@inproceedings{akiba-etal-2024-masking,
title = "Masking Explicit Pro-Con Expressions for Development of a Stance Classification Dataset on Assembly Minutes",
author = "Akiba, Tomoyosi and
Gato, Yuki and
Kimura, Yasutomo and
Uchida, Yuzu and
Takamaru, Keiichi",
editor = "Afli, Haithem and
Bouamor, Houda and
Casagran, Cristina Blasi and
Ghannay, Sahar",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.politicalnlp-1.4",
pages = "33--38",
abstract = "In this paper, a new dataset for Stance Classification based on assembly minutes is introduced. We develop it by using publicity available minutes taken from diverse Japanese local governments including prefectural, city, and town assemblies. In order to make the task to predict a stance from content of a politician{'}s utterance without explicit stance expressions, predefined words that directly convey the speaker{'}s stance in the utterance are replaced by a special token. Those masked words are also used to assign a golden label, either agreement or disagreement, to the utterance. Finally, we constructed total 15,018 instances automatically from 47 Japanese local governments. The dataset is used in the shared Stance Classification task evaluated in the NTCIR-17 QA-Lab-PoliInfo-4, and is now publicity available. Since the construction method of the dataset is automatic, we can still apply it to obtain more instances from the other Japanese local governments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akiba-etal-2024-masking">
<titleInfo>
<title>Masking Explicit Pro-Con Expressions for Development of a Stance Classification Dataset on Assembly Minutes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomoyosi</namePart>
<namePart type="family">Akiba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Gato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yasutomo</namePart>
<namePart type="family">Kimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuzu</namePart>
<namePart type="family">Uchida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiichi</namePart>
<namePart type="family">Takamaru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haithem</namePart>
<namePart type="family">Afli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="given">Blasi</namePart>
<namePart type="family">Casagran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahar</namePart>
<namePart type="family">Ghannay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, a new dataset for Stance Classification based on assembly minutes is introduced. We develop it by using publicity available minutes taken from diverse Japanese local governments including prefectural, city, and town assemblies. In order to make the task to predict a stance from content of a politician’s utterance without explicit stance expressions, predefined words that directly convey the speaker’s stance in the utterance are replaced by a special token. Those masked words are also used to assign a golden label, either agreement or disagreement, to the utterance. Finally, we constructed total 15,018 instances automatically from 47 Japanese local governments. The dataset is used in the shared Stance Classification task evaluated in the NTCIR-17 QA-Lab-PoliInfo-4, and is now publicity available. Since the construction method of the dataset is automatic, we can still apply it to obtain more instances from the other Japanese local governments.</abstract>
<identifier type="citekey">akiba-etal-2024-masking</identifier>
<location>
<url>https://aclanthology.org/2024.politicalnlp-1.4</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>33</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Masking Explicit Pro-Con Expressions for Development of a Stance Classification Dataset on Assembly Minutes
%A Akiba, Tomoyosi
%A Gato, Yuki
%A Kimura, Yasutomo
%A Uchida, Yuzu
%A Takamaru, Keiichi
%Y Afli, Haithem
%Y Bouamor, Houda
%Y Casagran, Cristina Blasi
%Y Ghannay, Sahar
%S Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F akiba-etal-2024-masking
%X In this paper, a new dataset for Stance Classification based on assembly minutes is introduced. We develop it by using publicity available minutes taken from diverse Japanese local governments including prefectural, city, and town assemblies. In order to make the task to predict a stance from content of a politician’s utterance without explicit stance expressions, predefined words that directly convey the speaker’s stance in the utterance are replaced by a special token. Those masked words are also used to assign a golden label, either agreement or disagreement, to the utterance. Finally, we constructed total 15,018 instances automatically from 47 Japanese local governments. The dataset is used in the shared Stance Classification task evaluated in the NTCIR-17 QA-Lab-PoliInfo-4, and is now publicity available. Since the construction method of the dataset is automatic, we can still apply it to obtain more instances from the other Japanese local governments.
%U https://aclanthology.org/2024.politicalnlp-1.4
%P 33-38
Markdown (Informal)
[Masking Explicit Pro-Con Expressions for Development of a Stance Classification Dataset on Assembly Minutes](https://aclanthology.org/2024.politicalnlp-1.4) (Akiba et al., PoliticalNLP-WS 2024)
ACL