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Abstract

Differential Privacy (DP) can be applied to raw
text by exploiting the spatial arrangement of
words in an embedding space. We investigate
the implications of such text privatization on
Language Models (LMs) and their tendency
towards stereotypical associations. Since pre-
vious studies documented that linguistic profi-
ciency correlates with stereotypical bias, one
could assume that techniques for text privati-
zation, which are known to degrade language
modeling capabilities, would cancel out unde-
sirable biases. By testing BERT models trained
on texts containing biased statements primed
with varying degrees of privacy, our study re-
veals that while stereotypical bias generally di-
minishes when privacy is tightened, text priva-
tization does not uniformly equate to diminish-
ing bias across all social domains. This high-
lights the need for careful diagnosis of bias in
LMs that undergo text privatization.

1 Introduction

Language Models (LMs) (Devlin et al., 2019; Rad-
ford et al., 2019) are trained on large corpora of text
that may contain confidential information. Since
such information can be recovered from word em-
beddings (Song and Raghunathan, 2020; Thomas
et al., 2020) and language models (Carlini et al.,
2019; Nasr et al., 2023), privacy emerged as an ac-
tive concern for building trust and complying with
stringent regulations on privacy protection.

To protect against unintended disclosure of in-
formation, Differential Privacy (DP) (Dwork et al.,
2006) has been integrated into machine learning
(Abadi et al., 2016) and language models (McCann
et al., 2017; Shi et al., 2022; Du et al., 2023). DP
formalizes privacy through a notion of indistin-
guishability so that the model outputs are not af-
fected by the addition or removal of an entry in the
training corpus. This is accomplished by injecting
additive noise on gradients during model training.

Due to scaling issues associated with DP on LMs
during perturbation of per-sample gradient updates
(Abadi et al., 2016), there is a trend towards perturb-
ing the raw text (Fernandes et al., 2019; Feyisetan
et al., 2020; Yue et al., 2021; Chen et al., 2023).

By exploiting the geometric proximity of words
in word embeddings (Mikolov et al., 2013), Feyise-
tan et al. (2020) proposed a probabilistic mecha-
nism grounded in metric DP (Chatzikokolakis et al.,
2013) to perturb all words in a text while ensuring
plausible deniability (Bindschaedler et al., 2017)
of the text regarding its provenance and content.

However, several studies documented that mech-
anisms for embedding words in a high-dimensional
space harbor (Bolukbasi et al., 2016; Caliskan et al.,
2017; Garg et al., 2018; Manzini et al., 2019) and
transfer (Papakyriakopoulos et al., 2020) unwanted
stereotypes and prejudices present in a text corpus.

Contribution. Building on the rich body of re-
search exploring privacy-fairness trade-offs (Bag-
dasaryan et al., 2019; Farrand et al., 2020; Hansen
et al., 2022), this study addresses the implications
of text privatization on biased associations in LMs.
Specifically, we pre-train BERT (Devlin et al., 2019)
models with masked language modeling and next
sentence prediction on webscraped text modified
under varying levels of privacy. We then score the
stereotypical bias following the context association
test of Nadeem et al. (2021) and stereotype pairs
benchmark of Nangia et al. (2020). Our findings
reveal a nuanced landscape where stereotypical
bias generally diminishes as privacy guarantees are
tightened. This is in line with prior research indi-
cating that LMs with impaired language modeling
capabilities tend to exhibit less stereotypical as-
sociations (Nadeem et al., 2021). However, this
diminution is not uniform across all social cate-
gories as biases associated with certain attributes
show varying trends of stability, amplification, and
attenuation. We thus advocate for careful bias mea-
surement when deploying privacy-preserving LMs.
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2 Background

To ensure a consistent understanding of privacy and
fairness in machine learning, we provide the foun-
dations of differential privacy and a brief definition
of stereotypical bias along with related work.

2.1 Differential Privacy
Differential Privacy (DP) (Dwork et al., 2006) orig-
inated in the field of statistical databases and was
adapted to machine learning (Abadi et al., 2016).
DP formalizes privacy through the indistinguisha-
bility of model outputs with respect to the presence
or absence of a record in the dataset. The notion of
indistinguishability is achieved through noise and
can be controlled by the privacy budget ε ∈ (0,∞],
with privacy guarantees diminishing as ε → ∞.

Despite evidence of preventing information dis-
closure, the perturbations caused by noise can have
detrimental (Jayaraman and Evans, 2019) and dis-
parate (Bagdasaryan et al., 2019; Farrand et al.,
2020; Hansen et al., 2022) effects on the behavior
of machine learning models. By assessing the accu-
racy of differentially private machine learning mod-
els for (underrepresented) subgroups, Bagdasaryan
et al. (2019) find a disparate impact regarding gen-
der and ethnicity in both vision and text.

To prevent the risk of authorship disclosure, text
rewriting is an appealing strategy that applies noise
at word level or sentence level by leveraging word
embeddings (Mikolov et al., 2013) or sequence-
to-sequence models (Vaswani et al., 2017). Each
approach comes with distinct mechanisms and im-
plications for balancing utility and privacy.

Embedding-based Text Rewriting. Feyisetan
et al. (2020) pioneered a mechanism for text rewrit-
ing termed Madlib. Madlib exploits the distance of
words in embedding spaces (Mikolov et al., 2013)
to substitute all words in a text with another word
within a radius controlled by the privacy budget ε.
Since this substitution mechanism scales the notion
of indistinguishability by a distance, it satisfies the
axioms of metric DP (Chatzikokolakis et al., 2013).

Building on a word embedding, the substitution
involves three steps at word level: (1) retrieving
the continuous representations of words from the
embedding space, (2) adding noise to the repre-
sentations calibrated using a multivariate distribu-
tion, and (3) mapping the noisy representation back
onto the discrete space of vocabulary by employ-
ing a nearest neighbor approximation. While the
probabilistic nature of these substitutions assures

plausible deniability (Bindschaedler et al., 2017),
substitutions based on the distance between words
alleviate the curse of dimensionality typical of ran-
domized response (Warner, 1965).

However, privatizing text through perturbations
at word level imposes notable limitations. Since the
privacy guarantee in this approach depend on the
geometry of the embedding space, it necessitates
meticulous calibration of the noise magnitude (Xu
et al., 2020). For dense regions of the embedding
space, excessive noise may obscure suitable substi-
tutions. For sparse regions of the embedding space,
minimal noise may not provide sufficient protec-
tion against reconstruction. In addition the to noise
calibration, perturbations at word level, albeit re-
taining the meaning of a text, encounter difficulties
in maintaining the coherence of the text, such as
grammar (Mattern et al., 2022), ambiguity (Arnold
et al., 2023), and hierarchy (Feyisetan et al., 2019).

Autoencoder-based Text Rewriting. Instead of
privatization over word embeddings, an orthogo-
nal approach utilizes sequence-to-sequence models
built on recurrent (Bo et al., 2021; Krishna et al.,
2021; Weggenmann et al., 2022) and transformer
(Igamberdiev and Habernal, 2023) architectures.
Common to these approaches is that noise is added
to the encoder representations of text and the de-
coder learns to convert these noisy representations
into text but without stylistic identifiers.

By perturbing the text at sentence level, this ap-
proach presents unique challenges compared to
perturbing texts at word level. For instance, Igam-
berdiev et al. (2022) criticized that the utility is
contingent upon the resemblance between the texts
on which the sequence-to-sequence model was op-
timized and the texts that are subjected to privacy-
preserving paraphrasing. This limitation in gener-
alizability renders this form of text rewriting infea-
sible for the privatization of pretext at scale.

2.2 Stereotypical Bias

Bias in machine learning is viewed as prior infor-
mation that informs algorithmic learning (Mitchell,
1980). When the prior information is predicated on
stereotypes and prejudices, bias transcends this neu-
tral definition and manifests in a disproportionate
weight in favor of or against a social group.

The origins of these problematic biases are often
rooted in the raw data used to develop machine
learning models (Caliskan et al., 2017). Implicit or
explicit stereotypes based on characteristics such as
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gender and race can cause the models to perpetuate
and propagate these biases. This can significantly
affect perception and decision making. The issue
with stereotypical bias is particularly acute in the
context of language models due to their extensive
training on vast corpora that reflect biases present in
human language. This bias magnifies the potential
to influence its tone (Dhamala et al., 2021) and
content (Abid et al., 2021), resulting in negative
effects on individuals and society at large.

Using tests for association analogies, prior re-
search demonstrated that embeddings harbor stereo-
typical biases related to gender (Bolukbasi et al.,
2016; Kurita et al., 2019; Chaloner and Maldonado,
2019) and race (Manzini et al., 2019). Specifically,
Caliskan et al. (2017) showed that terms related to
career are associated with male names rather than
female names, whereas unpleasant terms are associ-
ated with ethnic minorities. Garg et al. (2018) elab-
orate on the temporal dimension of bias in word
embeddings by observing changes in gender and
ethnic stereotypes over a century. This diachronic
analysis indicates that while certain stereotypes
have diminished over time, others remain robustly
encoded in language. By investigating bias diffu-
sion, Papakyriakopoulos et al. (2020) showed that
biases contained in word embeddings can permeate
natural language understanding, while Abid et al.
(2021) report stereotypes in language generation
such as violence for certain religious groups.

Unlike these studies on bias in raw data, we
examine the bias that stems from text privatization.

3 Methodology

To test our hypothesis on amplification of stereo-
typical bias through text privatization, we need to
define (1) a language model, (2) the mechanism for
text privatization, and (3) a bias measurement.

3.1 Language Model

Following Qu et al. (2021), we use a BERT model
(Devlin et al., 2019) leveraging masked language
modeling and next sentence prediction tasks for
pre-training. The choice of BERT is motivated by
its widespread adoption and proven effectiveness
in capturing contextual relationships within text.

For pre-training, we selected a webscraped repli-
cation of WebText (Radford et al., 2019), which
compared to WikiText (Merity et al., 2016), cov-
ers a broader spectrum of topics, styles, and view-
points. This diversity renders WebText particularly

suited for examining the transfer of stereotypical
biases from the pre-text corpus. For fine-tuning, we
reproduced the experiments of Bagdasaryan et al.
(2019) but found no stereotypical bias other than a
disparate impact due to sampling bias.

To assess the alterations in stereotypical bias by
text privatization, we trained a BERT model devoid
of any privacy interventions, serving as a control
to score amplification and attenuation, and three
additional copies of the BERT model under vary-
ing degrees of privacy guarantees. Since all BERT
models are identical in terms of architecture and
optimization (differing solely in the degree of text
privatization), this setup warrants a controlled com-
parison that isolates the effects of text privatization
on the anchoring of stereotypical bias.

3.2 Text Privatization
To privatize the WebText corpus, we operational-
ize the Madlib mechanism developed by Feyisetan
et al. (2019) for text privatization at word level.
Madlib necessitates the utilization of continuous
representations supplied by a word embedding. We
integrate Madlib with GloVe (Pennington et al.,
2014). GloVe supplies a 400000-words vocabulary,
each mapped to a 300-dimensional representation.
The choice of GloVe is motivated by the richness
of its semantic space, making it an ideal candidate
for privacy-preserving text privatization.

Since the privacy guarantee of Madlib is rooted
in metric DP, we need to calibrate the noise param-
eter ε according to the metric space of GloVe. This
calibration involves an estimation of the plausible
deniability (Bindschaedler et al., 2017) through two
proxy statistics (Feyisetan et al., 2020):

• Nw = P{M(w) = w} measures the number
of identical words that stem from perturbing
a word given a privacy budget ε. We esti-
mate Nw by counting the occurrence of unal-
tered words after querying a random subset of
10000 words for a total of 1000 times.

• Sw = |P{M(w) = w
′}| measures the num-

ber of unique words that stem from perturbing
a word given a privacy budget ε. We estimate
Sw by calculating the effective support of a
word after querying the same random subset
of 10000 words for a total of 1000 times.

We can relate the proxy statistics to the privacy
budget. Adding more noise corresponds to a tighter
privacy guarantee. This is indicated by a smaller
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(a) Nw refers to the number of perturbed words that are identical
to a queried word.
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(b) Sw refers to the number of perturbed words that are unique
from a queried word.

Figure 1: Plausible deniability statistics approximated
for a randomly compiled vocabulary of 10000 words,
each word privatized over a number of 1000 queries.

value for ε and results in a diverse set of perturbed
words (low Nw and high Sw). Adding less noise
reflects a weaker privacy guarantee. This is charac-
terized by a larger value for ε and results in more
frequent unperturbed words (high Nw and low Sw).

Figure 1 presents the distribution of Nw and Sw.
Since Nw (Sw) should be positively (negatively)
skewed to assure a reasonable privacy guarantee,
we adopt privacy budgets of ε = {5, 10}, corre-
sponding to a high and low level of privacy protec-
tion, respectively. Table 1 illustrates an example
obtained by querying Madlib using a privacy bud-
get ε of 10. Notice the fidelity while some variation
asserts compliance with privacy requirements.

3.3 Bias Measurement

Characterizing bias embedded within models typ-
ically relies on carefully crafted datasets. Several
datasets exist to measure bias in word embeddings
(Caliskan et al., 2017; May et al., 2019) and lan-
guage models trained with masked (Nangia et al.,
2020; Nadeem et al., 2021) and causal language
modeling objective (Dhamala et al., 2021).

We adopt the StereoSet dataset designed by
Nadeem et al. (2021). Given associative contexts,
this dataset is intended to measure the tendency to
default to stereotypical or anti-stereotypical asso-
ciations. StereoSet provides meticulously crafted
stimuli for bias measurement regarding gender, pro-

Table 1: Example sentence derived from Webtext and
privatized for three independent runs of Madlib (Feyise-
tan et al., 2020) using a privacy budget ε of 10.

Tokens Substitutions
Port-au-Prince rosita, xiangfan, tejgaon

, and, as, ,

Haiti vanuatu, cuba, haiti

( (, 45, according

CNN informed, journalist, speaker

) –, ), 2000

– likely, –, two

Earthquake quake, earthquake, stress

victims killings, murdered, deaths

, agrees, things, went

writhing desolation, stayers ,tiredness

in out, in, first

pain frustration, fractures, pain

and have, over, with

grasping interplay, spit, dangling

at at, the, as

life proud, day, loves

, and, took, 45

watched watched, lined, raised

doctors medical, researchers, surgeons

and including, as, alongside

nurses pharmacists, nurses, physicians

walk walks, sideways, walked

away gone, away, when

from from, around, off

a an, than, one

field games, yards, field

hospital school, nursing, staff

Friday week, thursday, saturday

night night, hours, watch

after after, afterwards, before

a a, first, one

Belgian danish, macedonian, french

medical medical, hospital, psychiatric

team division, helm, cup

evacuated evacuated, ferried, homeless

the the, 1984, on

area town, area, park

, accused, 6, :

saying asking, iranians, saying

it since, as, is

was that, only, subsequently

concerned suspicious, expect, insist

about nearly, just, about

security beijing, actions, personnel

. still, then, .
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fession, race, and religion at two distinct levels:

Intrasentence. The intrasentence task measures
bias for sentence-level reasoning. It is formulated
as a fill-mask task. Given a context sentence de-
scribing a social group, the task is to fill in a masked
attribute corresponding to a stereotype, an anti-
stereotype, and an unrelated option. The propen-
sity for stereotypical associations is gauged by the
likelihood of assigning each of these options.

Intersentence. The intersentence task measures
bias for discourse-level reasoning. It is formulated
as a next-sentence task. Given a context sentence
pertaining to a social group, followed by three sen-
tences embodying a stereotype, an anti-stereotype,
and an unrelated attribute, the assessment of stereo-
typical bias hinges on which of these sentences is
instantiated as the most likely continuation.

To capture social biases at more differentiated
levels, we complement our investigation with the
CrowS-Pairs benchmark designed by Nangia et al.
(2020). This benchmark consists of pairs of min-
imally distant sentences dealing with bias about
gender identity, ethnic affiliation, age, nationality,
religion, sexual orientation, socioeconomic status,
physical appearance, and disability. The first sen-
tence in each pair demonstrates a stereotype about
a social group, while the second sentence in each
pair violates it. This allows to score the bias in
a language model by measuring how frequently
it prefers a statement that portrays a social group
stereotypically compared to an alternative portrayal
of the same situation with a different social identity.

Despite some criticism due to issues with model
calibration (Desai and Durrett, 2020), we determine
the preferences using pseudo-likelihood scoring
(Salazar et al., 2020). We iterate over each sentence,
masking a word at a time (except for the words that
identify a social group), and accumulate the log-
likelihoods of the masks in a sum for comparison.

4 Experiments

Prior to initiating our bias measurement, we con-
ducted a preliminary sanity check by examin-
ing the pseudo-perplexity scores of BERT models
trained under varying degrees of privacy. Pseudo-
perplexity serves an indicator of a LM’s ability
to accurately model the probability distribution of
words within a text corpus, thereby reflecting the
model’s proficiency to comprehend the linguistic
structures encountered during its training.

Table 2: Percentage preference of stereotypical asso-
ciations derived from StereoSet, where scores above
0.5 indicate pro-stereotypical bias and scores below 0.5
indicate anti-stereotypical bias. Effect sizes compared
to the baseline value according to Cohens d in brackets.

Epsilon ∞ 10 5
Intrasentence

Gender .6196 .5490 (↓ .14) .5020 (↓ .24)

Race .6060 .5135 (↓ .19) .4709 (↓ .27)

Religion .5897 .6538 (↑ .13) .6538 (↑ .13)

Profession .6062 .5679 (↓ .08) .5259 (↓ .16)

Average .6054 .5711 (↓ .07) .5382 (↓ .14)

Intersentence
Gender .5868 .5909 (↑ .01) .5248 (↓ .12)

Race .5318 .5287 (↓ .01) .5461 (↑ .03)

Religion .5641 .5513 (↓ .03) .5385 (↓ .05)

Profession .6070 .5272 (↓ .16) .4813 (↓ .25)

Average .5724 .5495 (↓ .05) .5227 (↓ .10)

We use a 10% subset of WikiText for comput-
ing the pseudo-perplexities. Evaluated at privacy
levels specified by the privacy parameter ε, the
pseudo-perplexity scores were 93.51 with no pri-
vacy interventions, 502.67 with moderate privacy
settings, and 2056.43 under conditions of high pri-
vacy. Consistent with previous evidence that in-
troducing noise at word-level compromises the lin-
guistic proficiency of LMs (Mattern et al., 2022),
these results demonstrate a substantial degradation
as the level of privacy augmentation increases.

The observed degradation raises an interesting
question of whether private LMs harbor stereotypi-
cal biases despite diminished language modeling
capabilities. This question forms the basis for our
subsequent analysis of the undesirable biases in
LMs stemming from text privatization.

4.1 Stereotype Results from StereoSet

To measure the bias resulting from text privatiza-
tion at sentence and discourse level, we commence
our analysis by detailing the stereotype scores de-
rived from the StereoSet benchmark. The stereo-
type score is defined by the percentage of examples
for which the LM assigns a higher probability to
the pro-stereotypical word as opposed to the anti-
stereotypical word. As such, scores closer to 0.5
are indicative of unbiased associations.

Table 2 presents the averaged stereotype scores
grouped by intrasentence and intersentence tasks
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Table 3: Percentage preference of stereotypes derived
from CrowS-Pairs, where scores closer to 0.5 are in-
dicative of unbiased associations. Effect sizes of text
privatization compared to the baseline value in brackets.

Epsilon ∞ 10 5
Gender .5229 .5878 (↑ .13) .5267 (↑ .01)

Age .4943 .4943 (↑ .00) .5402 (↑ .09)

Race .5233 .5446 (↑ .04) .5640 (↑ .08)

Religion .6000 .5905 (↓ .02) .5905 (↓ .02)

Nationality .5283 .5535 (↑ .05) .5346 (↑ .01)

Occupation .5465 .5407 (↓ .01) .4535 (↓ .19)

Sexuality .6786 .6190 (↓ .12) .5119 (↓ .34)

Disability .6167 .6000 (↓ .03) .5500 (↓ .13)

Appearance .4762 .6190 (↑ .29) .4921 (↑ .03)

and segmented by social categories 1. Several key
trends inform our understanding of the impact of
text privatization on stereotypical bias. We observe
that results from the intrasentence task aligns with
those from the intersentence task, showing that the
stereotype scores decline as the privacy level in-
tensifies. For the intrasentence tasks, the averaged
stereotype scores decreased from 0.6054 to 0.5711
and 0.5382 as the privacy budget was tightened
to 10 and 5, respectively. For the intersentence
tasks, the stereotype scores decreased similarity
from 0.5724 to 0.5495 and 0.5227, respectively.
However, the fall in stereotype scores is overall
more pronounced in the intrasentence task than in
the intersentence task. This disparity implies that
mask language modeling is affected more acutely
than next sentence prediction, which requires a
broader context to build stereotypical association.

While text privatization generally reduces stereo-
typical biases, we find inconsistent pattern when
breaking down the stereotype scores by social cate-
gories. This indicates that the impact of text privati-
zation is not uniformly spread across social groups.

4.2 Stereotype Results from CrowS-Pairs

To explore the manifestation of stereotypical bias
across a broader range of social categories, we
broadened our analysis to include CrowS-Pairs.
Table 3 confirms that there is no overarching trend

1Since Madlib involves a probabilistic mechanisms, one
could argue that the bias patterns of the privacy budget ε on
social categories is caused by the randomness of text privati-
zation. To test whether the observed patterns stem from ran-
domness, we reproduced all experiments using three distinct
seeds. The variance across different configurations suggests
that these patterns are inherent to the privatization process and
not merely artifacts of random perturbations.

regarding the degree of text privatization and the
manifestation of stereotypical biases.

Following the general observation of decreas-
ing stereotype scores as the privacy budget tight-
ens, further scrutiny into social categories reveals a
complex and heterogeneous response to text priva-
tization. We discern social categories that are con-
stant (e.g., religion), amplified (e.g., age, race), and
attenuated (e.g., occupation, sexuality, disability).
This suggests that some social categories are de-
tached from the influences of textual perturbations
while others seem less robust. Further complicating
the interactions is that some social categories (e.g.,
gender, nationality, appearance) experience fluctu-
ating responses. The categories show an increase in
stereotype scores as privacy settings are intensified
before stabilizing or reverting at the strictest levels
of privacy. Except for sexual orientation (↓ .34)
and physical appearance appearance (↑ .29), the
effect sizes are negligible. This variability under-
scores the intricate dynamics between text privati-
zation and LMs, suggesting that minor modifica-
tions in the privacy parameters can have significant
and diverse impacts on stereotypical biases across
different social constructs.

5 Conclusion

The interaction dynamics that govern the mani-
festation of bias in LMs are equivocal (Hansen
et al., 2022). Prior research indicates that stereo-
typical bias is related to language proficiency in
LMs (Nadeem et al., 2021). Since text privatiza-
tion is known to impair language modeling capa-
bilities (Feyisetan et al., 2020), one would expect
a general diminution of stereotypical bias. How-
ever, the word embeddings used for text privatiza-
tion are documented to harbor (Bolukbasi et al.,
2016; Caliskan et al., 2017) and transfer (Papakyri-
akopoulos et al., 2020) stereotypical biases. This
duality raises questions about whether text privati-
zation leads to an amplification or an attenuation of
stereotypical biases. By probing a LMs tendency
to default to stereotypical or anti-stereotypical as-
sociations, we aimed to elucidate the relationship
between text privatization and the amplification or
attenuation of biases. We find that different social
domains react differently to privacy settings and
recommend to carefully assess stereotypical bias
after training a LM on a privatized corpus of text.

25



6 Limitations

This study has several limitations that warrant con-
sideration. Our experiments are based on WebText.
While this corpus provides a broad range of topics
and styles, it is possible that the derived insights,
such as the general reduction in stereotypical bias
and the unequal reduction across social groups, are
influenced by spurious correlations (Schwartz and
Stanovsky, 2022) inherent in the dataset. In addi-
tion to the flaws caused by the training corpus, our
reliance on GloVe embeddings for text privatiza-
tion introduces another potential source of inherent
biases. Future research should address these limita-
tions by incorporating a more diverse set of datasets
and explore how alternative embeddings affect the
persistence of stereotypical bias after privatization.
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