1. Our strategy
is adapted from the methodology used in Bisbee
et al., with several modifications to better suit our
research objectives.
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The table starts with:
group ,thermometer
Muslims ,30.0
Jews ,72.0

Figure 8: Possible end of the table to condition on two
response variables for the target demographic (ground-
truth responses).

The prompting setup consists of task instructions
(the system prompt) and the user prompt. The sys-
tem prompt is a constant element in all the requests,
designed to guide the AI model towards displaying
a subpopulation representative behavior (see Fig-
ure 9 for the exact structure of the system prompt).
User prompts vary based on the research question.
For research question 1, a single user prompt is
used. This prompt consists of three parts:

1. Target demographic description (d), which
provides demographic data to the model (see
Figure 10);

2. A number of conditioning variables, constant
across all requests, posing a concrete ques-
tion with respect to the current study (see Fig-
ure 11);

3. Target demographic conditioning, providing
a partial Feeling Thermometer table of Vbc ⊂
Vb variables into the model (see Figure 8).

For research question 2, multiple user prompts
are employed, each paired with an example model
response. The structure of additional user prompts
remains consistent with that of the RQ 1, but in-
stead of the target demographic data, a non-target
demographic conditioning is used. All but one of
these prompts serve as few-shot examples. In RQ
2, a single few-shot example consists of:

1. Non-target demographic data (dfs), fed into
the model in the same format as in the Fig-
ure 10;

2. A number of conditioning variables, similarly
to RQ 1 (refer to Figure 11);

3. Ground-truth responses from the cleaned
ANES data – a Feeling Thermometer table
for the same non-target demographic. The
format is the same as in Figure 8.

Few-shot examples are followed by the final user
prompt (same as in the RQ 1), soliciting a model
prediction for the feeling thermometer table for the
target demographic.

B Notes on Data Processing

Many observations in the ANES data were incom-
plete. Missing value rates for the data are shown
in Figure 12. Counts of observations for each de-
mographic variable are shown in Figure 13. Re-
moving rows containing missing demographic and
response variables, and observations with variable
values other than those in Table 1 resulted in 4,397
observations, with 570 unique demographic cells.
The end-to-end data processing pipeline is shown
in Figure 7.

C Figures

Figures 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
and 25 show our findings for different demographic
variables.
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You are an AI assistant capable of simulating a wide range of demographics.

You receive demographic data describing a single person as an input.
Provide responses from this person 's perspective.
Use only knowledge about politics that they would have.

The user asks about individuals ' feelings toward different groups.
Responses should be given on a scale from 0 (meaning cold feelings) to 100 (

meaning warm feelings).
Ratings between 50 degrees and 100 degrees mean that you feel favorable and warm

toward the group.
Ratings between 0 degrees and 50 degrees mean that you don 't feel favorable

toward the group and that you don 't care too much for that group.
You would rate the group at the 50 degree mark if you don 't feel particularly

warm or cold toward the group.

Figure 9: System prompt used for all studies (task instructions).

You are a {age} year old {race} {gender} with a {education}, earning ${income}
per year.

You are a registered {party} living in the USA in 2019.

Figure 10: User message, used either for non-target (dfs) or target demographic d.

How do you feel toward the following groups?
The Democratic Party?
The Republican Party?
Black Americans?
White Americans?
Hispanic Americans?
Asian Americans?
Muslims?
Christians?
Jews?
Liberals?
Conservatives?

To answer , complete the following CSV table.

The table starts with:
group ,thermometer

Figure 11: Conditioning variables (Vbc).
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Figure 12: Distribution of missingness across demographic cells for ANES feeling thermometer Variables (2016-
2020).

Figure 13: Value counts for ANES 2016-2020 after removing all missing values.
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Figure 14: Fidelity error vs. |Dfs| for age.

Figure 15: Fidelity error vs. |Vbc| for age.
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Figure 16: Fidelity error vs. |Dfs| for education.

Figure 17: Fidelity error vs. |Vbc| for education.
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Figure 18: Fidelity error vs. |Dfs| for gender.

Figure 19: Fidelity error vs. |Vbc| for gender.
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Figure 20: Fidelity error vs. |Dfs| for income.

Figure 21: Fidelity error vs. |Vbc| for income.
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Figure 22: Fidelity error vs. |Dfs| for party.

Figure 23: Fidelity error vs. |Vbc| for party.
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Figure 24: Fidelity error vs. |Dfs| for race.

Figure 25: Fidelity error vs. |Vbc| for race.
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