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Abstract

Robots are often deployed in remote loca-
tions for tasks such as exploration, where
users cannot directly perceive the agent and
its environment. For Human-In-The-Loop
applications, operators must have a compre-
hensive understanding of the robot’s current
state and its environment to take necessary
actions and effectively assist the agent. In
this work, we compare different explanation
styles to determine the most effective way to
convey real-time updates to users. Addition-
ally, we formulate these explanation styles as
separate fine-tuning tasks and assess the ef-
fectiveness of large language models in de-
livering in-mission updates to maintain situ-
ation awareness. The code and dataset for this
work are available at: https://github.com/
konsgavriil/explainable_robotics_lm.

1 Introduction

Automation offers significant advantages in our
society, particularly in critical sectors like manu-
facturing and offshore applications, as recognized
in prior studies (Ballestar et al., 2021; Khalid et al.,
2022). Fostering transparency and accountabil-
ity within robotics is imperative to bolster trust
and wider adoption (Wachter et al., 2017; Win-
field et al., 2021). One pivotal cognitive process
influencing trust and adoption is situational aware-
ness, characterized by three essential stages: per-

ception (understanding a robot’s decision-making),
comprehension (discerning the rationale behind
these decisions), and projection (anticipating fu-
ture automated behaviours). Recent research has
shown that textual explanations presented visually
within Human-In-The-Loop applications, such as
autonomous driving, positively impact all facets of
situational awareness (Avetisyan et al., 2022).

In this work, we include two user studies focus-
ing on situation awareness and explanation gener-
ation. We share a dataset, licensed under Creative

XARLM

Causal Explanation: After visiting all survey waypoints, Alpha is
returning back to its starting point with a northwest heading to be
recovered. At the moment, obstacle A is very far from the vessel
and there is no need to modify its route. 

What-if Query: What if Alpha's return is cancelled?
Counterfactual Explanation: If Alpha's return state is
deactivated, then the vessel will start surveying the area again
starting from Point 0. 

Why-not Query: Why doesn't Alpha continue surveying the
area instead of returning back.
Contrastive Explanation: Alpha is not surveying, because both
its deploy and return states are active. For the return state to be
triggered, the vessel needs to visit all survey waypoints or a
request needs to be retrieved from C2 for immediate return. 

User 
Queries

Vehicle States
Deploy: True
Return: True
Obstacle Name: Obstacle A
Obstacle Proximity: Very Far
Heading: Northwest
Next point: Starting point
Point Direction: Northwest
Name: Alpha

Figure 1: The eXplainable Autonomous Robot Lan-
guage Model (XARLM) retrieves vehicle states and
user queries to generate explanations in various styles,
thereby enhancing situation awareness for vehicle oper-
ators.

Commons Attribution (CC-BY), which contains
categorical events related to maritime autonomous
missions, user queries, and corresponding expla-
nations. Additionally, we demonstrate the perfor-
mance of multiple large language models on three
downstream tasks derived from our dataset.

Through the fine-tuning process and the user
studies, we aim to answer the following research
questions:

• RQ1: How robust are large language mod-
els in delivering explanations of autonomous
mission events in causal, counterfactual, and
contrastive styles?

• RQ2: Which of the three explanation styles

https://github.com/konsgavriil/explainable_robotics_lm
https://github.com/konsgavriil/explainable_robotics_lm
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most effectively enhances situation awareness
for users?

• RQ3: Do users prefer model-based explana-
tions over template-based explanations?

The remainder of this paper is structured as fol-
lows: Section 2 reviews prior research that has in-
fluenced our approach. Section 3 describes the data
collection and annotation processes. Section 4 out-
lines the fine-tuning process for the large language
models and details the experiments conducted to
identify the best-performing model. In Section
5, we describe the tasks included in our study to
address research questions 2 and 3, as well as the
participant groups that completed the questionnaire.
Section 6 presents the performance of the large lan-
guage models and our findings from the user stud-
ies. Finally, Section 7 examines the implications
of our findings, and Section 8 discusses potential
future experiments and concludes the paper.

2 Related Work

Explainable agents and robots have become a cru-
cial research area due to the increasing demand for
transparency and interpretability in autonomous
systems (Langley et al., 2017; Anjomshoae et al.,
2019). These systems must effectively commu-
nicate their decision-making processes to users,
preferably through user-friendly modalities such
as natural language (Cambria et al., 2023). Typi-
cally, natural language explanations are presented
as causal explanations, which are easy to under-
stand and clearly justify automated behaviours
(Diehl and Ramirez-Amaro, 2022). Other types of
explanations, such as counterfactual explanations
(answering "What if" questions) and contrastive ex-
planations (answering "Why not" questions), also
facilitate the interrogation of black-box systems
(Stepin et al., 2021).

Generating these explanations faithfully involves
sophisticated methods for content selection, such
as using Bayesian networks or surrogate models
(Gyevnar et al., 2022; Gavriilidis et al., 2023).
The selected content can then be communicated
through controllable template-based approaches
(Hastie et al., 2017). Additionally, end-to-end ap-
proaches using encoder-decoder architectures have
shown promise in conveying agent rationale and im-
proving failure and solution identification (Ehsan
et al., 2019; Das et al., 2021).

The advent of causal language models with
transformer-based encoder architectures (Touvron

et al., 2023; Jiang et al., 2023) has significantly ad-
vanced the field of text generation. These models
excel at replicating domain-specific knowledge due
to extensive training on vast amounts of human-
generated text (Kıcıman et al., 2023). Despite their
substantial size and complexity, new techniques
such as QLoRA (Dettmers et al., 2024) have made
fine-tuning more computationally efficient, facili-
tating the adaptation of pre-trained models to spe-
cific downstream tasks.

To evaluate the semantic accuracy of models,
researchers frequently compare the outputs with
their corresponding inputs (Xu et al., 2021). This
evaluation approach is particularly important in ap-
plications where the accuracy and reliability of nat-
ural language explanations are critical. Commonly
used metrics for this purpose include BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005), which measure
quality based on n-gram overlap between reference
labels and model-generated responses. However,
these metrics have limitations, as they often fail to
capture the true semantic similarity or desired ver-
bosity of the outputs (Zhao et al., 2020). To address
these shortcomings, combining n-gram-based met-
rics with additional metrics that perform verbatim
comparisons can provide a more comprehensive
evaluation of model outputs, particularly in high-
stakes applications.

Given the robustness of large language models
in data-to-text generation and their capability to
perform multiple tasks, various domains have lever-
aged these models for diverse applications. For in-
stance, they have been used for action selection in
embodied tasks (Ahn et al., 2022) and for text sum-
marization to infer sets of rules for object manipula-
tion based on user preferences (Wu et al., 2023). In
the realm of explainable robotics, language models
are combined with Retrieval Augmented Gener-
ation (Lewis et al., 2020) to transform robot logs
and user queries into natural language explanations,
thereby enhancing human-robot interaction.

3 Data Generation

To collect a dataset for autonomous maritime ve-
hicles, we deployed an agent that follows a pre-
existing plan and attempts to complete its objec-
tives by visiting a set of waypoints using different
patterns (e.g., lawnmower, loiter). The agent prior-
itizes the integrity of the robotic platform and re-
plans its behaviour in case of unexpected events. At
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Figure 2: The MOOS-IvP scenarios used for data generation. Each of the three scenarios includes four different
configurations with varying waypoints and objectives.

each simulation timestep, we recorded the robot’s
behaviour and the states affecting that behaviour,
such as objectives and sensor-derived events (e.g.,
obstacle or vessel detection).

For this dataset, we utilised MOOS-IvP, an open-
source behavioural agent designed for maritime
robots (Benjamin et al., 2010). This simulator of-
fers a variety of pre-built scenarios, from which
we selected and refined three specific missions.
We further modified the mission plans, creating
four distinct configurations for each scenario. We
limited the logged vehicle states to those impact-
ing the agent’s behaviour activations. Finally, we
performed post-mission parsing of the log files to
extract the relevant vehicle states and the corre-
sponding activated behaviours.

In Figure 2, we illustrate three scenarios, each
with four distinct task and environment configura-
tions. Scenario A involves an unmanned surface
vehicle (USV) conducting a survey, avoiding obsta-
cles, and returning to its starting point for retrieval.
Scenario B features an unmanned underwater vehi-
cle (AUV) loitering around predefined waypoints
and transitioning to a designated survey area upon
receiving instructions. Scenario C has two vehicles
loitering around a random polygon, occasionally
switching sides and restarting their routine while
avoiding collisions and obstacles. With each sce-
nario, the task difficulty increases by adding more
behaviours and introducing complex tasks such as
collision avoidance.

3.1 Data Annotation

After completing data collection, model-based data
annotation was conducted. Using a larger model,

C CF CT

Dataset size 1151 3450 3450
Vocabulary size 758 993 1167
Avg Input Length 109.70 121.90 125.22
Longest Input Length 132 153 165
Shortest Input Length 86 96 97
Avg Output Length 42.38 37.13 61.41
Longest Output Length 89 122 151
Shortest Output Length 16 7 21
Inputs with spatial tokens 1151 3450 3450
Avg spatial tokens/input 18.88 22.94 22.06
Outputs with spatial tokens 1146 3128 3379
Avg spatial tokens/output 8.58 6.23 7.83

Table 1: Dataset Statistics for causal (C), counterfactual
(CF) and contrastive (CT) explanations.

new annotations were generated for each data in-
stance by providing a small number of instruction-
based examples, as guided by prior research (Taori
et al., 2023). Specifically, the OpenAI API’s Chat-
Completion functionality with the GPT-3.5-Turbo
model was utilised. Task instructions and concate-
nated vehicle state representations were input, re-
sulting in potential user queries along with their
corresponding explanations. For counterfactual
and contrastive explanations, a state or behaviour
permutation was also provided, depending on the
task, to validate the user query upon which the
explanation was based.

Initially, 12 instructions were defined for Sce-
nario A, 15 for Scenario B, and 21 for Scenario C,
ensuring that all unique states and behaviours rele-
vant to each scenario were addressed. This process
produced an annotated dataset comprising 8,051
data instances, reflecting the state updates encoun-
tered during each mission to minimise repeated
state-behaviour combinations. Detailed statistics
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[Task1-Input]

Instruction: Here's a representation that describes the current
state of an autonomous maritime vehicle: [representation].
Given the provided representation, please respond to the
following user query in no more than three
sentences: [user_query]

Representation: {'objective': 'Loiter around in different areas
which are selected randomly, while avoiding obstacles and
collision with other vessels. Finally, once the command is
provided by the operator, return to starting point.', 'deploy':
'True', 'return': 'False', 'station_keep': 'False', 'next_loiter_point':
'point6', 'obstacle_name': 'none', 'obstacle_proximity': 'none',
'contact_range': 'very far', 'contact_resolved': 'FALSE',
'collision_avoidance_mode': 'none', 'speed': 'fast', 'heading':
'northeast', 'loiter_point_direction': 'northeast', 'new_loiter_area':
'False', 'obstacle_direction': 'none', 'name': 'gilda',
'active_behaviour': 'loiter'}

User Query: Why has Gilda activated this specific behaviour?

[Task2-Input]

Instruction: Here's a representation that describes the
current state of an autonomous maritime vehicle:
[representation]. Respond to the following what-if query in a
maximum of three sentences. Additionally, include a state
difference that illustrates the alterations in the user
query. [user_query]

Representation: {'objectives': 'Loiter between points 0 to 7
until a survey objective is provided, then perform the survey
and finally return back to starting point', 'deploy': 'True',
'return': 'False', 'next_waypoint': 'none', 'behaviour_stage':
'none', 'next_loiter_point': 'point2', 'gps_update_received':
'False', 'depth': 'shallow', 'vehicle_at_surface': 'False',
'periodic_ascend': 'False', 'waypoint_direction': 'none',
'loiter_point_direction': 'southeast', 'speed': 'fast', 'heading':
'southeast', 'name': 'henry', 'active_behaviour':
'maxdepth,loiter,bhv_const_depth'}

User Query: What if Henry stops being deployed?

[Task3-Input]

Instruction: Below is a representation depicting the
current state of an autonomous maritime
vehicle: [representation]. Respond ot the following
why-not query in a maximum of three sentences.
Additionally, include a behaviour difference that
illustrates the alterations in the user query. [user_query]
 
Representation: {'objective': 'Go to points 0, 1, 2, 3, 4, 5
and then return to starting position.', 'deploy': 'True',
'return': 'False', 'obstacle_name': 'none',
'obstacle_proximity': 'none', 'obstacle_resolved': 'False',
'behaviour_stage': 'in-transit', 'next_point': 'point0',
'speed': 'moderate', 'heading': 'southeast',
'next_point_direction': 'southeast', 'obstacle_direction':
'none', 'name': 'alpha', 'active_behaviour':
'waypt_survey'}

User Query: Why is alpha surveying an area instead of
returning to its starting point?

Causal LM

[Task1-Output]

Causal Explanation: Gilda is currently
loitering fast towards point 6 with a
northeast heading. There are no obstacles
or other vessels in the vicinity, so there is
no need for collision avoidance or changes
in behavior.

[Task2-Output]

Counterfactual Explanation: If Henry
stops being deployed, then the vessel
would reduce its speed and eventually stay
idle.

State Permutation: deploy= False

[Task3-Output]

Contrastive Explanation: Alpha is currently deployed to perform its objective, specifically
moving towards point 0 with a southeast heading and at a moderate speed. To return to its
starting point, it should first finish its objective or receive a command from C2.

Behaviour Permutation: 
Original= Waypt_survey, Modified= Waypt_return

Figure 3: The defined fine-tuning tasks involve a causal language model that retrieves an instruction, a vehicle state
representation, and a user query. The model then outputs an explanation, and for counterfactual and contrastive
explanations, it additionally provides a permutation.

of the annotated dataset, including vocabulary size,
input/output lengths, and the number of spatial to-
kens, are provided in Table 1.

4 Fine-Tuning

Before attempting any fine-tuning, we evaluated
the performance of existing instruction fine-tuned
large language models to assess their capability in
generating explanations from autonomous vehicle
states. Specifically, we employed three transformer-
based decoder models, each with an identical num-
ber of parameters: Llama2-7B-Chat, Mistral-7B-
IT, and Falcon-7B-IT, using 2-shot inference (Tou-
vron et al., 2023; Jiang et al., 2023; Almazrouei
et al., 2023). This preliminary experiment revealed
that all three models demonstrated strong results in
terms of semantic accuracy and precision, with Mis-
tral and Llama2 slightly outperforming Falcon in
these aspects. However, when evaluated using ma-
chine translation metrics, all three models exhibited
significant shortcomings, with Mistral performing
slightly better.

Upon further inspection of the model outputs,
we found that these models often compensated by
increasing verbosity and adding supplementary to-
kens. These additions were unnecessary and may
increase the cognitive load for users reading the
explanations. The higher semantic accuracy and
precision scores can be attributed to our metric’s

focus on the output mentioning spatial elements, be-
haviours, and entities present in the input represen-
tation. In contrast, the lower scores in ROUGE-L,
BLEU, and METEOR metrics were due to the gen-
erated outputs not closely resembling the dataset
labels. The results of this initial experiment are
illustrated in Figure 4.

Recognizing the need for further refinement for

Llama2-7B Mistral-7B Falcon-7B
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Figure 4: Performance of instruction fine-tuned large
language models on two-shot inference tasks, with error
bars indicating the mean and variability across various
explanation types. The metrics include Semantic Accu-
racy (SA) and Semantic Precision (SP).



11

our downstream task, we defined a fine-tuning
setup where each explanation type is treated as
a separate task. In Figure 3, we represent our fine-
tuning tasks, where a task instruction, along with
a representation and a user query, are provided as
input. The model output is the corresponding expla-
nation, including permutations for counterfactual
and contrastive explanations. Using our annotated
dataset, we trained the three large language models
on all explanation tasks utilizing the HuggingFace
and PEFT (Xu et al., 2023) libraries.

4.1 Automatic Evaluation

To evaluate the performance of our models
on downstream tasks, three machine translation
metrics—BLEU, METEOR, and ROUGE—were
utilised to measure n-gram overlap between the
model outputs and reference labels. Additionally,
to accurately assess the mentions of entities, land-
marks, and specific details such as vessel heading,
depth, speed, or behaviour, a semantic accuracy and
precision metric was developed. The SA metric in-
creases with each correct mention and decreases
when elements are inaccurately identified (e.g., us-
ing ’medium’ instead of ’fast’ speed), ensuring the
fidelity of the generated explanations.

Specifically, given a set of input tokens I and
a set of output tokens O, for each token category
(spatial, state, decision) that is based on a vocabu-
lary we predefined, the sets of correct references,
true positives, and false positives are defined as
follows:

Correct References = I ∩O

The number of true positives (TP ) and false
positives (FP ) are calculated as:

TP = |Correct References|

FP = Total References − TP

The semantic accuracy (Acc) and precision
(Prec) are defined by:

Acc =
TP + TN

|O|

Prec =
TP

TP + FP

where TN (true negatives) denotes the number
of tokens in O that are not references. The overall
semantic accuracy and precision are computed as

the average across all evaluated references within
the spatial, state, and decision categories.

Section 6 presents a performance comparison
of the three language models to identify the best-
performing model. An ablation study was subse-
quently conducted on the top-performing model to
explore potential improvements.

5 User Study

To estimate the effect of explanations on users and
determine user preference for model-based expla-
nations, we designed two user studies. A total of
21 participants were recruited from the robotics in-
dustry and academia, including 9 individuals very
familiar with autonomous vehicles, 9 who were
familiar, and 3 who were not familiar.

User Study on Situation Awareness: This
study builds upon prior work (Robb et al., 2018)
to investigate the effect of different explanation
styles on users’ situation awareness. We used
recorded videos from the aforementioned maritime
robot simulator, where an agent attempts to accom-
plish a set of objectives while considering its envi-
ronment and inner state, particularly during unex-
pected events that require replanning. Participants
encountered three different conditions, each with a
different explanation type (causal, counterfactual,
and contrastive), along with a tutorial video de-
scribing the task beforehand. In the first condition,
explanations were presented with captions. In the
second and third conditions, participants selected
user queries to generate corresponding explana-
tions that clarified alternative outcomes. After the
explanations were displayed, the interface asked
users about events taking place in the video at pre-
defined timesteps. Their responses were used to
estimate a performance metric representing their
situation awareness per condition, thus assessing
the effect of each explanation style on their mental
models.

User Study on Explanation Preference: This
study presented three separate scenarios, each with
a map displaying the vessel and its environment, a
description summarizing the events, a user query,
and three potential explanations. Two default op-
tions allowed users to select all or none of the expla-
nations to avoid restricting their choices. For each
scenario, participants chose the explanation that
best conveyed the current state of the robot. These
explanations were derived from both domain expert
templates (with low soundness and high complete-
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ROUGE-L BLEU METEOR Semantic Accuracy Semantic Precision

Causal 0.631 0.460 0.651 0.978 0.884
Counterfactual 0.665 0.538 0.670 0.969 0.857
Contrastive 0.652 0.561 0.669 0.983 0.902
All types 0.430 0.417 0.459 0.975 0.887

Table 2: Performance comparison of the top-performing large language model, Mistral, on individual tasks as well
as on a combined dataset of all three tasks using a balanced dataset.

Llama2-7B Mistral-7B Falcon-7B
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Figure 5: Performance of fine-tuned large language
models, showing improved machine translation metrics
compared to Figure 4.

ness) and language models, though participants
were not informed of their origin. Selections were
made based solely on the clarity and informative-
ness of the explanations provided.

6 Results

In this section, we present the results of our fine-
tuned models and user study, addressing the re-
search questions outlined in Section 1.

6.1 Automatic Evaluation

To address RQ1, we present the overall perfor-
mance of the three large language models on the
three downstream tasks, as illustrated in Figure
5. Based on the performance metrics, Mistral and
Llama2 demonstrated the best results, with Mistral
showing a slight edge and a significant improve-
ment in machine translation metrics. These models
also achieved high scores in Semantic Accuracy
and Precision, indicating that their outputs accu-
rately reflected the vehicle state representations
provided as input.

In contrast, the Falcon model performed well on
causal explanations but did not achieve comparable

performance on the other two explanation types, af-
fecting its mean performance across all tasks. Sim-
ilar to its behaviour in the instruction version, the
Falcon model produced verbose outputs that mixed
relevant tokens with supplementary, unnecessary
information. These results were evaluated for both
the fine-tuned and instruction models using a test
set of 100 data instances for each explanation type.

After identifying Mistral-7B as our best-
performing model, we evaluated its performance
on three individual datasets and a balanced dataset
with equal numbers of all explanation types. As
shown in Table 2, the model trained on the counter-
factual dataset achieved the highest ROUGE-L and
METEOR scores. The model trained on the con-
trastive dataset achieved the best BLEU score. The
causal dataset model ranked third in machine trans-
lation metrics, with the balanced dataset model
coming in last. For semantic accuracy and preci-
sion, the contrastive dataset model performed the
best, while the causal and balanced dataset mod-
els had similar results. The counterfactual dataset
model ranked last in semantic accuracy and preci-
sion, but not significantly behind the top models.

6.2 User Study

With the results from the two user studies, we ad-
dress RQ2 and RQ3 as outlined in Section 1.

In the first user study, illustrated in Figure 6, we
measured the total number of correct answers per
condition (causal, counterfactual, and contrastive)
and compared these results to the probability of
randomly selecting the correct answer (33.3%) to
determine the impact of explanations on situation
awareness. Causal explanations led to the high-
est percentage of correct answers (76.19%), fol-
lowed by contrastive explanations (69.84%) and
counterfactual explanations (59.67%). The perfor-
mance difference between random selection and
explanation-assisted answers demonstrates that our
explanations enhanced users’ ability to correctly
perceive events.
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Figure 6: Percentage of correct answers for each con-
dition in the first user study examining the impact of
explanation styles on situation awareness.

Further analysis of the first user study involved
categorizing the questions into three types: intrin-

sic (inquiring about the robot’s internal states, such
as sensor readings), spatial (concerning the ves-
sel’s topology, its environment, and nearby enti-
ties or landmarks), and decision-making (asking
about the rationale behind the robot’s decisions).
Figure 7 shows that causal explanations resulted
in the highest accuracy for intrinsic (68.18%) and
decision-making (100%) questions, but the low-
est for spatial questions (46.66%), still better than
random selection. Counterfactual explanations pro-
vided the second-best performance for both intrin-
sic and spatial questions, showing at least a 20%
improvement over random selection. Contrastive
explanations led to the best performance for spa-
tial questions (77.77%) and the second-best for
decision-making (76.47%), but they performed the
worst for intrinsic questions, only slightly better
than random selection (36.36%).

In the second study, we explored user prefer-
ences between template-based and model-based ex-
planations. Templates created by domain experts,
containing only essential information with optimal
verbosity, were preferred by 70% of users. Model-
based explanations were favored by 15%, while
13.33% liked both types equally, and 1.66% liked
none of the explanations. These results suggest that
although model-based annotations can accurately
depict events, they do not fully match the preferred
explanation style of users. This discrepancy indi-
cates that the initial annotation instructions might
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Figure 7: Percentage of correct answers for each con-
dition on questions assessing different aspects of au-
tonomous vehicles (intrinsic states, spatial elements,
decision-making).

Figure 8: Three correct explanations for a counterfactual
query, consisting of two template-based explanations
with high completeness—one with low soundness and
the other with medium soundness.

need refinement to train models that produce expla-
nations more closely aligned with those created by
domain experts. Figure 8 presents an example of
a what-if query with two template-based explana-
tions and one model-based explanation.

7 Discussion

Our evaluation of inference performance using ex-
isting instruction fine-tuned large language models
revealed that, despite their inherent capabilities and
domain knowledge from pre-training, these mod-
els fall short in generating explanations with the
verbosity and style expected by domain experts
in autonomous vehicles. Consequently, additional
fine-tuning on specific downstream tasks is nec-
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essary. Our fine-tuned models showed significant
improvements in machine translation metrics, indi-
cating a strong n-gram overlap between predictions
and reference labels. Notably, our best model per-
formed exceptionally well on counterfactual and
contrastive explanations, followed by causal expla-
nations and mixed styles when using a balanced
dataset. Furthermore, the generated outputs exhib-
ited high semantic accuracy and precision, under-
scoring the effectiveness of the fine-tuning process.

The results from the first user study on the effect
of different explanation styles on situation aware-
ness demonstrated that users significantly benefited
from our explanations compared to random chance,
as there were three potential answers per question.
Specifically, users gave the most correct answers
using causal explanations, followed by contrastive
and counterfactual explanations. For causal ex-
planations, users excelled in answering questions
about decision-making, as the justification behind
the exhibited behaviour was clear and did not re-
quire further queries.

Conversely, counterfactual and contrastive ex-
planations allowed users to interrogate the system
and learn more about the spatial elements of the
mission, resulting in an almost equal percentage of
correct answers. While causal explanations helped
users answer spatial questions with the third-best
success rate, they did not provide enough time to
digest the information, potentially increasing cog-
nitive load.

For intrinsic questions concerning the robot’s
inner states, such as sensor readings, causal expla-
nations demonstrated the best performance, indicat-
ing that a straightforward approach to explaining
a robot’s inner states is the most effective strategy.
Considering these findings, future work could tai-
lor the explanation styles presented to users based
on the type of content needing explanation.

The results from the second user study indicated
a clear preference among participants for domain
expert template-based explanations, though some
participants preferred model-based explanations,
and others expressed no strong preference, show-
ing equal satisfaction with both types. This prefer-
ence may have been influenced by the presentation
format: each scenario featured two template-based
explanations characterised by high completeness
(the breadth of justifications behind an outcome)
and low to medium soundness (the level of detail
for each justification), which directly reflected the
vessel’s current state (Kulesza et al., 2013). In

contrast, only one model-based explanation was
provided per scenario. The use of model-based
data annotation for labelling the dataset may have
also impacted the study’s outcomes.

Future work should focus on aligning language
model outputs more closely with the response
styles of domain experts and further refining model-
based data annotation techniques, particularly for
critical applications. Template-based explanations,
while effective, are not scalable, require signifi-
cant time to develop, and lack robustness, espe-
cially when dealing with complex or evolving sce-
narios. These limitations highlight the need for a
data-driven approach using large language models,
which offer greater adaptability, efficiency, and the
potential to generate contextually relevant explana-
tions at scale.

8 Conclusion and Future Work

This work has successfully demonstrated the im-
pact of different explanation styles on situational
awareness across various aspects of a mission, such
as decision-making, spatial elements, and inner ve-
hicle states, within the context of human-in-the-
loop applications for autonomous vehicles. Ad-
ditionally, we assessed user preferences between
template-based and model-based explanations.

We also showcased the capabilities of our large
language model in performing data-to-text tasks,
transforming the states of autonomous vehicles into
natural language explanations across three differ-
ent styles. The fine-tuned models have shown sat-
isfactory performance in generating coherent and
contextually appropriate explanations.

For future work, several avenues for enhance-
ment and exploration remain open. Experimenting
with a broader range of explanation types could
provide deeper insights into user preferences and
effectiveness. Additionally, integrating additional
modalities, such as map or chart-based user inter-
faces, would be a valuable extension. These in-
terfaces are commonly used in conjunction with
autonomous agents and could offer a more compre-
hensive and interactive explanatory experience for
users.
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