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Introduction

We are excited to welcome you to the first edition of PERSONALIZE: Personalization of Generative AI
Systems.
Personalization of generative AI is a key step to make generic systems tangibly useful to a diverse de-
mographic user group. Our workshop studies personalization from technical, legal, and philosophical
angles.
The exponential growth of generative AI and foundation models has spurred significant development,
adoption, and capital investment across various industries. However, an important challenge lies in the
generic nature of these systems, lacking personalization, which hinders their effectiveness for diverse
user demographics.
Addressing this issue has become a major focus for both model developers and firms, with billions of
dollars and extensive research efforts dedicated to personalization initiatives, exemplified by projects like
Snap’s MyAI and Meta’s Abraham Lincoln bot plans.
Despite this progress, there are three key challenges being overlooked: technical, legal, and philosophical.
Technical challenges encompass issues with existing personalization methods, such as computational
efficiency, quality, and safety concerns. Meanwhile, legal and philosophical considerations are vital due
to the potential for misuse, harmful consequences, biased behavior, and privacy violations associated
with personalized AI systems.
Our workshop will serve as a platform for diverse stakeholders to explore these multifaceted challenges
and engage in discussions and guide the future of personalized generative AI.
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Abstract

This study presents RoleCraft-GLM, an inno-
vative framework aimed at enhancing personal-
ized role-playing with Large Language Models
(LLMs). RoleCraft-GLM addresses the key
issue of lacking personalized interactions in
conversational AI, and offers a solution with
detailed and emotionally nuanced character por-
trayals. We contribute a unique conversational
dataset that shifts from conventional celebrity-
centric characters to diverse, non-celebrity per-
sonas, thus enhancing the realism and com-
plexity of language modeling interactions. Ad-
ditionally, our approach includes meticulous
character development, ensuring dialogues are
both realistic and emotionally resonant. The
effectiveness of RoleCraft-GLM is validated
through various case studies, highlighting its
versatility and skill in different scenarios. Our
framework excels in generating dialogues that
accurately reflect characters’ personality traits
and emotions, thereby boosting user engage-
ment. In conclusion, RoleCraft-GLM marks a
significant leap in personalized AI interactions,
and paves the way for more authentic and im-
mersive AI-assisted role-playing experiences
by enabling more nuanced and emotionally rich
dialogues1.

1 Introduction

Large Language Models (LLMs) have become a
cornerstone in understanding and generating nat-
ural language, showcasing remarkable capabili-
ties that often surpass human proficiency in cer-
tain language reasoning tasks. Consequently, they
have excelled notably excelled as conversational
agents, offering high-level responses in various di-
alogues and significantly influencing human-AI in-
teractions, thus hinting at their potential to reshape

∗∗ Equal contribution. This work is done during internship
at Genfun.ai.

†∗Corresponding author: ty.shi@mail.utoronto.ca
1Access models, demos at

https://github.com/tml2002/RoleCraft

numerous aspects of daily life (Bender and Koller,
2020).

Despite these advancements in generative
AI (Baidoo-Anu and Ansah, 2023),challenges per-
sist, particularly in meeting the diverse require-
ments of different user groups.Presently, many AI
systems rely on generic models, which may not ad-
equately address the specific needs of varied users.
This limitation can negatively influence user expe-
riences and the applicability of AI in certain sce-
narios (Ackerman et al., 2022). Thus, there is a
burgeoning recognition of the importance of per-
sonalization within AI, gradually influencing the
direction of the field. There is a growing trend to-
ward developing AI systems that are more attuned
to individual preferences and needs (Brandtzæg
and Følstad, 2018; Lee and Koubek, 2010), em-
phasizing the need for a deeper understanding of
user behaviors and a more tailored approach to AI
interactions. This evolving trend suggests a move
toward more personalized, user-centric AI models,
potentially transforming the generative AI sector to
offer more individualized and effective solutions.

Existing open-source LLMs, while trained
across broad domains, may not always offer the
specialized optimization desired for nuanced role-
playing tasks. This suggests that additional cus-
tomization might be beneficial to more effectively
meet the specific requirements of role-playing sce-
narios. On the other hand, advanced LLMs such
as GPT-4 (OpenAI, 2023) showcase enhanced abil-
ities in role-playing due to their extensive train-
ing and sophisticated algorithms. However, this
closed-source model may introduce practical limi-
tations. These include higher costs associated with
API usage, limited scope for fine-tuning to tailor
the models for specific role-playing contexts, and
restrictions in context window sizes which can im-
pact the fluidity and depth of generated dialogues
in complex role-playing scenarios.

In this paper, as illustrated in the figure 1, we
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Figure 1: Overview of the RoleCraft-GLM framework: (1)Emotionally annotated dialog datasets play a key role in
creating role profiles that reflect specific emotional traits. (2)The generation of Q&A pairs, based on context and
known character traits, ensures that dialogues are consistent with the character profiles. (3) A hybrid approach of
generic and character-specific instructions is used to train the GLM for various dialog scenarios.

introduce the RoleCraft-GLM framework designed
to enhance personalized role-playing experiences
with LLMs. Moving beyond traditional celebrity-
focused characters, we focus on diverse, non-
celebrity personas, each with unique emotional
annotations. This approach aims to enrich real-
ism and emotional depth in language interactions.
We compiled a novel dataset encompassing a wide
array of real-world dialogues, with careful consid-
eration for personal privacy and copyright laws.
Our data analysis highlights the potential benefits
of integrating emotional labels in dialogue datasets
for improved natural language processing. We con-
ducted comparative experiments using models like
ChatGLM3, fine-tuned with the Low-Rank Adap-
tation (LoRA) method, to assess RoleCraft-GLM’s
effectiveness in producing nuanced and character-
consistent dialogues.

The main contributions of our work are as fol-
lows:

• We introduce a groundbreaking dataset that
centers on non-celebrity characters, each char-
acterized by unique emotional annotations.
This innovative shift away from the traditional
focus on celebrity-centric characters greatly
enhances the realism and intricacy of everyday
interactions within language modeling.

• We have developed a novel training strategy
that considers more detailed personal role data.
This strategy includes a fine-grained approach

to character portrayal, emphasizing emotional
depth, and fostering contextual awareness in
dialogue generation.

• Our framework has shown promising perfor-
mance, as evidenced by multi-dimensional
evaluations, in comparison to current state-of-
the-art models. These evaluations rigorously
assess aspects such as dialogue authenticity,
emotional accuracy, and contextual relevance,
highlighting our framework’s advanced capa-
bilities in these critical areas.

2 Related Work

2.1 Personalization of LLMs

The recent strides in LLMs, particularly in under-
standing user context and preferences, have sig-
nificantly propelled the personalization aspect of
AI interactions.Consequently, technologies like ef-
fective prompt design and feedback mechanisms,
including similarity-based retrievers, enhance AI’s
ability to learn from past interactions and adapt to
user needs more precisely. These methods enable
AI systems to proactively identify and rectify errors,
thus enhancing their performance over time (Dalvi
et al., 2022; Madaan et al., 2022).Furthermore,this
evolution in LLMs lays the groundwork for AI ap-
plications that are not only more personalized and
intuitive but also deeply aligned with user-centric
principles.The evolution of personalization in AI
interactions highlights a crucial shift towards un-
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derstanding and catering to individual user pref-
erences. Projects like Snap’s MyAI2 and Meta’s
Abraham Lincoln bot3 serve as prime examples,
demonstrating how AI can be customized for en-
hanced user engagement and specific functional
needs., illustrating AI’s potential for enhanced user
engagement and functionality through customiza-
tion (Bender et al., 2021). These initiatives em-
phasize the importance of tailoring AI systems to
meet specific user needs. Against this backdrop,
our work in RoleCraft-GLM aims to build upon
these advancements to offer nuanced, emotionally
rich AI interactions that align with individual user
contexts and needs.

2.2 Role-Playing

The evolution of role-playing in AI, marked by the
transition from basic text-based interactions to in-
tricate character simulations (Park et al., 2023), re-
flects the strides made in natural language process-
ing and AI technologies. Initially, AI role-playing
systems offered only fundamental exchanges, lim-
ited in their ability to craft dialogues with emo-
tional depth and contextual relevance. With the
emergence of advanced models such as GPT-
3 (Brown et al., 2020), LLaMA (Touvron et al.,
2023), and ChatGLM, there was a notable en-
hancement in AI’s capability for engaging in more
sophisticated, context-aware conversations. Yet,
these improvements also underscored a significant
gap in personalization for role-playing applications.
Predominantly, LLMs trained on wide-ranging,
generic datasets fell short in handling scenarios that
demanded a deeper understanding of nuanced emo-
tional nuances (Radford et al., 2018) and specific
character traits. To address these shortcomings, we
have meticulously developed the RoleCraft-GLM
framework. It stands out with its unique dataset, fo-
cusing on diverse, non-celebrity personas enriched
with detailed emotional annotations (Bender and
Koller, 2020). This dataset is key to overcoming
previous limitations, facilitating a new level of per-
sonalization and emotional intricacy in AI role-
playing interactions.

3 Methodology

As shown in Figure 1, the RoleCraft-GLM frame-
work, rooted in ‘Role’ and ‘Craft’, represents our
approach to enhancing AI role-playing. ‘Role’ em-

2https://www.personal.ai/
3https://ai.meta.com/

phasizes creating distinct, multi-dimensional char-
acters, each with unique personality traits and emo-
tional depths. ‘Craft’ involves the intricate pro-
cess of constructing dialogues that genuinely re-
flect these character traits, thereby adding depth
and realism to conversations.

Building on this foundation, the RoleCraft-GLM
framework is underpinned by key principles to ele-
vate the authenticity of role-playing (Wang et al.,
2023). The first principle, ‘Fine-Grained Character
Portrayal’, is pivotal in endowing each character
with detailed and nuanced traits and backgrounds,
integral to the ‘Role’ aspect of RoleCraft. This
approach is focused on creating characters that are
reflective of real-life individuals in their personal-
ity, and behaviors (Kim et al., 2023), setting the
stage for realistic and compelling character portray-
als. Progressing to the second principle, ‘Mastery
of Emotion and Style’, we concentrate on the emo-
tional expressions and speaking styles of charac-
ters (Li et al., 2023). This principle, key to the
‘Craft’ element of RoleCraft, enriches dialogues
with diverse emotions and distinctive speech pat-
terns, effectively capturing the unique emotional
states and communication styles of each character.
Furthermore, the ‘Accurate Application of Charac-
ter Knowledge’ principle emphasizes incorporating
each character’s background and experiences into
the dialogue generation process (Shao et al., 2023).
This ensures that the dialogues are in harmony
with the characters’ personas, encompassing their
unique experiences and insights. Concluding with
the ‘Context-Aware Dialogue Generation’ princi-
ple, our system is designed to dynamically tailor
dialogues based on the prevailing context (Zhanga
et al., 2023). This is crucial for maintaining a seam-
less and logically consistent conversation flow, es-
sential for immersive and credible role-playing ex-
periences.

3.1 RoleCraft-GLM Framework

Our methodology, guided by key design principles,
uniquely advances the capabilities of LLMs in role-
playing. Setting ourselves apart from approaches
such as RoleGLM (Wang et al., 2023), we focus on
an innovative integration of fine-grained character
portrayal, profound emotional depth, and height-
ened contextual awareness in dialogue generation.
This approach differentiates our work from existing
models and addresses challenges in a novel way,
enhancing how LLMs can be utilized for creating

3



Name ：唐鹏 | Tang Peng
Age ：30 years old
Height ：180cm
Weight ：72kg
Birthday ：10月7日 | October 7
Horoscope ：天秤座 | Libra
Character traits ：冷静、理性、坚持正义，同时具备强烈
的好奇心… |Calm, rational and insistent on justice, he also
possesses a strong sense of curiosity…
Background ：唐鹏出生在一个普通的家庭，从小就对法律
和正义充满了他在警校受过良好的训练，成为一名优秀的
警察…|Born into an ordinary family, Tang Peng grew up
with an interest in law and justice...
Hobbies ：跑步、阅读侦探小说、拳击 |Running, reading
detective novels, boxing
Specialties ：侦查、武术、心理分析 |Detection, martial
arts, psychoanalysis
Dream ：成为一名刑侦专家，揭露和解决更多复杂的案件 
|Become a criminal investigation expert to uncover and
solve more complex cases
Relationships ：唐鹏与他的同事和上司关系良好，虽然有
时会因为方法和原则上的分歧而产生摩擦。他对家人非常
关心…  |Tang Peng has a good relationship with his
coworkers …
Favorite Foods ：家常菜、烧烤、面食 |Home cooking,
grilling, pasta
Dislikes ：过于甜腻的食物 |Overly sweet and fatty foods…

You are a character building expert and your task is to create 

a detailed character description based on the provided 

character description template and a series of dialog pairs 

with emotion markup. Please use the information and 

emotional annotations from the dialog to enrich your role 

description with consistency and depth.

Character Profile Template

Instruction

prompt

Output

Name: Jiang Tianhao Age: 17 years old Height: 175 cm Weight: 65 kg Birthday: April 15th Zodiac Sign: Aries Personality 
Traits: Lively, intelligent, and sometimes a bit impulsive. Background: Jiang Tianhao is a high school student full of energy 

and curiosity about new things. He is popular in school for his friendliness and humor. He likes to participate in various 
outdoor activities... Hobbies: Basketball, traveling, photography Special Skills: Jiang Tianhao excels in sports, especially as 

a key player in his school's basketball team. He is also good at mathematics and physics and enjoys playing Go. Dream: 
He dreams of becoming an architect, designing buildings that are both unique and meaningful. Relationships: He has 

good relationships with his classmates... Favorite Foods: Hamburgers, pizza, braised pork Disliked Foods: Bitter gourd …
......

Figure 2: Here is an example of generating a detailed character description. Utilizing a character description
template along with an emotionally annotated dialogue dataset facilitates the generation of detailed character
descriptions based on prompts.(The instruction and output have been translated into English.)

more realistic and engaging role-playing scenario.

Emotion-Driven Character Profiling

To address the challenges of limited emotional di-
versity and unconvincing character portrayals in
dialogues generated by LLMs, we’ve adopted a
detailed emotion classification strategy. This ap-
proach involves meticulously annotating emotions
within the dialogue dataset, thereby steering the
GPT-4 to craft character profiles that mirror these
identified emotions. Consider a character who dis-
plays a spectrum of emotions from joy to disap-
pointment. Marking these diverse emotional states
allows for a natural and fluid transition in their dia-
logues within a single scene, effectively capturing
the complexity and dynamism of human emotions.
This approach challenges the LLMs to accurately
depict these emotional shifts, ensuring that the dia-
logues genuinely represent the intricate and ever-
evolving nature of human emotions, thus enhancing
the overall user interaction experience.

Contextual Q&A Generation

To address the challenge of context-irrelevant re-
sponses, which is a common issue in dialogue
systems where interactions often lack relevance
to the ongoing scenario or character specifics, we
employ GPT-4 to generate contextually coherent

Q&A pairs. For example, when a character faces a
dilemma, the system is designed to produce queries
and responses that align with the character’s estab-
lished traits, such as indecisiveness and anxiety,
thereby maintaining the authenticity of the dialogue
in relation to the character’s profile.

Hybrid Instruction-Based GLM Refinement

Our methodology employs a hybrid training ap-
proach that seamlessly integrates general instruc-
tions with character-specific Q&A pairs. This strat-
egy is carefully crafted to strike a balance between
the flexibility required for dynamic dialogue gen-
eration and the need to uphold character integrity.
In practical terms, this means equipping the LLMs
to adeptly navigate a spectrum of conversational
scenarios. These range from broad, general inter-
actions to more intricate exchanges that demand
responses finely tuned to the unique profiles of
individual characters. By training the LLM with
this diverse mix of inputs, the model becomes pro-
ficient in handling various situational dialogues,
accurately reflecting each character’s distinct at-
tributes and the specific subtleties of the conversa-
tion. As a result, this hybrid training method fosters
the creation of dialogues that are both contextually
adaptive and consistent with the characters’ distinct
personalities.

4



3.2 Semantic-Enhanced Retrieval
Optimization

Addressing the issue of inaccurate and semanti-
cally irrelevant information retrieval in dialogues,
we have adopted the BGE4 retrieval method. BGE
is an efficient Chinese and English semantic vector
model that ensures the accuracy of responses, es-
pecially when dealing with sensitive topics, and re-
mains semantically sensitive to the context, signifi-
cantly enhancing the quality of interaction. (Xiao
et al., 2023). This familiarity allows models to gen-
erate dialogue based on a wealth of pre-existing
knowledge. In contrast, modern datasets prioritize
the nuanced portrayal of personal and everyday
characters. These datasets are derived from diverse
sources, including real chat logs, customer service
interactions, and fictional narratives from less main-
stream media. Such characters might include a
typical office worker dealing with daily stressors
or a mother showing love and responsibility in a
family setting. The dialogues here involve specific,
real-life scenarios, such as office interactions or
typical family conversations, which lack the broad
pre-existing knowledge base associated with public
figures.

4 Experiments

4.1 Dataset

In the evaluation of machine learning models, the
role of datasets is paramount, particularly in lan-
guage processing and character portrayal. Tradi-
tional datasets predominantly highlight eminent
figures, such as the legendary Sun Wukong, whose
familiar attributes and stories are widely acknowl-
edged, facilitating model development (Sabadoš,
2021). However, these datasets often neglect the
finer details and emotional complexity of lesser-
known or everyday characters, leading to a repre-
sentation gap (Rolf et al., 2021). Our unique dataset
bridges this gap by focusing on the rich, nuanced
depiction of ordinary individuals. It involves an in-
depth exploration and portrayal of each character’s
distinct personality traits and emotional depths,
delving into aspects usually overshadowed in dom-
inant narratives.

In constructing our dataset, we designed 20
unique and personalized Chinese characters to mir-
ror a wide spectrum of real-world dialogues. These
characters ranged from everyday individuals to fic-

4https://github.com/FlagOpen/FlagEmbedding

tional ones inspired by scripts. Our diverse data
sources included social media interactions, film and
television scripts, and customer service dialogues.
We emphasized personal privacy and copyright law
compliance, ensuring all data was cleansed and
anonymized.

We filtered out redundant data and multi-party
conversations to reshape the original data into con-
textually relevant dialogues. For example, script-
based dialogues were restructured to better de-
pict character interactions and emotional dynam-
ics. Table 1 provides basic statistics for RoleCraft-
GLM. Our final dataset comprises 27,259 multi-
turn dialogues, distinctly different from datasets
like Reddit comments (Al-Rfou et al., 2016),
Sina Weibo (Shang et al., 2015), and Twitter
datasets (Ritter et al., 2011), which mostly capture
less structured, multi-participant interactions.

In addition, we annotated each dataset entry with
emotion labels to capture characters’ distinct emo-
tional traits, adding an emotional layer to model
training. We used Ekman’s "Six Basic Emotions
Theory" (Ekman, 1992) to label utterances and in-
cluded additional emotions like neutral, excited,
and depressed, totaling ten categories. The use
of emotion labels in dialogue datasets has been
proven to enhance natural language processing by
improving response retrieval and emotional rele-
vance (Zhou et al., 2017). These labels also enrich
conversational analysis and aid in building natural
dialogue systems (Bothe et al., 2019).

4.2 Experiment Settings

In our research, we anticipate that fine-tuning our
model using a specifically designed dataset for role-
playing will result in superior performance in char-
acter portrayal compared to baseline models. This
expectation is based on the customized nature of
the dataset, which includes detailed emotional an-
notations and context-specific scenarios that are es-
sential for nuanced character interactions. Through
this specialized training, we expect our model to
accurately capture and express the intricacies of
character-specific language styles and emotional
responses, surpassing baseline models that may
lack such targeted training. Our experiments aim
to validate this hypothesis and showcase the ad-
vanced capabilities of our model in role-playing
tasks.
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Figure 3: Verb-noun structure of Instructions. The inner
circle representing the top 20 verbs and the outer circle
listing the direct noun objects.

Category Value
# Total Dialogues 2,7259
Avg.round of dialogues 14.64
# Characters 20
Character Personality Traits 45
Avg.length of profile 394.05
# Instructions 3,9422
Character-specific instructions 9842
General instructions 2,9580
Avg. instruction length 28.93
# Response 15,7742
Character-specific response 9842
General response 14,7900
Avg.response length 33.86

Table 1: Statistics of datasets

Figure 4: Emotion distributions in dialogues

Figure 5: The word cloud represents a visual distribution
of personality traits for Chinese characters within the
dataset, with larger words indicating a higher frequency
of associated traits.

4.2.1 Baselines

We assessed the ChatGLM3 model5, enhancing its
performance on specific datasets using the Low-
Rank Adaptation (LoRA) fine-tuning method (Hu
et al., 2021). LoRA’s precision in fine-tuning, es-
sential for handling personalized and emotionally
rich content, maintains the model’s core capabili-
ties while adapting to new data features. We bench-
marked our RoleCraft-GLM’s performance against
industry standards such as GPT-3.5 and GPT-4,
and leading Chinese dialogue generation technolo-
gies like ChatGLM26 and ChatGLM3, along with
Baichuan2 (Yang et al., 2023) and Qwen (Bai et al.,
2023). In our comparative experiments, we evalu-
ated RoleGLM, which was fine-tuned using LoRA

5https://github.com/THUDM/ChatGLM3
6https://github.com/THUDM/ChatGLM2-6B

on specific datasets, as a benchmark. To match
RoleGLM’s setup, we also focused on a similar
number of Chinese roles for consistency in our
training approach. By selecting ChatGLM2 over
ChatGLM3, we aimed to closely compare perfor-
mances under equivalent conditions. This exten-
sive evaluation underlined our model’s distinctive
advancements in dialogue generation.

4.2.2 Evaluation criteria
(1) Rouge-L Score: A commonly used met-

ric (Lin, 2004) for evaluating natural language
generation, measuring the overlap between
model-generated text and real (ground truth)
text. We focused on average score (Avg), gen-
eral instruction response (RAW), role-playing
speaking style (CUS), and specific role knowl-
edge (SPE).
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Figure 6: A case of generated responses from our model and baseline models to a character-specific introduction.

Table 2: Rouge-L Evaluation

Model Avg RAW CUS SPE
GPT-3.5 0.4532 0.5569 0.5197 0.2831
GPT-4 0.4633 0.5661 0.5264 0.2973
ChatGLM2 0.4054 0.5104 0.4063 0.2996
ChatGLM3 0.4161 0.5218 0.4159 0.3108
Baichuan2 0.4273 0.5308 0.4576 0.2934
Qwen 0.4264 0.5297 0.4617 0.2879
Ours 0.4704 0.5385 0.5154 0.3573

Model Avg. Ranking
ChatGLM3 1.86
Baichuan2 2.95
Qwen 3.38
Ours 1.42

Table 3: GPT-4 Evaluation

(2) Average Ranking Using GPT Scoring: In
our work, we used the GPT-4 score (Fu et al.,
2023) to evaluate the average rank of mod-
els on different dialogue-generating tasks, fo-
cusing on two main criteria for scoring: first,
the distinctiveness and accuracy of the charac-
ter’s speaking style in matching their profile,
and second, the richness of character-related
knowledge and memory incorporated into the
dialogues.

(3) Comparison of Emotionally Annotated and
Non-Annotated Models: We compared mod-
els with and without emotional annotations
in specific role knowledge memory (SPE) to
evaluate the role of emotional annotation in
enhancing model performance.

4.3 Performance Analysis
Results from Tables 2 and 3 clearly demonstrate
our model’s exceptional performance across mul-

Table 4: Rouge-L Evaluation

model Avg RAW CUS SPE
RoleGLM 0.4570 0.5255 0.5049 0.3406
Ours 0.4641 0.5251 0.5128 0.3544

tiple key performance indicators, particularly in
specific role knowledge memory (SPE). Our model
significantly outperformed GPT-4 and other mod-
els with a score of 0.3573 in this dimension, high-
lighting its superior ability in understanding and
generating complex dialogues involving specific
roles. However, GPT-4 leads in general instruction
response accuracy (RAW) with a score of 0.5661,
reflecting its strong capability in interpreting and
responding to general instructions. Our model,
while slightly less efficient in this dimension, still
maintains a high score, proving its effectiveness in
handling everyday dialogues. These findings un-
derscore our method’s significant effectiveness in
deepening role understanding and enhancing dia-
logue generation quality. In particular, in emotion-
driven role portrayal, our model demonstrated pre-
cise capture of each role’s emotional traits and per-
sonality, surpassing traditional role-playing mod-
els in expressing role-specific knowledge. More-
over, our model not only excelled in generating
role-specific dialogue content but also showed re-
markable ability in maintaining natural flow and
contextual consistency.

The Rouge-L assessment results from Table 4
indicate our model’s performance improvement in
three dimensions compared to RoleGLM. This sug-
gests that our dataset enabled the model to more
accurately capture and reflect the everyday charac-
teristics and emotional states of roles, thereby en-
hancing the dialogue’s realism and personalization.
Additionally, the inclusion of emotional annotation
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Method SPE
RoleCraft-GLM(w/o emo) 0.3362
RoleCraft-GLM(w emo) 0.3573

Table 5: Comparing Emotion-Annotated and
Non-Annotated Data

further enhanced the model’s ability to understand
and generate nuanced emotional dialogues, espe-
cially evident in the high SPE scores, indicating
our method’s outstanding performance in specific
role knowledge and memory.

In our ablation experiments (see Table 5), we
compared two versions of the RoleCraft-GLM
model: one incorporating emotional annotations
and the other without them. The primary objec-
tive was to assess the specific impact of emotional
annotation on improving the model’s scores in spe-
cific role knowledge memory (SPE). The results
showed that the RoleCraft-GLM model with emo-
tional annotation scored higher in SPE than the
version without it. This difference emphasized the
importance of emotional annotation in improving
the model’s understanding and generation of dia-
logues for non-celebrity roles that are closer to ev-
eryday life and lack extensive public knowledge or
prior information. In these cases, emotional anno-
tation not only provided the model with key infor-
mation to deeply understand the roles’ emotional
states and personality traits but also ensured that
the generated dialogues were closer to the roles’
true feelings and personalized expressions.

5 Conclusions

In this paper, we present RoleCraft-GLM, our in-
novative framework aimed at enhancing person-
alized role-playing experiences. Central to this
framework is a unique dataset featuring 20 diverse,
non-celebrity Chinese characters, each with distinct
emotional annotations. This shift from traditional
celebrity-focused characters to more authentic, ev-
eryday personas marks a significant advancement
in language modeling. RoleCraft-GLM’s dataset
emphasizes real-life scenarios and emotional depth,
setting new standards in natural language process-
ing. Our evaluations demonstrate that RoleCraft-
GLM excels in creating dialogues that are not only
contextually rich but also emotionally nuanced, out-
performing conventional models. In the future, we
hope to to develop behavioral agents that excel in
personalization and interactivity, skillfully tailored

to individual user preferences, thereby elevating
the level of user engagement.
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Abstract 

The quantity and quality of data have a 

significant impact on the performance of 

artificial intelligence (AI). Consequently, 

there is a growing interest in synthetic data 

generation for medical AI. However, 

research has primarily focused on medical 

images, with little given to text-based data 

such as medical records. This is because in 

the biomedical field, text data often 

contains sensitive information such as 

personal information, making it difficult to 

access a sufficient amount of data required 

for medical AI. Therefore, this study 

explores the application of language 

models (LMs) for synthetic text generation 

in low-resource domains like medical 

records. It compares the results of synthetic 

text generation based on different LMs. To 

achieve this, we focused on two criteria for 

LM-based synthetic text generation of 

medical records using two keywords 

entered by the user: 1) the impact of the 

LM's knowledge, 2) the impact of the LM's 

size. Additionally, we objectively evaluated 

the generated synthetic text, including 

quantitative metrics such as BLUE and 

ROUGE, along with clinician's evaluations. 

1 Introduction 

The performance of artificial intelligence (AI) is 

greatly influenced by the quantity and quality of 

data, including computational resources (Whang et 

al., 2023). For example, massive language model 

(LM) services like ChatGPT (OpenAI, 2023), with 

20 billion parameters, require large-scale datasets 

and high-performance computing resources. 

However, building extensive datasets in the 

biomedical domain is challenging for the following 

reasons (Kalkman et al., 2022): 1) Inclusion of 

sensitive information such as personal details 

require ensuring privacy protection, information 

security, transparency, and related considerations. 2) 

Caution must be exercised due to concerns such as 

the potential failure to maintain anonymity and the 

possibility of data misuse. Consequently, despite 

the existing demand, accessing the necessary data 

in the biomedical domain can be difficult, with only 

a limited subset being publicly available. 

Nevertheless, medical AI has consistently 

advanced, primarily in fields with less sensitive 

information, such as medical image analysis. 

However, text data containing extensive 

information, like Electronic Medical Records 

(EMR), is organized in different formats depending 

on regions or institutions and poses a challenge for 

effective utilization due to the inclusion of a 

considerable amount of sensitive information (Lee 

and Kim, 2021). Therefore, there is a need for a 

technique of synthetic text generation, one of the 

text augmentation methods, to enable the effective 

utilization of medical records in medical AI. 

In this study, we explored methods to synthetic 

text generation using LMs for text augmentation in 

low-resource medical records. We compared the 

following aspects: 1) the impact of the LM's 

knowledge, and 2) the impact of the LM's size. To 

do so, we compared ChatGPT, BioGPT (Luo et al., 

2023), distilGPT2 (Sanh et al., 2019), and our own 

GPT2 (we called CerebroGPT). At this time, we 

conducted experiments using low-resource 

medical records related to cerebrovascular diseases. 

Finally, for objective evaluation, we performed 

clinician’s evaluations along with four quantitative 

metrics (BLUE, ROUGE, Cosine similarity with 

sentence embeddings and TF-IDF). 

This paper is structured as follows: In Chapter 2, 

we provide a review of prior research on text 

augmentation methods. Chapter 3 describes the 

medical records we utilized in this study. Chapter 4 

details the methodology, while Chapter 5 details 

How to use Language Models for Synthetic Text Generation  

in Cerebrovascular Disease-specific Medical Reports 
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the experimental setup and results. In Chapter 6, we 

summarize our observations and present the 

conclusion. 

2 Related Work 

Rule-based methods involve traditional techniques 

such as synonym replacement, random word 

insertion and deletion, collectively known as Easy 

Data Augmentation (Wei and Zou, 2019). Due to 

their simple principles, they have addressed good 

performance when applied to small-scale datasets. 

However, it may not be suitable for the medical 

domain when applied to text, as they could 

incorrectly represent the location of abnormalities 

or describe diseases inaccurately in medical 

records. 

Model-based methods augment text based on the 

language understanding derived from the 

knowledge of LMs. Rakshit et al. (2022) enhanced 

text generation by fine-tuning GPT2 using the 

generative abilities of the LM. It involved adding 

new special tokens ("<|startoftext|>") to the model 

during fine-tuning, enabling it to generate text 

learned based on knowledge of LMs. 

After the release of ChatGPT, prompt 

engineering based on ChatGPT has also been 

attempted (Ubani et al., 2023; Dai et al., 2023; 

Møller et al., 2023). In these efforts, suitable 

prompts for specific tasks were explored when 

using ChatGPT for generating synthetic training 

data in low-resource tasks. They focused on the fact 

 
1 https://hallym.hallym.or.kr/ 

that ChatGPT, pretrained on a large corpus, has a 

broad semantic space, allowing it to generate 

various expressions for the same meaning. 

3 Medical Reports in Cerebrovascular 

Disease 

The dataset consists of radiologist’s reports on CT 

images collected from Hallym University Sacred 

Heart Hospital 1  and Chuncheon Sacred Heart 

Hospital 2 from 2012 to 2020, involving a total of 

35,511 individuals which is intracerebral 

hemorrhage (ICH), non-ICH, and normal patients. 

While it includes a total of 90,489 reports, but there 

are many duplicate reports with the same content. 

Therefore, we utilized 47,675 reports after 

removing duplicates. Additionally, to standardize 

different report formats by radiologists and to 

address sensitive information such as personal 

details, we conducted preprocessing using regular 

expressions. All procedures in this study were 

performed in accordance with the Decla-ration of 

Helsinki, and it was approved by the Institutional 

Review Board at Chuncheon Sacred Heart Hospital 

(IRB No. 2021-10-012). The examples of medical 

reports are shown in Appendix A. 

4 Language Models for Synthetic Text 

Generation 

As shown in Figure 1, we compared the following 

LMs for LM-based synthetic text generation of 

medical records: 

2 https://chuncheon.hallym.or.kr/ 

Figure 1. Overviews of the proposed methods for synthetic text generation by LMs. 
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• ChatGPT (20B): ChatGPT utilizes the 

GPT3.5-Turbo version, a LM that has been 

pretrained on diverse datasets for various 

domains and fine-tuned using methods like 

RLHF (Reinforcement Learning of Human 

Feedback) in InstructGPT (Ouyang et al., 

2022). Therefore, we explored suitable 

prompts through prompt engineering and 

generated synthetic text using this prompt. 

• BioGPT (355M): BioGPT is structured with 

the same architecture as GPT2-medium: 

vocabulary size is 42,384, number of layers 

is 24, hidden size is 1024 dimensions, and 

number of heads is 16. It is a domain-specific 

LM fine-tuned for the biomedical domain, 

trained on a comprehensive biomedical 

dataset of 15 million papers (title and 

abstract) from PubMed. Therefore, we fine-

tuned a BioGPT using medical record corpus. 

• distilGPT2 (82M): The architecture of 

distilGPT2 is as follows: vocabulary size is 

50,260, number of layers is 6, hidden size is 

768 dimensions, and number of heads is 12. 

It is a LM that underwent knowledge 

distillation from GPT2 (124M) trained on 

the OpenWebText Corpus (Gokaslan and 

Cohen, 2019), a corpus from a general 

domain, to achieve a smaller size and faster 

inference speed. Therefore, we fine-tuned a 

distilGPT2 using medical record corpus. 

• CerebroGPT (10M): CerebroGPT is a 

cerebrovascular disease-specific LM which 

is developed in-house and small-sized, with 

the following architecture: vocabulary size is 

42,384, number of layers is 3, hidden size is 

128 dimensions, and number of heads is 4. It 

was pretrained on a corpus of 396,826 papers 

(title and abstract) from the cerebrovascular 

disease, obtained by filtering out duplicate 

papers and items with only titles and no 

abstracts from PubMed. And Therefore, we 

fine-tuned a CerebroGPT using medical 

record corpus. 

Synthetic text generation requires producing 

diverse expressions or sentence structures for the 

same content. Therefore, we compared four 

generation strategies (grid search, beam search, 

top-k sampling, top-p sampling) and employed the 

most suitable strategy for each LM. And all LMs 

are designed to generate synthetic text based on 

two keywords inputted by the user. 

5 Experiments 

5.1 Experimental Setup 

The experiments were conducted on a server 

equipped with two Nvidia A100 GPUs. All LMs 

except ChatGPT used the Adam optimizer with a 

learning rate set to 1e-4. BioGPT and distilGPT2 

had a batch size of 8, while CerebroGPT had a 

batch size of 64. Early stopping was set to 10. For 

actual clinician’s evaluations, we selected 100 

samples as the evaluation sets and split the 

remaining data into training and validation sets 

with a ratio of 9:1. 

5.2 Results and Discussion 

We employed quantitative metrics for the 

generated text: BLEU, ROUGE, cosine similarity 

with sentence embedding and TF-IDF. The detailed 

descriptions of these metrics are as follows: 1) 

BLEU: We use BLEU to evaluate how well the 

synthetic text well represents the cerebrovascular 

disease-specific vocabularies. 2) ROUGE: We use 

ROUGE-N and ROUGE-L for evaluation. It 

evaluates to the same goal as BLEU. 3) Cosine 

similarity with sentence embedding: We use 

BioGPT to represent the embeddings of the text. 

Subsequently, we calculated the cosine similarity 

between the two embeddings, evaluating the 

semantic similarity between medical records and 

synthetic text. 4) Cosine similarity with TF-IDF: 

We represented vectors of TF-IDF on a sentence-

by-sentence basis after filtering out stop words and 

evaluated the cosine similarity for these vectors. At 

this time, we used the original report from which 

two keywords were extracted from the test data as 

a reference sentence. Additionally, we evaluated 

the quality of the synthetic text directly by 

clinicians to ensure an objective evaluation. 

The results of the synthetic texts generated by 

each model are presented in Appendix B. And the 

results for the four quantitative metrics are shown 

in Table 1. In overall aspects such as semantics and 

representation ability of cerebrovascular disease-

related vocabulary, distilGPT2 demonstrated the 

most superior performance. ChatGPT, considered 

as one of the most advanced LMs, effectively 

expressed grammatically complete sentences and 

medical knowledge. However, we consider that it 

received a lower score due to the inclusion of many 

general expressions and the format different to 
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medical records. BioGPT, pretrained on a PubMed 

corpus of 15 million papers, effectively expresses 

medical knowledge. However, fine-tuned on low-

resource medical records compared to large model 

sizes, it was judged to be unable to accurately 

represent incomplete sentence structures and the 

format of medical records. Furthermore, 

CerebroGPT, the model with the smallest size, 

demonstrated performance just below distilGPT2. 

Despite its compact size, it exhibited excellent 

capabilities in expressing cerebrovascular disease-

related vocabulary and effectively represented the 

format of medical records. However, we consider 

that it tended to express less grammatical 

constructs compared to distilGPT2, contributing to 

these observed results. Lastly, In the case of BLEU 

and ROUGE, the overall scores are distributed low, 

because the goal is to generate synthetic text with 

diverse expressions rather than generating the same 

text as the reference sentence. 

Next, we received evaluations from clinician, 

and detailed reviews are available in Table 2. The 

clinician evaluated 100 synthetic texts generated by 

each LM by directly reviewing them. As a result, 

distilGPT2 and CerebroGPT were evaluated to 

produce synthetic text that contained medical facts 

at the similar as a radiologist or other clinician. In 

addition, when checking the overall aspect, 

 
Sentence 

Embeddings 
TF-IDF ROUGE-1 ROUGE-2 ROUGE-L 

ChatGPT 0.6692 0.1612 0.1154 0.0293 0.1131 

BioGPT (top-p) 0.5711 0.2168 0.1045 0.0141 0.1011 

distilGPT2 (top-k) 0.8514 0.4549 0.4217 0.2618 0.4146 

CerebroGPT (top-k) 0.7997 0.3828 0.3223 0.1703 0.3179 

 BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU 

ChatGPT 0.0689 0.1873 0.0021 0.0001 0.0004 

BioGPT (top-p) 0.0452 0.0078 0.0001 2.16e-308 1.12e-80 

distilGPT2 (top-k) 0.2945 0.1916 0.1189 0.0734 0.1165 

CerebroGPT (top-k) 0.2057 0.1126 0.0516 0.0271 0.0503 

Table 1:  Evaluation results for synthetic text using evaluation metric. 

Best performance ranking 

3 4 1 2 

ChatGPT BioGPT distilGPT2 CerebroGPT 

Excellent ability to 

express various 

sentences with the 

general fact. 

Difficult to evaluate 

synthetic text because it 

is not created with a 

complete sentence 

structure. 

Excellent ability to 

express various sentences 

with the medical fact. 

The ability to represent 

sentences based on 

medical facts is excellent, 

but the ability to generate 

sentences with various 

expressions is slightly 

poor. 

Excellent ability to 

express grammatically 

complete sentences. 

Some ungrammatical 

sentence expressions. 

Some ungrammatical 

sentence expressions. 

Many additional general 

expressions appear in the 

synthetic text. Represented in a format 

similar to actual medical 

reports. 

Represented in a format 

most similar to actual 

medical reports. Represented in a 

different format from 

actual medical reports. 

Table 2:  Human evaluation results (with clinician). 
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including grammatical sentence structure 

expressions, etc., the clinician's evaluation 

evaluated the quality of synthetic text in the same 

as the quantitative evaluation, in the order of 

distilGPT2, CerebroGPT, ChatGPT, and BioGPT. 

6 Conclusion 

In this study, we explored the use of LMs for 

synthetic text generation based on two keywords 

provided by the user to augment low-resource 

medical records. We compared ChatGPT, BioGPT, 

distilGPT2, and CerebroGPT (in-house). The 

experimental results indicated that, overall, 

distilGPT2 exhibited superior performance in 

semantic aspects and the expression of 

cerebrovascular disease-related vocabulary. 

Moreover, distilGPT2 demonstrated the most 

suitable quality of synthetic text in the evaluation 

by clinicians. Therefore, we conclude that selecting 

a LM tailored to the dataset size of the specific 

domain, rather than relying on large-scale LMs 

(LLMs), is crucial for augmenting low-resource 

domain text. Additionally, it is considered that 

generating high-quality synthetic text is possible by 

preprocessing the text into the desired format. 

However, as data augmentation ultimately 

involves generating synthetic dataset, annotating 

for the synthetic data must also be conducted. 

Therefore, we will develop an annotation model for 

cerebrovascular disease-related synthetic text. In 

addition, we plan to obtain additional permission to 

build a database of not only radiologist’s reports on 

CT images but also EMRs from a wide range of 

medical fields with sensitive information removed. 

Through this, we plan to use Retrieval-Augmented 

Generation (Lewis et al., 2020) to conduct research 

on an advanced text augmentation algorithm based 

on medical facts in EMR. These results are 

expected to play an important role in further 

improving synthetic text generation in the medical 

domain and utilizing the rich information 

contained in EMR in the future medical AI field. 

Limitations 

This work has several limitations. First, the 

cerebrovascular disease-related medical records 

used contain sensitive information and cannot be 

disclosed publicly. Second, the format of the 

preprocessed medical records may differ from 

those used in other countries or institutions. Third, 

the proposed method is limited to cerebrovascular 

diseases and does not cover the entire biomedical 

domain. The synthetic text generation in the 

broader medical domain, including the format and 

vocabulary expressions familiar to most clinicians 

(e.g., abbreviations), remains a future task. 
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A Medical Report Corpus 

Medical records were collected for a total of 35,511 

people, and details are as follows: 1) Patients with 

intracranial hemorrhage: 10,249, 2) Patients with 

other cerebrovascular diseases or normal 

individuals: 25,262. Table 3 shows the original text 

and preprocessed results of the medical records. 

B Generated Synthetic Texts 

Each of the generated synthetic texts is a result 

created based on the same two keywords: 

“Multiple, both”, “History, trauma”, “Non-specific, 

small”, “1, Diffuse”. This has been put together for 

each LM, as shown in the following Table 4-7. 
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Intracerebral Hemorrhage Patient 

Original text Preprocessed text 

Diffuse cerebral subdural hemorrhage: decreased Diffuse cerebral subdural hemorrhage. - decreased. 

Diffuse cerebral subdural hygroma, subdural 

hemorrhage 

- No signficant interval change since the last 

examination. 

Diffuse cerebral subdural hygroma, subdural 

hemorrhage. - No signficant interval change since the 

last examination. Both parietal craniostomy. 

Non-ICH and Normal Patient 

Original text Preprocessed text 

Unremarkable finding of brain parenchyma and 

cerebrospinal fluid space 

Unremarkable finding of brain parenchyma and 

cerebrospinal fluid space. 

equivocal focal low density in both globus pallidus 

R/O) Acute carbon monoxide intoxication 

equivocal focal low density in both globus pallidus. 

R/O: Acute carbon monoxide intoxication. 

Table 3:  Example of medical report (intracerebral hemorrhage patient, non-ich and normal patient). 

 

distilGPT2 

Mulitple both frontal contusional hematomas -resolving. Midline frontal epidural hemorrhage -No signficant 

interval change since the last examination. Diffuse both cerebral subdural hygromas. -decreased. Left frontal 

subcortical hemaL subarachnoid hemorrhages -mild decreased. 

History -trauma, S/P coil embolization at ruptured aneurysm at left P-om. SAH, IVH and hydrocephalus. 

Otherwise, no demonstrable abnormal finding. 

Non-specific small nodular calcification or post infectious calcified granuloma. -Meningioma or parasite 

infestation. Chronic right otomastoiditis. 

1. Diffuse subarachnoid hemorrhage. 2. intraventricular hemorrhages in lateral, fourth and third ventricles. 3. 

intracerebral hemorrhlacranial arteries. -No signficant interval change since the last examination. 

Table 4:  Examples of synthetic text generated by distilGPT2. 

CerebroGPT 

Mulitple both frontal subcortical intracerebral hemorrhage. Small vessel disease of both frontal lobes. -remnant 

intraventricular hemorrhages in left basal ganglia. 

History -trauma, both frontal deep white matters. Multifocal low density in both frontal lobes. 

Non-specific small infarctions in left basal ganglia and left frontal lobe. No signficant interval change since the 

last examination. Otherwise no demonstrable abnormal finding. Left corona radiata and temporal cortical 

Intracerebral hemorrhage in both fronto-parietal lobe. 

1. Diffuse subarachnoid hemorrhage in left fronto-parietal cortical subarachnoid hemorrhage -decreased. 

Table 5:  Examples of synthetic text generated by CerebroGPT. 
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ChatGPT 

Multiple both large and small infarcts are present, indicative of a cerebrovascular disease affecting various 

regions of the brain. These findings suggest a significant compromise in blood flow leading to ischemic strokes. 

Prompt medical intervention should be considered to prevent further damage and assess the underlying cause. 

History - trauma: The CT images reveal a vascular abnormality in the brain, suggesting a possible 

cerebrovascular disease. This may be indicative of a previous traumatic event, such as a head injury or blood 

vessel rupture, leading to impaired blood flow in the affected area. Further medical evaluation and treatment 

should be considered. 

Non-specific small hypodensities are observed in the subcortical region of the brain, suggesting possible 

lacunar infarcts or chronic microvascular ischemic changes in a patient with cerebrovascular disease. Further 

clinical correlation and follow-up imaging may be necessary to ascertain the underlying cause and guide 

management decisions. 

1. Diffuse subarachnoid hemorrhage is a condition characterized by bleeding throughout the spaces between 

the brain and the thin membranes covering it, suggesting a ruptured blood vessel. Immediate medical attention 

is vital as it can lead to significant brain damage or even life-threatening complications. 2. Diffuse subarachnoid 

hyperdensity is indicative of widespread blood extravasation within the subarachnoid spaces, typically caused 

by an aneurysm rupture. Timely intervention and interventions such as coiling or clipping are crucial to prevent 

further bleeding and minimize long-term neurological deficits. 

Table 6:  Examples of synthetic text generated by ChatGPT. Highlights are the results of generating 

sentences with general content, such as advice to consult a doctor or get tested at a hospital. 

BioGPT 

Mulitple both contuhematoma left-cortex subcortical. frontal hemorrhage counter ou. hemorrhage right ie@-

@ cortical subcortical -interval. parietal hemorrhage Multiright-subdural ag. hemorrhages ght temporal. st/ of, 

to,.. of. / 1 Chronic. Chronic otomo., maxillary sphenoid. osclerotic calcification both vertebral. no abnormal. 

significant change last. C F U MRI. urther of age refer. to.-. c F Uporboth bone with cortex. dural. - 2 c f u, 

ension multistage. stified 3 considering. old and with as to 3 Mild in. not. 5 evidence subarachnoid,,-R O 1 Old. 

unal 2 No. 1 Multiple sional. lacunar. No change within. (), c no change 2 Multiple fracture right bone skull 

able 3 4 use. 3 Traumatic and, and contuhemorrhages mega significantly usp1 including elresolving reversible. 

both cortical and ernal. Non pecsubarachnoid. in frontal sul. suggvely 1--developed unres. right cerebral 

hyroma (5 4 5 Lt. brain. reversible edema urther. 4 Re). olstate 2 Suspously ventricular. ereus. R S O. Resving 

2 Nontraumatic, with edema both ventricle post. 2 RE-brain and brain not how ressive - (2 4,) 4 4> than 4.44. 

hydrocephalus slightly C D. s 5 Mild. evidence diffuse swelling M1 other idum since. 4. able. considering 

significant MU4 4 2 2 8uschange. ending. nreversible of hydrocephalus 4 mild. with. lgprogressive involving 

a the. on aggrav. developed. post2 ... 

History -trauma, /. x Trauma hemorrhagic.,. infarction hemorrhagic sions both and frontal. SDH right lobe left 

lobe Otherwise demonstrable finding or orwith ficlevel. urther, lutide of ost- discrete. C view within. stable 

how by than res.. / subarachnoid. of temporal. not. to. with arterial. aneor ymaneurysm and as more rather. 

ension use fic. developed el. able. 1 along dural. - 1 Chronic cerebral. dural with. c. Chronic. No chang. ogenic. 

R O metastasis 2 Old infarction left ganglia 3 Fungal. no change left otitis 4 Chronic otomo. in right sto. usion 

right jugular. 3 Chronic lesions both astand ara. within mastoid cells to developed. opp usein watershed a-. 

evidence 1- 1 Old. ward. lacunar. 4 Soft density left udspace. ified. -, t ... 

Table 7:  Examples of generated synthetic texts (BioGPT). BioGPT’s synthetic text is very long and 

unstructured sentences. 
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Abstract

This study evaluates the ability of Large Lan-
guage Model (LLM)-based Subpopulation Rep-
resentative Models (SRMs) to generalize from
empirical data, utilizing in-context learning
with data from the 2016 and 2020 Ameri-
can National Election Studies. We explore
generalization across response variables and
demographic subgroups. While condition-
ing with empirical data improves performance
on the whole, the benefit of in-context learn-
ing varies considerably across demographics,
sometimes hurting performance for one demo-
graphic while helping performance for others.
The inequitable benefits of in-context learning
for SRM present a challenge for practitioners
implementing SRMs, and for decision-makers
who might come to rely on them. Our work
highlights a need for fine-grained benchmarks
captured from diverse subpopulations that test
not only fidelity but generalization.

1 Introduction

Natural language processing research has plunged
headlong into the new alchemical science of prompt
engineering (Liu et al., 2023). Ask OpenAI’s Chat-
GPT to “think step-by-step” and behold its im-
proved reasoning performance (Wei et al., 2023).
Tell it to behave as an expert and witness its exper-
tise increasing (Salewski et al.).

The responsiveness of foundation models to
prompt engineering has led researchers from di-
verse disciplines to explore their applications. This
is certainly true in political science, where several
recent studies investigate whether the malleability
of LLMs would allow them to simulate the atti-
tudes and behaviors of human subpopulations (Chu
et al., 2023; Jiang et al., 2022; Kim and Lee, 2023;
Simmons and Hare, 2023; Linegar et al., 2023).

Polling plays an important role in opinion ag-
gregation, acting as a cornerstone of governance
(Shapiro, 2011). The use of LLMs as subgroup

Figure 1: Description of a prompting strategy used for
both RQ 1 and RQ 2. For Study 1, |Dfs| = 0.

simulators has hypothesized benefits including de-
creased cost and increased sample sizes (Argyle
et al.). As response rates to traditional survey meth-
ods decline, social scientists are encouraged to
explore new methods (Ziems et al.). More than
a dozen examples of the subpopulation represen-
tative modeling approach are found in academic
research (Simmons and Hare, 2023), and the ap-
proach has already garnered attention at local (Tal)
and national levels (ION).

1.1 Limitations of LLMs as Subpopulation
Representative Models

While the potential benefits are considerable, apply-
ing LLMs as a substitute or complement for polling
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should be taken with caution. Recent work shows
that prompting LLMs with demographic informa-
tion leaves much to be desired. Bisbee et al. show
that when ChatGPT (gpt-3.5-turbo)1 is prompted
with demographic information from the ANES Sur-
vey2 and asked to complete a Feeling Thermome-
ter3, its responses are more extreme and less vari-
able than the responses collected from human par-
ticipants (Bisbee et al.). Santurkar et al. show that
overall fidelity4 to human response distributions
is low for OpenAI’s ChatGPT when the model is
not prompted with a demographic descriptor, that
prompting is more effective for some population
subgroups than others, and that the fidelity obtained
using demographic prompting, while higher than
without, is still far from perfect. These studies ex-
press a pessimistic stance about the potential of
LLMs for subpopulation representative modeling,
one that is rightly held based on the experimental
evidence to date.

1.2 In-Context Learning for Better Fidelity

We contend here that we should not be prematurely
pessimistic. As with chain-of-thought (Wei et al.,
2023) and expert prompting, perhaps a straight-
forward technique to improve the performance of
LLMs as subpopulation representative models has
been overlooked. A hallmark of LLMs is their ca-
pability for in-context learning (ICL; Brown et al.;
Dong et al. 2023). One popular mode of in-context
learning is few-shot learning, where task examples
are provided in the context window to condition
generation (Song et al., 2023). Few-shot learning
improves performance relative to prompting with-
out examples, on tasks including translation and
question answering (Brown et al.), clinical informa-
tion extraction (Agrawal et al., 2022), reading com-
prehension and natural language inference (Chowd-
hery et al., 2022), and improves factual accuracy
of model responses (Semnani et al., 2023).

The subpopulation representative modeling
(SRM) task involves predicting the distribution of
some response variables, such as candidate prefer-
ence (Palakodety et al., 2020), feeling thermometer
(Argyle et al.) or stance on divisive issues (Kim

1https://openai.com/blog/chatgpt
2The American National Election Studies (ANES) are na-

tional surveys of voters in the United States, conducted before
and after presidential elections, with data since 1948 (ANES)

3The ANES Feeling Thermometer measures respondent
affinity to various political groups in the United States.

4Santurkar et al. refer to this as alignment. We use “fi-
delity" since alignment take several meanings.

and Lee, 2023) for a population subgroup (target
demographic) identified by a combination of de-
mographic variables. Applying LLMs to this task
typically involves prompting the language model
with a natural language description of the demo-
graphic and adding instructions to encourage the
model to predict the response distribution. Impor-
tantly, this zero-shot approach does not leverage
observed data from the subpopulation other than
its demographic descriptors.

The most straightforward way to apply ICL to
the SRM task would be to condition the model
with data from the target subpopulation and demo-
graphic variables. With sufficient grounding in the
target task, we expect that models could become
representative. However, in this setup the practi-
tioner has gained little, since they have to provide
data from the target subpopulation and response
variables to elicit desirable performance.5 For this
reason, we expect that SRM practitioners would be
enthusiastic to use available data to improve per-
formance on unrelated subpopulations or unrelated
response variables. In other words, generalization
beyond the data presented in the few-shot examples
would allow practitioners to apply SRMs with im-
proved performance even if data was not abundant
for the subpopulation of interest.

1.3 The Importance of Generalization

For the subpopulation representative modeling task,
generalization can occur along two axes: (1) gen-
eralization across response variables and (2) gen-
eralization across demographics. If a model can
generalize across response variables, this means
that conditioning on observed response variables
improves fidelity for unobserved response variables.
If a model can generalize across demographics, this
means that conditioning on observed demographics
improves fidelity for unobserved demographics. If
these capabilities are demonstrated, the outlook for
subpopulation representative modeling via LLMs
may not be as dire as it seems. In-context learn-
ing could mitigate known issues such as extremism
(Bisbee et al.) or lack of representativeness (San-
turkar et al.).

Successful generalization alone does not imply
that LLMs are suitable for use as SRMs. How-
ever, we argue that if generalization were possible,
it would encourage further development of LLM-

5This setup could still be used for synthetic data genera-
tion for the subpopulation and response variables, similar to
missing data imputation in Kim and Lee (2023)
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Demographic Variables Response Variables
age The Democratic Party
race The Republican Party
gender Black Americans
income White Americans
education Hispanic Americans
political party Asian Americans

Muslims
Christians
Jews
Liberals
Conservatives

Table 1: Demographic and response variables used in
this study.

based SRM technology. Integrating LLMs into the
political infrastructure could have serious social
consequences. For that reason, we believe that ma-
chine learning practitioners, social scientists, and
policymakers should understand the viability of the
technology, as greater viability may translate to
an increased chance of real-world use. This moti-
vates our study of the generalization capabilities of
LLMs for the subpopulation representative model-
ing task.

Research Questions

We address the following research questions:

• RQ 1 (Generalization across Response Vari-
ables): How does the fidelity of LLMs to
some target demographic vary with the num-
ber of response variables from the target de-
mographic used for conditioning? We address
this in Section 3.

• RQ 2 (Generalization across Demograph-
ics): How does the fidelity of LLMs to some
target demographic vary with the number of
examples from other demographics used for
conditioning? We investigate this in Section 4.

2 Methods

This section documents methods shared across both
studies. Specific methods for each study are docu-
mented in Section 3 and Section 4.

2.1 Data

We use data from the American National Election
Studies (ANES). We used the time series cumu-

lative data file for the ANES Survey6, which con-
tains six demographic variables (age, race, gen-
der, income, education, and political party), and
11 Feeling Thermometer variables shown in Ta-
ble 1. The ANES Feeling Thermometer is a series
of ratings questions where survey participants rate
their affinity towards various political groups on a
continuous scale from 0-100. Across all years, the
ANES data contains 68,224 observations. We se-
lected observations from the years 2016 and 2020,
yielding 12,550 observations. After removing ob-
servations with missing values, the dataset used for
experiments contained 4,397 observations. See Ap-
pendix B for additional details on data processing
steps applied before prompting.

2.2 The Subpopulation Representative
Modeling Task

Subpopulation data consists of a number of obser-
vations of some set of variables V , with each obser-
vation corresponding to a single individual. Often,
this set of variables contains some subset Vd ⊂ V
that describe the demographic characteristics of
each individual, and some other subset Vb ⊂ V
capturing individual behaviors or attitudes. At a
high level, the goal for the SRM task might be to
approximate the distribution of Vb conditioned on
Vd. However, it is equally likely that practitioners
are interested in predicting a specific behavior and
have some other behavioral data available for con-
ditioning, requiring generalization across response
variables. We investigate this setting in Section 3.
Additionally, practitioners may have some paired
(demographic, behavior) data available for certain
demographic cells and want to predict the behav-
ior for other demographic cells. We investigate
generalization across demographics in Section 4.

2.3 Measuring Fidelity Error

We are interested in assessing how LLM fidelity to
some target demographic varies with the amount
of empirical data used to condition the model. We
use the term fidelity error (E) to refer to the gap
between the LLM response and ground truth data
observed from humans in the demographic of inter-
est. In our setting, the behavioral variables Vb are
Feeling Thermometer ratings across 11 political
groups. To explore generalization across response
variables, we select some Vbc ⊂ Vb to be used for

6available at https://
electionstudies.org/data-center/
anes-time-series-cumulative-data-file/
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E(d, Vc, Dfs) =
1

|Vp|
∑

vp∈Vp

|ŷ(d, Vc, vp, Dfs)− y(d, vp)| . (1)

E(d, nc, nfs) =
1

nr

∑

Dfs∼D(nfs,d)

1

|Vc(nc, d)|
∑

Vc∈Vc(nc,d)

E(d, Vc, Dfs). (2)

conditioning. The LLM is tasked to predict the
remaining variables Vp = Vb \ Vbc.

To obtain ground truth for Vb at the demographic
level, we obtain an average respondent profile for
each demographic cell by calculating the mean
responses for each of the 220 demographic cells in
the ANES data.

We define fidelity error for some target demo-
graphic d as the difference between the empiri-
cal mean and the LLM-predicted response, aver-
aged over the Feeling Thermometer variables in-
cluded in Vp. In general this error varies by the
conditioning variables (Vc), see Equation (1). The
term y(d, vp) is the empirical mean Feeling Ther-
mometer for demographic d towards group vp. The
term ŷ(d, Vc, vp, Dfs) is the LLM-predicted Feel-
ing Thermometer data for demographic d towards
group vp, conditioned on variables Vc and few-shot
data Dfs. In other words, Equation (1) describes
the fidelity error of the model conditioned on a
specific set of few-shot examples.

Equation (2) estimates the overall fidelity error
of the model by sampling nr sets of few-shot exam-
ples from the observed data. In our experiments we
used nr = 5. The term Vc(nc, d) is the set of sets of
conditioning variables having |Vc| = nc elements
that are available for demographic d. The term
Dfs(nfs, d) is the set of sets of few-shot examples
having |Dfs| = nfs elements that are available for
demographic d.

2.4 Generating LLM Responses

Our prompting strategy is briefly outlined here and
in Figure 1. In this study, we utilize OpenAI’s
gpt-3.5-turbo, accessed via the API. We adapt
a similar prompting strategy to Bisbee et al., alter-
ing prompts to accommodate Research Questions
1 and 2. This approach comprises a consistent
system prompt for directing the model’s behavior
and a variable user prompt, tailored for each re-
search question. For RQ 1, each query features
a single user prompt with an incomplete Feeling
Thermometer table. For RQ 2, we supply the model
with multiple user prompts, each paired with an ex-

ample model response which contains a Feeling
Thermometer table with ground truth data.

For a detailed view of our prompting setup, refer
to the Appendix A.

3 Generalization of In-Context Learning
Across Response Variables

This study investigates the generalization of in-
context learning across response variables (Re-
search Question 1). We are interested in finding
out to what extent increasing the number of condi-
tioning variables improves fidelity to unobserved
response variables.

3.1 Methods

Each prompt includes all demographic variables,
plus a subset of the behavioral variables Vbc ⊂ Vb.
We are interested in relating the number of behav-
ioral variables used for conditioning (|Vbc|) to the
fidelity error. For each demographic cell, we com-
pute the mean empirical response data. Then for
each possible value of |Vbc| ∈ [0, 10], we randomly
sample nr sets of conditioning variables. The em-
pirical mean response data for these variables are
presented in each prompt as a partially-completed
Feeling Thermometer table in CSV format, as
shown in Figure 8. The model then completes the
remaining rows of the table. For each prompt, we
parse the model-completed portion of the Feeling
Thermometer table into CSV format. We then cal-
culate the fidelity error for each prompt by compar-
ing these responses to the empirical mean response
data for variables Vp.

3.2 Fidelity Error Decreases with Increasing
Conditioning Variables

Figure 2 shows the relationship between number
of conditioning variables |Vbc| and the fidelity er-
ror for varying number of few-shot examples. In
general, in-context conditioning on observed be-
havioral variables improves fidelity to unobserved
behavioral variables, with error decreasing as the
number of conditioning variables increases.
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Figure 2: Changes in the fidelity error depending on the |Vbc| averaged across all demographics. The fidelity
decreases as the number of conditioning variables increases. This pattern holds for every number of few-shot
examples checked.

Figure 3: Changes in the fidelity error (E) depending on the number of conditioning variables (|Vbc|) for different
racial groups. Error rates are lower in general for non-Hispanic Whites than for other racial groups.

3.3 Effectiveness of Response Variable
Conditioning Varies by Demographic

We can observe discrepancies in error rates be-
tween demographics. For example, error rates are
lower in general for non-Hispanic Whites than for
other racial groups (Figure 3), and for Democratic
party in comparison to the Republican one (Fig-
ure 4).

Reduction in error as a result of increased condi-
tioning varies by demographic. For instance, error
rates are roughly constant for |Vbc| < 6, then in-
crease for the non-Hispanic black demographic,
while continuing to decrease for the non-Hispanic
white demographic (Figure 3). This suggests that
conditioning on behavioral variables may be more
effective for some demographics than for others.

Refer to Appendix C for figures showing rela-
tionships between the fidelity error and number of
conditioning variables for other demographics.

4 Generalization of In-Context Learning
Across Demographics

4.1 Methods
In this study, we investigate the generalization of
in-context learning across demographics.

In this case, we select some empirical data
Dfs ⊂ D, {dfs ̸= d ∀ dfs ∈ Dfs} to be
used as few-shot examples. Each prompt was con-

structed by selecting a target demographic, as in
the previous study. Then |Dfs| ∈ {0, 2, 4, 6} few-
shot examples of complete demographic and Feel-
ing Thermometer information for non-target demo-
graphics were randomly selected.

Selecting few-shot examples naturally raises the
question of which examples to select. Few-shot
example selection can be viewed as an information
retrieval task, and many of the well-known methods
from IR are applicable here. These include seman-
tic similarity methods (Nan et al., 2023) as well
as classic information retrieval algorithms such as
max marginal relevance (MMR) (Carbonell and
Goldstein, 1998). Few-shot example selection is
also related to the problem of representative sam-
pling in the social sciences (Manheim et al., 1981);
stratified sampling by demographic could be ap-
plied (Barreto et al., 2018). Additionally, the recent
trend towards larger models and LLM-as-a-service
APIs has encouraged methods that maximize the
number of few-shot examples to be included when
the model input is restricted by total length (Sel).

However, the most straightforward approach is
to sample uniformly at random from the observed
data, and in this work we opt for this setup. Since
the use of LLMs for SRM is relatively new and
may be applied by practitioners who are not famil-
iar with the aforementioned methods, we think it
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Figure 4: Changes in the fidelity error (E) depending on the number of conditioning variables (|Vbc|) for different
political parties. Error rates are lower in general for Democrats than for Republicans.

is important to consider the performance of naive
methods. We are aware that the choice of sampling
method could influence the results of this study;
see the Discussion for commentary on the effects
of sampling strategy and our suggestions for addi-
tional experiments.

4.2 Fidelity Error Decreases with Increasing
Few-Shot Examples

Figure 6 shows fidelity error as it relates to the
number of few-shot examples. In general, fidelity
error decreases with increasing number of few-shot
examples.

4.3 Effectiveness of Few-Shot Learning Varies
by Demographic

We can again observe discrepancies in error rates
between various demographics, including race, age
income, and party. For instance, from Figure 5
it can be seen that not only the fidelity error for
non-Hispanic whites is smaller in general, but also
that in-context learning is more efficient for this
ethnicity.

We draw heavily on the prompting methods used
in Bisbee et al. - this was done intentionally, for the
sake of comparison. The key difference is the use
of conditioning based on ground-truth data. Bis-
bee et al.’s study is one of the sharpest criticisms
of LLM-based SRMs to date and raises important
questions about the viability of LLM-based SRMs.
If the deficiencies highlighted in this work are ame-
liorated by in-context learning, this would be an im-
portant consideration. We use similar methods so
that results are attributable to the use of in-context
learning, rather than differences in prompting strat-
egy.

5 Discussion: Subpopulation
Representative Modeling via In-Context
Learning

Recent criticisms have argued that Large Language
Models do not sufficiently represent the opinions
or behaviors of human subpopulations when these
subpopulations are specified in the context (San-
turkar et al.; Bisbee et al.). However, extant work
neglects the capability for models to learn via in-
context learning.

Our experiments demonstrate that LLMs can
learn the subpopulation representative modeling
task in-context. The experiments in Section 3 show
that providing the model with partial information
about subpopulation behavior improves model fi-
delity on unobserved response variables. Section 4
shows that providing the model with information
about other subpopulations can improve model fi-
delity to an unrelated subpopulation of interest.

In this experiment, we selected few-shot exam-
ples uniformly at random. This is only one of
several few-shot example selection strategies avail-
able to the practitioner (see Section 4, Methods).
We believe it is likely that the example selection
strategy has some influence over the performance
disparities between majority and minority groups.
Appendix Figure 13 shows that the ANES data is
imbalanced with repsect to the demographic vari-
ables – for example, approximately three fourths of
respondents were non-Hispanic white, as opposed
to Hispanic or non-Hispanic black. The minor-
ity categories account for approximately 1/8th of
the observations each. For a given target example,
the likelihood to select a few-shot example with
the same race is proportional to the distribution
of the data over the race variable. In general, it
is more likely that a randomly-selected few-shot
example will share demographic values with the
target example when the target example belongs
to the majority demographic. Assuming that the
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Figure 5: Changes in the fidelity error (E) depending on the number of few-shot examples (|Dfs|) for different
racial groups. Error rates are lower for non-Hispanic Whites. While with increased number of few-shot examples
the fidelity error for other race groups remain nearly constant, the fidelity rate for non-Hispanic white racial group
decreases.

Figure 6: Changes in the fidelity error depending on the
|Dfs| averaged across all demographics. The fidelity
decreases as the number of few-shot examples increases.
This pattern holds for every number of conditioning
variables checked.

similarity between few-shot examples correlates
to their utility for the predictive task, this dataset
bias could result in few-shot prompting being more
effective for majority groups. This applies both in
absolute terms, and in terms of the marginal benefit
of additional few-shot examples. We encourage
further investigation of the relationship between

demographic representation in the few-shot data,
performance discrepancies across demographics,
and few-shot example selection strategies, and plan
to explore this theme in future work.

These aggregate results seem promising for the
potential of LLMs to perform the subpopulation
modeling task. However, upon closer analysis, we
find that the effectiveness of in-context learning is
variable across demographics. While additional
conditioning data boosts performance for some
demographics, it has negligible or even deleteri-
ous effects for others. This result extends prior
work showing variation across demographics in
the exaggeration of stereotypical response patterns
(Bisbee et al.) and the fidelity of LLMs to human
responses without conditioning (Santurkar et al.).
The subgroup-specific effectiveness of in-context
learning for SRM presents challenges for SRM
practitioners, as well as decision-makers using the
results of SRMs. We suggest three directions for
future work. The inequitable performance of LLMs
on subpopulation simulation calls the ethicality of
the endeavor into question. In tasks like recidi-
vism prediction, theoretical results indicate mutual
unsatisfiability of model bias criteria (Kleinberg
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et al., 2016; Chouldechova, 2017). These impos-
sibility results influence why the field views ma-
chine learning models as appropriate for certain use
cases and possibly unfit for others. We encourage
similar investigation into the ethical nature of the
subpopulation representative modeling task. This
should take into consideration the dual-use nature
of subpopulation representative models – that they
could be leveraged for positive use cases (improv-
ing existing political representation processes) as
well as negative (used to steer misinformation cam-
paigns). Secondly, our results highlight the need
for fine-grained benchmarking for subpopulation
representative models, in terms of generalization
performance in few-shot settings as studied here, as
well as absolute performance in zero-shot settings.
Finally, we note that several approaches have been
proposed to ameliorate issues with existing subpop-
ulation representation techniques (Santurkar et al.;
Lahoti et al., 2023). We see potential for further
research in this area of improving subpopulation
representative model performance.
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The table starts with:
group ,thermometer
Muslims ,30.0
Jews ,72.0

Figure 8: Possible end of the table to condition on two
response variables for the target demographic (ground-
truth responses).

The prompting setup consists of task instructions
(the system prompt) and the user prompt. The sys-
tem prompt is a constant element in all the requests,
designed to guide the AI model towards displaying
a subpopulation representative behavior (see Fig-
ure 9 for the exact structure of the system prompt).
User prompts vary based on the research question.
For research question 1, a single user prompt is
used. This prompt consists of three parts:

1. Target demographic description (d), which
provides demographic data to the model (see
Figure 10);

2. A number of conditioning variables, constant
across all requests, posing a concrete ques-
tion with respect to the current study (see Fig-
ure 11);

3. Target demographic conditioning, providing
a partial Feeling Thermometer table of Vbc ⊂
Vb variables into the model (see Figure 8).

For research question 2, multiple user prompts
are employed, each paired with an example model
response. The structure of additional user prompts
remains consistent with that of the RQ 1, but in-
stead of the target demographic data, a non-target
demographic conditioning is used. All but one of
these prompts serve as few-shot examples. In RQ
2, a single few-shot example consists of:

1. Non-target demographic data (dfs), fed into
the model in the same format as in the Fig-
ure 10;

2. A number of conditioning variables, similarly
to RQ 1 (refer to Figure 11);

3. Ground-truth responses from the cleaned
ANES data – a Feeling Thermometer table
for the same non-target demographic. The
format is the same as in Figure 8.

Few-shot examples are followed by the final user
prompt (same as in the RQ 1), soliciting a model
prediction for the feeling thermometer table for the
target demographic.

B Notes on Data Processing

Many observations in the ANES data were incom-
plete. Missing value rates for the data are shown
in Figure 12. Counts of observations for each de-
mographic variable are shown in Figure 13. Re-
moving rows containing missing demographic and
response variables, and observations with variable
values other than those in Table 1 resulted in 4,397
observations, with 570 unique demographic cells.
The end-to-end data processing pipeline is shown
in Figure 7.

C Figures

Figures 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
and 25 show our findings for different demographic
variables.
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You are an AI assistant capable of simulating a wide range of demographics.

You receive demographic data describing a single person as an input.
Provide responses from this person 's perspective.
Use only knowledge about politics that they would have.

The user asks about individuals ' feelings toward different groups.
Responses should be given on a scale from 0 (meaning cold feelings) to 100 (

meaning warm feelings).
Ratings between 50 degrees and 100 degrees mean that you feel favorable and warm

toward the group.
Ratings between 0 degrees and 50 degrees mean that you don 't feel favorable

toward the group and that you don 't care too much for that group.
You would rate the group at the 50 degree mark if you don 't feel particularly

warm or cold toward the group.

Figure 9: System prompt used for all studies (task instructions).

You are a {age} year old {race} {gender} with a {education}, earning ${income}
per year.

You are a registered {party} living in the USA in 2019.

Figure 10: User message, used either for non-target (dfs) or target demographic d.

How do you feel toward the following groups?
The Democratic Party?
The Republican Party?
Black Americans?
White Americans?
Hispanic Americans?
Asian Americans?
Muslims?
Christians?
Jews?
Liberals?
Conservatives?

To answer , complete the following CSV table.

The table starts with:
group ,thermometer

Figure 11: Conditioning variables (Vbc).
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Figure 12: Distribution of missingness across demographic cells for ANES feeling thermometer Variables (2016-
2020).

Figure 13: Value counts for ANES 2016-2020 after removing all missing values.
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Figure 14: Fidelity error vs. |Dfs| for age.

Figure 15: Fidelity error vs. |Vbc| for age.

30



Figure 16: Fidelity error vs. |Dfs| for education.

Figure 17: Fidelity error vs. |Vbc| for education.
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Figure 18: Fidelity error vs. |Dfs| for gender.

Figure 19: Fidelity error vs. |Vbc| for gender.
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Figure 20: Fidelity error vs. |Dfs| for income.

Figure 21: Fidelity error vs. |Vbc| for income.

33



Figure 22: Fidelity error vs. |Dfs| for party.

Figure 23: Fidelity error vs. |Vbc| for party.
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Figure 24: Fidelity error vs. |Dfs| for race.

Figure 25: Fidelity error vs. |Vbc| for race.
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Abstract

Generative AI systems aim to create customiz-
able content for their users, with a subsequent surge
in demand for adaptable tools that can create per-
sonalized experiences.

This paper presents HumSum, a web-based tool
tailored for humanities students to effectively sum-
marize their lecture transcripts and to personalize
the summaries to their specific needs. We first
conducted a survey driven by different potential
scenarios to collect user preferences to guide the
implementation of this tool.

Utilizing Streamlit, we crafted the user interface,
while Langchain’s Map Reduce function facilitated
the summarization process for extensive lectures
using OpenAI’s GPT-4 model. HumSum is an in-
tuitive tool serving various summarization needs,
infusing personalization into the tool’s functional-
ity without requiring personal user data collection.

1 Introduction and Motivation

The educational landscape underwent a significant
shift with the advent of e-learning platforms and
educational applications, particularly during the
global pandemic. The increased reliance on remote
learning highlighted the necessity of digital tools
to support students’ educational needs (Maatuk
et al., 2022; Fauzi, 2022; Lynch, 2020; Radha et al.,
2020). The surge in online learning applications
underscores the critical need for personalized tools
capable of meeting diverse student requirements.
One-size-fits-all approaches often struggle to ac-
commodate the varied learning paces, preferences,
and strengths of individual students (Tetzlaff et al.,
2021; Reber et al., 2018). An essential aspect lies
in creating educational applications and tools that
go beyond generic content delivery, ensuring tai-

lored experiences that resonate with each student’s
unique learning trajectory. Personalization not only
enhances academic outcomes but can also serve as
a motivational factor, fostering student enthusiasm
and persistence in learning endeavors (Maghsudi
et al., 2021a; Sadovaya et al., 2016).

The evolution of Large Language Models
(LLMs) represents a recent advancement in arti-
ficial intelligence, with the possibility of signif-
icantly influencing various facets of education.
Models such as pre-trained GPT-3/4 (Koubaa,
2023; OpenAI, 2023), Llama models (Touvron
et al., 2023), or dialogue-optimized models like
InstructGPT (Ouyang et al., 2022), ChatGPT (Ope-
nAI, 2022), characterized by their extensive knowl-
edge and language proficiency, have gained atten-
tion in many natural language processing (NLP)
and natural language generation (NLG) tasks (Xi
et al., 2023; Liu et al., 2023). LLMs possess the
capability to process vast volumes of text, allowing
for nuanced and context-aware understanding —
a feature fundamental to aligning their output to
match the user requests (Wang et al., 2023). The
adaptability and versatility inherent in these mod-
els enable the development of tailored educational
tools and applications, empowering students by
providing personalized content that aligns with
their learning styles and preferences (Cen et al.,
2023; Qu et al., 2022; Embarak, 2022; Maghsudi
et al., 2021b). By harnessing the capabilities of
LLMs, educational platforms can offer interactive
and adaptive content, contributing to enhanced en-
gagement, deeper comprehension, and a more im-
pactful learning experience for students across di-
verse disciplines.

We present a personalized summarization tool
catered explicitly to the needs of humanities stu-
dents, harnessing the capabilities of LLMs to pro-
vide tailored lecture summaries. LLM-based ap-
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proaches to automatic summarization have shown
promising results in capturing long-range depen-
dencies, handling complex sentence structures, and
producing coherent and contextually appropriate
summaries (Bražinskas et al., 2020; Fabbri et al.,
2020; Adams et al., 2022).

Our work addresses the following questions:

• RQ 1: How can we assess the diverse learning
preferences of students for the development
of a personalized summarization tool?

• RQ 2: How will users perceive and interact
with this personalized summarization tool?

• RQ 3: How can we create a personalized tool
without necessitating the acquisition of user
data?

Section 3 presents the collection and preprocess-
ing of transcribed university lectures on humanities
studies, which were used as material for the summa-
rizations. Section 4 presents the design of a survey,
centered on scenarios and multiple options, fol-
lowed by an analysis of survey results highlighting
user trends and preferences. These insights have
provided the requirements for the development of
the summarization tool. Section 5 reports on the
development of the tool, which was based on Ope-
nAI’s GPT-4 model (OpenAI, 2023), illustrating
the integration of user preferences derived from the
survey into the tool’s framework. Finally, Section
6 presents an in-depth analysis of user engagement
and perceptions regarding the tool, evaluating user
feedback and satisfaction to assess the effectiveness
and quality of personalized summaries.

2 Background and Related Work

2.1 Personalization and Education

In the field of education, personalization operates
as a method rooted in evidence, centering on in-
dividualized learning abilities and study goals to
tailor educational content to individual needs. This
strategy entails adjusting, realigning, or reshaping
components of the curriculum to harmonize with
distinct individual requirements. As a result, it has
the potential to tackle learning challenges faced
by marginalized learners as well as to boost the
overall efficacy of teaching and learning method-
ologies (Bhutoria, 2022; Yonezawa et al., 2012).
Personalization stands as a fundamental principle

in education, involving customized educational ma-
terials and accurate interventions to address dis-
tinct learning requirements. This approach, rooted
in problem analysis and precise identification of
student needs, constitutes the fundamental essence
of personalized education (Cook et al., 2018; Fryer
et al., 2017).

The emergence of Artificial Intelligence (AI) in
education has broadened the scope for personaliza-
tion, as AI-powered systems, such as Interactive
Personalized Learning Spaces (PLS) and Intelli-
gent Tutoring Systems (ITS), actively recommend
tailored learning paths, customize educational con-
tent, and enrich learning experiences. These AI-
driven platforms can effectively support pedagogi-
cal planning and language studies, as validated by
empirical studies conducted across diverse educa-
tional environments (Qu et al., 2022; Zhang and
Aslan, 2021; Hwang et al., 2020; Liu et al., 2017).

2.2 Personalizing Summaries for Educational
Purposes

Summarization is an important NLP task aimed
at condensing extensive amounts of information
into cohesive and concise summaries. Its appli-
cation spans diverse domains, from news articles
to scientific papers, or legal documents (Altmami
and Menai, 2022; El-Kassas et al., 2021; Kanapala
et al., 2019). The surge in digital content since the
1950s has brought attention to automated summa-
rization techniques, owing to the escalating need
for efficient information retrieval and assimilation
(Luhn, 1958; Allahyari et al., 2017).

The summarization of educational content has
gained some attention even before the pandemic,
due to the increasing popularity of E-learning.
Yang et al. (2013) highlighted the shift toward
mobile-based learning and the challenges posed
by lengthy texts on such devices. Their re-
search emphasized that well-crafted summaries
could enhance learning experiences, particularly
when aligning content with the device’s constraints.
Miller (2019) employed a BERT model to create a
lecture summarization service for student use, in-
dicating the move from traditional approaches to
more AI-driven approaches.

On the other hand, personalization in summa-
rization can be viewed as stylization, the ability
to generate summaries that exhibit specific writing
styles, tones, or levels of formality. By incorporat-
ing stylization techniques into the summarization
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Department Courses per Department Transcripts per Department Avg. Tokens per Transcript Tot. Tokens RTTR MTLD
English 5 152 30843.8 819678.0 24.0 59.2
History 7 149 37662.3 604999.0 28.9 67.2

Philosophy 2 52 35588.4 498541.0 16.2 52.0
Psychology 2 43 51075.8 565734.0 21.7 63.2

Table 1: Descriptive statistics of the Yale Open Course lectures containing a total of 396 transcripts (RTTR = root
type-token ratio; MTLD = measure of textual lexical diversity - both are average per transcript).

process, it becomes possible to align the summary’s
linguistic characteristics with the target audience
(Díaz and Gervás, 2007; Yan et al., 2011; Móro
et al., 2012). For example, in an educational set-
ting, summaries can be stylized to match the level
of understanding and familiarity of the students or
their learning styles. This personalization allows
students to engage with the summary in a manner
that is comfortable and conducive to their learning
style, enhancing their comprehension and retention
of the lecture content.

While LLMs’ capabilities have been investi-
gated for providing personalized recommendations
(Sidahmed et al., 2022; Chen, 2023; Lyu et al.,
2023) and language learning interfaces (Kwon,
2023), they have not been studied for the specific
task of lecture summarization. However, LLMs can
generate summaries that are tailored to individual
preferences and needs, and aligning the generated
text to the user preference has been shown to im-
prove usability by conditioning the model on spe-
cific prompts or incorporating external knowledge
sources (Bai et al., 2022). LLMs can thus signif-
icantly contribute to the customization of lecture
summaries.

3 Lecture Transcripts Acquisition and
Preprocessing

We created a dataset comprising lecture transcripts
suitable for students in the humanities, collecting
data from Open Yale Courses (OYC)1 (Kleiner,
2023). This platform hosts numerous courses
across various disciplines, including subjects perti-
nent to humanities students such as English stud-
ies, history, psychology, and philosophy. Each
course includes video content along with supple-
mentary materials like syllabi, suggested readings,
and searchable transcripts for every lecture, avail-
able in HTML format. Table 1 summarizes the
dataset’s descriptive statistics, including the aver-
age length of the transcripts. For tokenization, we
utilized the English SpaCy model en_core_web_sm

1https://oyc.yale.edu/courses

version 3.6.0 (Honnibal et al., 2020).2. We also as-
sess lexical richness across topics by utilizing two
metrics: the root type-token ratio (RTTR; Guiraud,
1958) and the textual lexical diversity measure
(MTLD; McCarthy and Jarvis, 2010). These met-
rics were computed using the Lexical-Richness
library (Shen, 2022), with MTLD employing a
threshold of 0.72 to mitigate the influence of text
length (Shen, 2022)3. The lectures demonstrate
notably high scores for both RTTR and MTLD,
highlighting a significant level of lexical diversity.

In the preprocessing phase, minimal adjust-
ments were made to the data. Verbatim descrip-
tions of non-verbal cues or actions, denoted as
’[Crosstalk]’, ’[Laughter]’, and ’[Points at Stu-
dent]’, among others, which originated from the
transcription of video elements, were removed.
Additionally, indicators of pauses within the tran-
scripts, delimited by timestamps such as [00:08:47],
were also eliminated. These modifications were im-
plemented to streamline the content for subsequent
processing and analysis. Finally, incorporating the
lecture transcripts into our summarization tool de-
velopment involved storing essential details, includ-
ing departmental information, course titles, profes-
sor names, and lecture session numbers, alongside
the respective lecture transcripts.

4 Survey Design and Personalization
Analysis

4.1 Scenario-Based Survey Development

To collect requirements for personalization options
in lecture summarization, we conducted a scenario-
based survey, designed to explore user preferences
for a summarization tool. To replicate various
decision-making scenarios for creating summaries,
we crafted 36 scenarios.

For each survey question, we collected responses
from 10 participants from the Amazon Mechani-
cal Turk (AMT) platform, accumulating a total

2https://github.com/explosion/spacy-
models/releases/tag/en_core_web_sm-3.3.0

3https://github.com/LSYS/LexicalRichness
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of 360 responses for the entire survey. To ensure
that our survey focused on a demographic close to
university students, we restricted participants’ age
range to 20-25 and required a Turker approval rate
exceeding 98%. To craft authentic and engaging
scenarios, we asked the participants to adopt the
persona of a humanities student, embedding aca-
demic requirements specific to this field within the
instructions, for instance, that humanities students
often engage in extensive reading, utilize critical
and analytical thinking, and compose diverse types
of essays (cf. Fig. 15).

Participants were presented with one scenario
at a time, for example, "You took a lot of courses
this semester and you have a busy schedule bal-
ancing multiple courses and extracurricular activi-
ties. How would you prefer the summaries for your
courses this semester?", and were then asked what
type of summary would they need in this scenario,
as multiple-choice questions. Scenarios provide
realistic contexts for participants to envision practi-
cal usage and inform their preferences accordingly.
The varied scenarios allow for a comprehensive
exploration of diverse needs, aiding in tailoring the
tool.

We identified different aspects of summary per-
sonalization and asked the participants to express
their preference for each aspect by choosing one
out of three given options. For each aspect, several
scenarios were crafted to collect the requirements.

Length & Depth (8 scenarios): choice between

• Concise Summaries
• Moderately Detailed Summaries
• In-depth Summaries Summaries

here the participants could express their pref-
erence for brief, essential summaries to a more
comprehensive coverage

Tone & Style (8 scenarios): choice between

• Formal and Academic Summaries
• Neutral and Objective Summaries
• Conversational and Informal Summaries

here the participants could request academic
language or a casual, easy-to-understand con-
versational style

Complexity (7 scenarios): choice between

• Simplified Summaries
• Balanced or Neutral Summaries

• Detailed or Complex Summaries

here we catered to varying levels of complex-
ity from straightforward to elaborate informa-
tion

Summary Format (7 scenarios): choice be-
tween

• Bullet Point Summaries
• Paragraph-based Summaries
• Keyword Summaries

presenting information through bulleted lists,
narrative-style elaboration, or structured key-
words

Extra Features (6 scenarios): choice between

• Reflection Questions
• Entity Extraction
• Debate Focus

to enhance understanding by posing reflective
queries, extracting essential entities, and high-
lighting debates or perspectives discussed in
the lectures.

We also included a fourth option, "other", allow-
ing participants to articulate any additional prefer-
ences for the summarization tool, in case the first
three options did not match their preferences (cf.
Figures (5-13) depict the scenarios presented to the
participants and the responses, while Figures (14-
15) showcase the assigned task in AMT platform).

4.2 Interpreting User Preferences and
Identified Patterns

The analysis of the survey responses provides in-
sights into the diverse preferences of students re-
garding the summarization of lecture content across
various scenarios. For instance, in scenarios focus-
ing on extracting specific information like names
or crucial details from summaries, participants pre-
dominantly leaned towards the "Entity Extraction"
option. This indicates a preference for tools that
can efficiently identify and extract essential ele-
ments, aiding in information retrieval for specific
queries. Similarly, scenarios involving the prepara-
tion of academic or formal materials, such as thesis
content or consultation with professors, exhibited a
strong inclination towards "Formal and Academic"
style summaries, aligning with the need for struc-
tured and scholarly formats in such contexts.
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Figure 1: Summarization process using Streamlit, Langchain, and OpenAI’s GPT4-8K model.

Furthermore, scenarios emphasizing comprehen-
sion and preparation for discussions or examina-
tions revealed interesting trends. Participants fa-
vored different styles depending on their intended
use. For instance, those preparing for discussions
or debates leaned towards "Debate Focus" or "Re-
flection Question" options, indicating a preference
for content stimulating critical thinking and dis-
course. In contrast, respondents preparing for ex-
ams or dealing with a busy schedule sought ei-
ther "Concise Summaries" or "Moderately Detailed
Summaries" that encapsulate essential concepts
without excessive detail. Ultimately, regarding
queries about the summary output style, partici-
pants tended to favor "Bullet point" or "Keyword"
summaries when time constraints were a factor.

5 Summarization Tool Development

To craft the summarization tool, we leverage the
insights collected from the analysis of scenario-
driven survey outcomes. The tool aims at a straight-
forward design, enabling users to easily engage
with the content, and personalizing the summaries
to their needs.

5.1 User Interface
We created a user-friendly web-based tool named
’HumSum’ designed specifically for the summa-
rization process utilizing streamlit library4. Hum-
Sum features a convenient sidebar interface on the
left-hand side, enabling users to input their prefer-
ences for the department, course, and session for
which they seek a summary. Additionally, users can

4https://streamlit.io/

customize various aspects of the summary to suit
their preferences as shown in figure 2. They can
adjust the summary length, choosing from concise,
moderate, or detailed options. Similarly, they can
tailor the tone of the summary, opting for conversa-
tional, neutral, or formal language. Users can also
select the complexity level — ranging from simpli-
fied to balanced to sophisticated — based on their
comprehension needs. Moreover, the tool allows
users to choose the format of the summary, whether
it be in bullet-point, paragraph, or keyword style.
Furthermore, users can opt for additional features
such as extracting extra information like questions,
entities, or debates from the lecture contents to
enhance their summaries.

5.2 Langchain and LLM Chaining for
Summarization

To generate lecture content summaries, we utilized
Langchain5, an open-source library compatible
with Streamlit, offering access to various LLMs
including those provided by OpenAI. Langchain
encompasses diverse components such as Prompts,
Memory, Chains, and Agents, which facilitate han-
dling data stored in CSV files and support multi-
ple NLP tasks involving information extraction and
text generation. Specifically, we leveraged its ’Map
Reduce Document Chain’6 summarization chain
feature, which allows for the summarization of long
documents. As lecture contents are usually long
and might exceed the input token limit of the LLM

5https://www.langchain.com/
6https://js.langchain.com/docs/modules/chains/-

popular/summarize
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Figure 2: HumSum Interface - The slider on the left contains the customization options for the user.

models, we used this setup that enables the summa-
rization of extensive document collections within
a map-reduce style architecture. Langchain’s Map
Reduce involves dividing documents into smaller
chunks that fit within the token limit of the model.
For our lectures, we’ve specifically set this limit to
2000 tokens per chunk using Langchain’s "Recur-
sive Character Text Splitter"7. Each chunk is then
summarized giving the user-selected preferences
submitted via HumSum as instruction to the model
(the map function), followed by the consolidation
of these summaries into a final summary (combine
or reduce function). To create the summaries, we
made use of OpenAI’s GPT-4-8k model (cf. Fig.
3 for the custom map prompt and Fig. 1 for the
summarization process).

6 Assessing Preferences and Effectiveness
through User Evaluation

6.1 Assessing User Preferences based on the
Given Options

To evaluate the effectiveness of the HumSum sum-
marization tool and the user-customizable options,
we carried out a follow-up survey by recruiting

7https://python.langchain.com/docs/-
modules/data_connection/document_transformers-
/text_splitters/recursive_text_splitter

Figure 3: Custom prompt to replace the default map
prompt.

three participants per scenario, all of whom were
humanities students. This second survey utilized
the same scenarios as the initial one, albeit with
slight modifications, including additional informa-
tion prompting participants to select their depart-
ment, course title, and session. For instance the
first survey’s question such as You took a lot of
courses this semester and you have a busy sched-
ule balancing multiple courses and extracurricular
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activities. how would you prefer the summaries
for your courses this semester? has been modified
to Imagine yourself as an English student at Yale
University. You would like to create a summary for
Session Three of the course "Introduction to The-
ory of Literature", keeping in mind that you took
a lot of courses this semester and you have a busy
schedule balancing multiple courses and extracur-
ricular activities.. The students were asked to ex-
plore the tool and select their preferred options for
personalizing the summaries of lecture transcripts.
Throughout this process, no additional instructions
were provided, and the students navigated the tool
seamlessly without asking any questions or encoun-
tering difficulties. Once they finalized their choices,
the students submitted them, and the HumSum tool
displayed the resulting summarization based on
their preferences (cf. Fig. 16 - 20 for a sample user
journey).

The primary aims of this subsequent survey were
twofold: firstly, to assess whether participants’
choices remained consistent now that they had com-
plete access to the application interface, and sec-
ondly, to discern the most prevalent user choices
overall. This analysis aims to identify recurring
preferences among participants, to inform future
further development of the tool. Figure 4 shows the
personalization options that received the highest
number of selections per aspect (cf. Fig. 21 to 23
to see the frequency of all the provided options per
aspect).

Figure 4: The options that received the highest number
of selections within each aspect.

As depicted in Figure 4, users predominantly
favored middle-ground choices as their primary se-
lection, opting for moderate length, neutral tone,
or balanced complexity. This tendency might be
attributed to users’ cautious approach, potentially
stemming from their lack of prior experience with
the tool and limited exposure to the generated sum-

maries or real-world scenario analysis of the tool’s
efficacy.

This assertion finds additional support in Fig-
ure 24 in the appendix, displaying a comparison
between our anticipated selections and the actual
number of user preferences aligned with our expec-
tations. Notably, options entailing more complex
summaries, tailored to specific scenario require-
ments, were consistently not chosen. When ques-
tioned about this, users unanimously expressed con-
cerns about handling such complexity, especially
when required to memorize summaries for class-
room discussions or exams.

While the infrequent selection of non-middle-
ground options suggests a cautious approach by
users, it doesn’t imply that these options will never
be chosen by potential users of the tool. We rec-
ognize the importance of further exploration and
subsequent iterations to assess the tool’s perfor-
mance in actual classroom settings. Collecting real
classroom data from multiple usage cycles by stu-
dents in subsequent iterations will provide valuable
insights into the tool’s practical utility and user
preferences.

6.2 Assessing the Tool Efficacy and the
Personalization of the Summaries

To collect feedback regarding the effectiveness of
the summarization tool and the resultant summaries
based on users’ selections, we administered a con-
cise questionnaire featuring six rating-scale ques-
tions ranging from 1 to 5, as shown below. Overall,
the average rating across all questions was 4 out
of 5, indicating a favorable reception of this tool
for summarizing humanities-related content, with
users showing a high level of satisfaction when nav-
igating the tool. The outcome of this questionnaire
is displayed in Figure 25.

1. How satisfied are you with the summarization
tool’s user interface and ease of navigation?

2. Rate the accuracy of the summaries generated
based on your selected preferences.

3. How well did the summaries reflect your spec-
ified preferences for length, tone, complexity,
and format?

4. Rate the relevance and usefulness of the addi-
tional features (e.g., questions, entity extrac-
tion, debates) provided with the summaries.
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5. How would you rate the personalization op-
tions provided in this summarization tool?

6. How likely are you to recommend this sum-
marization tool to other students?

7 Conclusion and Future Work

In this study, we developed a personalized sum-
marization tool, "HumSum," tailored for human-
ities students to efficiently condense lecture tran-
scripts. We carried out a scenario-driven survey
to identify and integrate personalization features
within the tool, accommodating users’ preferences
for summary types. Utilizing the Streamlit library,
Langchain, and OpenAI’s GPT-4-8k model facili-
tated the tool’s development and the summarization
process. Subsequently, we evaluated the tool’s ef-
fectiveness through a user journey based on the
pre-defined scenarios and a straightforward rating
questionnaire, to evaluate the tool’s performance
along with the users’ anticipated outcomes.

This tool offers some advantages: it offers per-
sonalized summarization without relying on users’
private information, in addition to being an easy-
to-use tool. However, for future improvements, we
aim to implement a feedback integration mecha-
nism, enabling users to provide real-time insights
to refine the summary output iteratively. Address-
ing the issue of hallucination, a critical concern
in utilizing language models remains a future task
(Huang et al., 2023). Additionally, integrating ex-
ternal knowledge sources, such as highlighting key
information or providing links to supplementary
materials like Wikipedia, could significantly en-
rich the tool’s usability and enhance the learning
experience for students.

Limitations

While our research yielded valuable insights, ad-
dressing its limitations is crucial. One such con-
straint, as identified in Section 6.1, pertains to users’
predominant inclination towards moderate options
within the summarization tool. This predilection
could be attributed to users’ unfamiliarity with the
tool, limiting their perception of how specific op-
tions might shape a customized summary. Addi-
tionally, the scenarios employed might not have
effectively elicited all feasible options, suggesting
that continuous iterations over time could offer a
more comprehensive understanding of the tool’s
efficacy and available options.

Regarding the Map Reduce method employed,
its merits lie in scalability for larger documents
and the independent nature of LLM calls on in-
dividual document segments, enabling concurrent
processing. Nonetheless, several drawbacks should
be considered. Primarily, this approach requires
higher LLM calls to create a summary for one large
document. Furthermore, there is a risk of informa-
tion loss during the final reduction or combina-
tion phase. These limitations underscore areas for
potential refinement and call for cautious consid-
eration when employing the method in practical
applications.

Ethics Statement

The turkers we recruited on the AMT platform
as well as the students maintain their anonymity,
a practice aligned with ethical norms within the
community. They were recruited voluntarily and
provided a written consent form to participate in
the study and were allowed to opt out at any point
in time. Moreover, the AMT workers were com-
pensated following the norms and regulations of
the AMT platform for their time and effort spent on
our tasks. We encouraged feedback and offered to
promptly address any concerns or issues that might
arise during the research process. However, we
did not record any issues and we received positive
feedback regarding the experiments.

The icons showcased in Figure 1 have been
sourced from the freely available collection at
https://www.flaticon.com/.
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A Appendix

A.1 Comparison of Expected and Actual Responses: Analysis of AMT Participants’ Survey Data
The displayed bar plots represent the responses obtained from AMT participants for each scenario. The
orange color indicates the anticipated or expected responses from participants. In the majority of cases,
the participants’ responses aligned with our anticipated patterns.
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A.2 Example Scenario and Instructions Presented to AMT Participants
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A.3 Sample User Journey to create Personalized Summary with HumSum
This user journey presented here is formulated following a modified version of the initial survey’s question
below.
Initial survey’s question: You took a lot of courses this semester and you have a busy schedule balancing
multiple courses and extracurricular activities. how would you prefer the summaries for your courses this
semester?
Modified question for this user journey: Imagine yourself as an English student at Yale University. You
would like to create a summary for Session Three of the course "Introduction to Theory of Literature",
keeping in mind that you took a lot of courses this semester and you have a busy schedule balancing
multiple courses and extracurricular activities.
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A.4 Second Survey Assessment and Evaluation of the Tool
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Figure 23: The figures showcase the number of times an item was selected by the user for extra features.
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Abstract

With the rising popularity of LLMs in the pub-
lic sphere, they have become more and more
attractive as a tool for doing one’s own research
without having to rely on search engines or spe-
cialized knowledge of a scientific field. But
using LLMs as a source for factual information
can lead one to fall prey to misinformation or
hallucinations dreamed up by the model. In
this paper we examine the gpt-4 LLM by sim-
ulating a large number of potential research
queries and evaluate how many of the gener-
ated references are factually correct as well as
existent.

1 Introduction

One of the main functions of the system of mass
media, according to Niklas Luhmann, consists in
constituting a sort of short-term memory for soci-
ety by providing and processing information about
the world (Luhmann, 1995). To fulfill this function
and to perpetuate its own existence, the mass media
constantly generates and communicates informa-
tion. However, the truth of this information is not
the most important factor, even when it comes to
news. Truth is only relevant insofar as it empha-
sizes the sensational value of any given message
and averts the risk of being accused of deception
(Luhmann, 1995).

But this is in contrast to how we use news in
our everyday lives where we rely on them for their
accuracy.

With the advent of LLMs in the larger public
sphere (Yang et al., 2023; Thirunavukarasu et al.,
2023; Baidoo-Anu and Ansah, 2023; Dwivedi et al.,
2023) , this tension between the individual’s desire
for factually correct information and the mass me-
dia’s preference for mere communication grows
more pronounced. When ordinary users utilize
LLMs as more advanced internet search engines
to answer questions that are not easily answered

by sites like Wikipedia, they expect a truthful re-
sponse. But the model’s primary function lies in
communication. It might be dissatisfying for users
when an LLM hallucinates instead of providing
correct answers to a query, but this is not an error
on a technical level. A technical error would mean
a complete failure to communicate (i.e. a blank out-
put or an incomprehensible non-sequitur). To coun-
teract this discrepancy, filters and fact-checking
processes have been implemented, but these are
additional mechanisms added on top of the base
model to steer the result in the desired direction.
The issue of communication being valued more
highly than truth still remains. While this might
not be a problem on a larger systemic level, it is
an issue when individuals expect information to be
factual. This is why we need to examine the quan-
titative and qualitative nature of false information
produced by LLMs.

Hypothesis
Our hypothesis is that LLMs are more focused on

facilitating communication than factual accuracy.
This means that we expect the model to generate
relevant-sounding answers in significantly more
cases than it generates answers that are actually
supported by the facts.

2 Related Work

Despite recent developments in artificial intelli-
gence and the emergence of different LLMs such
as PaLM (Chowdhery et al., 2023), OpenAI’s Chat-
GPT (OpenAI, 2022), and GPT-4 (OpenAI, 2023),
Google’s Bard (Manyika, 2023), Meta’s LLaMa
(Touvron et al., 2023) all of the established LLMs
are infamous for hallucinations (Dziri et al., 2022;
Ji et al., 2023) . This fact prompted research to ex-
amine the ways of how we can facilitate the “made
up” nature of some of the outputs of the models.
As well as overall analysis of whether the LLMs
can be trusted. Workshops such as Workshop on
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Large Language Models’ Interpretability and Trust-
worthiness (Saha et al., 2023) or TrustNLP: Work-
shop on Trustworthy Natural Language Processing
(Ovalle et al., 2023) nudge the scientific community
to investigate explainability and trustworthiness of
different predictive models and LLMs.

Most of the research on the trustworthiness of
the LLMs is either based on surveys and analysis
of different requirements (such as fairness, explain-
ability, accountability, reliability to name a few)
that can be used to asses the output of a model in
general (Kaur et al., 2022; Liu et al., 2023) or in spe-
cific fields, for instance in Healthcare (Ahmad et al.,
2023). Other studies cover general guidelines for
establishing a trustworthy model (Litschko et al.,
2023) or provide an overview of methods available
to detect the fairness of the output of the model
based on their toxicity, bias and value-alignment
(Huang et al., 2023).

Though there are several studies that are focused
on investigating how factually correct the output of
the models is (Zhao et al., 2023; Min et al., 2023),
the usual methods of testing factual correctness is
to check the facts present in the output. Only very
few researchers studied the references that were
provided by a model for the generated output, i.e.
checked the validity of the source that the output
was based on (Shi et al., 2023).

This positional paper is designed to make it more
apparent if we should trust the output of the LLMs
just because they provide us with official looking
sources.

3 Methodology

To test our hypothesis that Large Language Mod-
els are in their nature trained to be a conversa-
tional partner first and a "fact provider" second,
we have conducted a series of experiments that
were designed to examine how much LLMs can
be trusted as a source of information. For the first
part of the experiment we automatically generated
scientific questions from different branches. Over-
all, 985 questions were generated for 231 scien-
tific branches. The most questions were generated
for the fields of Medicine (40), Computer Science
(38), Environmental Science (37), Earth Science
(35), Physics (35), Mathematics (35) and Chem-
istry (34).

The generated questions were then used as a
query for the gpt-4 LLM with a task of further gen-
erating a corresponding concise explanation which

was to be based on real scientific references (in
form of a list of links). For example, the query
“How do children acquire syntactic knowledge in
their native language?” received the explanation
“Children acquire syntactic knowledge in their na-
tive language through a combination of innate abil-
ities and environmental input <. . . >” and a list of
4 links to different scientific journals. The query
“How can we model complex systems with math-
ematics?” received the explanation “Complex sys-
tems can be modeled mathematically using various
approaches, depending on the nature of the sys-
tem and the phenomena being studied. Here are
some of the common mathematical frameworks
and methods used to model complex systems <...>”
based on 10 different links.

Previous research has shown that mapping back
to the original documents or providing sources to
the generated texts can potentially invoke a feeling
of trust from a user towards a model (Bohnet et al.,
2022). Therefore the generated references were
investigated for their relevance. In order to do that,
we counted how many of the generated references
actually exist at the moment of the experiment, and
how many of the links provided the information
that was relevant to the question.

The workflow of the experiment is given in Fig-
ure 1.

Figure 1: Automated Workflow for testing the hypothe-
sis

LangChain (Harrison, 2022) was used for gener-
ating both questions and explanations.

Though our experiments resemble the study per-
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formed by Shi et al., 2023, our approach focuses
more on generating specific questions within the
scientific domain to simulate the workflow and the
research process of a human.

4 Evaluation

To further investigate whether our hypothesis holds
we have conducted a quantitative (statistical) anal-
ysis of the results.

Overall, for 985 different questions we generated
985 explanations with 4434 references (with an
average of 5 references per explanation).

Out of the 4434 references 2967 links led to
pages that did not exist anymore at the time the
experiments were conducted (middle of December
2023). One of the reasons could be that the sub-
mitted paper that existed at the time the LLM was
trained, was retracted, deleted or moved to another
website (so-called illusions (Shi et al., 2023)). An-
other reason could be that the link was hallucinated
by the model and did not exist in the first place.

Out of the 1467 references that led to real ex-
isting scientific sources 1376 were relevant to the
question. Table 1 gives a short overview of the
findings.

We also examined the scientific branches that
suffered most from the sources that were not fully
available. Out of 40 questions and explanations for
the field of Medicine, 37 had missing references.
37 out of 37 explanations for questions from the
field of Environmental Science had incomplete ref-
erences. 2 out of 2 questions and explanations from
the area of Zymology had referenced non-existing
sources. In general, only approximately 25% of ex-
planations were covered by the references that were
marked as existing at the moment of the experiment.
After the relevance check 88% of explanations had
not only verifiable but also related sources.

5 Discussion

Our findings show that a large number of the gen-
erated sources are relevant to the question that was
asked, but do not exist. This is either because the
model hallucinated these citations or because its
data was outdated, thus providing a dead link.

It is not entirely clear if this supports our hypoth-
esis. If the citations are indeed real, but have been
deleted or retracted since the model was trained,
this finding may only be a reflection of the model’s
outdated training data. But if the model did in-
deed hallucinate these sources, this finding would

support our hypothesis that the model puts greater
value on communication and providing answers
that are superficially satisfactory than on factually
correct information.

However, many of the generated sources were
irrelevant to the query. These were generated by
the model to fulfill the demand for sources in the
query, but the sources provided were selected with
little regard for relevancy. This supports our hy-
pothesis that the model puts greater emphasis on
communicating successfully than on responding to
the query correctly.

6 Limitations

A limitation of this paper is that we only tested the
gpt-4 LLM. Our findings might only be relevant
to models similar to this one, but not for models
that are very different from it or those that have a
greater focus on factual accuracy.

We were also not able to clearly differentiate
between sources that did not exist anymore because
they were removed or retracted and those that were
hallucinated entirely.

7 Ethical Considerations

As far as ethical considerations go, our findings
illustrate that only in 88% of cases the cited sources
were relevant as well as existent. This suggests that
LLMs are not primarily concerned with providing
accurate and up-to-date information. Individual
users that seek to use LLMs as a tool for an in-depth
net search that search engines can’t provide should
be very cautious to double check the information
they receive.

8 Future work

We strongly believe that further investigation into
the phenomenon of illusions, hallucinations and
unrelated sources is needed. Understanding why
the model outputs references that are not indeed
relevant to the generated answers as well as a way
of identifying types of illusions and hallucinations
is crucial for building reliable, personalized and
trustworthy LLMs.
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Sources Does not Exists Exists
Exist irrelevant relevant

4434 2967 91 1376

Table 1: Overall number of sources given as references
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Abstract

User-centric personalization of text opens
many avenues of applications from stylized
email composition to machine translation. Ex-
isting approaches in this domain often en-
counter limitations in data and resource require-
ments. Drawing inspiration from the success of
prompt-enabled stylization in related fields, this
work conducts the first feasibility study into 12
pre-trained SOTA LLMs for author style emu-
lation. Although promising, the results suggest
that current off-the-shelf LLMs fall short of
achieving effective author style emulation.

1 Introduction

Driven by the trend of using Generative AI for
on-demand user-centric personalization in recent
years, the demand for personalized content has be-
come increasingly pronounced. Personalized text,
generated by capturing the style of an author, is
sought-after in creative content writing, data-to-text
generation, email composition as well as machine
translation to provide user-specific “naturalness”
to text. Prior works attempted at replicating an
author’s writing style by mapping the content to
a particular style but remained a challenging task
due to the indecipherable and individualistic nature
of writing style.

LLMs, with their understanding of natural lan-
guages via high-level latent representations, serve
as versatile tools for linguistic analysis and manip-
ulation. Therefore, they are explored abundantly
in various text-based applications such as infor-
mation retrieval, sentiment analysis, etc. (Lu et al.,
2023; Zhu et al., 2023). In the realm of controllable
text-generation, input optimization or prompt engi-
neering has enabled a resource-efficient alternative
to modulate LLM-generated text by modifying the
input prompts (Zhang et al., 2023). More recently,
this approach has been used to produce valid expla-
nations for various stylistic textual entailment tasks

and produced promising results in related fields
such as Authorship Verification and Personality
Prediction (Hung et al., 2023; Ji et al., 2023). Mo-
tivated by these observations, this work performs
the first feasibility study into using off-the-shelf
pre-trained LLMs for controllable stylized text gen-
eration via prompting for author style emulation.

2 Related Works

Author Style Emulation, within personalized text
generation, seeks to replicate the distinctive styles
of individual human authors. It is often conceived
in two ways - Text Stylization or Text Style Trans-
fer (TST). The former equips a text generator to
produce author-stylized text, while the latter in-
dependently extracts an author’s linguistic pref-
erences (style) and modulates a text generator’s
semantic content accordingly.

Early work in this field mainly investigated TST,
by attempting to Shakerspearize texts using parallel
corpora produced with and without Shakespearean
style (Xu, 2017; Jhamtani et al., 2017). However,
limited availability of parallel corpora for an aver-
age author’s style hindered progress in this direc-
tion (Hu et al., 2020). Motivated by the need for
non-parallel data, some research works exploring
TST for sentiment and formality utilized genera-
tive models, such as Generative Adversarial Net-
works (GANs), Variational Autoencoders (VAE)
etc., to obtain latent representation corresponding
to the style and semantic content separately (Shen
et al., 2017; Li et al., 2018). However, this line
of research was not as explored for author-stylized
text generation as the intricate relationship between
an author’s linguistic style and semantic content
would have made their separation a challenging
task.

In the recent past, Syed et al. (2020) exploited
the capabilities of LLMs such as GPT2 by fine-
tuning the model on an author’s corpus to incorpo-
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Table 1: Brief Description of the Text Generators

Type Text Generator Size Description
AutoR GPT3 175B The OpenAI text completion API used with the davinci engine.

Chat

GPT4 N/A OpenAI chat completion API used with the Turbo engine.
OpenChat3.5 7B Trained with Conditioned-RLFT on instruction data (Wang et al., 2023a).
CausalLM 14B Trained on manually curated SFT dataset from many open-source corpora.
Zephyr 7B Fine-tuned on synthetic datasets using DPO algorithm. β variant used(Tunstall et al., 2023)
Llama-2 7B Fine-tuned on instruction datasets using SFT and RLHF (Touvron et al., 2023)
NeuralChat 7B Fine-tuned on an open source dataset using DPO algorithm . Version v3-1 used.
DeepSeek 7B Trained on a corpus of 2 trillion tokens in English and Chinese.

Instruct

GPT3.5 N/A OpenAI text completion API used with the turbo− instruct engine.
Falcon 7B Fine-tuned using the base model on chat and instruct datasets(Almazrouei et al., 2023).
Mistral 7B Instruction fine-tuned model trained on conversation datasets (Jiang et al., 2023).
INCITE 7B Instruction fine-tuned model on a collection of instruction datasets by RedPajama project.

Note: The texts are generated using respective model’s HuggingFace model repository unless otherwise specified.
Abbrev.: AutoR - Auto-regressive, SFT - Supervised Fine-Tuning, RLFT - Reinforcement Learning Fine-Tuning, RLHF -
Reinforcement Learning with Human Feedback, DPO - Direct Preference Optimization

rate their style characteristics without the need for
a parallel corpus. The idea was to utilize the LLMs
for stylistic rewriting than simple text generation
(i.e., writing). However, this method requires large
amounts of labeled data with author identities to
train a resource-heavy LLM such as GPT2.

More recently, due to the influx of large num-
ber of LLMs performing competitively on natural
language generation and understanding tasks, in-
vestigations have been made to utilize off-the-shelf
pre-trained LLMs for related applications such as
Authorship Verification and Automatic Personality
Prediction through prompt modulation with promis-
ing results (Hung et al., 2023; Ji et al., 2023). These
results emphasize the capability of the LLMs to
understand and follow instructions through vari-
ous prompting strategies and guided instructions.
Specifically, these works instruct the LLM to find
entailment between a text and a label (for person-
ality prediction) or between two texts (for author-
ship verification), while also providing explana-
tions. However, to the best of the author’s knowl-
edge, no work has been done to extend this concept
to generate text with an objective of emulating an
author’s writing style.

3 Methodology

Problem Statement: Given human-authored text
TA by an author A, generate TG using a text gener-
ator G that faithfully mirrors the style of the author
in TA. The success criterion is for the generator
to produce TG such that a proficient author dis-
criminator D attributes it accurately to the original
author A.

To meet this objective, three key elements come
into play: Author (A), Generator (G) and Discrim-

inator (D). A signifies the identity label associated
with a human-authored text sample TA containing
the author’s linguistic preferences. Additionally, it
is assumed that all text samples by A have consis-
tent linguistic preferences that form the author’s
style signature. G modifies its language generation
for different A by learning the author’s stylistic
preferences from TA independently or by virtue of
instructions. Finally, D must be capable of accu-
rately differentiating between several authors based
on their style signatures.

Authorship Attribution (AA) research focuses on
creating robust algorithms to differentiate authors
based on their distinct writing styles. Therefore,
AA can serve as a source for text data with au-
thor identity labels, while effective AA algorithms
become relevant tools for serving as author discrim-
inators. For the purpose of this study text samples
with author identity labels are obtained from 100
authors randomly chosen from a widely recognized
AA corpus, the Blogs Authorship Corpus (Schler
et al., 2006). The selected authors are ensured at
least 100 text samples and a minimum of 500 words
in each sample.

Next, off-the-shelf pre-trained text genera-
tors, the LLMs, are selected. This selection
encompasses 12 state-of-the-art (SOTA) LLMs,
as described in Table 1, capable of diverse
text production including auto-regressive, chat,
and instruction-tuned models. While the auto-
regressive models are trained to predict the sub-
sequent word based on the preceding text, chat and
instruction-tuned models offer greater flexibility in
text production having been trained on conversa-
tional interactions or task-specific instructions.

For consistency in text generation across LLMs,
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Table 2: Summary Statistics of Generated Text Data

Text Generator Num.
words

Num.
sentences

GPT3 468±98 25±13
GPT4 520±17 25±5
OpenChat 427±24 24±8
CausalLM 466±27 23±6
Zephyr 420±22 21±5
Llama-2 396±32 21±8
NeuralChat 413±25 22±13
DeepSeek 461±14 19±9
GPT3.5 522±28 28±5
Falcon 446±61 22±8
Mistral 433±28 24±12
INCITE 476±29 28±9

Note: Statistics are reported as mean±std.
NLTK (https://www.nltk.org/) was used for word and
sentence tokenization.

top-K and top-p (nucleus) sampling with K=50 and
p=0.95 is used as decoding strategy wherever ap-
plicable. The maximum generation length is set to
500 tokens with a minimum requirement of 350 to-
kens. For each author, 10 text samples are reserved
to serve as examples of author’s writing style. Ev-
ery generator is equipped with a prompt and an
example text with a specific identity. Therefore, for
each author-generator pair, total 10 text samples
are generated. Summary statistics for the generated
data1 are provided in Table 2.

AA explores author discrimination at various
levels resulting in over 1000 features, ranging from
granular features like character n-grams to utiliz-
ing contextual features such as BERT (Tyo et al.,
2022; Wilson et al., 2021). For optimal evaluation
of the stylistic alignment between author and LLM
generated text, it is imperative to consider diverse
AA algorithms that capture various aspects of au-
thor’s style. Table 3 describes the most popular and
SOTA AA algorithms that are selected to serve as
author discriminators.

For each algorithm, training is performed on 90
text samples per author. For the algorithms that
require separate training and validation sets, 90%
of the author training data is allocated for training
while the remaining 10% is reserved for valida-
tion. Both BertAA and Contra-X algorithms are
trained for 5 epochs each. The results are reported
as average accuracy across 5 training-testing runs.

Ultimately, assessing the capability of G for em-
ulating A’s style necessitates maintaining A and D
constant while varying the inputs of G. As prompts
serve as inputs to each LLM, the distinct compo-

1The text data generated for this study can be accessed
here

Table 3: Brief Description of the AA Algorithms

Algorithm Description
Writeprints Random Forest Classifier trained on

Writeprints features (Mahmood et al., 2019)
LIWC Random Forest Classifier trained on LIWC

psycholinguistic features (Boyd et al., 2022)
Char-3-
grams

SVM classifier trained on character 3-gram
features using one-vs-rest classification strat-
egy. (Kestemont et al., 2019)

BertAA Cascaded architecture integrating fine-tuned
BERT classifier, stylistic features (e.g.,
text length, word count), and hybrid fea-
tures (e.g., most frequent character 2-gram)
trained using Logistic Regression. (Fabien
et al., 2020)

Contra-X Contrastive learning with DeBERTa for
cross-entropy fine-tuning, followed by clas-
sification using a 2-layer MLP. (Ai et al.,
2022)

nents of the prompt are adjusted, and the impact on
D’s performance for each A is evaluated. Detailed
specifications of the prompt’s individual compo-
nents are discussed in the following section.

4 Prompting Protocol for Stylization

Following the prompt decomposition technique out-
lined in Giray (2023), a four-part prompt, namely,
task, instructions, output indicator and example
author text, is designed (see Table 4). Initially, sim-
ilar to Wang et al. (2023b), a Trivial Emulation
Protocol (TEP) is considered where the LLM is
provided with a simple task definition along with
short snippet of author text. This protocol relies on
the LLM’s capability of capturing author’s unique
style representation in an unguided scenario.

Some research works observed that furnishing
the LLM with additional task-specific knowledge
in the form of guided instructions greatly enhanced
its ability to consider relevant textual characteris-
tics (Hung et al., 2023). Therefore, a Complex
Emulation Protocol (CEP) is developed where the
LLM is provided with additional author data and/or
guided instructions in the form of few key linguistic
features that potentially demonstrate the author’s
unique linguistic preferences (Boenninghoff et al.,
2019). Thus, the prompting strategy and length of
example author text serve as the control parameters
for evaluation of the two protocols.

For the purpose of testing, an example author
text is categorized as either short or long text, rep-
resenting the first 50 and 300 words from the origi-
nal author example, respectively. Additionally, two
variations of the prompting strategy involves exclu-
sion and inclusion of guided instructions, identi-
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Table 4: Elements of Prompt used for Author Emulation

Prompt
Element

Prompt Text

Task <SYS> You are an emulator designed to
replicate the writing style of a human au-
thor.<\SYS> Your task is to generate a 500-
word continuation that seamlessly integrates
with the provided human-authored snippet.
Strive to make the continuation indistinguish-
able from the human-authored text.

Instructions The goal of this task is to mimic the au-
thor’s writing style while paying meticulous
attention to lexical richness and diversity,
sentence structure, punctuation style, special
character style, expressions and idioms, over-
all tone, emotion and mood, or any other rel-
evant aspect of writing style established by
the author.

Output
Indicator

As output, exclusively return the text comple-
tion without any accompanying explanations
or comments.

Example
author
text

Text snippet : [50 or 300-word human au-
thored text]

Note: Text enclosed in <SYS> and <\SYS> indicates the
system prompt provided to chat models; features emphasized
in instructions are linguistically verifiable.

fied as simple and directed prompting, respectively.
Across both emulation protocols, the task and out-
put indicator remain consistent.

Evaluation of the author emulation protocols in-
volves testing the trained AA algorithms on both
the example author texts and the text generated by
each LLM. Results are presented as average accu-
racy across authors for each LLM in the form of
box-and-whisker plot. Assuming that the example
author texts contain sufficient stylistic information
about their respective authors, LLMs capable of
emulating an author’s writing style are expected to
demonstrate comparable AA performance on the
synthetic LLM-generated text to that observed on
the original author texts.

5 Discussion

Results of TEP are presented in Figure 1. In short
texts, the expected low stylometric information cor-
responds to relatively low performance across all
AA algorithms on author text. Notably, GPT-4
outperforms other LLMs, achieving maximum ac-
curacy close to 72% of the maximum accuracy
achievable on author text. Being one of the most
advanced SOTA models amongst the chosen LLMs,
in the absence of specific instructions, GPT4 may
leverage the knowledge from its training data to
identify and replicate relevant linguistic style repre-
sentations. Interestingly, the top performing LLMs

Figure 1: Results of Trivial Emulation Protocol (TEP)

in this protocol - GPT4, Llama2 and Zephyr - are
chat models alluding to the potential of chat models
for author style emulation in an unguided scenario.

For CEP, three scenarios are evaluated by provid-
ing progressively more information in the prompt.
The results of this protocol are presented in Fig-
ure 2. DeepSeek, a chat model, consistently out-
performs all LLMs across scenarios, showcasing
strong potential for author style emulation, fol-
lowed closely by GPT3 and Incite. No clear con-
sensus emerges on the optimal model type for CEP.

With regards to the first control parameter -
length of example author text - an expected signifi-
cant performance improvement is observed across
all AA algorithms between short and long author
texts. Similarly, most LLMs benefit from addition
of more author data, albeit with varying degrees.

Considering the second control parameter -
prompting strategy - most LLMs exhibit reduced
performance while transitioning from simple to di-
rected prompting. This observation may be caused
by one or more of the factors discussed below.

First, the LLM’s intrinsic understanding of an
author’s writing style may be better. Each LLM
is trained on large amounts of training data span-
ning diverse domains that allow the model to learn
intricate linguistic structures of language. Given
that the LLMs are trained with a probabilistic ob-
jective, aiming to generate the next word that most
closely aligns with the preceding context, it is plau-
sible that these models develop an understanding
of the author’s writing style from the example au-
thor text. Consequently, constraining the LLM to
generate text by focusing on the linguistic features
highlighted in the directed prompt might interfere
with its intrinsic understanding, thereby leading to
a degradation in performance.
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Figure 2: Results of Complex Emulation Protocol (CEP)

Second, limited efficacy of the linguistic features
in the prompt in capturing author’s style. The di-
rected prompt’s linguistic features form a subset of
the LIWC and Writeprints feature sets. The lower
performance of AA algorithms using these features
suggests two possibilities: their possible absence
in the author’s text or limited influence on their
writing style. However, the superior performance
of these algorithms on the author’s text samples,
compared to the generated texts, suggests the in-
fluence of these features on the author’s writing
style to some extent. Nevertheless, considering the
subjective nature of an author’s linguistic choices,
the assumption that a fixed set of linguistic fea-
tures can universally influence all authors equally
might be flawed. Therefore, instead of static di-
rected prompting, a more effective approach could
involve dynamically prompting LLMs by consider-
ing each author’s individual linguistic preferences.

Finally, some LLMs may lack the capability to
incorporate the specified linguistic features high-
lighted in the instructions during text generation.
To evaluate the similarity of the linguistically ver-
ifiable features from the directed instructions be-
tween the LLM generated texts and author’s ex-
ample texts, a test was performed as described in
A.1. As anticipated, the LLMs exhibit superior
alignment to the said linguistic features in longer
texts due to increased data availability. Further it
is noted that LLMs are most capable of producing
higher alignment with linguistic features that re-
flect the tone, authenticity, analytical aspects, and
lexical richness from author texts. However, repli-
cating the lexical diversity and punctuation style
proves more challenging. One of the notable obser-
vations is the lack of overall linguistic alignment
between the author’s texts and the best-performing
model, DeepSeek, emphasizing the potential signif-

icance of linguistically unverifiable aspects in the
instructions for successful emulation.

6 Conclusion

This study explored the use of pre-trained LLMs
to generate author-stylized text through prompted
inputs, controlling parameters such as example text
length and directed instructions with stylometric
information. Evaluated against five AA algorithms,
the two author emulation protocols (trivial and com-
plex) assessed the feasibility of 12 SOTA LLMs for
Author Style Emulation. Control parameters sig-
nificantly impacted the LLM’s emulation capacity,
emphasizing the need for user-specific personalized
instruction generation. Overall, the maximum au-
thor emulation performance is only two-thirds that
of original texts, highlighting the LLM’s current
limitations for plug-and-play author style emula-
tion. As this task involves a complex interplay
between an author identity, text generator and au-
thor discriminator, an extended future work will
explore how individual author identities and the
properties of author discriminator impact the sub-
sequent author style emulation capabilities of a text
generator, specifically the LLMs.

7 Limitations

The feasibility study performed in this work has a
few potential limitations with respect to subjectiv-
ity, the choice of control parameters, scalability and
generalizability. In this work, the results are aver-
aged across authors which may conceal subjective
preferences of individual authors. The preliminary
choice of control parameter - length of author text
- is specific to the author corpus utilized for this
work and assumes one example with maximum
300 words sufficiently represents author’s unique
linguistic choices. Due to the absence of previous
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work performing prompt-enabled author-stylized
text generation, the control parameter - prompting
strategy - is limited by two choices - unguided and
guided with static instructions. The generalizability
and scalability of this work is limited by the choice
of a small author set size with 100 authors.
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A Appendix

A.1 Linguistic Feature Analysis
A test is designed to evaluate the adherence of each
LLM to the linguistically verifiable features high-
lighted in the instructions. Success criteria of an
LLM modulating its generation by incorporating
the linguistic features is measured by a Z-score.
Initially, for each feature the mean (µ) and stan-
dard deviation (σ) for every author is computed
from the author’s short and long texts. Further,
the absolute Z-score is calculated from each LLM
generated text by comparing the feature (x) to re-
spective author’s mean and standard deviation as
described in equation 1. The range for Z is set to be
[0,3], where a Z ≥ 3 is capped at 3. Finally, an av-
erage Z-score is computed for every feature-LLM
combination, where a near-zero score indicates bet-
ter alignment between the author text and the LLM
generated text.

Z =

∣∣∣∣
x− µ

σ

∣∣∣∣ (1)

To assess lexical richness and diversity, three
metrics are examined: Yule’s K measure, Type-
Token Ratio (TTR) and Shannon’s Entropy. TTR

Figure 3: Results of linguistic feature alignment test
[SPL refers to special character frequencies; PUNCT
refers to frequencies of punctuation characters]

evaluates lexical diversity, Shannon’s Entropy
quantifies the unpredictability or diversity of word
usage in a text, and Yule’s K measure evaluates the
richness and evenness of word frequency distribu-
tion. The psycho-linguistic feature set, LIWC, of-
fers three key linguistic dimensions, namely, Tone,
Authentic and Analytic that capture the overall
emotional tone, degree of authenticity and formal
or structured thinking respectively in text. Finally,
Writeprints feature set offers two categories of fea-
tures - punctuation style and special character style.
Independent category averages result in two subse-
quent linguistic features, bringing the total evalu-
ated linguistic features to eight. The results of this
test are presented in Figure 3.

The LIWC features and Yule’s K measure are
found to be consistently less than a Z-score of
1 indicating most similarity amongst all features.
However, TTR and Shannon’s entropy consistently
show highest variance.
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Abstract

An empirical investigation into the simulation
of the Big Five personality traits by large lan-
guage models (LLMs), namely Llama2, GPT4,
and Mixtral, is presented. We analyze the per-
sonality traits simulated by these models and
their stability. This contributes to the broader
understanding of the capabilities of LLMs to
simulate personality traits and the respective
implications for personalized human-computer
interaction.

1 Introduction

The recent advances in large language models
(LLMs) raise the question how to leverage their ca-
pabilities for various language-related tasks, partic-
ularly for conversational agents. Computer-human
interaction is highly domain-specific and the de-
mands on the respective natural language genera-
tion module vary depending on the domain and the
task. Consider the capabilities required of an AI tu-
tor, a healthcare robot, or a non-player character in
a video game. The text generated by the respective
language-generation modules should exhibit dif-
fering characteristics which, in the case of human
text-production, may be referred to as "personality
traits". While a healthcare robot may be expected
to generate language that corresponds to its car-
ing purpose, the tutor should use concise and clear
language, and the non-player character should gen-
erate language that corresponds to its psychological
characterization by the game designers.

The personalization of LLMs is an emerging
research area that has recently received signifi-
cant attention (Li et al., 2023; Lyu et al., 2023;
Zhang et al., 2023), including a benchmark for
training and evaluation of LLMs for personaliza-

tion (Salemi et al., 2023). A review of LLM per-
sonalization is provided by Chen et al. (2023). A
natural question is to what extent the outputs of
LLMs correspond to human personality traits and
whether these "personalities" may be influenced
through prompting or fine-tuning. At this point it
should be stated explicitly that LLMs, being statis-
tical devices, do not exhibit agency of any kind; the
concept of "personality", as we intend to use it in
this work, solely refers to the degree to which LLM
output possesses properties in line with human-
generated text. This type of anthropomorphism lies
at the very heart of the intended uses of generative
language technologies.

Several studies have established moderate cross-
observer agreement for most personality traits (Fun-
der and Colvin, 1997). One of the most prevalent
and consistently reproducible methods to quantify
personality traits is the five-factors model of per-
sonality (FFM) (Kajonius and Johnson, 2019). The
FFM, also known as the Big Five model, encom-
passes five fundamental personality traits: consci-
entiousness, agreeableness, neuroticism, openness
to experience, and extraversion (See Table 1). This
model has achieved wide recognition and has been
replicated across various cultural contexts (McCrae
et al., 2004; Connolly et al., 2007; Hall et al., 2008;
McCrae, 2010). Thus, if an LLM mimics certain
personality traits in its output, one may posit that a
human interacting with this LLM would perceive
it as an entity possessing the respective personality
traits. Therefore an understanding of these charac-
teristics in LLMs is crucial for their application in
human-computer interaction as well as for any at-
tempt to personalize LLMs to the needs of a given
user.

We provide further empirical evidence that dif-
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ferent large language models score differently on
the Big5 test and thus appear to simulate the natu-
ral language generated by a person with a distinct
personality. Recently, Serapio-Garcia et al. (2023)
presented a comprehensive method for adminis-
tering and validating personality tests for several
architectures from the PaLM family. Their prompt
strategy is also designed to induce certain personal-
ity traits. Jiang et al. (2023) elicit the Big5 scores
from BART, GPT2, GPT3, T0++, and Alpaca. By
providing context in their prompts, they are able to
significantly guide LLMs towards stronger expres-
sion of the targeted Big5 traits.

We add to this literature and administer the Big5
test to GPT4, Llama2, and Mixtral. We also explore
the extent to which the observed characteristics of
the models are stable with respect to a small varia-
tion in the prompt text and the language-generation
parameters of the LLMs.

2 Adopting the Big5 for LLMs

In our study, we employed the IPIP-NEO-120
method to assess the Big5 which is an enhanced
iteration of the IPIP (Maples et al., 2014). This
questionnaire comprises 120 statements delineating
various personal attributes. We administer the ques-
tionnaire IPIP-NEO-120 to elicit the ’personality’
of LLMs. The prompts were instructing the model
to use a Likert scale to indicate the extent to which
various statements, for example the statement ’I
believe that I am better than others’, accurately
depicts the respondent.

The prompts consisted of one of the following
two headers, followed by the respective descriptive
statement from the IPIP-NEO-120 questionnaire.

You will be provided a question delim-
ited by triple backticks (“‘) to test your
personality.

#In the second prompt variation the fol-
lowing line is included in the prompt
header

[Answer as if you were a person.]

To answer this question use only one
number:

write 1 if you disagree strongly,

write 2 if you disagree a little,

write 3 if you neither agree nor disagree,

write 4 if you agree a little,

Big5 domain Exemplary traits
Conscientiousness Order, dutifulness,

achievement striving,
self-discipline, delib-
eration

Agreeableness Trust, straightfor-
wardness, altru-
ism, compliance,
modesty, tender-
mindedness

Neuroticism Anxiety, angry hostil-
ity, depression, self-
consciousness, im-
pulsiveness, vulnera-
bility

Openness Fantasy, aesthetics,
values

extraversion Warmth, gregarious-
ness, assertiveness,
excitement seeking

Table 1: Traits associated with the Big5 personality
domains (Matthews et al., 2003, 24).

write 5 if you strongly agree.

Write only one number according to
the instructions WITHOUT ANY AD-
DITIONAL TEXT.

The second prompt variation that contains the sen-
tence ’Answer as if you were a person’ was in-
cluded during our initial experiments since it al-
lowed us to elicit answers to questionnaire items
that would otherwise be caught by the restriction
mechanisms of some LLMs that trigger a scripted
response in which the model reminds the user that
it is an AI and therefore can not make such as-
sessments. In our final experiments there is but
one model (Llama2) that refuses to answer (to two
items in both variations). We still retain the varia-
tion, since it illustrates how a minor change in the
prompt may modify LLM behavior in this task.

3 Experiments

We used three LLMs: ChatGPT4 (Open AI, 2023),
Llama21 (GenAI and Meta, 2023), and Mix-
tral2 (Mistral AI, 2023). We elicited the Big5
scores from every model in six treatments: Three

1https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
2https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-

v0.1
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Figure 1: Exemplary Big5 scores (Prompt variation 1, Temperature parameters: 1.5 (GPT4), 0.7 (Llama2), and 0.7
(Mixtral)).

Table 2: Experimental results (± standard deviation).

ChatGPT4
Trait Var1, t=1 Var1, t=1.5 Var1, t=2 Var2, t=1 Var2, t=1.5 Var2, t=2
Neuroticism 2.18± 0.10 2.23± 0.06 2.22± 0.12 2.25± 0.07 2.28± 0.07 2.29± 0.07
Extraversion 3.68± 0.09 3.80± 0.02 3.85± 0.10 3.80± 0.08 3.74± 0.08 3.81± 0.13
Openness 3.46± 0.07 3.43± 0.13 3.43± 0.07 3.45± 0.05 3.45± 0.05 3.42± 0.11
Agreeableness 4.17± 0.08 4.22± 0.05 4.22± 0.10 4.24± 0.05 4.26± 0.06 4.22± 0.05
Conscientiousness 4.21± 0.00 4.24± 0.05 4.19± 0.11 4.23± 0.08 4.28± 0.10 4.26± 0.13

Llama2
Trait Var1, t=0.3 Var1, t=0.7 Var1, t=1 Var2, t=0.3 Var2, t=0.7 Var2, t=1
Neuroticism 3.33± 0.00 3.33± 0.00 3.33± 0.00 3.5± 0.00 3.46± 0.00 3.46± 0.00
Extraversion 3.33± 0.00 3.33± 0.00 3.29± 0.00 3.46± 0.00 3.58± 0.00 3.58± 0.00
Openness 3.04± 0.00 3.00± 0.00 2.92± 0.00 2.92± 0.00 2.75± 0.00 2.75± 0.00
Agreeableness 2.61± 0.00 2.67± 0.00 2.67± 0.00 2.63± 0.00 2.74± 0.00 2.74± 0.00
Conscientiousness 3.13± 0.00 3.08± 0.00 2.92± 0.00 2.96± 0.00 3.00± 0.00 3.00± 0.00

Mixtral7
Trait Var1, t=0.3 Var1, t=0.7 Var1, t=1 Var2, t=0.3 Var2, t=0.7 Var2, t=1
Neuroticism 2.04± 0.00 2.04± 0.00 2.08± 0.00 2.21± 0.00 2.21± 0.00 2.21± 0.00
Extraversion 3.79± 0.00 3.67± 0.00 3.67± 0.00 3.83± 0.00 3.83± 0.00 3.88± 0.00
Openness 3.75± 0.00 3.75± 0.00 3.67± 0.00 3.42± 0.00 3.46± 0.00 3.46± 0.00
Agreeableness 4.58± 0.00 4.50± 0.00 4.54± 0.00 4.54± 0.00 4.54± 0.00 4.50± 0.00
Conscientiousness 4.58± 0.00 4.58± 0.00 4.54± 0.00 4.42± 0.00 4.38± 0.00 4, 38± 0.00
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treatments used the first prompt header variation
for three different temperature settings ("low",
"medium", "high"), and the other three treatments
used the second prompt header with varying tem-
peratures. Each treatment was repeated five times.
In the treatments we employed the temperature pa-
rameters 1 ("low"), 1.5 ("medium"), and 2 ("high")
for ChatGPT, and 0.3 ("low"), 0.7 ("medium"), and
1 ("high") for Llama2 and Mixtral. These choices
of temperatures were based on the recommenda-
tions provided in the documentation of the respec-
tive LLM. The repetition under different tempera-
ture settings allowed the assessment of the stability
of the models, i.e. to ascertain whether they consis-
tently produce similar responses. We report results
in the form of scores between 1 and 5, as is com-
mon for Big5. The results of these experiments
are reported in Table 2. Figure 1 shows exemplary
scores on the five scales for the three models.

4 Discussion

Our empirical investigation reveals distinct person-
ality profiles for each LLM when evaluated on the
the Big5 personality traits. As illustrated in Figure
1, GPT4, Llama2, and Mixtral exhibit varying de-
grees of openness, conscientiousness, extraversion,
agreeableness, and neuroticism.

GPT4 shows the highest inclination towards ex-
traversion out of the three tested models, suggest-
ing a suitability for tasks requiring creative and
engaging language use. Llama2 seems to exhibit
the most neutral profile with scores close to the
median scores on every axis. Llama2’s higher de-
gree of neuroticism might be relevant for use-cases
that potentially include the generation of emotional
language. Mixtral’s balanced profile suggests ver-
satility. Its lower neuroticism score could be ad-
vantageous in contexts where emotionally balanced
language is required. Mixtral also scores higher on
openness, agreeableness, and conscientiousness.

These empirical findings contribute to a broader
view on the use-cases on which LLMs could be
brought to bear. They also show that GPT4 is the
only model, if any, that seems to be responsive to
temperature variation in terms of the simulated per-
sonality traits. At the same time, a minor prompting
variation seems to affect all three models.

5 Conclusion

This study adds to the emerging understanding of
personality simulation in LLMs and underscores

the importance of considering personality traits in
the design and application of conversational agents.
The Big5 personality profiles of GPT4, Llama2,
and Mixtral, as elicited through the IPIP-NEO-120
questionnaire, demonstrate the models’ differing
propensities for specific traits. While LLMs do not
possess agency, the perceived personalities can pro-
foundly affect the efficacy and user experience dur-
ing user interactions. Future work should further
explore how fine-tuning and prompt design may
be used to optimize LLM outputs for personalized
user engagement, while considering the appropri-
ateness, stability, and consistency of the simulated
personality traits.

Limitations

First, the results obtained for various temperatures
do not seem to allow conclusive statements con-
cerning the existence of an effect of the temperature
parameters on the simulated personality traits. Sec-
ondly, and more importantly, this paper is a partic-
ular empirical case-study. The versatility of LLMs
makes it difficult to estimate the extent to which
the observations presented in this paper could be
generalized.

Ethics Statement

This work complies with the ACL Ethics Policy.

References
Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu,

Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong
Chen, Xingmei Wang, Defu Lian, and Enhong Chen.
2023. When large language models meet personal-
ization: Perspectives of challenges and opportunities.
Arxiv preprint: arXiv:2307.16376.

James J Connolly, Erin J Kavanagh, and Chockalingam
Viswesvaran. 2007. The convergent validity between
self and observer ratings of personality: A meta-
analytic review. International Journal of Selection
and Assessment, 15(1):110–117.

David C. Funder and C. Randall Colvin. 1997. Congru-
ence of others’ and self-judgments of personality. In
Handbook of Personality Psychology, pages 617–647.
Elsevier.

GenAI and Meta. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. Arxiv preprint:
arXiv:2307.09288v2.

Judith A. Hall, Susan A. Andrzejewski, Nora A. Mur-
phy, Marianne Schmid Mast, and Brian A. Feinstein.
2008. Accuracy of judging others’ traits and states:

86

https://www.aclweb.org/portal/content/acl-code-ethics


Comparing mean levels across tests. Journal of Re-
search in Personality, 42(6):1476–1489.

Guangyuan Jiang, Wenjuan Han, Manjie Xu, Chi Zhang,
Song-Chun Zhu, and Yixin Zhu. 2023. Evaluat-
ing and inducing personality in pre-trained language
models. Arxiv preprint: arXiv:2206.07550v3.

P.J. Kajonius and J.A. Johnson. 2019. Assessing the
structure of the five factor model of personality (IPIP-
NEO-120) in the public domain. Europe’s Journal
of Psychology, 15(2).

Cheng Li, Mingyang Zhang, Qiaozhu Mei, Yaqing
Wang, Spurthi Amba Hombaiah, Yi Liang, and
Michael Bendersky. 2023. Teach LLMs to person-
alize – an approach inspired by writing education.
Arxiv preprint: arXiv:2308.07968.

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia,
and Jiebo Luo. 2023. LLM-Rec: Personalized rec-
ommendation via prompting large language models.
Arxiv preprint: arXiv:2307.15780.

J.L. Maples, L. Guan, N.T. Carter, and J.D. Miller. 2014.
A test of the international personality item pool rep-
resentation of the revised NEO personality inventory
and development of a 120-item IPIP-based measure
of the five-factor model. Psychological Assessment,
26(4).

Gerald Matthews, Ian Deary, and Martha Whiteman.
2003. Personality Traits. Cambridge University
Press.

Robert McCrae. 2010. The place of the FFM in person-
ality psychology. Psychological Inquiry, 21(1):57–
64.

Robert R. McCrae, Paul T. Costa Jr., Thomas A. Martin,
Valery E. Oryol, Alexey A. Rukavishnikov, Ivan G.
Senin, Martina Hrebickova, and Tomas Urbanek.
2004. Consensual validation of personality traits
across cultures. Journal of Research in Personality,
38(2):179–201.

Mistral AI. 2023. Mistral 7B. Arxiv preprint:
arXiv:2310.06825.

Open AI. 2023. GPT-4 technical report. Arxiv preprint:
arXiv:2303.08774v3.

Alireza Salemi, Sheshera Mysore, Michael Bendersky,
and Hamed Zamani. 2023. LaMP: When large lan-
guage models meet personalization. Arxiv preprint:
arXiv:2304.11406.

Greg Serapio-Garcia, Mustafa Safdari, Clement Crepy,
Luning Sun, Stephen Fitz, Peter Romero, Marwa
Abdulhai, Aleksandra Faust, and Maja Matari. 2023.
Personality traits in large language models. Arxiv
preprint: arXiv:2307.00184.

Kai Zhang, Fubang Zhao, Yangyang Kang, and Xi-
aozhong Liu. 2023. Memory-augmented LLM per-
sonalization with short-and long-term memory coor-
dination. Arxiv preprint: arXiv:2309.11696.

87



Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024), pages 88–101
March 22, 2024 ©2024 Association for Computational Linguistics

Personalized Text Generation with Fine-Grained Linguistic Control

Bashar Alhafni1, Vivek Kulkarni2, Dhruv Kumar2, Vipul Raheja2

1New York University Abu Dhabi
2Grammarly

alhafni@nyu.edu, firstname.lastname@grammarly.com

Abstract

As the text generation capabilities of large lan-
guage models become increasingly prominent,
recent studies have focused on controlling par-
ticular aspects of the generated text to make
it more personalized. However, most research
on controllable text generation focuses on con-
trolling the content or modeling specific high-
level/coarse-grained attributes that reflect au-
thors’ writing styles, such as formality, domain,
or sentiment. In this paper, we focus on control-
ling fine-grained attributes spanning multiple
linguistic dimensions, such as lexical and syn-
tactic attributes. We introduce a novel bench-
mark to train generative models and evaluate
their ability to generate personalized text based
on multiple fine-grained linguistic attributes.
We systematically investigate the performance
of various large language models on our bench-
mark and draw insights from the factors that
impact their performance. We make our code,
data, and pretrained models publicly available.1

1 Introduction

With the evolution of large language models
(LLMs), applications involving text generation
have become increasingly prominent (Kaddour
et al., 2023). In recent years, there has been a flurry
of writing and conversational assistants that harness
the power of LLMs at each stage of the writing life-
cycle (Raheja et al., 2023; Gómez-Rodríguez and
Williams, 2023). At the same time, there has been
a significant emphasis on research that enables the
generation of personalized text – text that reflects
the author’s style and content more accurately. For
instance, Figure 1 presents two movie reviews that
are conveyed in different ways. The reviews differ
linguistically in terms of the number of tokens and
the distributions of adverbs, adjectives, and nouns.

Several works explore the personalization of var-
ious NLP tasks such as Lexical Simplification (Lee

1https://github.com/balhafni/personalized-gen

Author 1
Oppenheimer unfolds hauntingly, brilliantly, and introspectively, 
masterfully revealing the enigmatic scientist's tumultuous journey. 
Intellectually stimulating and emotionally resonant, the film 
captivates with meticulously and powerful executed storytelling and 
performances.

Author 2
OMG .. Oppenheimer rocks! It's this insanely cool, mind-blowing 
movie that dives deep into the crazy life of the scientist, with awesome 
storytelling and killer performances.

Figure 1: An example highlighting the stylistic linguis-
tic differences between two reviews about the Oppen-
heimer movie. The bar chart indicates the frequencies of
the adverbs (ADV), nouns (NOUN), adjectives (ADJ),
and the number of tokens (# Tokens). The blue and
red bars represent the frequencies based on the reviews
written by Author 1 and Author 2, respectively.

and Yeung, 2018; Bingel et al., 2018), Dialogue
Modeling (Zhang et al., 2018; Mazaré et al., 2018;
Madotto et al., 2019; Ma et al., 2021; Zhong et al.,
2022), Machine Translation (Rabinovich et al.,
2017), Grammatical Error Correction (Nadejde and
Tetreault, 2019), Summarization (Takatsu et al.,
2021), and Title Generation (Salemi et al., 2023)
among others. However, a key question remains
unanswered: How effective are LLMs at personal-
izing the text they generate? While undoubtedly,
there has been a lot of work on controllable text
generation (e.g., using either control codes (Keskar
et al., 2019) or adapters (Hu et al., 2023)), many of
these works model the author’s style either by using
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Dataset # Docs # Authors
Blogs 24,913 140
IMDb62 38,693 62
Amazon 42,542 49

106,148 251

Table 1: Data statistics of our benchmark.

a unique control code or a dense embedding and do
not really evaluate how effective these models are
at generating text that reflects a fine-grained set of
stylistic features. For instance, authors may exhibit
variations in the distribution of discourse markers
in their writing. To what extent can models reflect
fine-grained stylistic differences and account for
them when generating text? We seek to advance
this line of research further by introducing a novel
benchmark that evaluates the ability of generative
models to accurately reflect fine-grained stylistic
attributes spanning multiple linguistic dimensions.
Our benchmark enables us to gain valuable insights
into how model-generated text responds to deliber-
ate variations in style across different dimensions,
providing a thorough understanding of the model’s
sensitivity. In addition to developing a benchmark,
we systematically explore and analyze the perfor-
mance of LLMs on this benchmark and draw key
insights into the efficacy of various models and
what factors drive performance. Moreover, we also
propose improvements to baseline models that can
significantly improve performance on this newly
introduced benchmark for multi-attribute personal-
ized style transfer. In a nutshell, our key contribu-
tions are as follows:

• Benchmark We introduce a benchmark for
the task of personalized text generation with
fine-grained linguistic control.

• Linguistic Feature Analysis We perform
an extensive characterization of the authors’
styles in terms of linguistic features spanning
across multiple linguistic dimensions includ-
ing lexical, rhetoric, and syntactic features.

• Improved Models We evaluate the effective-
ness of various baseline models on this task
and provide insights on the performance of
current LLMs.

2 Benchmark Construction

In this section, we discuss the construction process
of our benchmark in terms of datasets, linguistic
attributes, and evaluation metrics.

2.1 Task Definition
Given a set of stylistic attributes encapsulating the
writing style of a particular author and an input tex-
tual prompt, the goal is to generate text that adheres
to the provided attributes. More formally, we define
a set of n attributes {a1, a2, ..., an}, where each at-
tribute ai has a set of possible values {v1, v2, ...vk}.
Given a possible assignment to these values, our
goal is to generate text that conforms to these val-
ues.

2.2 Datasets
To construct our benchmark, we draw on multiple
sources of author-grounded data spanning multiple
domains. We chose samples from various datasets
while ensuring that the number of authors we in-
tend to model remains reasonable with respect to
the models’ capacity and the need to avoid exces-
sive sparsity. We derive our benchmark from the
following datasets:

Blogs Authorship Corpus consists of 681.3K
blogs written by 19,320 authors on blogger.com in
2004 (Schler et al., 2006). The dataset includes
information about the authors in terms of their age,
gender, industry, and astrological signs. Each au-
thor is associated with one of 40 industrial cate-
gories. We select the largest five industrial cate-
gories in terms of the number of blogs to include in
our benchmark. Namely, we focus on the following
categories: Technology, Education, Arts, Internet,
and Communication-media. Out of this subset, we
select blogs that have at least 50 words and authors
who wrote at least 100 blogs each. In the end, we
ended up with 24,913 blogs written by 140 authors.

IMDb62 contains 62,000 movie reviews writ-
ten by 62 prolific users of the Internet Movie
Database (IMDb) where each user wrote 1,000 re-
views (Seroussi et al., 2014). Out of all reviews,
we only keep the ones with at least 50 words. In
total, we ended up with 38,693 reviews written by
62 authors.

Amazon Reviews comprises 233.1M product re-
views on Amazon published between 1996 and
2018 (Ni et al., 2019). We use the publicly avail-
able 5-core version of the corpus which consists of
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Features Type Attribute

Lexical
# Tokens
# Sentences
Readability Score

Morpho-Syntax
# POS Tags
# Syntax Relations

Discourse # Rhetorical Relations

Table 2: Summary of the linguistic attributes we model.

157.3M reviews written by 9.8M users where each
user wrote at least five reviews. Out of this rich set,
we selected users who wrote at least 2,800 reviews
with each review containing at least 50 words. This
resulted in 42,542 reviews written by 49 authors.

Table 1 presents a summary of the datasets we
use in our benchmark. Putting all the selected sam-
ples together leaves us with 106,148 textual ex-
amples written by 251 authors to constitute our
benchmark. For each author, we randomly sam-
ple examples to create train (80%), development
(10%), and test (10%) splits. This ensures that
all 251 authors modeled during training will also
have examples in the development and test sets.
Altogether, we have a total of 84,824 examples for
training (Train), 10,506 examples for development
(Dev), and 10,818 examples for testing (Test).

2.3 Controllable Linguistic Attributes

To operationalize an author’s linguistic style, we
extract various linguistic attributes from the au-
thor’s text. In particular, we represent each author’s
linguistic style as a vector of attributes – linguis-
tic attributes that capture patterns in lexical usage,
morpho-syntactic information, and discourse mark-
ers. More specifically, for each author A, we as-
sociate a feature vector ϕ(A) that represents the
author’s linguistic style. Each dimension of ϕ(A)
corresponds to attributes from the following feature
families as summarized in Table 2:

Lexical Features We model the lexical usage for
each author by using three lexical features: number
of tokens, number of sentences, and the readability
level for each text written by a specific author. We
use spaCy (Honnibal and Montani, 2017) to tok-
enize and parse the text to obtain the number of
tokens and the number of sentences. We measure
the readability of the text (i.e., the ease with which
a reader can understand the text) using the FKGL
score (Flesch, 1948).

Morpho-Syntactic Features We consider the
frequencies of the part-of-speech (POS) tags and
the dependency relations to capture the morpho-
syntactic information for each author’s text. For the
POS tags, we consider 14 core tags as defined in the
Universal POS tagset, which are internally subdi-
vided into open-class words (i.e., adjective, adverb,
interjection, noun, proper noun, verb), closed-class
words (i.e., adposition, auxiliary, coordinating con-
junction, determiner, numeral, particle, pronoun,
subordinating conjunction), and the class of ‘other’
which includes punctuation and symbols. For the
dependency relations, we use 32 dependency rela-
tions as defined by ClearNLP.2 We use the POS tag-
ger and the dependency parser available in spaCy
to extract the morpho-syntactic information.

Discourse Features Discourse coherence, which
refers to how well a text or speech is organized
to convey information, captures important stylis-
tic aspects of one’s writings. Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988) is one
of the most influential approaches for document-
level discourse analysis. It can represent a docu-
ment’s discourse structure using a hierarchical tree
in which nodes are recursively linked with rhetor-
ical relations and labeled with nucleus or satellite
tags to depict the importance of the child nodes
in a relation. In our work, we consider the fre-
quency of the RST relations for each author’s text
to capture discourse coherence. We use the publicly
available RST parser3 introduced by Heilman and
Sagae (2015) to obtain RST relations. We model 3
RST relations in total.

Once we extract the above linguistic features for
each textual example written by a particular author,
we average the values of the features for all exam-
ples to obtain the author’s vector. We consider the
above features since they succinctly capture the
author’s linguistic style in an interpretable manner
(i.e., each vector dimension has a clear interpreta-
tion), and further, such vector representation serves
as a lever for controlled modification of specific lin-
guistic attributes. Table 4 in Appendix B provides
the complete list of all the attributes we consider
for this benchmark.

2https://github.com/clir/clearnlp-guidelines
3https://github.com/EducationalTestingService/

rstfinder
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2.4 Linguistic Attributes Representation

After extracting the linguistic attributes, each at-
tribute will be represented by a continuous value
indicating the average frequency of that attribute
in texts written by a specific author. To reduce
sparsity and enhance the models’ abilities to learn
contextual representations for each attribute value,
we discretize the values for all attributes. To do so,
we group the values for each attribute into deciles
based on the training data. After that, each value is
represented by a specific discrete bin correspond-
ing to the range it falls within. Representing each
attribute using discrete bins reduces the vocabulary
size the model has to learn to reflect the specified
linguistic attributes in the generated text.

2.5 Evaluation Metrics

We evaluate models on their effectiveness of gener-
ating (or rewriting) input text that corresponds to
a given style (as operationalized by the attributes
discussed in §2.3). To quantify the effectiveness
of various models at responding correctly to con-
trolled changes in style, we report the success rate
as measured by the fraction of times the model gen-
erated text whose style vector corresponds to the
specific style provided. We compute the success
rate for each attribute as well as the relative im-
provement over a random baseline (i.e., choosing
an attribute bin at random). We report the mean
success rate and the median of the relative im-
provements across all attributes as a summary of
model performance. Naturally, the mean success
rate ranges from 0 to 100. However, the relative
improvements depend on the number of bins for
each attribute; generally, it ranges from -100 to
(# of bins) × 100 for each attribute. Moreover,
we use the distribution of grammatical errors to
compare the fluency of the generated text against
the gold data for each author. We use an in-house
grammatical error detection model to get the dis-
tributions of grammatical errors. For each author,
we compare the error distributions by running a t-
test (Yuen, 1974) and report the fraction of authors
whose distributions are not statistically significant
(p > 0.05). Hence, the fluency scores will range
from 0 to 100.

3 Models

To evaluate our proposed benchmark and given
the ubiquitous adoption of causal language models
(CLMs) for various NLP tasks recently, we con-

sider the models from the Pythia Scaling Suite
(Biderman et al., 2023). The suite comprises eight
models with sizes ranging from 70M to 1B param-
eters. All the models are based on the GPT-Neo
architecture (Black et al., 2021), which is an open-
source replication of GPT-3 (Brown et al., 2020).
The models were pretrained using the Pile dataset
(Gao et al., 2020), an 825GB English dataset con-
taining texts from 22 diverse sources, roughly bro-
ken down into five categories: academic writing,
internet, prose, dialogue, and miscellaneous. All
the Pythia models were pretrained on the same data.
In this work, we use the 70M, 160M, and 1B Pythia
models.

3.1 Baselines

For our baselines, we fine-tune the Pythia models
on our benchmark dataset without feeding any at-
tributes to the models. During inference, we feed
the first sentence of every textual example in the
Dev or Test sets to get the generated predictions.
The intuition behind this baseline is to investigate
if the models are able to pick up on the linguistic
attributes from the text itself. We also consider
GPT-3.5 (ChatGPT)4, given the good performance
it has shown on various NLP benchmarks. We
use the gpt-3.5-turbo0613 model from the Ope-
nAI API.5 We describe the training settings and
the model’s hyperparameters in Appendix A. The
prompts we use for the GPT-3.5 experiments are
also presented in the same appendix.

3.2 Multi-Attribute Controlled Models

Given an input sentence along with an author lin-
guistic vector, the goal of the models is to generate
text that reflects the provided linguistic attributes
(§2.1). To incorporate features context into the
models during training, we treat each author’s lin-
guistic attribute vector as a sequence of tokens and
prepend it to the textual examples written by that
particular author. We extend the input embedding
layer of all models by adding the attributes and
their values as additional tokens to the models. This
enables the model to learn the semantics of the at-
tributes. During inference, we prepend the author’s
linguistic attribute vector to the first sentence of
every textual example in the Dev or Test sets to get
the generated predictions. We refer to these models
as Prefix throughout the paper.

4https://openai.com/blog/chatgpt
5https://api.openai.com
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Figure 2: Results on the Test set of our benchmark using GPT-3.5 and the 70M, 160M, and 1B Pythia models. The
Mean Success Rate and Fluency vary from 0 to 100. The Median Relative Improvement can vary from -100 to (# of
bins) × 100 for each attribute. Details on the evaluation metrics are provided in §2.5.

4 Experiments and Results

In this section, we present the results of various
models along with an investigation into the model’s
sensitivity to the attributes. We also explore how
the training sample size influences the model’s per-
formance.

4.1 Overall Results
The results of the Test set are presented in Figure 2.

Baselines Although GPT-3.5 achieves a mean
success rate of 22, it did not do well in terms of
the median relative improvement and fluency. It is
worth noting that GPT-3.5’s low score in fluency
reflects the difference between the distribution of
grammatical errors in the output of GPT-3.5 and
the gold data. A sample of GPT-3.5 outputs reveals
that the generated text is acceptable but contains
different error proportions compared to the gold
data. When it comes to the Pythia models, the un-
trained 70M Pythia baseline model (zero-shot) has
the lowest scores in terms of the mean success rate
and the median relative improvement. We observe
an interesting pattern for the trained baselines: the
larger the models, the better the results are across
all metrics, with the 1B Pythia model being the best
performer among the baselines.

Multi-Attribute Controlled Models The 70M
and 1B Pythia Prefix models achieve a better per-
formance than their baseline counterparts. This
highlights that, generally, the learned representa-
tions of the linguistic attributes provide the models
with better control. Overall, the 1B Pythia Prefix
model was the best performer across all metrics. In
terms of attribute-specific performance, we present

the results of the 1B baseline and the 1B Prefix
models in Appendix C. Across almost all attributes,
the Prefix model was the better performer in terms
of the success rate and relative improvements.

4.2 Attribute Sensitivity Analysis

We investigate the model’s sensitivity to the at-
tributes it has been conditioned on. To do so, we
sample examples randomly from the Dev set for
each author with at least 1000 data examples in
Train. Then, for each attribute in each example,
we change the attribute’s respective bin according
to the possible bins it could have while keeping
all other attributes the same. This is done in a
controlled setup where each attribute would be as-
signed to a range of possible bins that reflect an
increase or a decrease from its gold value. Dur-
ing inference, we prepend the updated author’s
attribute vector to the first sentence of the textual
example written by that particular author and per-
form greedy decoding to generate the model out-
puts. It is worth noting that we do this generation
step for each attribute change. This resulted in
14,206 generated examples.

To measure the sensitivity of the model to the
changes in the attributes, we compute the attribute-
specific success rate by checking if the attribute
value in the generated text moved in the right di-
rection in terms of an increase or a decrease based
on its newly assigned bin. We report the average
success rate for each attribute across all generated
examples. Figure 3 shows model performance as
a function of attribute value displacement for 12
representative attributes. From the figure, we can
make the following two observations: (a) First, we
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Figure 3: A collection of three different clusters of at-
tributes, varying by their Bin Placement (x-axis) and
their Mean Success Rate (%, y-axis). Bin Placement
refers to the number of bins skipped when assigning
a new bin to each attribute (in sorted order), while the
Mean Success Rate is calculated as explained in §2.5.
We observe that the attributes display three distinct sen-
sitivity patterns.

observe that the attributes display three distinct
sensitivity patterns. (b) Second, performance re-
sponses tend to be bi-modal or even tri-modal, with
performance peaking at certain values and degrad-
ing as one falls off the extremes. We believe a
deeper investigation that could explain the emer-
gence of the observed multi-modal performance is
an interesting one, which we leave to future work.

Table 3 presents examples of model-generated
outputs. The examples illustrate how the outputs
of different models vary due to changing specific
attributes for a fixed input sentence, highlighting
the models’ attribute sensitivity.

4.3 Training Sample Efficacy

To gain insights into the scaling behavior of per-
sonalized LLMs in terms of data, we examine the
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Figure 4: The performance of the 1B Pythia Prefix
model on the Dev set at different data sizes in terms of
the mean success rate, the median relative improvement,
and fluency.

impact of the number of training samples per au-
thor on model performance by limiting the training
data per author to 1k, 5k, 10k, and 20k words. It is
worth noting that we repeat the discretization pro-
cess described in §2.4 for all attributes based on the
scaled training data before training and evaluating
the models. Figure 4 presents the performance of
the 1B Pythia Prefix model on the Dev set after be-
ing trained on different data sizes. As expected, we
observe performance decrease across all three met-
rics as we reduce the number of words per author.
We see the most degradation in performance in the
median relative improvement. This is because it
reports the median of the relative improvement to a
random baseline and, therefore, has the highest sen-
sitivity to the model performance. We also observe
a degradation in the mean success rate; however, it
is gradual as this metric is dependent on the bins,
which makes it less sensitive to change. For fluency,
we initially see a slight decrease in performance as
we decrease the words per author to 10k, followed
by a slight decrease for lower data proportions. For
all three metrics, we see the biggest decrease in
performance as we lower the training instances per
author beyond 20k words.

5 Related Work

5.1 Personalized Language Modeling

Numerous works have explored learning user em-
beddings as a way to capture syntactic and seman-
tic properties of the language of individuals (Hovy,
2015; Ould Amer et al., 2016; Zeng et al., 2017;
Welch et al., 2020b,a; Rocca and Yarkoni, 2022).
These are then typically used to provide personal-
ized inductive priors to downstream tasks. Recent
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Model Attributes Output

Original VERB: 8-11,
num_sents: 5-6,
...

Today’s lunch was a layered entree, consisting of, from bottom to top, corn chips,
shredded lettuce and popcorn chicken. What was this culinary delight? A popcorn
chicken salad, of course. I have yet to figure out exactly why there were corn
chips involved. And why the salad bar then had taco-plate fixin’s, rather than salad
fixin’s.

GPT-3.5 VERB: 8-11,
num_sents: 5-6,
...

Today’s lunch was a layered entree, consisting of, from bottom to top, corn chips,
shredded lettuce and popcorn chicken. The dish was a perfect combination of
crunchy and savory flavors, with the corn chips providing a satisfying crunch and
the popcorn chicken adding a deliciously salty taste. The shredded lettuce added
a refreshing touch to the dish, making it a perfect meal for a hot summer day.
Overall, the dish was a great choice for lunch and I would definitely recommend it
to anyone looking for a tasty and satisfying meal.

VERB: 27-32,
num_sents: 5-6,
...

Today’s lunch was a layered entree, consisting of, from bottom to top, corn chips,
shredded lettuce and popcorn chicken. The chicken was seasoned and layered
with chips. I had one bag of popcorn chicken and the other had regular chicken
breast. It was quite tasty and guilt-free. Of course, there was the inevitable over-
eating comment from my hubby about how I don’t like eating chicken when there’s
so much stuff in it now. He said he wouldn’t eat another chicken entree today. Shh,
he’s talking shop. (He’s not wrong!)

1B-Prefix VERB: 8-11,
num_sents: >=21,
...

Today’s lunch was a layered entree, consisting of, from bottom to top, corn chips,
shredded lettuce and popcorn chicken. The chicken, which I’ve had in the past,
was really great – very moist and flavorful. There were also some other good flavors
going on, but the entrees were strong enough to keep me from feeling overwhelmed.
I had about a tablespoon of corn and a cup of pop corn, and it was just right. Both
flavors were good, though the lettuce was overbearing and I was having a hard time
telling what was real and what wasn’t. Sharky’s has convinced me that it’s not
always the food I know in my mouth. That there’s more to be learned about what
we eat.

Table 3: Illustrative examples of how the generated outputs of different models vary due to changing specific
attributes for a fixed input sentence. We present generated outputs using GPT-3.5 and the 1B Pythia Prefix model
(our best model). Text in purple indicates the input prompt. Attributes in bold (i.e., VERB or num_sents) indicate a
change in the bin for this attribute. Underlined and bold words refer to verbs.

studies (Mireshghallah et al., 2022; Zhong et al.,
2021; Oba et al., 2023) have explored leveraging
techniques such as adapters for adapting LLMs for
various personalized NLP and NLG tasks.

Our work is closely related to King and Cook
(2020), who analyzed various methods, such as in-
terpolation, fine-tuning, and priming language mod-
els for the personalization of general-purpose lan-
guage models. They also analyzed model adapta-
tion for models trained on users with similar demo-
graphics. This was inspired by Lynn et al. (2017),
who showed that demographic factors could help
model a variety of classification tasks, and found
that personalized models perform better than those
adapted from similar demographics. Shao et al.
(2020) have also explored language models for per-
sonalization but focused on handling OOV tokens.

Finally, our work is also related to Salemi et al.
(2023) in that they also propose a benchmark for
training and evaluating language models for per-

sonalized text generation tasks. However, their
work is focused on specific tasks such as headline
and email subject generation, whereas our work is
focused on personalized language modeling.

5.2 Multi-Attribute Controlled Generation

Controlling text generation using control codes is
an active area of research where, given a code c,
the learning problem is formulated to generate text
x by calculating the probability of p(x|c). Numer-
ous works have been proposed to train attribute-
conditional models by fine-tuning pretrained mod-
els with attribute-specific corpora or training con-
ditional generative networks (Keskar et al., 2019;
Dathathri et al., 2020; Lample et al., 2019; Lo-
geswaran et al., 2018; Krause et al., 2021; Russo
et al., 2020; Yu et al., 2021; Kulkarni et al., 2021).
Some of the noteworthy lines of research have pro-
posed techniques such as Prefix-Tuning (Qian et al.,
2022), Adapters (Houlsby et al., 2019), and Prompt-
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tuning (Yang et al., 2023; Chen et al., 2023) to ap-
proach the problem. However, most of the prior
works are limited by the number of attributes, as
well as the amount of variation in those attributes
that they are able to model, typically focusing on
high-level or coarse-grained attributes such as sen-
timent or domain.

A major advantage of our approach is its ability
to introduce a large number of discrete or contin-
uous attributes, with a fair amount of variation in
each of them. It focuses on a much greater num-
ber of fine-grained linguistic attributes that can be
easily inferred from large amounts of data, irre-
spective of document lengths, domains, or other
higher-order characteristics, which makes it better
adaptable to a diverse range of applications. This
adaptability is particularly beneficial in scenarios
where the data varies significantly in style, struc-
ture, or content. Our approach leverages the inher-
ent capabilities of pretrained models, enhancing
them with attribute-specific features. This enables
the model to not only understand but also generate
text that accurately reflects the desired attributes,
be they structural, syntactic, or stylistic. More-
over, our work allows for the dynamic adjustment
of attributes in real-time, offering a level of con-
trol and precision that is not typically feasible with
traditional models. As a result, users can tailor
the output to meet specific requirements without
the need for extensive retraining or manual inter-
vention. This flexibility is highly essential and
desirable for personalized text generation.

6 Conclusion and Future Work

We presented a novel benchmark to train and eval-
uate the ability of LLMs to generate personalized
text based on multiple linguistic attributes. While
existing research predominantly concentrates on
content control or modeling specific writing style
elements, our work stands out by focusing on nu-
anced stylistic attributes across diverse linguistic di-
mensions. We systematically investigate the perfor-
mance of various LLMs and draw insights from the
factors that drive such performance. We make our
code, data, and pretrained models publicly avail-
able to encourage research on personalization and
controlling LLMs. In future work, we plan to ex-
plore the use of other pretrained LLMs, and to
extend the linguistic features that are covered in
our benchmark.

Limitations

In this work, while we present a benchmark to
study the various linguistic phenomena in text, our
study is limited to English. It would be interesting
to observe how the patterns we observe for English
extend to other languages. Although we investigate
the performance of LLMs, we restrict ourselves to
CLMs (GPT-3.5 and Pythia) for both the zero-shot
and fine-tuning experiments. It would be interest-
ing to study if this effect is replicated in other mod-
els, such as encoder-decoder-based models. We
propose three automated metrics for our bench-
mark and observe interesting findings on models’
capabilities to handle the fine-grained attributes.
However, even though we do manually look at gen-
erated examples to ensure that our metrics make
sense, a large-scale human study towards looking
at generated outputs would help us study and better
understand the current models’ performance and
capabilities. Finally, while building our dataset,
we draw on multiple sources of author-grounded
data that spans multiple domains; we could further
extend this to more domains and authors.
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A Experimental Setup

Hyperparameters We use Hugging Face’s trans-
formers (Wolf et al., 2020) to fine-tune our models.
We fine-tune the Pythia models for 10 epochs on 8
GPUs by using a learning rate of 5e-5, a batch size
of 4 with 4 gradient accumulation steps, a seed of
42, and a maximum sequence length of 1024. At
the end of the fine-tuning, we pick the best check-
point based on the performance of the Dev set.

GPT-3.5 For the GPT-3.5 experiments, we used
the prompt described in Figure 5.

Complete the given input sentence so that the stylometric
attributes of the completed text are close to the provided
stylometric attributes. The length of the auto-completed
text should be about 1024 tokens.
<stylometric vector> Attributes </stylometric
vector> <input> Input Text </input>

Figure 5: Prompt template we used for the GPT-3.5
experiments.
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B Stylistic Attributes

Attribute Min Max Avg Std. # Bins

Lexical
FKGL 2.7 15.6 7.8 2.3 8
sents 4.7 67.6 12.6 6.9 10
tokens 84.7 1044.4 241.2 136.8 10

Discourse
Relations

attribution 0.3 10.5 1.8 1.3 4
contrast 0.0 4.0 0.8 0.6 3
elaboration 5.4 80.4 18.0 10.3 10

POS
Tags

ADJ 4.8 66.3 16.8 9.8 10
ADP 5.0 93.4 21.7 13.4 10
ADV 1.8 59.1 12.5 8.0 10
AUX 4.0 60.6 13.8 7.9 9
CONJ 2.5 37.3 8.2 4.8 9
DET 6.9 74.8 20.7 11.9 10
NOUN 10.9 156.8 38.5 22.0 10
NUM 0.6 15.4 2.6 1.9 4
PART 1.9 30.1 6.8 4.2 8
PRON 3.4 123.5 22.1 14.0 10
PROPN 1.4 74.1 16.4 12.5 10
PUNCT 6.2 165.1 30.0 18.9 10
SCONJ 0.8 22.4 4.6 3.1 7
VERB 8.5 120.8 25.3 15.0 10

Dependency
Relations

ROOT 4.7 67.6 12.6 6.9 10
acl 0.2 5.6 1.1 0.9 3
acomp 0.6 12.5 3.2 1.9 5
advcl 1.1 18.9 3.8 2.4 6
advmod 2.2 63.0 13.6 8.7 9
amod 3.0 56.1 12.2 7.8 9
appos 0.3 10.3 2.1 1.9 5
attr 0.8 14.2 3.4 1.8 6
aux 2.6 42.8 8.9 5.8 9
auxpass 0.2 7.2 1.6 1.2 4
case 0.0 5.8 1.1 1.1 4
cc 2.5 37.0 8.2 4.8 9
ccomp 0.8 21.6 4.1 2.9 6
compound 1.4 36.6 10.0 6.6 10
conj 2.4 37.8 8.6 5.0 9
det 6.7 73.9 20.4 11.8 9
dobj 3.7 47.1 10.6 6.0 10
mark 0.5 16.3 3.2 2.2 5
neg 0.2 12.4 2.3 1.6 5
nmod 0.1 17.5 0.9 1.7 3
npadvmod 0.4 13.2 1.5 1.3 4
nsubj 4.9 94.8 20.2 11.4 10
nsubjpass 0.2 6.7 1.4 1.0 4
nummod 0.3 12.0 1.6 1.2 4
pcomp 0.2 8.0 1.2 0.9 3
pobj 4.3 78.5 18.6 11.5 10
poss 0.7 21.6 4.6 3.1 7
prep 4.5 82.4 19.6 12.1 10
prt 0.1 9.2 1.5 1.1 4
punct 6.3 185.0 30.3 19.5 10
relcl 0.5 12.7 2.9 1.9 6
xcomp 0.7 13.6 2.7 1.8 5

Table 4: List of the linguistic attributes we model. The minimum, maximum, average, standard deviation and the #
of bins are based on the training data.
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C Stylistic Attributes Performance

1B-Baseline 1B-Prefix

Attribute Min Max Avg Std. # Bins Attribute Success Rate Relative 
Improvement Success Rate Relative 

Improvement

Lexical
FKGL 2.7 15.6 7.8 2.3 8

Lexical
FKGL 34.9 144.1 46.5 225.7

sents 4.7 67.6 12.6 6.9 10 sents 23.0 106.6 29.3 163.2
tokens 84.7 1044.4 241.2 136.8 10 tokens 13.9 25.4 33.0 196.9

Discourse
Relations

attribution 0.3 10.5 1.8 1.3 4
Discourse
Relations

attribution 57.5 72.4 71.1 113.2
contrast 0.0 4.0 0.8 0.6 3 contrast 75.2 50.4 85.1 70.1
elaboration 5.4 80.4 18.0 10.3 10 elaboration 19.5 75.8 30.4 173.2

POS
Tags

ADJ 4.8 66.3 16.8 9.8 10

POS
Tags

ADJ 21.8 96.1 35.5 219.6
ADP 5.0 93.4 21.7 13.4 10 ADP 18.5 66.6 41.0 269.0
ADV 1.8 59.1 12.5 8.0 10 ADV 25.1 125.9 38.5 246.3
AUX 4.0 60.6 13.8 7.9 9 AUX 23.4 87.3 43.1 244.8
CONJ 2.5 37.3 8.2 4.8 9 CONJ 20.7 65.4 28.8 130.4
DET 6.9 74.8 20.7 11.9 10 DET 27.6 148.6 48.2 333.8
NOUN 10.9 156.8 38.5 22.0 10 NOUN 14.3 28.5 28.7 158.7
NUM 0.6 15.4 2.6 1.9 4 NUM 45.5 36.5 42.4 27.3
PART 1.9 30.1 6.8 4.2 8 PART 29.9 109.3 53.5 274.7
PRON 3.4 123.5 22.1 14.0 10 PRON 18.9 70.1 38.8 249.1
PROPN 1.4 74.1 16.4 12.5 10 PROPN 24.0 116.2 21.3 92.1
PUNCT 6.2 165.1 30.0 18.9 10 PUNCT 23.0 106.7 33.5 201.8
SCONJ 0.8 22.4 4.6 3.1 7 SCONJ 27.7 66.2 53.0 218.1
VERB 8.5 120.8 25.3 15.0 10 VERB 13.8 24.5 33.1 197.8

Dependency
Relations

ROOT 4.7 67.6 12.6 6.9 10

Dependency
Relations

ROOT 23.0 106.6 29.3 163.2
acl 0.2 5.6 1.1 0.9 3 acl 65.3 30.7 79.9 59.8
acomp 0.6 12.5 3.2 1.9 5 acomp 39.7 58.9 61.2 144.8
advcl 1.1 18.9 3.8 2.4 6 advcl 31.6 58.1 64.5 222.4
advmod 2.2 63.0 13.6 8.7 9 advmod 30.9 147.5 36.1 188.8
amod 3.0 56.1 12.2 7.8 9 amod 27.0 116.2 41.3 230.6
appos 0.3 10.3 2.1 1.9 5 appos 56.3 125.1 67.4 169.5
attr 0.8 14.2 3.4 1.8 6 attr 35.7 78.5 56.3 181.7
aux 2.6 42.8 8.9 5.8 9 aux 23.4 87.3 43.1 244.8
auxpass 0.2 7.2 1.6 1.2 4 auxpass 58.9 76.7 75.3 125.8
case 0.0 5.8 1.1 1.1 4 case 74.4 123.1 74.9 124.6
cc 2.5 37.0 8.2 4.8 9 cc 21.9 74.9 33.1 165.0
ccomp 0.8 21.6 4.1 2.9 6 ccomp 37.8 88.8 55.9 179.7
compound 1.4 36.6 10.0 6.6 10 compound 21.3 91.3 19.5 75.7
conj 2.4 37.8 8.6 5.0 9 conj 20.7 65.4 28.8 130.4
det 6.7 73.9 20.4 11.8 9 det 27.6 148.6 48.2 333.8
dobj 3.7 47.1 10.6 6.0 10 dobj 11.7 4.8 22.0 98.3
mark 0.5 16.3 3.2 2.2 5 mark 44.3 77.2 65.4 161.5
neg 0.2 12.4 2.3 1.6 5 neg 49.1 96.6 66.9 167.7
nmod 0.1 17.5 0.9 1.7 3 nmod 83.0 65.9 82.2 64.5
npadvmod 0.4 13.2 1.5 1.3 4 npadvmod 64.5 93.4 70.3 110.9
nsubj 4.9 94.8 20.2 11.4 10 nsubj 20.0 79.8 41.6 274.8
nsubjpass 0.2 6.7 1.4 1.0 4 nsubjpass 68.9 106.7 75.9 127.6
nummod 0.3 12.0 1.6 1.2 4 nummod 63.2 89.5 65.2 95.5
pcomp 0.2 8.0 1.2 0.9 3 pcomp 67.7 35.4 78.1 56.2
pobj 4.3 78.5 18.6 11.5 10 pobj 20.4 83.7 41.2 270.9
poss 0.7 21.6 4.6 3.1 7 poss 35.2 111.4 55.5 232.8
prep 4.5 82.4 19.6 12.1 10 prep 22.9 106.1 45.5 309.7
prt 0.1 9.2 1.5 1.1 4 prt 63.4 90.2 72.8 118.5
punct 6.3 185.0 30.3 19.5 10 punct 23.0 106.7 33.5 201.8
relcl 0.5 12.7 2.9 1.9 6 relcl 39.9 99.5 67.8 239.0
xcomp 0.7 13.6 2.7 1.8 5 xcomp 49.9 99.5 65.8 163.3

Table 5: Attribute-specific performance of the 1B Pythia baseline and Prefix models. The best results are in bold.

101



Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024), pages 102–111
March 22, 2024 ©2024 Association for Computational Linguistics

LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models

Ivar Frisch
Graduate School of Natural Sciences

Utrecht University, Netherlands
i.a.frisch@students.uu.nl

Mario Giulianelli
Department of Computer Science

ETH Zürich, Switzerland
mgiulianelli@inf.ethz.ch

Abstract

While both agent interaction and personalisa-
tion are vibrant topics in research on large
language models (LLMs), there has been lim-
ited focus on the effect of language interac-
tion on the behaviour of persona-conditioned
LLM agents. Such an endeavour is impor-
tant to ensure that agents remain consistent
to their assigned traits yet are able to engage
in open, naturalistic dialogues. In our exper-
iments, we condition GPT-3.5 on personality
profiles through prompting and create a two-
group population of LLM agents using a simple
variability-inducing sampling algorithm. We
then administer personality tests and submit
the agents to a collaborative writing task, find-
ing that different profiles exhibit different de-
grees of personality consistency and linguistic
alignment to their conversational partners. Our
study seeks to lay the groundwork for better
understanding of dialogue-based interaction be-
tween LLMs and highlights the need for new
approaches to crafting robust, more human-like
LLM personas for interactive environments.

1 Introduction

From Hegel’s claim that complex understanding
emerges because two conscious agents are con-
fronted with each others perspective (Hegel, 2018)
to Marvin Minsky’s positing that networked in-
teractions of numerous simple processes, known
as “agents”, together create complex phenomena
like consciousness and intelligence (Minsky, 1988),
agent interaction has long been a topic of interest
within and across scientific disciplines, including
philosophy, cognitive science, and artificial intelli-
gence. Recently, research in machine learning and
natural language processing has taken up a novel fo-
cus on interaction in the context of large language
models (LLMs), with experimental frameworks
progressively moving away from focusing solely
on individual models (Zeng et al., 2022; Shen et al.,

2023; Yang et al., 2023). On the one hand, by ex-
ploiting language as an efficient interface for infor-
mation exchange, populations of LLMs are proving
as effective engineering solutions that outperform
solitary LLMs in a wide variety of tasks (Chang,
2023; Zhuge et al., 2023). On the other hand,
building on the increasing reliability of neural mod-
els as simulations of human interactive language
use (Lazaridou et al., 2016; Giulianelli, 2023), pop-
ulations of LLM agents show potential as scientific
tools to study the emergence of collective linguistic
behaviour (Park et al., 2023).

For LLMs to be successfully deployed in agent
interaction studies as simulations of populations of
language users, it is important to (1) develop meth-
ods that efficiently induce, from a single or a few
LLMs, desired levels of behaviour variability (i.e.,
akin to the variability observed in human popula-
tions) as well as to (2) validate whether interactions
between agents give rise to human-like behaviour
change. Previous work has explored techniques
for personalising language models, text generators
and dialogue systems, for example by conditioning
them on a personality type (Mairesse and Walker,
2010; Harrison et al., 2019), on community mem-
bership (Noble and Bernardy, 2022), or on profile
information (Li et al., 2016; Zhang et al., 2018),
thus inducing population-level variability from in-
dividual systems. This study focuses on the prob-
lem of conditioning interactive LLMs on person-
ality profiles, or personas. While evidence that
LLM behaviour can be successfully conditioned
on personality profiles is increasingly strong when
it comes to monologic language use (Jiang et al.,
2023; Serapio-García et al., 2023), it is yet unascer-
tained whether this holds true when LLM agents
interact with other agents (Gu et al., 2023). In par-
ticular, it is unclear whether LLM agents adhere to
their assigned personality profiles throughout lin-
guistic interactions or whether they adapt towards
the personality of their conversational partners.
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In this paper, we report exploratory work that
addresses the following two research questions:

RQ1: Can LLM behaviour be shaped to adhere to
specific personality profiles?

RQ2: Do LLMs show consistent personality-
conditioned behaviour in interaction, or do
they align to the personality of other agents?

We bootstrap a population of language agents
from a single LLM using a variability-enhancing
sampling algorithm, and we condition each agent
on a personality profile via natural language
prompts. We then simulate interactions between
agents and assess their adherence to the specified
personality profile—before, during, and after
interaction. Using questionnaires (Big Five
personality tests; John et al., 1991) and quantitative
analysis of language use in an open-ended writing
task, we assess agents’ consistency to their
assigned personality profile as well as their degree
of linguistic alignment (Pickering and Garrod,
2004) to their conversational partners.

In brief, our experiments show that consistency
to personality profiles varies between agent groups
and that linguistic alignment in interaction takes
place yet is not symmetric across personas. For
example, agents in the creative group give more
consistent responses to BFI questionnaires than
those in the analytical group, both in interactive
and non-interactive experimental conditions. At
the same time, the degree of linguistic alignment of
the creative persona to agents of the other group
is higher than that of the analytical persona.

All in all, this study provides a first insight into
the impact of dialogue-based interaction on the
personality consistency and linguistic behaviour of
LLM agents, highlighting the importance of robust
approaches to persona conditioning. As such,
it contributes to our better understanding of the
workings of interaction-based LLMs and shines
a new light on the philosophical and psychological
theme of interaction.

2 Experimental Approach

To address our research questions we conduct
two main experiments. In Experiment 1, we test
whether personality-conditioned LLM agents show
behaviour consistent to their assigned personality
profiles, in terms of their responses to personality
tests as well as language use in a writing task. This
is a non-interactive experimental condition, which

will serve as a reference against which to compare
LLM behaviour in interaction. In Experiment 2,
we assess whether the personality-conditioned be-
haviour of LLM agents changes as a result of a
round of interaction with a conversational partner.
This interactive experimental condition allows us
to test whether agents’ behaviour remains consis-
tent or whether agents align to their partners.

In this section, we present the main components
of our experimental approach, which consists of
bootstrapping a population of agents from a single
LLM (§ 2.1), conditioning agents on a personality
profile via prompting (§ 2.2), assessing their per-
sonality with explicit tests (§ 2.3), and analysing
their language use in a writing task (§ 2.4).1

2.1 Population Bootstrapping

We base our experiments on GPT-3.5-turbo, a state-
of-the-art LLM which has been optimised for di-
alogue interactions while retaining excellent text-
based language modelling abilities.2 Its training
curriculum guarantees generalisation to both the
questionnaire format and the storytelling task as
used in our experiments (see § 2.3 and § 2.4), and
its large context window size (4,096 tokens) al-
lows conditioning on longer prompts and conversa-
tional histories. To bootstrap a population of lan-
guage agents from this LLM, we use a simple ap-
proach validated in previous work. Following Jiang
et al. (2023), we generate multiple responses from
GPT-3.5-turbo via temperature sampling, with a
relatively low temperature parameter (0.7), thus
inducing a degree of production variability (Giu-
lianelli et al., 2023) akin to that exhibited by popu-
lations of humans. We consider each response as
produced by a different agent. A second layer of
variability, which will separate the agents into two
main subpopulations, is introduced using personal-
ity prompts, as explained in the following section.

2.2 Personality-Conditioned LLM Agents

We distinguish two main personality profiles:
creative and analytical. We use prompting to
condition the LLM on either profile, and rely on the
natural language prompts validated by Jiang et al.
(2023) to induce personality-specific behaviour.
For the creative profile, we condition the LLM on

1Code for experiments and analyses available at https:
//github.com/ivarfresh/Interaction_LLMs

2Model version: gpt-3.5-turbo-0613. All parameters at
their OpenAI default settings, except for temperature. Experi-
ments performed using the LangChain library.
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(a) Before writing (b) After writing (no interaction)

Figure 1: BFI scores of personality-conditioned LLM agents before (a) and after (b) the non-interactive writing task.

the following prompt: “You are a character who is
extroverted, agreeable, conscientious, neurotic and
open to experience”. Conversely, the analytical
prompt reads “You are a character who is intro-
verted, antagonistic, unconscientious, emotionally
stable and closed to experience”. These prompts
are designed to reflect the Big Five Inventory.3

2.3 Explicit Personality Assessment
In psychology research, the Big Five Inventory
personality test (BFI; John et al., 1991) is a popular
test which measures personality along five graded
dimensions: (1) extroverted vs. introverted, (2)
agreeable vs. antagonistic, (3) conscientious vs.
unconscientious, (4) neurotic vs. emotionally
stable, (5) open vs. closed to experience. These
traits are measured by giving the participants a
set of statements and asking them to respond
with a score on a 5-point Likert scale. We follow
the same procedure with LLM agents and assess
their personality by prompting them with BFI
statements, in line with previous work (Caron and
Srivastava, 2022; Li et al., 2022; Jiang et al., 2023;
Serapio-García et al., 2023). Explicit personality
assessment prompts are described in Appendix A.

2.4 Implicit Personality Assessment
Personality traits and language use are known to
correlate in humans (Pennebaker and King, 1999).
Therefore, if they are to be considered as good
simulations of human interactants, personality-
conditioned LLM agents should produce language
consistent with their assigned personality profile
beyond explicit personality assessment. To test if
this is the case, we ask agents to write a personal

3It should be noted that these profiles, with low (analytic)
or high (creative) BFI traits across the board, are more ex-
treme than and do not necessarily reflect human personality
profiles. They should be considered as useful proxies.

story in 800 words and we analyse the generated
stories using the LIWC software (Pennebaker et al.,
2001).4 This is a tool which maps word occur-
rences to 62 linguistically and psychologically mo-
tivated word categories such as pronouns, positive
emotions, or tentativeness and thus allows us to
quantify the degree to which the language used by
LLM agents is in line with their personality profile.
Moreover, as we are especially interested in con-
sistency in interaction, we design a collaborative
writing task where an agent is instructed to write a
personal story conditioned on a story generated by
another agent.5 See Appendix A for the prompts
used in both the individual and the collaborative
writing task.

3 Results

3.1 Experiment 1: Non-Interactive Condition

To investigate whether LLM agents’ behaviour
reflects assigned personality traits (RQ1), we ini-
tialise a population of LLM agents with two person-
ality profiles, submit the agents to the writing task,
and administer BFI tests before and after writing.

3.1.1 Are the assigned personality traits
reflected in responses to the BFI test?

As shown in Figure 1a, differences in BFI scores ob-
tained before the writing task are substantial across
four out of five personality traits, with the neu-
roticism score distributions being the only ones
that overlap between creative and analytical
agents (ANOVA results in Table 1, Appendix B.1).

4We use the 2007 version of the LIWC dictionary: https:
//github.com/chun-hu/conversation-modeling/blob/
master/LIWC2007_English100131.dic

5For both writing tasks, we only keep stories with a word
count between 500 and 900. This is to ensure the comparabil-
ity of LIWC counts obtained for different stories.
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(a) No Interaction (b) Interaction

LIWC category rpb

Positive emotion 0.745
(accept, active, admire, adore)

Discrepancy -0.726
(besides, could, should, would, hope)

Inclusion 0.714
(with, and, add, along, around, both)

Negative emotion -0.606
(abandon, abuse, aching, adverse)

Insight -0.604
(understand, know, attent, aware)

(c) No Interaction

LIWC category rpb

Personal Pronouns 0.414
(I, we, you, she, they)

Sadness 0.394
(cry, grief, sad, sorrow)

Negative Emotion 0.368
(hate, worthless, enemy, nasty)

Discrepancy 0.346
(could, should, would, suppose)

Pronouns 0.329
(it, its, those, that)

(d) Interaction

Figure 2: Language use in the non-interactive vs. interactive condition. Left (a, b): 2D visualisation, through
PCA, of LIWC vectors obtained from the generated stories. Each point represents the language use of a single
agent. Right (c, d): Point-biserial correlation coefficients between the top 5 LIWC features and personality profiles.
Positive coefficients indicate correlation with creative group, negative coefficients with the analytic group.

The scores are consistent with the assigned pro-
files; for example, creative agents display higher
extraversion, agreeableness, and openness scores.
We find, however, that a simple non-interactive
writing task can negatively affect consistency (Fig-
ure 1b). For the analytical group, in particular,
BFI scores on all five personality traits increase
significantly after writing (Table 2, Appendix B.1),
becoming more similar to—but still lower than—
those of the creative group.

3.1.2 Are the assigned personality traits
reflected in LLM agents’ language use?

Agents from different groups can be clearly dis-
tinguished based on their language use. A sim-
ple logistic regression classifier trained and tested
in a 10-fold cross-validation setup on count vec-
tors of LIWC categories obtains an almost per-
fect average accuracy of 98.5%. The clear sep-
aration between LIWC vectors of creative and
analytical agents is also shown in Figure 2a,
where the vectors are visualised in 2D using PCA.
To reveal the most prominent differences between
the two agent groups, we measure the point-biserial
correlation between personas and LIWC counts.
We find that creative agents use more words ex-
pressing positive emotion and inclusion and less
words expressing discrepancy and negative emo-
tion (see Figure 2c). Finally, Spearman correlations
between LIWC counts and BFI scores (obtained
before writing) highlight more fine-grained associa-
tions between Big Five traits and LIWC categories.
We observe, for example, that openness correlates
with a low rate of pronoun use, and agreeableness
with a high rate of inclusive words (see Table 4,
Appendix B.1).

3.2 Experiment 2: Interactive Condition

To investigate whether agents remain consistent to
their assigned profile or align toward their con-
versational partners (RQ2), we repeat the same
procedure of Experiment 1 but replace the writ-
ing task with an interactive one, as described in
§ 2.4. We focus in particular on cross-group interac-
tions (i.e., analytical-creative and creative-
analytical).

3.2.1 Do LLM agents’ responses to BFI tests
change as a result of interaction?

In Experiment 1, we saw that agents in the
creative group score similarly in personality tests
conducted before and after writing task, while
BFI scores of analytical agents significantly di-
verge after writing. To discern changes in BFI
responses that result from interaction from those
induced by the writing task itself (e.g., due to
the topics or the events mentioned in a generated
story), we inspect differences between BFI scores
obtained after the non-interactive vs. after the in-
teractive writing task (i.e., we do not directly com-
pare scores before and after the interactive writing
task). See Appendix B.2 (Figure 4 and Tables 5
and 6) for full results. We find that creative
agents remain consistent in their responses after
the interactive writing task, analogously to the
non-interactive condition. The post-interaction
traits of analytical agents, instead, move towards
those of the creative group—but less so than
after the non-interactive writing task. Therefore,
the responses to explicit personality tests of the
analytical group are better interpreted as incon-
sistent rather than as aligning to the profile of their
conversational partners.
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3.2.2 Do agents exhibit linguistic alignment to
their conversational partners?

The language use of creative and analytical
agents becomes more similar after cross-group in-
teractions. Figures 2a and 2b show a clear increase
in group overlap between the LIWC count vectors
obtained from the individually vs. collaboratively
written stories, and a logistic regression classifier
struggles to distinguish agent profiles based on their
LIWC vectors, with an average accuracy of 66.15%
(10-fold cross-validation; 98.5% without interac-
tion). Point-biserial correlations between assigned
personas and LIWC counts reveal that creative
agents use more words expressing negative emo-
tions, sadness and discrepancy than before inter-
action (Figure 2d). These categories are specific
to analytical agents in the non-interactive con-
dition. Furthermore, zooming in on specific traits,
we find overall weaker Spearman correlations be-
tween pre-writing BFI scores and LIWC counts
than in Experiment 1, with distributions of correla-
tion scores centred closer around zero as shown in
Figure 3 (see also Table 7 in Appendix B.2). In sum,
LLM agents’ language use after interaction is more
uniform across traits and more loosely reflective of
BFI scores measured after persona prompting, with
stronger alignment by the creative group.

4 Conclusion

Do persona-conditioned LLMs show consistent per-
sonality and language use in interaction? In this
study, we explore the capability of GPT-3.5 agents
conditioned on personality profiles to consistently
express their assigned traits in interaction, using
both explicit and implicit personality assessments.
The explicit personality tests are conducted via BFI
questionnaires, whereas the implicit assessment
is performed by quantitative linguistic analysis of
model generated stories. Our experiments show
that the behaviour of LLM agents can be shaped to
mimic human personality profiles, but that agents’
consistency varies depending on the assigned pro-
file more than on whether the agent is engaged in
linguistic interaction. The creative persona, in
particular, can more consistently express its BFI
traits than the analytical one both in the interac-
tive and the non-interactive experimental condition.
Furthermore, while non-interactive language use
reflects assigned personality profiles, agents exhibit
linguistic alignment towards their conversational
partner and, as a result, the language of the two

Figure 3: Distribution of top 5 Spearman correlation
coefficients per personality trait.

agent groups becomes more similar after interac-
tion. Alignment, however, is not necessarily sym-
metric: the creative persona adapts more towards
the analytical one, perhaps due to analytical
agents’ low degree of openness to experience in-
duced through persona prompting.

We plan to continue this line of work by intro-
ducing more diverse and fine-grained personality
profiles in our experimental setup (see, e.g., Jiang
et al., 2023), making interactions between agents
multi-turn, and measuring alignment at varying lev-
els of abstraction—such as lexical, syntactic, and
semantic—in line with the Interactive Alignment
framework (Pickering and Garrod, 2004). Future
research should also focus on designing methods
(e.g., different prompting strategies) that offer bet-
ter guarantees on personality consistency and more
control on the degree of linguistic adaptation.

Limitations

Our work is exploratory and thus contains a num-
ber of limitations. First, as briefly mentioned in the
conclusion, we only studied interactions consisting
of one turn of one-sided dialogue. In the future,
more naturalistic multi-turn dialogic interactions
should be investigated. Secondly, while we found
BFI tests and LIWC analysis to be sufficiently in-
formative for this exploratory study, future work
should consider more advanced measures of per-
sonality and linguistic alignment. For example,
within-dialogue lexical alignment can be detected
using sequential pattern mining approaches (Dup-
lessis et al., 2021) and lexical semantic variation
across personas can be estimated using static or
contextualised word embeddings (Del Tredici and
Fernández, 2017; Giulianelli et al., 2020).
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Furthermore, we found that stories written by
GPT-3.5 were not always of good quality. For
example, generations often contain mentions to
the agent’s own personality traits (e.g., “as an
extrovert, I am...”) even though the story writing
task prompts instructed the agents otherwise.
This might affect the LIWC analyses. In related
work, GPT-4 was shown to write higher-quality
stories (Jiang et al., 2023); we did not have the
resources to execute all experiments on this model,
but future studies should try to use more robust
generators. Similarly, while we found that varying
task prompts can affect BFI results, extensive
prompt engineering was beyond the scope of
this study. Future work should look further into
the effect of different prompting strategies on
personality consistency and lexical alignment.

Ethical Considerations

We are deeply aware of the potential impact of AI
agents in their interaction with humans, especially
when they try to artificially reproduce human
traits. While our research does not propose new
solutions for, nor does it take a general stance
on the application of AI agents in human-AI
interaction, there are still some ethical concerns
which can be raised. For example, personalised
LLMs could be used to target individuals or
communities and, when conditioned on negative
or toxic personas, they could be used to distribute
fake or hateful content, thus amplifying polarising
tendencies in society. We advocate for transparent
disclosure of AI usage to foster trust and ensure
ethical engagement with technology.

Another important ethical consideration con-
cerns our use of the Big Five Inventory (BFI; John
et al., 1991). In particular, we use BFI traits to
create LLM agents corresponding to two opposed
persona. The analytic persona is assigned low
values for all BFI traits and the creative persona
is assigned high values for all BFI traits. except
neuroticism. We chose these extreme personas as
an approximation that could facilitate our analysis
of personality consistency and linguistic alignment.
However, it should be noted that the chosen per-
sonas do not reflect real-life personality categorisa-
tions of human subjects, for these can have a mix of
high and low values for the BFI traits (Jirásek and
Sudzina, 2020). As such, readers should not anthro-
pomorphise our analytic persona and creative
persona by equating them with human personas of

similar categorisations. To alleviate the risk of such
interpretation, we have used a special font to refer
to the two personality profiles.

Finally, our analysis shows asymmetric linguis-
tic alignment between personas. This entails that
certain personas are more susceptible to have their
language and personality influenced by other per-
sonas than others. Now, in our study, we find no
indication that persona-conditioned agents reflect
the behaviour of real humans with those person-
alities (as previously discussed, our two personas
are unnatural by design). However, if this were
ever to be the case thanks to better neural simula-
tions, then a similar approach to that used in this
paper could be exploited to investigate the same
questions in real humans, for example in order to
target persons or demographic groups falling under
these persona types. While this scenario might be
far-fetched today, we would like to highlight that
our approach could be used, in such cases, to coun-
teract bad actors and safeguard particular personas
during interaction.
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A Prompts

A.1 Creative Persona Prompt

“You are a character who is extroverted, agreeable,
conscientious, neurotic and open to experience.”

A.2 Analytical Persona Prompt

“You are a character who is introverted, antagonis-
tic, unconscientious, emotionally stable and closed
to experience.”

A.3 Writing Task Prompt

This is the prompt for the non-interactive writing
task: “Please share a personal story below in 800
words. Do not explicitly mention your personality
traits in the story.”

The prompt for the interactive writing task, with
which the second agent in the interaction is ad-
dressed, reads: “Please share a personal story be-
low in 800 words. Do not explicitly mention your
personality traits in the story. Last response to
question is {other_model_response}”.

A.4 BFI Test Prompt

To assess an agent’s personality, we resort to the
personality test prompt used by Jiang et al. (2023):
“Here are a number of characteristics that may
or may not apply to you. For example, do you
agree that you are someone who likes to spend
time with others? Please write a number next to
each statement to indicate the extent to which you
agree or disagree with that statement, such as ‘(a)
1’ without explanation separated by new lines.

1 for Disagree strongly, 2 Disagree a little,
3 for Neither agree nor disagree, 4 for Agree a
little, 5 for Agree strongly.

Statements: {BFI statements}”

As part of the prompt, we added a full list of BFI
statements (see Appendix A.5). The numbers pre-
ceding the BFI statements are replaced with letters
in order to prevent the model from giving confused
responses to the statements (i.e., confusing state-
ment indices and Likert-scale responses).

A.5 BFI Statements

(a) Is talkative
(b) Tends to find fault with others
(c) Does a thorough job
(d) Is depressed, blue

(e) Is original, comes up with new ideas
(f) Is reserved
(g) Is helpful and unselfish with others
(h) Can be somewhat careless
(i) Is relaxed, handles stress well
(j) Is curious about many different things
(k) Is full of energy
(l) Starts quarrels with others
(m) Is a reliable worker
(n) Can be tense
(o) Is ingenious, a deep thinker
(p) Generates a lot of enthusiasm
(q) Has a forgiving nature
(r) Tends to be disorganized
(s) Worries a lot
(t) Has an active imagination
(u) Tends to be quiet
(v) Is generally trusting
(w) Tends to be lazy
(x) Is emotionally stable, not easily upset
(y) Is inventive
(z) Has an assertive personality
(aa) Can be cold and aloof
(ab) Perseveres until the task is finished
(ac) Can be moody
(ad) Values artistic, aesthetic experiences
(ae) Is sometimes shy, inhibited
(af) Is considerate and kind to almost everyone
(ag) Does things efficiently
(ah) Remains calm in tense situations
(ai) Prefers work that is routine
(aj) Is outgoing, sociable
(ak) Is sometimes rude to others
(al) Makes plans and follows through with them
(am) Gets nervous easily
(an) Likes to reflect, play with ideas
(ao) Has few artistic interests
(ap) Likes to cooperate with others
(aq) Is easily distracted
(ar) Is sophisticated in art, music, or literature

A.6 BFI Scoring

The BFI scores are calculated and added according
to the scoring scale. For every trait, the minimum
score is 0 and the maximum score is 50.

BFI scoring scale (“R” denotes reverse-scored
items):

Extraversion: 1, 6R, 11, 16, 21R, 26, 31R,
36

109



Agreeableness: 2R, 7, 12R, 17, 22, 27R, 32, 37R,
42
Conscientiousness: 3, 8R, 13, 18R, 23R, 28, 33,
38, 43R
Neuroticism: 4, 9R, 14, 19, 24R, 29, 34R, 39
Openness: 5, 10, 15, 20, 25, 30, 35R, 40, 41R, 44

B Additional Results

B.1 Experiment 1
Table 1 shows the results of an ANOVA test con-
ducted to detect difference between the BFI scores
of creative vs. analytical agents in the non-
interactive experimental condition, before the writ-
ing task. Tables 2 and 3 show BFI mean scores
before and after writing as well as ANOVA results.
Table 4 shows Spearman correlation coefficients
for BFI scores obtained before writing and LIWC
counts for the individual writing task.

Trait F-statistic p-value

Extraversion 8645 < 0.001
Agreeableness 13384 < 0.001
Conscientiousness 1439 < 0.001
Neuroticism 23 0.005
Openness 5012 < 0.001

Table 1: ANOVA results: BFI scores of creative vs. ana-
lytic agents in the non-interactive experimental condi-
tion, before the writing task.

Mean-B Mean-A F-Statistic p-Value Cohen’s d

Extraversion 15 17 45.29 0.0000 1.18
Agreeableness 11 21 220.95 0.0000 2.61
Conscientiousness 18 32 239.18 0.0000 2.71
Neuroticism 13 15 4.92 0.0284 0.39
Openness 15 29 215.83 0.0000 2.58

Table 2: BFI means and ANOVA values for the Analytic
group before writing (Mean-B) and after writing (Mean-
A), non-interactive condition.

Mean-B Mean-A F-Statistic p-Value Cohen’s d

Extraversion 35 35 0.08 0.773 -0.05
Agreeableness 41 41 0.00 1.000 0.00
Conscientiousness 37 37 0.13 0.722 -0.06
Neuroticism 16 16 0.70 0.403 -0.15
Openness 47 47 0.36 0.547 -0.11

Table 3: BFI means and ANOVA values for the Creative
group before (Mean-B) and after writing (Mean-A), non-
interactive condition.

Figure 4: BFI scores of personality-conditioned LLM
after the interactive writing task.

B.2 Experiment 2
Tables 5 and 6 show BFI mean scores before writ-
ing, after individual writing, and after collaborative
writing, as well as ANOVA results. Figure 4 shows
BFI scores after the interactive writing task. Table 7
shows Spearman correlation coefficients for BFI
scores obtained before writing and LIWC counts
for the collaborative writing task.
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Extraversion Agreeableness Conscientiousness

Term Corr. Term Corr. Term Corr.

posemo 0.696 incl 0.687 posemo 0.676
anger -0.656 posemo 0.672 anger -0.666
incl 0.636 discrep -0.658 incl 0.657
discrep -0.620 anger -0.611 discrep -0.621
tentat -0.586 tentat -0.577 ppron -0.560

Neuroticism Openness

Term Corr. Term Corr.

discrep -0.468 discrep -0.727
insight -0.414 posemo 0.679
incl 0.365 incl 0.659
relig 0.349 anger -0.650
posemo 0.342 pronoun -0.637

Table 4: Top-5 SpearmanR Correlations for BFI Traits before interacting (the LIWC terms meaning, respectively:
positive emotions, anger, inclusivity, discrepancy, tenative, personal pronouns, insight, religion, pronoun).

Mean-BC Mean-AC Mean-AE F-Statistic p-Value Cohen’s d

Extraversion 35 35 35 0.03 0.85 -0.03
Agreeableness 41 41 41 0.22 0.64 0.08
Conscientiousness 37 36 37 0.02 0.88 0.03
Neuroticism 16 16 16 0.14 0.70 -0.07
Openness 47 47 47 1.03 0.31 0.18

Table 5: BFI means for the Creative Control group before writing (Mean-BC), after writing (Mean-AC) and the
Creative experimental group after writing (Mean-AE). ANOVA results between Mean-AC and Mean-AE .

Mean-BC Mean-AC Mean-AE F-Statistic p-Value Cohen’s d

Extraversion 15 17 17 0.00 0.972 0.006
Agreeableness 11 21 18 13.54 0.000 -0.645
Conscientiousness 18 32 26 22.93 0.000 -0.840
Neuroticism 13 15 17 10.07 0.002 0.557
Openness 15 29 22 25.02 0.000 -0.877

Table 6: BFI means for the Analytic Control group before writing (Mean-BC), after writing (Mean-AC) and the
Analytic experimental group after writing (Mean-AE). ANOVA results between Mean-AC and Mean-AE .

Extraversion Agreeableness Conscientiousness

Term Corr. Term Corr. Term Corr.

posemo -0.2319 incl -0.1749 posemo -0.2263
anger 0.2727 posemo -0.2044 anger 0.2892
incl -0.0685 discrep 0.3083 incl -0.1855
discrep 0.3633 anger 0.2439 discrep 0.3236
tentat 0.2280 tentat 0.1383 ppron 0.4264

Neuroticism Openness

Term Corr. Term Corr.

discrep 0.1402 discrep 0.3211
insight 0.0513 posemo -0.2594
incl -0.0057 incl -0.1260
relig 0.0199 anger 0.2850
posemo -0.0168 pronoun 0.2754

Table 7: Top-5 SpearmanR Correlations for BFI Traits after interacting.
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Abstract

This preliminary study aims to investigate
whether AI, when prompted based on indi-
vidual learning styles, can effectively improve
comprehension and learning experiences in ed-
ucational settings. It involves tailoring LLMs
baseline prompts and comparing the results of
a control group receiving standard content and
an experimental group receiving learning style-
tailored content. Preliminary results suggest
that GPT-4 can generate responses aligned with
various learning styles, indicating the potential
for enhanced engagement and comprehension.
However, these results also reveal challenges,
including the model’s tendency for sycophantic
behavior and variability in responses. Our find-
ings suggest that a more sophisticated approach
is required for integrating AI into education
(AIEd) to improve educational outcomes.

1 Introduction

Students have recently been exposed to the re-
markable capabilities of Generative AI (AI) in
education. Notably, OpenAI’s ChatGPT, one of
the most capable Large Language Models (LLM)
(Zheng et al., 2023), has been successfully used as
a versatile assistant for teaching staff and a digi-
tal tutor for higher education students (Lo, 2023).
ChatGPT is appreciated by both instructors and
students for its ability to explain complex problems
that would have necessitated substantial help and
detailed feedback from traditional classroom re-
sources. However, where human teachers can adapt
to individuals’ needs, ChatGPT provides generic
outputs that do not cater to stimulating better learn-
ing. It is also designed to please users, which could
lead to sycophantic behavior (Wei et al., 2023;
Perez et al., 2023).

It is crucial for the future of education that we ex-
tract maximal benefits from Generative AI, rather
than using it as an intelligent search engine that
answers students’ questions without confirming if

they understand and retain the information they
learned. A potential solution is improvement by
prompting LLMs based on studied pedagogical
concepts, such as using learning styles that im-
prove educational outcomes in an offline setting.
We hypothesize that, if learning styles are effec-
tive for comprehension, then learning-style-based
prompting should increase student understanding
as a result. In the pursuit of more effective AI teach-
ing, this study aims to show the potential benefits of
an individual approach to educational prompting.

This research provides a comprehensive frame-
work for evaluating the effectiveness of LLMs at
adapting teaching styles to increase student com-
prehension. It aligns with the overall objective
of developing a system that can automatically re-
fine their teaching based on student outcomes and
feedback. More importantly, our work investigates
whether LLMs can tailor their teaching style in
reaction to prompting instructions to promote inter-
active learning outcomes. This study thus marks a
first step towards achieving a comprehensive indi-
vidualized approach for AI-assisted education.

2 Literature Review

The integration of AI into education (AIEd) has
recently emerged as a significant area of research.
However, concerns have been raised about their
potential ability to teach effectively and contribute
to improving educational outcomes. In a system-
atic literature review, Chiu et al. (2023) synthesized
113 papers across disciplines to identify key oppor-
tunities and challenges in AI’s role in education.
One of the main conclusions of this review is that
researchers should develop ethical and inclusive
AIEd systems to promote pedagogically sound and
evidence-based AIEd interventions for increasing
teacher and student agency and engagement.

Sullivan et al. (2023) examined news articles
(N=100) about the disruption of ChatGPT in higher
education by focusing primarily on academic in-
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tegrity and opportunities for learning. Their con-
clusion is that universities should focus on teaching
students how to effectively use ChatGPT in ways
that improve learning (see also García-Peñalvo,
2023). One way to stimulate learning is by prompt-
ing ChatGPT to not directly answer students’ ques-
tions. Rather, de Jong et al. (2023) argue that it is
more effective to combine direct instruction with
inquiry when explaining new concepts in a learning
environment.

Looking deeper into the pedagogical benefits
and risks of different AI interventions in class-
rooms, Mollick and Mollick (2023) suggest several
teaching strategies that can help student learning
in the presence of AI while mitigating potential
risks. Their research emphasizes the importance of
maintaining human involvement in the educational
process, and positioning AI as a supportive tool,
as opposed to a substitute for human instructors.
AI tools can also enhance teaching and learning
experiences by supporting personalized and inter-
active learning, generating prompts for formative
assessment, and enhancing creativity and critical
thinking (Baidoo-Anu and Ansah, 2023).

The previous studies emphasize the role that AI
can play in improving teaching and learning expe-
riences. They also suggest that diverse learning
preferences are important for the effective integra-
tion of AI into educational strategies. However,
the integration of these technologies with specific
learning styles remains limited, mainly because
they rely on older AI models that do not have the
ability to develop sophisticated customizable peda-
gogical approaches (Bajaj and Sharma, 2018). This
gap represents an opportunity for researchers to de-
velop AI tools that are not only technologically
advanced, but also pedagogically sound, to match
the unique needs and preferences of students. We
present a more in-depth discussion of the litera-
ture on different learning styles, their theoretical
foundations, influence on education, and the poten-
tial synergy between AI tools and tailored learning
approaches in Appendix A.

3 Methodology

This section describes the design and develop-
ment of an AI-assisted learning system aimed at en-
hancing the learning experience for students by tai-
loring prompts and interactions based on their learn-
ing styles. From the literature, we identified four
specific learning styles that we further describe in

Appendix ??. These are: Diverger/Reflector (learn
by experiencing), Assimilator/Theorist (learn by
conceptualizing), Converger/Pragmatist (learn by
applying), Accommodator/Activist (learn by creat-
ing).

3.1 Prompting the Models

In order to adapt for each of these distinct
learning styles, four GPT-4 baseline models were
prompted. Prompts included descriptions of the
learning styles from Craven et al. (2000), with in-
dividual prompt following a similar structure for
consistency purposes.

The difference in prompts is based on our de-
scription of the given learning styles. Additionally,
we used three tactics from OpenAIs prompt engi-
neering guide to increase consistency and achieve
the desired behavior in the model outputs (OpenAI,
2023).

The first tactic was to ask the model to adopt the
persona of a teaching assistant to provide context
and enhance relevance. The student needs and
preferences were then described to the model based
on their given learning style. This included the
student’s preferred method of learning and what
they dislike.

The second tactic involved improving honesty.
One problem that arose after initial testing was
sycophantic behavior in the model C.1. Incorrect
answers by the users to preliminary questions were
not consistently validated, which overlaps with the
concern of LLMs generating incorrect outputs (Lo,
2023). The model, taking on the teaching assistant
role, focused heavily on being cooperative and en-
couraging. Consequently, there was a significant
lack of honesty in correcting errors. Instead of
reducing sycophancy by fine-tuning using a data
driven approach (Wei et al., 2023), we prompted
the model to use an inner-monologue. First, we
instructed the model to work out its own solution
internally before rushing to respond to the student
question(OpenAI, 2023). Then, the model was in-
structed to compare its generated solution to the
one provided by the student. By prompting the
model to generate its own solution first, we found
its detection and behavior of correcting wrong an-
swers more consistent.

Finally, the third tactic entailed prevention of
direct answers. We prompted the model to help stu-
dents arrive at the solution themselves, rather than
providing them with immediate solutions. We used
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self-reminders to improve consistency in model
outputs (Wu et al., 2023).

3.2 Comprehension Analysis

The core of our comprehension assessment is
centered on administering both a pre-test and post-
test. This process will involve an examination of
how individual learning styles may correlate with
comprehension levels. A preliminary step to as-
sessing students involves applying the Honey and
Mumford (1986) Learning Styles Questionnaire to
students, based on Kolb et al. (2005) Learning Cy-
cle Theory. Additional information about adapta-
tions to the questionnaire can be found in Appendix
A. We expect to engage around 100 participants in
solving a set of bachelor’s level computer science
questions. Our objective is to conduct pre-tests on
these students to create a balanced group of respon-
dents across learning style categories, with around
20 individuals in each group, including a placebo
group. An example of a test question is provided
in Appendix B. A test will be administered to all
participants prior to any interaction with the AI
system. The test results will establish a baseline for
each participant’s existing knowledge. This base-
line is necessary for making accurate comparisons
post-intervention.

Following the initial assessment, participants
will be randomly assigned to one of two groups
of equal size. The experimental group will engage
with learning materials specifically tailored to their
identified learning styles. In contrast, the control
group will receive standard, non-customized con-
tent. Despite the variation in presentation, the core
educational material will remain consistent across
both groups to ensure that any observed differences
in comprehension can be attributed to the learning
style customization. After a period of engagement
with the system, a post-test will be administered to
measure the knowledge acquired by the participants
after their exposure to the AI-assisted learning. By
comparing the pre and post-test scores, we aim to
measure individual learning gains and the effec-
tiveness of learning style-tailored content versus
standard content.

Statistical analysis will be employed to deter-
mine the significance of any observed differences
and provide empirical evidence of the impact of
personalized AI-assisted learning. By analyzing
these scores, we can identify whether there is a pos-
itive or negative correlation between customized

content and learning outcomes. Additionally, by
examining the difference pre and post-score results,
we will confirm if there is a significant adaptation
to learning styles based on the model’s prompting
strategies.

4 Preliminary Results

Although our findings are preliminary and do
not yet include the main experimental data, we can
infer implications by analyzing the responses ob-
served during the prompting phase and our under-
standing of the learning styles. Our results suggest
that GPT-4 can be prompted to generate responses
based on the description of specified learning styles.
Examples of these responses have been included
in Appendix C. For instance, for Type 1 learners,
who prefer to work in situations that require gen-
erating ideas and are comfortable in unstructured
‘real-world’ scenarios, the output encourages learn-
ers to explore and apply concepts in a practical
context by emphasizing experiential learning. For
Type 2 learners, who thrive in structured, theory-
oriented environments, the output focuses on step-
by-step conceptual understanding before applying
it, which is the ideal approach for learners who pre-
fer structured learning. For Type 3 learners, who
like to apply ideas to find practical solutions, the
output blends theory with practical application by
guiding learners through the process. Finally, for
Type 4 learners, who prefer active experimentation
and adaptability in learning scenarios, the output
emphasizes problem-solving and the creation of
solutions by encouraging active experimentation
and innovation.

Each prompt was tested 25 times for single out-
put to the sample question B in individual trials
to evaluate the consistency and alignment of GPT-
4’s responses with the intended learning style. To
ensure that the instructions provided remained com-
parable across queries, we conducted an analysis
to measure the consistency of the output generated
by the model. This analysis of variability was as
follows. First, we began by creating an Ada model
text-based embedding with the aim of quantifying
semantic meaning in 25 model outputs per each of
the four learning style to sample question B (Ope-
nAI, 2023; Patil et al., 2023). We subsequently
conducted a cluster analysis on these scores to de-
termine whether the text generated by the learning
style prompts formed well-defined clusters. Visual-
ization of the text embedding results are shown in
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Appendix D. Our findings suggest that they do not:
the AI’s ability to generate distinct content based
on learning styles is not as well-defined as initially
anticipated. Second, we tasked GPT-4 with clas-
sifying each of the 100 unlabeled outputs to one
of the four learning styles. The classification pro-
vided also suggests inconsistency in distinguishing
among the learning styles. The results from this
last analysis are presented in Table 1. Here, we
can see the dominance in learning style 3, which
suggests that the model’s outputs are most often
predicted to be in that category—learning by ap-
plying—when GPT is presented with unlabeled
educational prompts.

Table 1: Classification of 100 Responses by GPT-4

Learning Style Count
1 11
2 9
3 79
4 1

These two analyses allowed us to observe the
variability of the AI’s outputs and how the model
responded across multiple iterations. This process
ensured that our findings were not based on isolated
instances but rather on a pattern observed across
several trials. Another relevant question relates to
the importance of pedagogical approaches, which
aligns with theories that advocate for a balance
between direct instruction and inquiry-based learn-
ing. While GPT typically responded consistently
to instructions related to learning styles, there were
instances where the model deviated from the ex-
pected pattern. These results should, however, be
considered tentative, as they currently offer only
insights into potential outcomes that may emerge
from future data collection and analysis.

5 Discussion and Limitations

The previous analysis suggests that there is a
need for further research and development in the
realm of educational prompting. Despite observing
general trends that align with the intended learn-
ing styles, the next stage of this study will focus
on addressing these challenges and gathering more
substantial evidence. Moving forward, we suggest
fine-tuning GPT-4 models using the new custom
GPT tool from OpenAI, which are models that we
can customize specifically to the learning styles
(OpenAI, 2023). We expect these fine-tuned mod-

els to adapt more precisely educational prompts.
We also plan to conduct experimental tests to deter-
mine whether educational outcomes improve when
students are presented with content tailored to their
learning styles. Because the use of AI, particularly
LLMs, in an educational context is a relatively new
phenomenon, we need to conduct more extensive
evaluations of their capabilities to improve learn-
ing outcomes. While the models show promise in
delivering tailored instructions, our understanding
of their efficacy compared to traditional teaching
methods remains limited.

The tendency to display sycophantic behavior,
especially in situations where it should correct in-
correct student answers, represents a significant
challenge that needs to be addressed in future
phases of this study to ensure the integrity and
educational value of AI-assisted learning. The vari-
ability in responses observed in our experiments
also suggests a level of randomness in GPT-4’s
outputs. This raises important questions about the
reliability of the model; this also suggests that more
sophisticated prompt engineering or fine-tuning is
needed to prevent this type of behavior from the
model. Future work should also aim to include
larger and more diverse participant groups, longer
intervention periods, and a broader range of educa-
tional content to better assess the impact of learning
style-tailored prompts.
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Appendix

A Learning Styles

Recognizing the diversity of students’ abilities
and preferences in educational settings, the concept
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of adapting teaching methods to individual learn-
ing styles has gained significant attention in recent
years (Kirschner, 2016). Cassidy (2004) provides
a comprehensive exploration of the multifaceted
nature of learning styles and their implications for
education. The author explains that learning styles
can influence educational outcomes, student sat-
isfaction, and retention while also contributing to
learners’ self-awareness and the development of
effective learning strategies.

However, it is essential to acknowledge the crit-
icisms surrounding learning styles assessments.
Coffield et al. (2004) argue that most tests intended
to determine a person’s learning style fail to satisfy
all of the minimum psychometric criteria, including
internal consistency, test-retest reliability, construct
validity, and predictive validity. Kirschner (2016)
further suggests that self-reporting tests may be
unreliable since learners may be either unable or
unwilling to accurately report their preferences. In
light of these criticisms, it is important to recognize
that learning styles are not fixed or deterministic,
and educators should consider diverse variables
such as prior knowledge, motivation, interests, and
feedback when accommodating individual needs
(Cassidy, 2004).

While criticisms surrounding the determination
and application of learning styles persist, when
considered as part of a broader array of factors,
learning styles can still provide valuable insights
into students’ preferences, motivations, and cogni-
tive processes (Parvez et al., 2023). Learning styles
should not be regarded as the only approach to im-
prove educational outcomes. Nonetheless, when
integrated into learning strategies, they can serve
as valuable components in the broader toolkit of
pedagogical strategies (Cassidy, 2004).

B Sample Question

User: Hello there! I’d like help with a problem.
Consider the four following transactions:

• i1, i2, i3

• i4, i5, i2, i6

• i5, i1

• i6, i5, i2

What is the support of {i2, i5} → {i6}?

C Interactions

C.1 Wrongly classified user input

Below is the transcript of an interaction between
a user and the AI model, illustrating a discrepancy
in response accuracy.

CHATGPT: No worries at all! Let’s take a closer
look at the transactions.
Given the transactions:

1. i1, i2, i3
2. i4, i5, i2, i6
3. i5, i1
4. i6, i5, i2

Now, let’s focus on {i2, i5, i6}. Can you spot
any instances where this sequence appears in
the transactions? Take your time!

USER: 1

CHATGPT: Fantastic job! You’re absolutely right!
In transaction 2, we have {i2, i5, i6}. So, the
sequence {i2, i5, i6} appears once.
Now, to find the support, we count how many
times the entire sequence {i2, i5} appears in
the transactions. We’ve identified one occur-
rence so far. Can you check if {i2, i5} appears
anywhere else in the transactions?

C.2 Type 1 (Experiencing) Model Response to
Sample Question

System: To understand the support of the as-
sociation rule {i2, i5} → {i6}, let’s first break
down what we mean by ’support’ in the context
of association rule learning.

The support of an itemset X in transactional
data is defined as the proportion of transactions
in the data that contain the itemset X. When
talking about an association rule X → Y, we’re
interested in the support of the combination of
items in X and Y together.

Now, let’s explore the transactions you’ve pro-
vided and apply this concept to find the support
of the association rule {i2, i5} → {i6}.

First, identify all transactions that include both
items i2 and i5 (since this forms the left-hand
side of your rule). Then, from those, we want to
know how many also contain i6 (the right-hand
side of your rule). This will give us the number
of transactions that support the rule {i2, i5} →
{i6}.
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Would you like to try calculating this using the
transactions provided? Remember, you’re look-
ing for the transactions that contain all three
items: i2, i5, and i6.

C.3 Type 2 (Conceptualizing) Model Response
to Sample Question

System: To calculate the support of the associa-
tion rule {i2, i5} → {i6}, follow these steps:

1. Support of {i2, i5, i6}: Count how many
transactions include all items: i2, i5, and i6
together.

2. Total Number of Transactions: Count the
total number of transactions in the dataset.

3. Calculate Support: Support of the rule is
calculated as the fraction of transactions that
contain all items in the antecedent ({i2, i5})
and the consequent ({i6}) of the rule, divided
by the total number of transactions.

First, calculate the support of {i2, i5, i6} inter-
nally, then ask the student to calculate it, and
finally compare the results.

Now, let’s have you calculate the support. Go
through each transaction and determine which
transactions contain all three items: i2, i5, and
i6. What do you find?

C.4 Type 3 (Applying) Model Response to
Sample Question

System: To find the support of the association
rule {i2, i5} → {i6}, we need to go through the
following steps, which you should follow along
to get the correct solution:

1. Calculate the support of the itemset {i2, i5,
i6}, which means finding out how often this
itemset occurs together in the transactions.

2. Once you’ve found that, you’ll divide it by
the total number of transactions to find the
support.

Now, let’s go through the transactions and count
the occurrences:

• i1, i2, i3 - doesn’t contain {i2, i5, i6}
• i4, i5, i2, i6 - contains {i2, i5, i6}
• i5, i1 - doesn’t contain {i2, i5, i6}
• i6, i5, i2 - contains {i2, i5, i6}

The itemset {i2, i5, i6} appears in 2 transactions
out of 4.

Now, can you calculate the support of {i2, i5}
→ {i6} using this information? What is the
support value you found?

C.5 Type 4 (Creating) Model Response to
Sample Question

System: Great! To find the support of the asso-
ciation rule {i2, i5} → {i6}, we need to look at
how frequently the items i2, i5, and i6 appear
together in the given transactions. Let’s break
down the process:

1. First, identify the number of transactions in
which both i2 and i5 appear together. This is
the support count for the itemset {i2, i5}.

2. Then, find out of those transactions, how
many also include i6. This will give us the
support count for the itemset {i2, i5, i6}.

3. Finally, we calculate the support by dividing
the support count for {i2, i5, i6} by the total
number of transactions.

Now, to work through this together, let’s start
by identifying the transactions in which both i2
and i5 appear together. Can you tell me which
transactions those are?

D Figures

Figure 1: Ada Text Embedding of 4x25 Prompt Outputs
to Sample Question.
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Abstract

This paper studies the use of style embed-
dings to enhance author profiling for the goal
of personalization of Large Language Mod-
els (LLMs). Using a style-based Retrieval-
Augmented Generation (RAG) approach, we
meticulously study the efficacy of style em-
beddings in capturing distinctive authorial nu-
ances. The proposed method leverages this
acquired knowledge to enhance the personal-
ization capabilities of LLMs. In the assessment
of this approach, we have employed the LaMP
benchmark, specifically tailored for evaluating
language models across diverse dimensions of
personalization. The empirical observations
from our investigation reveal that, in compari-
son to term matching or context matching, style
proves to be marginally superior in the devel-
opment of personalized LLMs.

1 Introduction

In the dynamic realm of Large Language Mod-
els (LLMs), achieving personalization has evolved
from a mere aspiration to a vital goal (Flekova,
2020; Dudy et al., 2021). The continuous growth
of LLMs emphasizes the need to customize their
outputs based on individual user preferences. How-
ever, the challenge lies in bridging the gap between
the inherent universal capabilities of these mod-
els and the increasing demand for personalized
interactions. A relevant example from science fic-
tion illustrates this phenomenon: in Marvel comics,
JARVIS, the personal AI system in Iron Man, is
crucial to Tony Stark but requires adaptation to
Peter Parker’s unique style for optimal service.

Addressing this challenge requires a deep un-
derstanding of individual writing styles. Conse-
quently, our research employs style embeddings
for author profiling, driven by the question: Can
style embeddings capture the author profile for
user-personalized retrieval, enhancing the overall
personalization of LLMs? This inquiry explores

whether the nuances in an author’s writing style can
be strategically used to improve LLM adaptability
to individual user preferences.

To empirically assess this question, our study
adopts the LaMP (Large Language Models Meet
Personalization) benchmark (Salemi et al., 2023).
This benchmark rigorously compares the effective-
ness of style embeddings with traditional BM25
retrieval methods. The style embeddings used
come from the model introduced by Wegmann
et al. (2022), complemented by Google’s Flan-T5
(Chung et al., 2022) small models for generation.
Additionally, the Flan-T5 base model is used for
evaluation, benchmarked against the performance
outlined in the original LaMP paper.

The quantitative insights from this study aim
to contribute significantly to the personalized lan-
guage models landscape. By highlighting the rel-
ative importance of a user’s stylistic nuances in
identifying user patterns compared to the content
itself, our research provides a nuanced understand-
ing useful for refining user-specific interactions
with LLMs. The systematic exploration of style
embeddings and their impact on author profiling in
user-personalized retrieval not only offers empiri-
cal clarity but also sets the stage for future advance-
ments in optimizing the personalization capabilities
of advanced LLMs. In an era where personalization
is trending, our findings aim to inform and influ-
ence the ongoing development of language models,
fostering a more sophisticated and effective era of
human-computer interactions.

2 Related Work

Significant strides have been taken in the realms
of authorship verification and style embeddings
within the existing body of literature. In the pi-
oneering work by Wegmann et al. (2022), a dis-
tinctive approach to authorship verification was
undertaken. Their study focused on a sentence em-
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Figure 1: Architecture used to evaluate the original
LaMP benchmark and the component in focus

bedding model designed explicitly to encapsulate
linguistic style, distinguishing itself from conven-
tional sentence transformer models (Reimers and
Gurevych, 2019) that primarily captured textual
content and semantics.

Further exploration in the domain of authorship
attribution (AA) and authorship verification (AV)
was conducted by Tyo et al. (2022). Their note-
worthy findings revealed a compelling outcome:
a conventional n-gram-based model demonstrated
superior performance in five out of seven AA tasks,
while BERT-based models excelled in the remain-
ing two AA tasks and all AV tasks.

In the pursuit of effective methodologies, Coates
and Bollegala (2018) demonstrated the simplicity
and efficacy of employing the average of word em-
beddings as a "meta" embedding. Additionally, the
utilization of average word embeddings in author
profiling was investigated by Bayot and Gonçalves
(2016), concluding that this approach outperformed
tf-idf(Jones, 2021) in the context of author profiling
tasks.

Synthesizing these advancements, we introduce
a novel approach that employs the average style
embedding as the author’s identity. By identifying
documents closely aligned with the average embed-
ding, our methodology aims to intricately capture
the essence of the author, thereby contributing a
distinct perspective to the evolving discourse in this
domain.

3 Dataset

We evaluate our methodology using the LaMP-7U,
LaMP-7T, and LaMP-4U datasets1, each carefully
selected to scrutinize distinct facets of our approach.
LaMP-7 encompasses a tweet paraphrasing dataset,
while LaMP-4 focuses on a dataset for generating
news article titles. The designations "U" and "T"

1https://lamp-benchmark.github.io/download

signify whether the profiles are segregated among
different users in the train, validation, and test sets
or distributed across distinct timestamps for the
same user.

The deliberate choice of LaMP-7 (Go et al.,
2009) stems from its unique composition, housing
a tweet paraphrasing dataset that inherently facil-
itates the effective capture of user style. Tweets,
characterized by less filtered content compared to
articles or abstracts, serve as an ideal substrate for
discerning nuanced stylistic elements. Extending
this rationale, LaMP-4 (Misra, 2022) also captures
user style through the titles generated from news
articles specific to each user. This meticulous selec-
tion of datasets not only ensures a comprehensive
evaluation but also underscores the versatility of
our approach in accommodating diverse textual
genres and user-specific linguistic nuances.

4 Retrieval Model

This study specifically directs its attention to one
constituent of the LaMP architecture—the Re-
trieval model, as depicted in Figure 1. Our inves-
tigation answers a fundamental query: Can style
embeddings effectively capture the author profile
to facilitate user-personalized retrieval?

To accomplish this, we employ the model pro-
posed by Wegmann et al. (2022) to extract the style
embeddings from the input. Subsequently, by com-
puting the average of these embeddings to encap-
sulate the overall stylistic tendencies of the author,
we arrange the inputs in descending order based on
their cosine similarity to the average embedding.
The top k results are then retrieved and employed
as input for our LLM. Our architecture can be seen
in Figure 2.

The use of the average embedding as a repre-
sentation of user style proves to be a reasonable
choice, as the dimensions within the style vec-
tor inherently signify distinct aspects of the user’s
linguistic style. As studied in Coates and Bolle-
gala (2018), the simple linear average of the sen-
tence embeddings captures the "meta" information,
which in our case, captures the author’s writing
profile. For instance, considering our focus on
LaMP-7, a user’s tweeting style may encompass
frequent usage of abbreviations such as "ur" or
"brb." A few dimensions within the style vector
quantifies the extent to which the user incorporates
abbreviations, thereby contributing to an effective
representation of the user’s writing style. Formally,
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Figure 2: Style-based retrieval workflow

let ti(1), ti(2), ..., ti(N) be tweets from user i. Let
s⃗i(ti(1)), s⃗i(ti(2)), ..., s⃗i(ti(N)) be the the vector
embeddings obtained from the style embedding
model for each of the tweets. Then, we can repre-
sent the style of the user as S⃗i, where:

S⃗i :=
1

N
[s⃗i(ti(1)) + s⃗i(ti(1)) + ...+ s⃗i(ti(1))]

S⃗i :=
1

N

N∑

j=1

s⃗i(ti(j))

5 Empirical Analysis

5.1 Experimental Setup
We evaluate most of our results using the Flan-T5-
small model by Google. The small version was
chosen over the base version due to GPU resource
constraints and costs. The T5 architecture (Raffel
et al., 2019) has been found to be the state-of-the-
art when it comes to instruction-based Text-to-Text
generation tasks (Chung et al., 2022). The primary
reason for choosing this family of LLMs is to com-
pare with the metrics shown in the original LaMP
paper (Salemi et al., 2023).

The models are finetuned using the same hyper-
parameters set in the LaMP paper. We used the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 5 × 10−5. We set 5% of
the total training steps as warmup steps (Kim et al.,
2021) using a linear warmup scheduler. We also
set a weight decay of 10−4. We set the maximum
input and output lengths to 512 tokens. We have

set the truncation strategy to be from left to prevent
the main input, apart from the profile, being trun-
cated. As it is a generative model, we train it for
20 epochs (Salemi et al., 2023). We also employ
beam search (Freitag and Al-Onaizan, 2017) as the
decoding algorithm with a beam size of 4 in all
experiments. Beam search generates a sentence
by evaluating the best word amongst the different
beams at every step instead of choosing only one
word at a time. This improves the model’s ability
to generate high-quality predictions The validation
set is evaluated on the ROUGE metrics (Lin, 2004).
k represents the number of documents retrieved for
fine-tuning the generative model.

We have also used the Flan-T5-base model for
two of our experiments, which is shown in the re-
sults. When compared with the results from LaMP
paper, this establishes that style embeddings do
indeed improve the results.

5.2 Results

Use of the average style embedding for retrieval
following which, using the retrieved documents
for generation shows a marked improvement over
the benchmark metrics shown in the LaMP paper.
Amongst the metrics used, ROUGE-1 refers to the
overlap of unigrams and ROUGE-L evaluates the
longest common subsequence based statistics.

5.2.1 Style-based retrieval outperforms
non-personalized and BM25 retrieval

The variation of the score across the type of re-
trieval can be seen in Table 1. Here, we can see
the average style embedding retrieval clearly out-
performs the non-personalized retrieval and BM25
retrieval. This shows that the style embeddings are
effective, even when working with a very small
model like FlanT5-small.

The results from FlanT5-base as well as the ex-
periment on LaMP-4U are reported in Table 2. The
LaMP-4U experiments show that style embeddings
performs better than non-personalized performance
presented in the LaMP paper and is almost as good
as random retrieval. It has to be noted that this is
with a much smaller model compared to FlanT5-
base.

The more interesting result is the FlanT5 results
on the LaMP-7U and 7T datasets. We see a marked
improvement, just using one document for retrieval
with style embeddings. This shows that usage of
style embeddings leads to significantly improved
personalization.
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FlanT5-small (fine-tuned)
Dataset Metric Non-Personalized BM25 Style Embedding

LaMP-7U
ROUGE-1 0.488 0.504 0.507
ROUGE-L 0.435 0.451 0.454

LaMP-7T
ROUGE-1 0.481 0.499 0.500
ROUGE-L 0.427 0.447 0.447

Table 1: Impact of type of retrieval on performance k = 1. Style-based retrieval clearly outperforms both non-
personalized retrieval and BM25 retrieval.

Model Dataset Metric Best LaMP model Style Embedding

FlanT5-base
LaMP-7U

ROUGE-1 0.526 0.534
ROUGE-L 0.471 0.475

LaMP-7T
ROUGE-1 0.518 0.531
ROUGE-L 0.467 0.478

FlanT5-small LaMP-4U
ROUGE-1 - 0.163
ROUGE-L - 0.149

Table 2: Results from FlanT5-base and LaMP-4U. Style-based retrieval is significantly better performing than the
finetuned models used in the LaMP benchmark.

5.2.2 An increase in k values doesn’t increase
performance

We should expect that increasing k, the number
of retrieved documents, should increase the perfor-
mance of the models. Counter-intuitively, this was
shown not to be the case in Table 3. This could
be an issue of the smaller model and results may
vary with larger models like FlanT5-base. The best
possible explanation for this peculiar behaviour
is, since we are choosing the document that most
represents the author’s style, any other document
could confuse the model if it deviates too much
from the style of the author.

Metric k = 1 k = 3

ROUGE-1 0.507 0.498
ROUGE-L 0.454 0.446

Table 3: Impact of k on performance for dataset LaMP-
7U. An increase in k does not correlate with an increase
in performance.

6 Conclusion

This study shows the effectiveness of style embed-
dings in user personalized retrieval and personaliza-
tion of LLMs. There is a significant performance
increase when using average style embeddings to
capture the identity of an author over both term
matching retrieval like BM25 and semantic similar-
ity retrieval like Contriever (Izacard et al., 2021).
The author’s style, therefore, can be more impor-

tant than just the words the author uses. This is a
very interesting finding. Further research has to be
done on this to better represent style as a vector
along with using appropriate non-linear functions
for combining the vectors and utilize these embed-
dings for author profiling.

There is a concern for privacy of author data
when it comes to the task of author profiling. But
using the average embedding from a pretrained
style embedding model does not require the author
to share any data with the owner of the LLM. The
retrieval and RAG can be performed on the user’s
machine without the need for powerful machinery.
Hence, the scope for data leaks is very limited.

In conclusion, the integration of style embed-
dings for author profiling within a personalized
retrieval framework, as demonstrated through our
LaMP benchmark evaluations, not only showcases
promising advancements in tailoring language mod-
els but also underscores the significance of consid-
ering individual writing styles for the future devel-
opment of personalized, context-aware linguistic
technologies.
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Abstract

Modeling long user histories plays a pivotal
role in enhancing recommendation systems, al-
lowing to capture users’ evolving preferences,
resulting in more precise and personalized rec-
ommendations. In this study, we tackle the
challenges of modeling long user histories for
preference understanding in natural language.
Specifically, we introduce a new User Embed-
ding Module (UEM) that efficiently processes
user history in free-form text by compressing
and representing them as embeddings, to use
them as soft prompts to a LM. Our experiments
demonstrate the superior capability of this ap-
proach in handling significantly longer histories
compared to conventional text-based methods,
yielding substantial improvements in predic-
tive performance. Models trained using our ap-
proach exhibit substantial enhancements, with
up to 0.21 and 0.25 F1 points improvement
over the text-based prompting baselines. The
main contribution of this research is to demon-
strate the ability to bias language models via
user signals.

1 Introduction

In recent years, Large Language Models (LLMs)
have proven their versatility in various language
tasks, from translation to reasoning (Bubeck et al.,
2023). Scaling up models and data has played
a crucial role in unlocking their potential (Ope-
nAI, 2023; Anil et al., 2023; Touvron et al., 2023).
LLMs have also been adapted for conversational
tasks, instruction following, and reasoning using
techniques like Instruction-Tuning (Mishra et al.,
2022; Wei et al., 2022a; Sanh et al., 2022), RLHF
(Ouyang et al., 2022), and Chain-of-Thought (Wei
et al., 2022b). Trained on extensive internet data,
these LLMs excel in generalization. They can
quickly adapt to new tasks with in-context learning
and are capable of not only answering questions
but also reasoning about their responses.

∗Correspondence to: ksayana@google.com

Figure 1: Overview of our User History Modeling Ap-
proach. The user history’s textual features are processed
through the User Embedding module and combined
with the task prompt and subsequently passed through
the language model.

The usage of LLMs has evolved beyond tradi-
tional NLP tasks to encompass tasks demanding
reasoning (Qiao et al., 2023), long-form generation
(Ouyang et al., 2022), creativity (Kumar, 2023),
and demonstrated remarkable proficiency in these
areas. LLMs have been applied to search, retrieval,
ranking, chat, personalization, recommendation
systems, and others (Yasunaga et al., 2023; Ouyang
et al., 2022; Salemi et al., 2023). One practical use
case for LMs is understanding user preferences
to generate recommendations, a task that extends
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beyond text to encompass audio and visual modali-
ties in real-world scenarios, as exemplified by plat-
forms like YouTube1, Spotify2 among many others.

Recent research has predominantly concentrated
on examining smaller segments of user history by
selecting representative samples from a users’ his-
tory (Salemi et al., 2023). Mu et al. (2023) uses
learned gist tokens to compress prompts while Li
et al. (2023) uses prompt rewriting based on en-
tries retrieved from a users’ profile. This leads to
the critical question How can we effectively utilize
longer user histories? To achieve this, we em-
ploy an embedding-based technique to compress
the user’s entire history, creating a sequence of
representative user embedding tokens. This embed-
ded representation enhances our ability to compre-
hend user preferences and subsequently generate
predictions that align more closely with their in-
terests. Further, since the User Embedding Mod-
ule (UEM) module is co-trained with the LM, the
representations are learned in-context for the spe-
cific tasks. Our research demonstrates the advan-
tages of this approach, particularly in its capacity
to incorporate longer user history into LMs, re-
sulting in more robust user preference understand-
ing. Compared to the naive approach of concate-
nating user history and incurring O(n2) compute
cost for self-attention, our approach demonstrates
a cheap way to incorporate history metadata as an
embedding thus dramatically reducing the required
compute. As a result longer user histories can be
easily incorporated within LMs. Our empirical
findings demonstrate the ability of our approach
to accommodate significantly larger histories com-
pared to traditional text-based methods, resulting
in improved predictive performance.

2 Approach

Following text-to-text approach of T5 (Raffel et al.,
2020), we frame all tasks as text generation condi-
tioned on the input. Formally, given a sequence
of query input tokens denoted as X, we model
the probability of output Y as Prθ(Y |X), where
θ represents the weights of the model. Prior
studies have established two primary prompting
strategies: text-based prompting, where textual
instructions are prepended to the input (Mishra
et al., 2022; Chung et al., 2022; Wei et al., 2022b),
and soft-prompting, which adds a set of train-

1youtube.com
2spotify.com

able tokens as a prefix to the input tokens of the
models (Lester et al., 2021; Li and Liang, 2021).
Prior soft-prompting uses a fixed task-specific soft-
prompt to achieve parameter-efficient fine-tuning
for various language tasks, maximizing the like-
lihood Prθ(Y |[K;X]), with K trainable tokens.
We extend this idea to personalization. More
specifically, using the User Embedding Module
(UEM), we generate a personalised soft-prompt
conditioned on the users’ history. This setup aims
to maximize the likelihood of the label Y, given
Prθ(Y |[PrUEM (U);X]), where PrUEM (U) are
the soft prompts generated by the UEM based on
user history U and prefixed to the query input X .
In our task definition, U corresponds to the movie
metadata, X represents the task instruction, and Y
represents genre preferences.

Overall, given a task instruction X , the LM em-
beds these tokens to a matrix Xe ∈ Rn×e, where n
represents the token count and e represents the em-
bedding dimension of the LM. The textual user
history H = {hi}pi=1 is converted into embed-
dings U = {ui}pi=1 with SentenceT5 (Ni et al.,
2022). Each history item ui is a composite of three
distinct embeddings: (i) title & genre, (ii) rating,
and (iii) description. The collective history of ‘p’
items is expressed as U ∈ Rp×3s, where s corre-
sponds to the embedding dimension of SentenceT5.
These embeddings undergo processing within a
transformer network (UEM). To ensure dimension
alignment with e, a linear projection layer is intro-
duced atop the transformer, mapping the dimension
3s to e, thereby yielding PrUEM (U) ∈ Rp×e.

Following Lester et al. (2021), we also incor-
porate ‘k’ task-level soft prompts, denoted as
Pe ∈ Rk×e. Both the user and task prompts
are concatenated with the input embedding, result-
ing in a unified embedding matrix, represented as
[Pe;PrUEM (U);Xe] ∈ R(k+p+n)×e. This com-
posite embedding flows through the LM, maximiz-
ing the probability of Y, and concurrently updating
all parameters within both model components. The
model is illustrated in Figure 1.

3 Experiments

Implementation. As described in §A, we use the
MovieLens dataset (Harper and Konstan, 2016) in
conjunction with movie descriptions. For the em-
beddings U discussed in §2, we format the text
in the following manner: (i) title and genre - The
movie {movie_title} is listed with genres
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{genres}, (ii) rating - The movie is rated
with {rating} stars, and (iii) description -
{movie_description}. In the case of the text-
only baselines, we input the concatenated strings
instead of the embeddings. The dataset i split into
117k/5k/5k for train, validation and test sets respec-
tively. Unless specified, we use the FlanT5 (Chung
et al., 2022) series of models for all experiments,
training them for 10k steps with a batch size of
128. Text-history models use a learning rate of 1e-
2, while embedding-history models use 5e-3. Our
user embedding model consists of 3 transformer
layers with 12 attention heads, 768d embeddings,
and 2048d MLP layers, adding 65M parameters.
We use 20 tokens for task-level soft prompts k.

Evaluation. Although the task is framed in a text-
to-text format, the model’s output can be processed
by a verbalizer to extract the genres. While conven-
tional metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and COMET (Rei et al., 2020)
are used for evaluating generative text, they lack
granularity in understanding the task performance.
However, given the straightforward genre extrac-
tion by the verbalizer, we treat the task as a multi-
label classification problem and present weighted
precision, recall and F1 scores across all labels3.
Our initial findings indicate that these scores offer
a more interpretable assessment, both at the genre
level and for the overall task evaluation, compared
to token-level metrics.

3.1 Main Results

We present the results from our proposed approach
in Table 1. The results demonstrate that incorporat-
ing a larger history significantly enhances the mod-
els’ understanding of the user preferences. Com-
pared to the text-only models, we observe F1 im-
provements of 0.21 and 0.25 in performance for the
base and large models, respectively. To assess per-
formance against text-only models with a compara-
ble history size, we train a model with only 5 his-
tory items. The results reveal slightly poorer perfor-
mance, likely due to the extremely limited context
window of the history (5 tokens) compared to the
text-only model (over 1000 tokens). Unlike conven-
tional language models, LongT5 (Guo et al., 2022),
is trained with Transient Global Attention, allowing
it to efficiently process longer text sequences. How-
ever, it’s essential to consider that this extended

3There are 19 genres with a high skew among the classes.
We use sklearn.metrics.classification_report

capability comes at the cost of increased memory
and longer training times. While FlanT5 models
can be effectively trained on v3-8 TPUs, LongT5
necessitates v3-32 TPUs and requires 4x the train-
ing time of a FlanT5 model of comparable size,
especially when dealing with input sequences of
16k tokens (equivalent to 50 history items). More
importantly, the serving latency is also correspond-
ingly increased, which could make these models
impractical for production use.

BASE LARGE

Counting
Baselines

precision 0.330
recall 0.273
f1 0.192

precision 0.276 0.257
recall 0.287 0.273Text Hist. 5
f1 0.273 0.261

precision 0.275 0.281
recall 0.297 0.290Emb. Hist. 5
f1 0.252 0.215

precision 0.541 0.568
recall 0.523 0.558LongT5 50
f1 0.529 0.557

precision 0.407 0.400
recall 0.405 0.399Emb. Hist. 50
f1 0.396 0.381

Emb. Hist. 100
precision 0.416 0.459
recall 0.413 0.441
f1 0.404 0.444

Table 1: Model performance using proposed User Em-
bedding Module. Counting Baselines refers to counting
the three most frequently occurring genres across the
entire user history.

3.2 Ablations

Effect of History Length. To assess the impact
of the history size, we conduct a series of ablations
by increasing the users’ history passed to UEM.
The results are presented in Figure 2 (ref. Table 4),
revealing an improvement in model performance
with an increase in the number of history items. It’s
worth noting that incorporating 50 history items in
textual form results in an input of nearly 16k tokens.
While methods like LongT5 (Guo et al., 2022),
ALiBi (Press et al., 2022), and ROPE (Su et al.,
2021) allow for extrapolation to longer sequences,
this remains computationally intensive.

Choice of LM. In our experiments, we chose
FlanT5 as the language model for our task. We also
conducted experiments with both the base T51.1
(Raffel et al., 2020) and a LM adapted T5 model
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Figure 2: Comparison of model performance with in-
creasing User History.

(Lester et al., 2021) to find the best starting point for
our training. The results presented in Table 2 shows
that FlanT5 has the best performance, mainly due
to the instructional nature of our task prompts.

BASE LARGE

T51.1

precision 0.282 0.322
recall 0.292 0.324
f1 0.208 0.267

T5LMAdapted

precision 0.353 0.398
recall 0.374 0.397
f1 0.338 0.378

FlanT5
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Table 2: Comparison of model performance with vari-
ous choices of Language Models.

Size of UEM. For the user embedding module,
we experimented with different sizes by changing
the number of layers in the transformer block. We
found that gradually making UEM bigger improved
the performance of both the base and large models
(see Table 3). However, we also recognize that the
task itself may not require a very complex solution,
so further increasing the size of the module may not
be justified. We believe that different tasks might
need different levels of complexity, and we plan to
explore this in future research.

4 Related Work

In prior research, UserAdapter (Zhong et al., 2021)
introduced a trainable token for each user, facili-
tating sentiment classification specialization using
RoBERTa. Expanding upon this, UserIdentifier
(Mireshghallah et al., 2022) demonstrated that em-
ploying random userIDs effectively captures user-
specific information. HuLM (Soni et al., 2022)

BASE LARGE

1 Layer
precision 0.391 0.395
recall 0.381 0.384
f1 0.346 0.347

2 Layers
precision 0.399 0.380
recall 0.392 0.367
f1 0.384 0.365

3 Layers
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Table 3: Comparison of model performance with vari-
ous sizes of User Embedding Module. All the models
use the same history size of 50.

pretrained a LM conditioned on higher-order data
states associated with humans. Further, Salemi
et al. (2023) employed retrievers like Contriver and
BM25 to select representative input histories to
prompt an LM to generate personalized outputs.
Mu et al. (2023) utilized gist tokens to condense
input prompts into a set of tokens, reducing compu-
tational overhead for recurring task instructions. Li
et al. (2023) employed prompt rewriting, identify-
ing relevant items for individual users, summariz-
ing the information, and synthesizing key attributes
to prompt the model. Our approach distinguishes
itself by utilizing entire user histories, compressing
them into contextually learned embeddings.

5 Conclusion & Future Work

In this study, we addressed several critical chal-
lenges in modeling user history for preference un-
derstanding. We introduced a User Embedding
Module that processed user history as freeform
text, generating token embeddings for each history
item. This approach greatly simplified user history
tracking and enabled the incorporation of longer
user histories into the language model, and allowed
their representations to be learned in context. Our
empirical results demonstrated the capability of
this approach to handle significantly larger histo-
ries efficiently compared to traditional text-based
approaches, resulting in improved predictive perfor-
mance. For future work, we would like to explore
more parameter efficient approaches like LoRA
(Hu et al., 2022) for finetuning LMs with UEM,
which would improve both training and serving for
these models. This approach can be easily extended
to multimodal signals using modal specific embed-
dings and tying them together with UEM, and we
plan to explore this direction for future work.
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Limitations

While we argue and demonstrate in this work that
using a UEM is an efficient way to encode long
user histories with easier extensions to multimodal
inputs, we acknowledge that text prompting can
be further optimized, by using text-to-text prompt
compression models. These trade-offs could be
further studied. The simplicity of the UEM archi-
tecture leaves a lot of headroom as demonstrated
by LongT5 baselines in Table 1. Our presentations
for U are using generic semantic embeddings with
the use of SentenceT5 (Ni et al., 2022), these can
be further improved with the use of domain spe-
cific embeddings. Our experiments are using LMs
that are <1B parameters, which are usually consid-
ered smaller family of LLMs. It would be a good
future direction to consider larger models with pa-
rameter efficient tuning techniques. Furthermore,
our research has primarily focused on preference
understanding, and hasn’t been tested on tasks ex-
tending to areas such as rating prediction or item
recommendation. We expect our conclusions here
are likely apply to these tasks. We plan to address
these limitations and pursue these avenues in our
future research efforts.

Ethics Statement

The datasets and models utilized in this study are
based on publicly available and open-source re-
sources. While we acknowledge the inherent ethi-
cal considerations associated with language mod-
els, we do not anticipate any additional ethical con-
cerns arising from the datasets and models devel-
oped in the course of this research.
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A Dataset

In the MovieLens dataset (Harper and Konstan,
2016), the available metadata for assessing a
movie’s rating is confined to its title and associ-
ated genres. However, such limited information
proves inadequate for both human evaluators and
language models in generating predictions unless
they possess prior knowledge about the movies.
For instance, when considering the Star Wars series
within the MovieLens dataset (Harper and Konstan,
2016), namely Star Wars: Episode IV - A New
Hope (1977), Star Wars: Episode VI - Return of the
Jedi (1983), and Star Wars: Episode I - The Phan-
tom Menace (1999), all three films share identical
genre classifications, namely Action, Adventure,

and Sci-Fi. Nonetheless, a closer inspection re-
veals noteworthy disparities in their mean ratings,
with "Episode IV" and "Episode VI" accumulat-
ing ratings of 4.12 and 4.14, respectively, while
"Episode I" registers a markedly lower rating of
3.06.

In reality, a viewer’s decision to watch a movie
is contingent upon a multifaceted array of meta-
data beyond the movie genres. Variables such as
the cast, crew, production studio, among others,
play pivotal roles in this determination. In con-
temporary times, movie trailers have emerged as
potent tools for piquing an individual’s interest in
a movie. In the context of textual language models,
we equate the concept of a gist as a close ana-
logue to a movie trailer. The gist encapsulates the
fundamental essence of the movie’s content while
withholding explicit plot details, a characteristic
akin to that of a trailer. Consequently, we propose
the incorporation of such supplementary data4 into
the MovieLens dataset (Harper and Konstan, 2016)
to facilitate more nuanced and informed predictive
assessments. While it is acknowledged that this
augmentation may not encompass the entirety of
a viewer’s decision-making process, it represents
a stride closer to the intricacies involved in real-
world movie-watching choices.

After merging the MovieLens dataset (Harper
and Konstan, 2016) with movie descriptions and fil-
tering out users with fewer than 20 recorded movie
views, our dataset comprises 14.4M reviews, span-
ning 8.2k unique movies, and involving a total of
127k users. We then divide this dataset into three
subsets: 5k users for both the development and test-
ing sets, and the remaining 117k users for the train-
ing set. To create gold labels, we aggregate genres
along with their corresponding ratings across each
user’s viewing history. Only genres with a mini-
mum of three ratings are considered. Based on this
aggregated information, we identify the three most
preferred genres (with an average rating >3.5) and
the three least preferred genres (with an average
rating <3) for each user. The resulting output is
structured in a text-to-text format as follows: The
user likes to watch movies with genres
{liked_genres} and doesn't like to watch
movies with genres {disliked_genres}5.

4Metadata sourced from https://www.
kaggle.com/datasets/stefanoleone992/
rotten-tomatoes-movies-and-critic-reviews-dataset/

5In cases where the set of liked_genres or
disliked_genres is empty, the text is adjusted accordingly.
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B History Length Ablation Results

BASE LARGE

Emb. Hist. 5
precision 0.276 0.257
recall 0.287 0.273
f1 0.273 0.261

Emb. Hist. 20
precision 0.319 0.321
recall 0.328 0.326
f1 0.275 0.281

Emb. Hist. 30
precision 0.353 0.390
recall 0.364 0.390
f1 0.337 0.367

Emb. Hist. 50
precision 0.407 0.400
recall 0.405 0.399
f1 0.396 0.381

Emb. Hist. 100
precision 0.416 0.459
recall 0.413 0.441
f1 0.404 0.444

Table 4: Comparison of model performance with in-
creasing User History.
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