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Abstract

Despite not being explicitly trained for this pur-
pose, models like Mistral and LLaMA have
demonstrated impressive results across numer-
ous tasks, including generating solutions to
Mathematical Word Problems (MWPs). A
MWP involves translating a textual descrip-
tion into a mathematical model or equation
that solving it. However, these models face
challenges in accurately interpreting and utiliz-
ing the numerical information present in the
MWP statements, which can lead to errors in
the generated solutions. To better understand
the limitations of LLMs, we analyzed the MWP
where models failed to accurately solve prob-
lems from the SVAMP dataset. By categoriz-
ing these MWPs, we identify specific types of
problems where the models are most prone to
errors, providing insights into the underlying
challenges faced by LLMs in problem-solving
scenarios and open new modeling opportuni-
ties. By understanding the expected errors, re-
searchers can design strategies to adequately
model problems more effectively and choose
the most suitable LLM for solving them tak-
ing into account each model’s strengths and
weaknesses.

1 Introduction

LLMs have expanded the boundaries of understand-
ing and generating natural language (Karanikolas
et al., 2024). Moreover, recent research has found
LLMs to be capable of producing high-quality
source code (Rozière et al., 2024). LLMs excel
at producing text sequences, but also show reason-
ing capabilities that have been previously applied
to Math Word Problem (MWP) Solving (Kojima
et al., 2023) by transforming the MWP in natural
language to the mathematical language.

In this context, recent research (Arnau-González
et al., 2024) has explored LLMs in the context of
education by producing source-code that can be

compiled into a solution graph for tutoring and
supervisation purposes.

This paper aims to investigate the types of MWP
statements that LLMs have difficulties solving by
analyzing incorrect samples produced in previous
studies. To this end, we select the SVAMP dataset
and three different models: OpenMath/Mistral-7B
from Nvidia, Llama3-8B1, and CodeLlama 34B2

(Rozière et al., 2024), which demonstrated high
performance in MWP-solving task. By focusing
on problem statements where these models failed,
we identify patterns in the sources of errors. The
provided analysis3 can direct research towards a
better understanding of the reasoning limitations of
language models.

2 Background and related work

A MWP model solution can be understood as the
result of reducing the initial MWP to a graph of
mathematical relationships between quantities.

Consider the MWP where we have bought a
car and paid 12 bills of 400 euros each. If the
car costs 12 800 euros, we need to determine how
much money is left to pay. A possible problem
model would establish the following relationships:
The total price of the car equals the sum of the
money already paid and the money left to pay. Fur-
thermore, the money already paid is calculated by
multiplying the value of a single bill by the number
of bills paid.

Automatically solving a math problem articu-
lated in natural language presents a significant chal-
lenge, necessitating both comprehension and accu-
rate reasoning. This process requires techniques
to extract not only the quantities explicitly stated
in the MWP but also those implied by terms such

1https://llama.meta.com/llama3/
2https://llama.meta.com/code-llama/
3Analysed dataset available in https://zenodo.org/

records/12771266

https://llama.meta.com/llama3/
https://llama.meta.com/code-llama/
https://zenodo.org/records/12771266
https://zenodo.org/records/12771266


2

as “twice”, “half” or “left”. Additionally, solv-
ing the MWP demands an understanding of the
relationships among these quantities, the identifi-
cation of the target quantity, and the sequence of
operations needed to achieve the final result. In
essence, solving a problem from natural language
is a task primarily concerned with knowledge ex-
traction and the identification of advanced relation-
ships (Jie et al., 2022a). Recent studies have shown
that LLMs show a problem-solving ability similar
to that of children, despite differences in the type
of MWP they are able to solve best (Arnau-Blasco
et al., 2024).

The task of automated MWP solving has been
a topic of interest in the literature since the 1960s,
inspiring a recent survey (Zhang et al., 2020). Re-
cent efforts in solving Mathematical Word Prob-
lems (MWPs) have concentrated on constructing
expression (or equation) trees. These methods fo-
cus on creating arithmetic expressions by form-
ing equivalent trees. However, due to the expo-
nential growth of the search space as the num-
ber of quantities increases, alternatives leveraging
reinforcement learning techniques have been ex-
plored (Wang et al., 2018).

In the last year, prompting techniques have been
developed to force reasoning on decoder-only trans-
formers (Kojima et al., 2023). Moreover, the intro-
duction of new-generation LLMs like Llama2 and
Mistral has also led to new studies in the field. In
this direction, (Arnau-González et al., 2024) pro-
posed a method that incorporates MWP solving,
quantity value assignment and naming as well as
capabilities for establishing relationships, without
the need for fine-tuning the underlying LLM.

3 Dataset

The SVAMP MWP dataset (Patel et al., 2021)
consists of 1000 elementary-level arithmetic word
problems, each solvable by expressions requiring
no more than two operators. This dataset provides
annotated solutions for each MWP. SVAMP was
selected for evaluating and analyzing the perfor-
mance of LLMs in solving MWPs, being widely
recognized as one of the most challenging datasets
for arithmetic MWP solving (Patel et al., 2021; Jie
et al., 2022b).

3.1 Studied samples

In a previous study (Arnau-González et al., 2024),
the authors have developed a method where a

LLM is prompted with an example MWP statement
alongside a corresponding correct Python function
named sol(), which solves the MWP. Additionally,
the model receives the MWP statement to be solved
and a partially defined Python function. The model
then completes the function by defining quantities
and their relationships, and returning the requested
result. Figure 1 shows this process with annotations
highlighting the different parts of the prompt and
the generated output. The accuracy of the solution
can be verified by executing the generated Python
code and comparing its result to the expected solu-
tion.
""" A book has 3 chapters. The first chapter is 91 pages
long the second chapter is 23 pages long and the third
chapter is 25 pages long. How many more pages does the
first chapter have than the second chapter? """

def sol():
context = dict()
context['number of chapters'] = 3
context['number of pages first chapter'] = 91
context['number of pages second chapter'] = 23
context['number of pages third chapter'] = 25
context['pages more first chapter'] =
(context['number of pages first chapter']
- context['number of pages second chapter'])
return context['pages more first chapter']

""" Each pack of dvds costs 76 dollars.
If there is a discount of 25 dollars on each pack.
How much do you have to pay to buy each pack? """

def sol():
context = dict()

Example

Input
Problem

Prompt

context['price per pack'] = 76
context['discount per pack'] = 25
context['price after discount'] =
context['price per pack'] -
context['discount per pack']
return context['price after discount']

Generated
output

Figure 1: Python code with generated output example:
Prompts in yellow sections and an example of LLM
generated output in green.

The samples provided in (Arnau-González et al.,
2024) are an attempt to automatically solve MWP
using Python code.

Originally, the published samples contained
Python source code produced by 19 different
LLMs, on the problems contained in the SVAMP
and GSM-8k datasets. Each model was used
to generate 10 independent solutions for each
MWP for three different temperature settings
τ ∈ {0.1, 0.3, 0.5}. In this study, we focus our
analysis on the top-3 top-performing models based
on the best accuracy values, computed considering
only the first of the 10 solutions generated. These
models were OpenMath-Mistral-7b, Llama3-8b,
and Codellama-34b, when using τ = 0.1.

4 Analysis

We focused our analysis on the characteristics of
MWPs that LLMs tend to solve incorrectly. These
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MWPs have been selected by studying the gener-
ated samples obtained in previous studies (Arnau-
González et al., 2024). Out of the three studied
models we have chosen CodeLlama-34b as the
worst model, as it provided the worst accuracy on
the SVAMP dataset.

We decided to delve into those problems that the
worst performing model (CodeLLama-34b) failed
to solve accurately, in order to draw some conclu-
sions on the structure of said MWPs.

After an initial visual inspection, we found spe-
cific patterns in the MWPs for which models tend
to fail and categorized them to better understand
the limitations of the models based on the type of
MWP they are trying to solve, into at least one of
the following three types: MWP with unfeasible
solutions (US), MWP with unnecessary quantities
(UQ), and MWP involving comparisons (CP).

MWPs that fall into the Unfeasible Solution cat-
egory are MWPs that, although can be solved an-
alytically, the solution obtained is not practical or
possible in the presented scenario. This happens,
for instance, when one or more quantities in the
solution take an integer or real value where only nat-
ural numbers are physically possible. An example
of this type of statement is “A waiter had 12 cus-
tomers. After some left he still had 14 customers.
Then he got 10 new customers. How many cus-
tomers does he have now?”. This problem implies
that somehow −2 customers left the restaurant.

MWPs with the Unnecessary Quantities category
contain one or more quantities that are not required
to solve the problem. We have observed that most
LLMs have a natural tendency to use all the quanti-
ties present in the statement to produce a solution,
typically leading to errors in the reasoning. A good
example of these MWP is “Rebecca wants to split
a collection of eggs into groups of 6. Rebecca has
18 eggs 72 bananas and 66 marbles. How many
groups will be created?”. In this case, bananas and
marbles amounts are unnecessary in determining
how many groups of eggs will be created. However,
models will still add it to the number of eggs.

What does the Table 2 with Mann-Whitney U
rank test show? In the table are the statistics? Fi-
nally, MWPs falling in the Involving a Comparison
category, have their statements asking or involve a
direct comparison between two quantities. This of-
ten confuses models as sometimes are not capable
of capturing these relationships appropriately. An
example of this type of problem is “There were 3
dollars in Olivia’s wallet. She collected 49 more

dollars from an ATM. After she visited a supermar-
ket there were 49 dollars left. How much more
money did she collect at the ATM than she spent at
the supermarket?”. In this statement, the problem
question is a comparison between money collected
at the ATM and the amount spent at a supermarket.
Table 1 summarizes the types of MWP statements
along with brief descriptions of each category.

Other categories have been created by combin-
ing the previously identified categories, US∧UQ,
US∧CP, UQ∧CP, and US∧UQ∧CP. These cate-
gories contain the samples that can be tagged in
more than one category. Finally, an additional cate-
gory UNIDENTIFIED has been created, containing
the MWPs that have not been labelled in any of the
previous categories. This type of problems has
a simple structure with no irrelevant comparison
elements or quantities.

MWPs that CodeLlama-34B fails to solve cor-
rectly have been classified by two independent vol-
unteer annotators. The annotators were asked to
tag which of the identified problems were present
in each of the selected MWPs. According to both
annotators’ responses we computed Cohen’s Kappa
for each of the three separate problems. In all cases,
we obtained a κ > 0.6, indicating substantial agree-
ment was achieved by the annotators. Finally, since
annotator #1 had more experience in the field, it
was decided to choose samples from that annotator.
The analysis of the classification of the selected
samples shows that the MWPs can be classified
into at least one of the identified categories in over
70% of the MWPs which CodeLlama fails to solve.

CodeLlama fails to solve 45.8% of problems in
the UQ category, indicating that these problems
present the greatest challenge for the model. 37.8%
in the CP category, and 21.8% in the US category.
Additionally, 14.5% of the problems fall into both
the US and UQ categories, 10.9% fall into both
the US and CP categories, 16% fall into both the
UQ and CP categories, and 6.9% fall into all three
categories: US, UQ, and CP. Finally, 29.1% of the
problems do not fall into any of these specified
categories. An intriguing observation arises when
examining this category of the unsolved problems.
These problems typically have clearer statements
and generally require a straightforward operation to
reach a solution. Despite their apparent simplicity,
CodeLlama still faces notable challenges in solving
these problems.

In summary, a total of 275 MWPs (those which
CodeLlama failed to solve) were selected for anal-
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Table 1: Features of MWPs Statements and Brief Description

Category of MWP Statements Description

Unfeasible Solution (US) MWPs that can be solved analytically, but the solution obtained is not possible in the presented scenario
Unnecessary Quantities (UQ) MWP statements contain one or more quantities that are not required to solve the problem
Involving a Comparison (CP) MWP have statements asking or involve a direct comparison between two quantities
UNIDENTIFIED MWP statements in this category do not exhibit any of the previously mentioned characteristics

Table 2: Category-Wise MWP Statements where Mistral and Llama Models fail Focused on CodeLlama Failures.

US UQ CP US∧UQ US∧CP UQ∧CP US∧UQ∧CP UNIDENTIFIED

Mistral 43.33 45.24 36.54 40.00 33.33 31.82 26.32 22.50
Llama 61.67 50.79 62.5 50.00 66.67 45.45 47.37 36.25

Total 60 126 104 40 30 44 19 80

The table presents the percentage of problems within each category that are incorrectly resolved by Mistral and Llama models, focusing on problems that CodeLlama

initially failed to solve. Additionally, it includes the number of MWPs identified within each category.

Table 3: Mann-Whitney U rank test

US UQ CP

Mistral 0.0044 0.0004 0.0204
Llama 0.0014 0.0207 0.0002

P-values from the Mann-Whitney U rank test comparing er-
ror rates between problems categorized as US, UQ, and CP
versus those in the UNIDENTIFIED category. Each sample
consists of independent sets of problems, where the identified
categories (US, CP, UQ) are compared against the UNIDEN-
TIFIED problems to assess differences in error rates.

ysis in the top two top-performing models. Table 2
displays the error rates for both Mistral and Llama-
3 models for the tagged samples, and all the possi-
ble tag combinations. A first analysis reveals that
the identified categories are indeed problematic
also for these models. This is shown by the error
rate being higher in all the identified categories and
their combinations.

This observation is further supported by a hy-
pothesis test, where the alternative hypothesis (Ha)
posits that the distribution of error rates for each
identified category (UQ, US, CP) is significantly
higher than that of errors in the UNIDENTIFIED
category. Specifically, we hypothesize that the er-
ror rate in problems identified with UQ (104 prob-
lems), US (60 problems), and CP (126 problems)
is greater than the error rate in the UNIDENTI-
FIED category (80 problems). The tested distribu-
tions are independent, and since the assumptions
of the Students’s test are violated (homoscedastic-
ity and normality of the date), we choose a non-
parametric alternative. The null hypothesis (H0)
for each comparison is that there is no difference
between the error distributions of the identified cat-
egory and the UNIDENTIFIED category. In other
words, H0 asserts that the two distributions have

the same median error rate. The tested distribu-
tions represent the proportion of problems solved
correctly (is_correct) within each category. These
distributions are independent and consist of binary
outcomes (True/False). The results, as shown in
Table 3, indicate that for all identified categories
(UQ, US, CP), there are significantly more errors
compared to the UNIDENTIFIED category. This
supports our hypothesis that the identified cate-
gories represent problem types that are systemati-
cally more challenging for the models.

Within the 275 problems incorrectly solved by
CodeLlama, we analyzed the errors made by the
Mistral and Llama models. Mistral accounted for
errors in 173 problems, with 60% of these errors
being attributable to the same issues present in the
CodeLlama model. Similarly, Llama had 247 prob-
lems with erroneous solutions, and 58% of these
errors could be explained by the same mistakes
made by CodeLlama. This indicates that we were
able to identify the characteristics of MWPs of
60% of Mistral’s errors and 58% of Llama’s errors,
respectively. Through this analysis, we can under-
stand a significant portion of the common sources
of errors in both Mistral and Llama. In Table 2, we
analyze the percentage distribution of incorrectly
resolved problems across each category.

5 Conclusion and Future Work

In this work, we have analyzed the performance
of three LLMs in solving MWPs on the SVAMP
dataset and categorized the sources of errors. The
categorization of MWP statement error sources re-
flects specific patterns in which the models fail to
correctly solve these problems. Identifying these
patterns provides valuable insights into the limita-
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tions of current LLMs.

The provided study shows that, in general, there
are three categories of challenging problems for
which models tend to generate wrong solutions.
Moreover, the results show that statistically, mod-
els tend to fail significantly more in problems that
fall into one of these categories than in any other
type of problems. The fact that these categories can
be identified, and the shown difference in perfor-
mance in these categories shows that LLMs are still
weak for certain types of reasoning. The identifica-
tion of the reasons that cause an incorrect solution
in the case of statements that cannot be classified
in any of the 3 identified categories is not straight-
forward. The initial inspection showed that these
problems apparently have a clear statement, and
there is no reason as to why the models consistently
fail to solve the problem. A possible explanation of
this issue might be related to the type of relations
encoded in the MWPs, as suggested by previous
research (Arnau-Blasco et al., 2024).

The presented analysis is a work in progress
which examines the characteristics of MWP state-
ments where the selected LLMs fail to provide cor-
rect solutions. The initial categorical classification
offered as part of this work serves as a preliminary
step towards modeling math problems based on
categories that reflect the likelihood of being cor-
rectly solved by different LLMs. Future work will
continue analysing the samples for which the top-
performing models fail, in order to gather insights
into the reasoning gaps and generate strategies to
overcome such failures. We also plan to examine
and compare the error rates across different cat-
egories made by LLMs with those made by real
students.

Acknowledgements

This work has been supported by project PID2023-
150960NB-I00, funded by the Spanish Ministry
of Science, Innovation and Universities and the
European Union; project CIGE/2023/063 and grant
CIAPOS/2022/063 funded by Generalitat Valen-
ciana; project TED2021-129485B-C42 funded by
MCIN/AEI/10.13039/501100011033 and the Eu-
ropean Union “NextGenerationEU”/PRTR;
and grant PRE2019-090854, funded by
MCIN/AEI/10.13039/ 501100011033 and
“ESF Investing in your future”.

References
Jaime Arnau-Blasco, Miguel Arevalillo-Herráez, Sergi

Solera-Monforte, and Yuyan Wu. 2024. Using large
language models to support teaching and learning
of word problem solving in tutoring systems. In Gen-
erative Intelligence and Intelligent Tutoring Systems,
pages 3–13, Cham. Springer Nature Switzerland.

Pablo Arnau-González, Stamos Katsigiannis, Ana
Serrano-Mamolar, and Miguel Arevalillo-Herráez.
2024. Result outputs for "Automated Math Word
Problem solving and quantity identification using
Large Language Models for code synthesis".

Zhanming Jie, Jierui Li, and Wei Lu. 2022a. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5944–5955, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhanming Jie, Jierui Li, and Wei Lu. 2022b. Learn-
ing to reason deductively: Math word problem
solving as complex relation extraction. Preprint,
arXiv:2203.10316.

Nikitas Karanikolas, Eirini Manga, Nikoletta Samaridi,
Eleni Tousidou, and Michael Vassilakopoulos. 2024.
Large language models versus natural language un-
derstanding and generation. In Proceedings of the
27th Pan-Hellenic Conference on Progress in Com-
puting and Informatics, PCI ’23, page 278–290, New
York, NY, USA. Association for Computing Machin-
ery.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners. Preprint,
arXiv:2205.11916.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep
reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1).

https://doi.org/10.1007/978-3-031-63028-6_1
https://doi.org/10.1007/978-3-031-63028-6_1
https://doi.org/10.1007/978-3-031-63028-6_1
https://doi.org/10.5281/zenodo.11126655
https://doi.org/10.5281/zenodo.11126655
https://doi.org/10.5281/zenodo.11126655
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://arxiv.org/abs/2203.10316
https://arxiv.org/abs/2203.10316
https://arxiv.org/abs/2203.10316
https://doi.org/10.1145/3635059.3635104
https://doi.org/10.1145/3635059.3635104
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1609/aaai.v32i1.11981
https://doi.org/10.1609/aaai.v32i1.11981
https://doi.org/10.1609/aaai.v32i1.11981


6

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian
Dai, and Heng Tao Shen. 2020. The gap of semantic
parsing: A survey on automatic math word problem
solvers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(9):2287–2305.

https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054

	Introduction
	Background and related work
	Dataset
	Studied samples

	Analysis
	Conclusion and Future Work

