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Abstract
Clinical documentation is correlated with in-
creasing clinician burden, leading to the rise of
automated methods to generate medical notes.
Due to the sensitive nature of patient electronic
health records (EHRs), locally run models are
preferred for a variety of reasons including
privacy, bias, and cost. However, most open-
source locally run models (including medical-
specific) are much smaller with limited input
context size compared to the more powerful
closed-source large language models (LLMs)
generally available through web APIs (Appli-
cation Programming Interfaces). In this paper,
we propose a framework to harness superior
reasoning capabilities and medical knowledge
from closed-source online LLMs in a privacy-
preserving manner and seamlessly incorporate
it into locally run models. Specifically, we
leverage a web-based model to distill the vast
patient information available in EHRs into a
clinically relevant subset without sending sen-
sitive patient health information online and use
this distilled knowledge to generate progress
notes by a locally run model. Our ablation
results indicate that the proposed framework
improves the performance of the Mixtral model
on progress note generation by 4.6 points on
ROUGE (a text-matching based metric) and
7.56 points on MEDCON F1 (a metric that
measures the clinical concepts overlap).

1 Introduction

Physicians document progress or SOAP (subjective,
objective, assessment, and plan) notes in electronic
health records (EHRs) periodically to document
patient care journey. While abundant patient chart
data (e.g., regularly collected lab values) enhances
physician assessment of patient progress, it leads to
information overload and clinician burden, giving
rise to clinician burnout (Tai-Seale et al., 2017), em-
phasizing the importance of automating this task.

The increasing popularity and capabilities of
large language models (LLMs) led to their numer-

ous applications in both general and medical do-
mains (Chen et al., 2024). While the closed-source
LLMs available via web APIs (Application Pro-
gramming Interfaces) generally outperform the lo-
cally run alternatives, there is a growing popularity
and community support for on-premise models,
especially in the medical domain because of sev-
eral advantages that these models offer such as
transparency, adaptability, and information security
(Tian et al., 2024). We propose to reap the bene-
fits offered by locally run models while harness-
ing the strong reasoning capabilities of API-based
proprietary LLMs. To this end, there have been
numerous efforts toward distilling knowledge from
proprietary LLMs (e.g., GPT-4) to train smaller or
locally run models (Xu et al., 2024). In the medical
domain, most work on such distillation has focused
on curating instruction-tuning datasets using supe-
rior LLMs for training or tuning smaller models
(Wu et al., 2023; Zhang et al., 2023, 2024). Differ-
ently, our framework exploits web-based LLMs for
achieving a bottleneck task for locally run models
formulated in a way that does not spill sensitive
patient information to online API-based models.

We formulate the task of progress note genera-
tion (PNG) to automatically generate the next note
given a patient’s prior progress note and all interim
structured chart data (e.g., vital signs). One of the
main limitations of the locally run models in tack-
ling PNG is processing and clinically analyzing
the vast amount of interim structured chart data
(an average of over 1400 rows of tabular data be-
tween any pair of subsequent progress notes) – the
bottleneck. To overcome this barrier, we lever-
age an advanced API-based proprietary model to
choose clinically relevant structured data rows with-
out sending any real patient information to the on-
line model server. This distilled structured chart
information, along with the prior progress note, is
used by a locally run model to generate the next
progress note.
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Figure 1: Proposed framework with example snippets.

2 Methods

2.1 Data

We sample the progress notes used in our eval-
uation from MIMIC-III, a publicly accessible
database collected from an intensive care unit (ICU)
setting (Johnson et al., 2016). The included pairs of
subsequent progress notes were selected if they (1)
belong to the same ICU admission and, between
their documentation times, there is (2) no other
documented progress note and (3) non-empty struc-
tured chart data. This resulted in a total of 7089
annotation instances (note pairs) associated with
1616 unique patients and a mean of 1474.9 rows of
structured chart data per instance. Due to resource
constraints, we randomly sample 100 instances for
quantitative evaluation. We additionally perform
manual analysis on a sub-sample. The instructions
to access the dataset and code used for evaluations
are available at GitHub1.

The information in the subjective part of the
progress notes is provided by the patient (informa-
tion more likely to be found in patient-physician
conversations) while the objective part is mainly
comprised of factual patient data such as laboratory
values (oftentimes directly fetched into the note
without major modifications). Differently, writing
the assessment and plan sections requires a careful
examination of the past notes and structured chart
data. Thus, in this work, we focus on automati-
cally generating the assessment and plan sections

1github.com/soni-sarvesh/png-privacy-preserving

of a progress note given the previous note and all
interim structured chart data.

2.2 Framework
Figure 1 shows the proposed framework’s architec-
ture. The pair of notes in an annotation instance is
referred to as Prior and Next notes and the interim
structured chart data as Structured Chart Data.

2.2.1 Data Preparation
The Prior note is segmented into different problem-
specific sections by (1) identifying clinical problem
entities using a clinical concept extraction system,
Stanza (Zhang et al., 2021), and (2) applying heuris-
tics over the annotations (e.g., the identified prob-
lem entity must be at the beginning of a sentence).
Further, we extract the unique available data labels
from Structured Chart Data, without the associated
clinical data values.

2.2.2 Proprietary Web-based Model
We call the online API-based model once for each
problem segment identified from the Data Prepara-
tion step. Only the problem entity text span (e.g.,
Anemia) identified by concept extractor and the
unique data labels (e.g., Hemoglobin) without any
corresponding values (e.g., 9.6 g/dl) are sent to the
web-based model (Figure 2). Multiple structured
data elements are collected routinely for subsets of
the patients with similar problems. Thus, despite
the problem names and data labels coming from a
real patient, it is safe to assume that this step does
not raise any major privacy concerns, especially in
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The following is the list of available structured chart data 
elements from a patient's electronic health records.

[STRUCTURED CHART DATA LABELS]

For a specific problem of “[PROBLEM DESCRIPTION]”, 
which of the data elements from the provided list above 
will be useful for a clinician to assess the progress of the 
patient and why?

Note: Only output the data elements from the provided 
list above. Do not output data elements that are not part 
of the provided list above.

The output should be a JSON snippet formatted in the 
following schema, including the leading and trailing 
“```json” and “```”.

```json
{{
“selected element #1”: “reason”,
“selected element #2”: “reason”,
and so on
}}
```

Figure 2: The prompt used for instructing the web-based
model. Text in [*] is replaced with data.

the absence of any identifiable patient information
and the specific data values.

We prompt the model to filter the list of data la-
bels using the supplied problem name such that the
resultant labels are useful to document the progress
of the patient. The model outputs a list of filtered
labels, picking the most important attributes in con-
text of the provided problem name. We chose
Anthropic’s Claude 3 Opus (Anthropic, 2024) as
our web-based model owing to its superior perfor-
mance among other proprietary models.

2.2.3 Interim processing

Though the count of filtered data labels for each
problem was much smaller, the resultant structured
data table with only these labels still contained
substantial number of rows. To overcome this, we
summarize the rows by aggregating the values asso-
ciated with data labels based on their data types us-
ing simple rules. For numerical values, we reduce
the numbers to include only the first and the last
measurements with associated chart times along
with the mean, minimum, and maximum values.
For categorical data, we include the first and the
last measurements with chart times along with the
most frequent value with its frequency. General
corner cases were covered such as reporting the
value directly in the case of a single value.

You are given the following initial assessment and plan 
note for a patient for the specific problem of “[PROBLEM 
DESCRIPTION]” written at [PRIOR  NOTE CHARTTIME]:

[PRIOR ASSESSMENT AND PLAN NOTE]

The following is the summary of relevant structured 
patient chart data with selected chart times:

[FILTERED STRUCTURED CHART DATA]

Current time is [NEXT NOTE CHARTTIME]. Generate a new 
assessment and plan note for the problem of “[PROBLEM 
DESCRIPTION]” by incorporating the recent events from 
the patient's chart. Restrict the length of the new note to 
a maximum of 50 words.

Figure 3: The prompt used for instructing the locally
run models. Text in [*] is replaced with data.

2.2.4 Locally Run Models
The resultant summary from the interim processing
step is fed to the locally run model for each prob-
lem individually along with the entire problem-
specific note text. Additionally, we include the
chart times of the Prior (for temporal context) and
Next (acting as the note generation time for a fair
comparison with ground truth) notes (Figure 3).
The model predicts the Next note text for the input
problem. We experiment using three locally run
models–Biomistral 7B (Labrak et al., 2024), Mix-
tral 8x7B (Jiang et al., 2024), and LLaMa 2 70B
(Touvron et al., 2023). Biomistral is developed by
further pre-training the Mistral model (Jiang et al.,
2023), an open-weight locally run model, on the
PubMed Central Open Access Subset while Mix-
tral is a mixture-of-experts model based on Mistral.
LLaMa 2 is the next generation model from the
LLaMa family of LLMs and has shown to outper-
form the web-based models in some cases.

2.2.5 Post-processing
We combine the generated notes for individual
problems to produce a coherent predicted Next note.
We use three metrics for our quantitative evaluation–
ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019) using RoBERTaLARGE (Liu et al., 2019),
and MEDCON (Yim et al., 2023). ROUGE-N
calculates N -gram overlap between the predicted
and original Next notes while ROUGE-L uses the
length of the longest common subsequence and
ROUGE-Lsum splits the text into sentences before
calculating ROUGE-L. BERTScore measures the
cosine similarity between BERT-based contextual
embeddings of the tokens in predicted and orig-
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Table 1: Evaluation results on 100 sampled instances. Ablations are performed on 30 instances due to hardware
constraints. In the ablation section, rows starting with “− knowledge” indicate the model results without the use of
problem segments and knowledge distillation using a web-based model. The best model results in each category are
bolded. Prior – return the prior note as prediction.

Baseline
ROUGE BERTScore MEDCON

1 2 L Lsum Precision Recall F1 F1
Prior 51.24 35.33 41.87 50.55 88.58 88.44 88.50 55.46

Biomistral 7B 20.97 5.09 11.32 20.19 80.46 78.65 79.52 23.06

Mixtral 8x7B 23.67 6.61 13.69 22.76 81.13 78.55 79.80 26.88

LLaMa 2 70B 19.24 4.61 10.60 18.63 79.33 77.97 78.63 23.19

Ablation analysis on a sub-sample
Prior 51.77 35.04 42.13 50.73 89.62 89.94 89.77 55.46

Biomistral 7B 20.10 4.55 10.97 19.36 80.81 79.96 80.37 23.63

− knowledge 20.85 7.36 13.81 19.88 82.08 80.87 81.42 21.99

Mixtral 8x7B 24.68 6.09 14.57 23.79 81.99 79.64 80.78 27.60

− knowledge 20.29 3.84 10.99 19.19 80.96 78.44 79.66 20.04

LLaMa 2 70B 18.43 4.22 10.27 17.89 79.97 79.04 79.49 23.74

− knowledge 16.75 2.64 8.97 16.03 80.21 77.68 78.91 16.75

inal text. Differently, MEDCON calculates the
overlap (using F1-score) between Unified Medical
Language System (UMLS) concepts identified in
the generated and real notes text.

3 Results

The performance measures in automatically gen-
erating progress notes are shown in Table 1. Inter-
estingly, the baseline results from merely return-
ing the same note text as the prior note achieves
highest automated evaluation metric scores. Note
that this is due to the high textual similarity be-
tween the next and previous notes as the progress
notes are oftentimes copied forward for editing.
The larger models, Mixtral and LLaMa, performed
better than Biomistral on the MEDCON metric,
while Mixtral performed the best on all three met-
rics. The ablation results in the sub-sample demon-
strate the advantage of our proposed framework
that uses problem segments (as opposed to the en-
tire note as input) and distilled structured chart
data labels (instead of providing all available data
as input). All the models gained improvement in
their MEDCON scores with the incorporation of
the proposed framework while all the larger mod-
els (Mixtral and LLaMa) saw improvements on
ROGUE, BERTScore F1 and MEDCON. Of note,
Mixtral achieved the largest performance improve-
ments across all the metrics (with as much as 4.6

points on ROGUE-Lsum and 7.56 on MEDCON).
Our qualitative analysis of the predictions by the

best and worst performing models on 20 instances
(Table 2) aligns well with the quantitative results.
Further, in our manual evaluation, we found that
in most cases the predicted notes contained the rel-
evant interim change information. For instance,

“pain and fluid status” in the original next note is
appropriately captured in the system prediction by

“pain and possible dehydration”. There was min-
imal evidence of hallucinations (the inclusion of
incorrect or irrelevant information in the output)
where, in one instance, Biomistral suggested “in-
creasing the dose of vasopressor” while the origi-
nal note mentioned “off pressors”. Notably, Mix-
tral did not include incorrect information in the
manually evaluated predictions.

4 Discussion

Our results indicate the advantage of tackling the
task of PNG by considering individual compo-
nent problems at a time and leveraging advanced
web-based models to transfer knowledge by filter-
ing relevant clinical attributes in structured chart
data. Our manual evaluation suggests the predicted
notes capture the important updates on patient’s
progress. Importantly, Mixtral exhibited capabili-
ties in capturing overall status changes (e.g., sepsis
improving), whereas the Biomistral demonstrated
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Table 2: Common prediction characteristics from a manual evaluation of the models predictions on 20 annotation
instances. Info – Information; Gold – Original next note; Pred – Predicted next note.

Category Prediction description Example
Biomistral Mixtral

% (#)

Relevant
Info

Updated the note with relevant
information

Gold: Tachycardia: . . . Likely due to pain
and fluid status.
Pred: Tachycardia . . . is likely related to
pain and possible dehydration . . . (Good)
Gold: a-fib: . . . No evidence for dvt.
Pred: could not capture (Bad)

65.0 (13) 80.0 (16)

Wrong
Info

Included content that is incor-
rect or unrelated to patient

Gold: Septic shock- resolved, off pressors
since yesterday . . .
Pred: #Septic shock . . . recommend increas-
ing the dose of vasopressor support . . .

5.0 (1) 0.0 (0)

its ability to capture domain knowledge-related
updates (e.g., add digoxin 0.25mg daily). Fine-
tuning LLMs leads to specialized domain knowl-
edge (as exhibited by Biomistral), however, it is
also shown to reduce general in-context learning
abilities (Wang et al., 2023), as seen in Table 1.

Overall, the findings from this paper provide sup-
port for the feasibility of the complex task of PNG.
Further, it provides a framework for harnessing
the reasoning capabilities of proprietary API-based
models in a privacy-preserving manner while using
a locally run model for handling sensitive patient
information.

5 Limitations

The limitations of our framework include its in-
ability to capture new problems that may have
emerged in the interval, which is an interesting av-
enue for future research. Moreover, physicians use
information beyond the structured chart data while
writing progress notes, e.g., radiology reports. As
described earlier, it is challenging to incorporate
the interim structured data along with the previous
note text in the limited context size of existing on-
premise models. Thus, we leave the inclusion of
other information sources to future work.
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