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Abstract

With the rise of computational social science, many scholars utilize data analysis and natural language processing
tools to analyze social media, news articles, and other accessible data sources for examining political and social
discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information
has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from
two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation
of echo-chambers can be partially explained on the level of an individual information consumption rather than
a collective topology of individuals’ social networks. Our research findings are presented through knowledge
graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the
application of knowledge representation techniques to the aforementioned news streams highlights, contrary to
common assumptions, shows relative "internal" neutrality of both sources and polarizing attitude towards a small
fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental
disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
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1. Introduction

A knowledge graph, also known as a semantic net-
work, was initially introduced by C. Hoede and F.N.
Stokman as a tool for representing the content of
medical and sociological texts (Nurdiati and Hoede,
2008). Constructing increasingly larger graphs with
the intent of accumulating knowledge was initially
deemed to provide a resultant structure capable of
operating as an expert system proficient in investi-
gating causes and computing the consequences
of certain decisions.

The concept of knowledge graph co-evolved with
the rise of computational social science (Conte
et al., 2012) and digital data analysis methods
(Rogers, 2013). Access to open sources on the
Internet has facilitated the measurement of the dy-
namics of political debates (Neuman et al., 2014).
Platforms like Twitter and other microblogging ser-
vices are widely utilized for studying and modeling
social and political discourse (Graham et al., 2016),
(Jungherr, 2014) , (Wang et al., 2018). Contempo-
rary researchers even develop a conceptual frame-
work for predicting the morality underlying political
tweets(Johnson and Goldwasser, 2018). Moreover,
knowledge graphs of fact-checked claims, such as
ClaimsKG, have been designed. Such tools facili-
tate structured queries about truth values, authors,
dates, journalistic reviews, and various types of
metadata (Tchechmedjiev et al., 2019).

A significant group of studies, advocate usage of
graphs for social, political, and business industry
data, stating that “graphs greatly increases the clar-
ity of presentation and makes it easier for a reader

to understand the data being used”(Kastellec and
Leoni, 2007) . Additionally, (Abu-Salih and Be-
heshti, 2021) explains that knowledge graphs serve
as indispensable frameworks that underpin intelli-
gent systems. This is achieved by extracting sub-
tle semantic nuances from textual data sourced
from a range of vocabularies and semantic repos-
itories. In the past decade, there has been a no-
table increase in the examination of political dis-
course within social content in such a way. The
authors discuss in detail the connection between
political discussions and the language used in them
(Chilton, 2004), (Parker, 2014). Furthermore, the
literature examines opinion polarization (Banisch
and Olbrich, 2019), attempts to characterize an
intuition of the dynamics of the political debate
(Yamshchikov and Rezagholi, 2019), and provides
techniques for estimating them (Merz et al., 2016),
(Subramanian et al., 2017), (Glavaš et al., 2017),
(Subramanian et al., 2018) or (Rasov et al., 2020).
The extensively employed data sources in studies
centered on automated text classification for politi-
cal discourse analysis involve Manifesto Database
(Lehmann et al., 2017) and the proceedings of the
European Parliament (Koehn, 2005).

The challenges arising in contemporary studies
on observational and discourse analysis are the
quality of data (Tweedie et al., 1994) and the credi-
bility of data sources. It is crucial to apply statistical
measures and tests to quantify the impact of poor
data quality and bias on the results (Abu-Salih and
Beheshti, 2021). However, quantifying such effects
proves comprehensive in the realm of social sci-
ences due to the numerous indigent properties of
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social datasets (Shah et al., 2015). One significant
challenge is associated with the formation of so-
called echo-chambers in social structures, which
naturally obstruct the propagation of information,
reinforcing disparities across various social strata
(Goldie et al., 2014), (Colleoni et al., 2014), (Guo
et al., 2015) or (Harris and Harrigan, 2015). Ad-
dressing the credibility of sources, the phenomenon
of fake news draws constant attention from media
outlets and researchers. According to (Anderson
and Auxier, 2020), 55% of online social network
users believe they are accurately informed about re-
cent political updates by the media. Consequently,
misleading information and false news have the
potential to shape certain beliefs and human be-
haviors. As a solution, several studies (Allcott and
Gentzkow, 2017), (Shu et al., 2017) or (Lazer et al.,
2018) analyze and propose methods to enhance
the quality of information. Additionally, these stud-
ies imply the existence of a certain ground truth
that could be universally accepted.

Taking existing knowledge and challenges into
account, in this work, we study the issue of news
representation from a data analysis perspective.
We construct two datasets comprising news arti-
cles from "alt-right" and "liberal" news platforms,
denoted as Breitbart News (BN) and the New York
Times (NYT), spanning 11.5 consecutive years
(from 2008 to Fall 2019). We demonstrate that infor-
mation disparities between these news sources are
fundamental regardless of the social structures that
encapsulate the readers of the aforementioned out-
lets. Upon analyzing the findings, we assert that
one has to take into consideration these dispari-
ties, since they signify fundamental differences in
the foundational data that shapes the perspectives,
beliefs, and, ultimately, the behavior of readers.
Simply put, even if we had no social media infor-
mation disparities by various news sources could
contribute to echo-chamber formation.

2. Data and Methodology

We have parsed two news sites Breitbart News1

that could be generally associated with the "alt-
right" political views and the New York Times2 as-
sociated with "liberal" political views. The choice of
these two media platforms was arbitrary to a cer-
tain extent. We parsed all news presented on both
platforms in the period from 2008 till the fall of 2019.
Using the texts of the news as input data we built an
information extraction pipeline aimed to reconstruct
a form of knowledge graph out of the news texts. To
do that we have used state of the art open informa-
tion extraction (Stanovsky et al., 2018) and named

1https://www.breitbart.com/
2https://www.nytimes.com/

entity recognition (Peters et al., 2017) tools of Al-
lenNLP3. The outputs of both models are noisy, so
in order to stabilize the resulting signal we came up
with the heuristics for substring-matching. We used
only ARG0 and ARG1 items of open information
extractor and all entities of named entity recogni-
tion to extract the most useful objects of the articles.
For every entity recognized by both methods, we
created a vertex in our knowledge graph. We also
applied additional manual ’filtering’ of the resulting
named entities. The procedure to fix the problems
of the different spelling and some artifacts of NER
and OIE that crowded the list of entities. Finding
longer overlapping substrings with high frequencies
we matched longer entities with their shorter "par-
ents". The recognized vertexes were connected
with an edge that had an estimate of sentiment and
subjectivity calculated with TextBlob4. This naive
approach yielded a hypergraph of named entities
out of both data sources. The weights of the ver-
texes corresponded to the number of mentions of
a given entity. The edges of the graph had three
attributes: frequency, polarity, and subjectivity. To
facilitate further research of news coverage and
political discourse we share the gathered data5.

3. Do You Know What I Know?

In this chapter, we explore the acquired knowledge
graphs. In Section 3.1, we present a bird’s-eye
view of the graph, including key properties, and
delve into the most contrasting entities and topics
with varying coverage in two sources. Section 3.2
revisits the graphs, highlighting aspects crucial for
differences in political discourse.

Figure 1: Breitbart News. Distribution of sentiment.

3.1. Bird’s-eye View
Figures 5 – 6 show a visualization of two obtained
graphs. One can see the divergence of topics:

3https://allennlp.org
4https://textblob.readthedocs.io/en
5https://shorturl.at/ntDOT

https://www.breitbart.com/
https://www.nytimes.com/
https://allennlp.org
https://textblob.readthedocs.io/en
https://shorturl.at/ntDOT
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Figure 2: New York Times. Distribution of senti-
ment.

Figure 3: Breitbart News. Distribution of subjectiv-
ity.

Figure 4: New York Times. Distribution of subjec-
tivity.

Breitbart is more focused around certain personali-
ties, while the New York Times extensively covers
foreign affairs. Table 1 shows the first interesting
and counter-intuitive result that one can draw when
studying obtained graph representations: both me-
dia sources are "neutral" on average. Figures 1 –
2 show the distribution of polarity across all edges.
The average neutral tone is not a consequence of
negatively and positively charged news that bal-
ance each other. Distributions in Figures 3 – 4
do not only show that average sentiment across
all edges is very close to zero for both graphs, but
they also demonstrate and a vast majority of the an-
alyzed relations are presented in a non-polarizing

Data Radius Diameter Modularity
BN 6 11 0.43
NYT 7 13 0.53

Average
Data Path length Polarity Subjectivity
BN 3.76 0.00 0.12
NYT 3.52 -0.00 0.08.

Table 1: Various parameters of the obtained graph
representations. Both sources are neutral on aver-
age with Breitbart being just above and NYT just
below zero average polarity. Breitbart tends to be
more subjective, yet average subjectivity for both
sources is at around 10%, with NYT a bit more
objective.

way (at least to the extent to which modern NLP
method can distinguish polarity). One can also see
the corresponding distributions of subjectivity that
are similar for both sources. For the NYT Spear-
man correlation between polarity and subjectivity
is 31%, for Breitbart, it is 23%.

Both media sites try to present themselves to the
reader as neutral on average and moderately sub-
jective. This stands to reason: an average reader
probably neither wants to feel that she wears rose-
tinted glasses nor wants to constantly read that the
doom is nigh. Majority of the news are neutral, ex-
tremely positive and extremely negative news are
rare in both sources. At the same time both sources
tend to point bias in the coverage "on the other side".
Another interesting line of thought that could be de-
veloped when regarding Table 1 is the connection
between right political actors and propagation of
conspiracy theories, see, for example, (Hellinger,
2018). Indeed, the Breitbart graph has smaller
modularity and comparable path length. This could
imply a lower encapsulation of topics and a higher
tendency to connect remote entities. Even a first
bird’s eye view gives several fundamental insights:

• when assessed formally both right and left me-
dia demonstrate qualitatively comparable be-
havior; they try to cover the news in a relatively
neutral tone with a pinch of subjectivity;

• the coverage of various topics differs signifi-
cantly; the entities that Brietbart constantly cov-
ers tend to be people and actors of domestic
US politics, whereas NYT pays more attention
to institutions and international affairs;

• the overall differences between formally ob-
tained knowledge structures that could proxy
right and left world-view are minute, despite
our intuition telling us otherwise.
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Figure 5: Breitbart News. Overall visualisation of two graphs extracted out of the media sources. The
classes found with modularity analysis (Blondel et al., 2008) are highlighted with different colours. Breitbard
has smaller number of classes and is centered around US political discourse.

3.2. Politics of Contrasts

Figure 7 shows a joint graph of the most polarized
edges. These are the edges between entities for
which the polarity in NYT and Breitbart has a dif-
ferent sign. Similarly, in Figure 8 one could see
the most contrasting vertexes. These are the en-
tities that have the highest average polarity of the
adjacent edge. Effectively these are the represen-
tation of the polarizing topics and are covered with
different polarity in both news sources.

An interesting difference between the graph of
contrasting edges and the graph of contrasting
nodes is that the former is mostly populated with
domestic political actors, whereas the latter up to
a large extent consists of entities connected with
foreign affairs. This is interesting. Certain relation-
ships between entities tend to be more polarizing
for domestic issues and local politicians, yet when
averaged over several such relationships across
time the foreign affairs and institutions come for-
ward. This is the same pattern that we saw earlier.
One could speculate that contrasting edges high-
light certain local events centered around specific
politicians. Such events could be highly polariz-
ing yet temporal. At the same time institutions and

global affairs might not be as polarizing as a lo-
cal scandal, yet the position of both sides on them
is persistent, so when averaging across adjacent
edges one sees Figure 8.

This highlights the fundamental difference be-
tween the sources. Though on macro-level both
outlets prefer to stick to neutral coverage and refrain
from subjectivity when it comes to certain entities
and topics they provide different evaluations and
tend to be more subjective in these cases. The
combination of these two factors is extremely un-
fortunate since it facilitates social conflict. Indeed,
every reader is perfectly convinced that her news
source is relevant, objective, and non-biased. This
also happens to be true in the vast majority of cases.
Yet on a handful of key issues, the media takes a
more polarizing and subjective position. Moreover,
the local polarizing issues tend to be associated
with personalities, while longer, fundamental differ-
ences are associated with institutions. This could
be attributed to the idea of core political beliefs
that could be less polarizing yet may be harder to
change in the long run.
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Figure 6: New York Times.Overall visualisation of two graphs extracted out of the media sources. The
classes found with modularity analysis (Blondel et al., 2008) are highlighted with different colours. NYT
graph has almost twice as many modularity classes and pays way more attention to foreign affairs. This
could be partially attributed to the bigger size of the resulting graph, since NYT had more articles published
in the studied time period.

4. Discussion

One of the key contributions of this paper is an at-
tempt to demonstrate that an echo-chamber is not
exactly a phenomenon based solely on the topol-
ogy of human social networks. Using modern lan-
guage processing methods and straight-forward
knowledge representation we show that two differ-
ent media sources paint two different pictures of
the political reality. Yet these differences are less
obvious than we tend to think and are more subtle.
Surprisingly low average polarity and subjectivity
for both knowledge structures are extremely intrigu-
ing. Assuming there is no ill will on the side of the
publisher one can try to explain why the overwhelm-
ing amount of news articles try to be non-polarizing
and non-subjective and with these attempts rein-
force the echo-chambers around them without even
trying. Could echo-chambers be a consequence
of human psychological trust mechanisms on top
of certain social structure formation? In (Levine,
2014) and (Clare and Levine, 2019) the authors
discuss the truth-default theory. They demonstrate
that when people cognitively process the content
of others’ communication, they typically do so in
a manner characterized by unquestioned, passive

acceptance. We could speculate that such behav-
ior naturally transfers to the news sources. High
neutrality and low subjectivity reinforce this truth-
default. Since the preferred news outlet is often
objective and neutral the reader tends to ignore
or accept rare polarizing and subjective articles
and dismiss the counter-argument of the other side,
since in an overwhelming majority of the cases the
criticism was not applicable. This might be wild
speculation that demands further experimental ver-
ification. However, the very idea that echo-chamber
formation could be attributed to the personal rather
than collective behavior is new to our knowledge.

5. Conclusion

In this paper, we present the graphs of entities
that correspond to two major "alt-right" and "lib-
eral" news media and their coverage of the men-
tioned entities and relations between them. The
graphs are obtained without any expert knowledge
solely with NLP instruments and methods of knowl-
edge representation. Analyzing obtained graphs
we show that despite common intuition they exhibit
a lot of structural similarities. We also highlight
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Figure 7: Sub-graph of contrasting edges. These are the edges for which the sign of polarity for BN and
NYT is different.

fundamental differences that could be attributed
to the formation of echo-chambers and certain bi-
ases on the world perception. We suggest that the
formation of echo-chambers has more to do with
the structure of information consumption and cer-
tain core beliefs of the individual rather than social
structure that encompasses the aforementioned
person.

Limitations

The study covers the period from 2008 to the Fall of
2019, excluding updates beyond 2019. It refrains
from a detailed examination of the political aspects
and perspectives of Breitbart News and New York
Times readers, and it does not develop additional
discussions on the global order. Considering re-

cent global crises like wars, economic downturns
in specific nations, and the worldwide impact of the
COVID-19 pandemic, we anticipate that applying
our methodology to recent-year data may produce
slightly different findings. Nonetheless, in an effort
to encourage transparent research in knowledge
representation for social sciences, we provide ac-
cess to our collected datasets.

Ethics Statement

Our work prioritizes transparency and relies on data
collected from open sources. We refrain from mak-
ing political judgments in our discussion notes to
prevent discrimination and minimize potential soci-
etal harm.
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Figure 8: Sub-graph of contrasting vertexes. These are the vertexes for which the average of polarity of
the adjacent edges is the highest. Blue nodes are shifted towards NYT, red — towards BN.
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