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Abstract

Accents arise due to variations in pronuncia-
tion, intonation, and other speech characteris-
tics caused by geographical, cultural, or linguis-
tic differences. Investigating accent classifica-
tion methods is a way towards accent-aware
speech-processing. This paper evaluates ac-
cent classification for spontaneous speech us-
ing CNN-LSTM networks and the Wav2vec2
model. We study the importance of dataset size,
pre-trained models, and external validation. For
that we used 90 hours of data, encompassing 9
accents and involving 204 speakers of Brazilian
Portuguese, obtained from manually annotated
subsets from Spotify Podcasts 1 and CORAA
ASR. Our best results range from 82% (closed-
dataset) to 75% (cross-dataset) f1-scores for
binary classification. Unless there is speaker
leakage from training to testing, accent clas-
sification models trained from scratch fail for
spontaneous speech data. Therefore, methods
should be evaluated using both out-of-speaker
and cross-dataset scenarios. We contributed
with an experimental protocol for this task with
a novel dataset. Finally, our results highlight
the value of larger accent-annotated datasets,
and the use of larger pretrained-models.

1 Introduction

Speech is a fundamental form of human communi-
cation, allowing expressing ideas and information.
Automatic methods for processing and understand-
ing speech are a relevant subject of study. Machine
learning techniques are shown to be particularly
useful in this scenario, becoming the state of the art
in many speech processing tasks (Casanova et al.,
2023, 2022). The two most remarkable tasks in this
context are Automatic Speech Recognition (ASR)
and Text-To-Speech (TTS) systems. One of the
challenges in ASR and TTS is how to deal with
different accents of a given language, which can
significantly impact the system’s performance.

1https://github.com/aryamtos/spotify-subset

Accents arise due to variations in pronunciation,
intonation, and other speech characteristics caused
by geographical, cultural, or linguistic differences
(Lippi-Green, 2012). There are two different types
of accents: the first refers to foreignness, which
occurs when a person speaks a language using rules
and sounds of another language, and the second
occurs within the native language itself (Teixeira
et al., 1996). This paper aims at the automatic
classification of the second type of accent.

Based on the dialectical division proposed by
Nascentes (1953), Brazil is divided into two lin-
guistic groups, related to Northern and Southern re-
gions. The Northern region has specific phonolog-
ical and morphological features, such as pretonic
vowels, with a greater oral aperture facilitating air-
flow, in contrast to the closed vowel pronunciation
typical of the Southern and Southeastern regions.

According to Ilari and Basso (2009), the regional
characteristics of Brazilian Portuguese are distin-
guished by various pronunciation features. One
notable feature is the absence of palatalization in
the pronunciation of /t/ and /d/, a phenomenon
widespread throughout Brazil except in São Paulo
and the southern region. Additionally, the retroflex
pronunciation of /r/ is a distinctive trait observed
in the "caipira dialect" (Ilari and Basso, 2009).
Previous accent classification methods also follow
this definition (Batista et al., 2018; Batista, 2019).
We focus on matching the accents within differ-
ent Brazilian states, prioritizing the ones with the
most data available. By that, we expect to offer
a model that could fit in different dialectical divi-
sions. When considering states within the North
and South, we are offering a more fine-grained
classification of Brazilian Portuguese accents.

The variations caused by accents can result in
differences in acoustic features, such as the spectral
content and timing of speech signals (Hansen et al.,
2020). Amplitude modulations of the envelope
with different timescales are also associated with
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accent variations (Frota et al., 2022).

Accent classification is a relevant problem since
it allows to better understand language variations,
in particular for low resources languages, such as
Portuguese. Also, ASR and TTS methods typi-
cally rely on models trained on large annotated
speech data to transcribe spoken words and synthe-
size them, respectively. Improving the quality of
accent classification is important towards accent-
aware ASR and TTS systems (Deng et al., 2021).

1.1 Goals

We aim to study the difficulty of the accent classi-
fication task in Brazilian Portuguese considering
realistic scenarios. In particular, we propose the
use of novel datasets involving spontaneous speech
under different recording setups (based on Spo-
tify Podcasts (Tanaka et al., 2022) and CORAA
(Candido Junior et al., 2021) datasets). With those
datasets, we evaluate models and strategies often
employed in the recent literature under such tasks.

Two scenarios are investigated: closed-dataset
validation (training and testing carried out in the
same dataset) and cross-dataset validation (training
carried out in one dataset, and testing in a different
dataset). Those are also referred to as closed-set
and cross-dataset scenarios, respectively, by Batista
et al. (2018); Batista (2019). For that, we apply dif-
ferent data validation scenarios, aiming to evaluate
their generalization capacity.

In terms of the models, we use as a baseline
a CNN-1D+LSTM ( One-dimensional Convolu-
tional Neural Network with Long-Short Term Mem-
ory) which was the winning model as reported
by Tostes et al. (2021) and also finetune a pre-
trained Wav2Vec 2.0 Large XLSR as it was shown
potential in other languages (Zuluaga et al., 2023).

1.2 Contributions

The main contributions of this work are: (1) Orga-
nization of two subsets of dataset Spotify Podcasts,
consisting of approximately 90 hours of audio
recordings (spontaneous speech) from 204 speak-
ers representing 9 Brazilian states; (2) the study of
different closed-dataset and cross-dataset settings,
which allows drawing important conclusions on
the difficulty of the task, and provides insights to-
wards better ways to solve the problem under a
more realistic scenario.

2 Related Work

The study of Batista (2019); Batista et al. (2018)
presented the first neural accent classification
model for Brazillian Portuguese. It employed sta-
tistical modeling approaches, including Gaussian
mixtures and machine learning techniques. The
authors developed the Braccent dataset to repre-
sent the 7 accents found in Brazil, namely: baiano,
carioca, fluminense, mineiro, nordestino, nortista,
and sulista. The dataset consisted of 1,757 online-
collected read speech audio samples, each rang-
ing from 8 to 14 seconds in duration. Addition-
ally, the same study utilized the Ynoguti dataset
(Ynoguti, 1999) to represent the 5 accents (ba-
iano, nordestino, mineiro, fluminense e sulista)
and the Forensic Corpus of Brazilian Portuguese
(CFPB - Corpus Forense do Português Brasileiro),
covering respectively accents of Braccent. The
study employed two validation scenarios: closed
set and cross-dataset. In the closed-dataset sce-
nario, Batista achieved an f1-score of 91%. In the
cross-dataset, most showed results below 50%. The
author emphasizes the importance of validating the
models using additional datasets to evaluate their
performance but did not offer alternatives on how
to improve cross-dataset performance.

The work of Tostes et al. (2021); Tostes (2022)
applied different architectures for accent classifica-
tion based on the Braccent and Ynoguti datasets.
Their best results were achieved with a hybrid neu-
ral network, combining one-dimensional (1D) Con-
volutional Neural Networks (CNN) and a Long-
Short Term Memory Neural Network (LSTM).
They obtained an f1-score of approximately 88%
in a closed-dataset validation (Tostes, 2022).

Later, de Almeida (2022) compared the results
of Tostes et al. (2021) and Batista (2019); Batista
et al. (2018) accent classification models for Brazil-
ian Portuguese. They utilized both Multiclass Lo-
gistic Regression and fine-tuning of a pret-rained
Wav2vec 2.0 base model using the Braccent dataset.
The results showed that Wav2vec 2.0 achieved an
overall accuracy of 69% and an f1-score of 38%,
while Multiclass Logistic Regression only achieved
an accuracy of 39%. The authors also carried out
an analysis of gender, but could not find perfor-
mance differences between gender-specific models
and gender-agnostic ones. The author emphasized
the importance of evaluating these models with
other datasets and extending experiments with pre-
trained models for Portuguese. Interestingly, in



other languages such as English, Italian, German,
and Spanish, a recent study found large pre-trained
models to be good candidates for transfer learning
to the accent classification (Zuluaga et al., 2023).

The limitations of the aforementioned studies
include the use of read speech audio samples (not
spontaneous) and similar recording setups. Also,
only one of them explicitly evaluated a cross-
dataset scenario without succeeding in it. Addition-
ally, previous studies evaluated different models
and strategies but their conclusions are difficult to
generalize into guidelines for future work.

In light of such gaps, our paper proposes a larger
dataset, with audio data closer to real-world speak-
ing style, encompassing a more extensive collec-
tion of audio data of various accents. This allows
for a more comprehensive exploration of accent
variations and enhances the robustness of the mod-
els. We manually collected audio samples from
a diverse dataset (Spotify Podcasts (Tanaka et al.,
2022) and CORAA (Candido Junior et al., 2021)).
Different than Braccents, Ynoguti’s, and CFPB
(Corpus Forense do Português Brasileiro) datasets,
the accents in Spotify Podcasts and CORAA ASR
are not self-declared. Consequently, we do not
follow the accent annotation presented in the re-
lated works but consider geographic information
of the speaker’s present state. Also, besides using
the best model reported in the literature (CNN1D-
LSTM), we apply a pre-trained model Wav2vec
2.0 large XLSR for accents classification. Unlike
the Wav2vec 2.0 base used by de Almeida (2022),
the XLSR is multilingual and it is larger, which we
show to better suit the task at hand.

3 Materials and Methods

Figure 1 illustrates the overall methodology, includ-
ing preprocessing, model training, and conducting
the evaluation, detailed in the following sections.

3.1 Datasets

Since Braccents, CFPB, and Ynoguti’s datasets
used by Batista (2019); Batista et al. (2018) and
Ynoguti (1999) were not publicly accessible, we
look into alternative datasets for pt-BR accent
classification. As Batista et al. (2018) empha-
sizes the importance of validating models in more
than one source of data, our study includes two
datasets: Spotify Podcasts2 (Tanaka et al., 2022)

2https://podcastsdataset.byspotify.com/

Figure 1: Overall methodology

and CORAA ASR3 (Candido Junior et al., 2021).
Those datasets offer an opportunity to explore new
challenges and push the boundaries of accent clas-
sification algorithms since those have more data (in
hours and speakers), and also have audio recorded
under different conditions. Therefore, extensive
preprocessing, i.e. selecting and cleaning audio,
was necessary in order to make those datasets
aligned to our aims.
Spotify Podcasts: proprietary dataset (available
for research by request) which consists of around
123,000 episodes in both pt-BR and pt-PT, encom-
passing more than 76,000 hours of speech audio
(Tanaka et al., 2022). This is an interesting dataset
since podcasts are a growing form of mass com-
munication and exhibit diverse formats and levels
of formality, which can adopt various tones, from
formal to informal, and encompass conversational
exchanges or monologues. The most popular top-
ics include business, education, and sports. Each
audio file has an equivalent XML file that provides
more specific metadata information, such as author,
episode content, RSS links, and, in some cases, the
recording location. Some podcasts are conducted
by more than one person, including guests, while
others have only one host.
The Corpus of Annotated Audios for ASR
(CORAA ASR): public dataset for automatic
speech recognition in Brazilian Portuguese (Can-
dido Junior et al., 2021). It contains around 290.77
hours of audio and transcriptions. This dataset
is a compilation from five other projects: ALIP
(Gonçalves, 2019), C-ORAL Brasil I (Raso and
Mello, 2012), NURC Recife (Oliviera Jr et al.,

3https://github.com/nilc-nlp/CORAA



2016), SP2010 (Mello et al., 2012) and TEDx talks
in Portuguese. CORAA audios were validated
by annotators and transcriptions were adapted for
ASR. Differently than Spotify Podcasts, it provides
annotations for the regions: Minas Gerais (MG),
Recife (RE), São Paulo cities (SP), São Paulo cap-
ital (sp-SP), or miscellaneous for unidentified ac-
cents. The speaking style varies from spontaneous,
prepared, and read speech, from the genres: in-
terviews, dialogues, monologues, conversations,
conferences, class talks, reading, and stage talks.

3.2 Data subsets
We curated subsets from the Spotify and CORAA
datasets to investigate accent classification. For
the Spotify Podcasts subset, we manually selected
audio episodes likely to feature Brazilian accents
based on speaker geographic data in the metadata
such as “Rádio Manaus” and “Puc Minas” or id-
iomatic expressions indicative of a specific accent
(e.g., “Bah”, “Oxe”) in the episode description.
The description field was used to confirm speaker
location, since it sometimes included guest names.
Prior research was conducted to ensure these speak-
ers were indeed from the identified state.

We evaluated two scenarios: one involving a
limited number of speakers (Spotify-A) and another
with a larger number of speakers (Spotify-B). In
both scenarios, we conducted both closed-dataset
and cross-dataset evaluations.
Subset Spotify-A: The initial subset, described in
Table 1, emphasized episodes with solo speakers
to reduce the potential impact of other speakers’
accents in the audio recordings. Diarization was
not applied to this subset, and all audio clips were
trimmed to 10 seconds.
Subset Spotify-B: In this subset, detailed in Ta-
ble 2, we selected only two classes for model evalu-
ation: São Paulo (SP) and Pernambuco (PE). Since
many podcasts featured more than two speakers,
diarization was performed, resulting in a significant
number of speakers per podcast.

For the CORAA ASR subset, detailed in Table 3,
we took into account the availability of accent an-
notations, excluding audio files as miscellaneous
accents (unknown classes). This was needed to
ensure compatibility between the classes observed
in training with the Spotify Podcasts dataset and
the subsequent testing phase with CORAA.

As a result, it was possible to obtain audio sam-
ples from various locations across Brazil, including
Bahia (BA), Amazonas (AM), Maranhão (MA),

Accent segments
AM 487
BA 625
MA 1,326
MS 109
MG 2,461
PE 1,624
RJ 284
RS 402
sp-SP 464
Total 7,782

Hours Speakers
∼ 1 2− 3
∼ 1 1
∼ 3 2− 3
∼ 0.3 1− 2
∼ 5 2− 3
∼ 4 1− 3
∼ 0.8 1− 3
∼ 1 1− 2
∼ 1 1− 3

∼ 17 ∼ 23

Table 1: Total subset Spotify-A Information

Accent segments
PE 14,008
SP 11,906

Hours Speakers
∼ 48.23 102
∼ 30.88 85

Table 2: Total subset Spotify-B information

Mato Grosso do Sul (MS), Minas Gerais (MG),
Pernambuco (PE), Rio de Janeiro (RJ), Rio Grande
do Sul (RS), and São Paulo capital (sp-SP). Table 1
and Table 2 present specific information such as
the number of episodes per accent and duration
in hours. To facilitate the reproducibility of the
results and provide access to the specific shows
and episodes used in the study, a table containing
the identifiers of the selected shows and episodes
from both the Spotify Podcasts and CORAA ASR
datasets is available (omitted due to blind revi-
sion). This table serves as a reference for other re-
searchers who seek to replicate the findings or con-
duct further investigations using the same datasets.

3.3 Preprocessing

Our preprocessing steps were defined to be consis-
tent with related works as best as possible:

(1) Audio Conversion and Resampling: con-
verted .ogg audio files into .wav, and resampled
the audio to a 16kHz sample rate, ensuring unifor-
mity across the dataset;

(2) Data Cleaning: used a threshold-based si-

Accent Segments Hours
subset CORAA ASR

PE 353 ∼ 0.9
SP 371 ∼ 1
MG 351 ∼ 0.6

Table 3: Total Subset CORAA-ASR Information



lence removal step, and employed Spleeter4 (Hen-
nequin et al., 2020) to separate the speakers’ voices
from the music, which conveniently offers pre-
trained models for this purpose;

(3) Audio Trimming: due to computational cost
of training models in higher time instances, we
trimmed the audio to approximately 10 seconds
sentences, following (Tostes et al., 2021);

(4) Diarization and Transcription: since episodes
in Spotify-B may have multiple speakers, we used
Pyannote5 with Whisper6 (Radford et al., 2022) to
obtain specific timestamps for each speaker and
transcriptions for future ASR work;

(5) Spectrogram generation: via Short-Time
Fourier Transform (STFT)7 using the Librosa li-
brary. Specifically, we applied a window size of
3000 frames with a step size of 2000, following the
guidelines of Tostes et al. (2021).

3.4 Train/Dev/Test splits

In the process of splitting the data into training,
development, and test sets, we took careful consid-
eration of the speakers’ identities to prevent any
contamination or bias in the evaluation. It is cru-
cial to maintain speaker independence during this
partitioning to ensure that the models are tested
on unseen speakers, thereby providing a fair as-
sessment of their generalization capabilities. For
that, no Spotify-A the train includes 5,665 audio
files, while the test has 2,117 audio files featuring
different speakers and podcasts.

For the Spotify-B subset, out of the total shown
in Table 2, approximately 50 distinct speakers were
selected for each class during training. The data
was split as follows. For PE class: 8,161 segments
for training (train), 2,304 for development (dev)
and 534 for testing (test); for SP class: 7,998 seg-
ments for training (train), 2,353 for development
(dev) and 500 for testing (test).

3.5 Model

For accent classification, we selected two archi-
tectures: CNN1D LSTM ( One-dimensional Con-
volutional Neural Network with Long-Short Term
Memory) and Wav2vec 2.0 XLSR.

– CNN1D LSTM: This model was selected tak-
ing into consideration the work by Tostes et al.
(2021) and also to assess the model’s performance

4https://github.com/deezer/spleeter
5https://github.com/pyannote/pyannote-audio
6https://github.com/openai/whisper
7https://librosa.org/doc/main/generated/librosa.stft.html

with other datasets. In this architecture, each fre-
quency interval (97 timesteps per 2049 frequencies
of the spectrogram) is used as input to a convo-
lution layer, generating feature vectors that serve
as the input for the LSTM units. A rate of 0.4 is
used in the Dropout layer. Finally, a series of fully
connected layers are responsible for the classifica-
tion. In terms of training strategies, we employed
the Adam optimizer with an initial learning rate of
0.0001 and decay of 0.001 using the Cross-Entropy
loss. The model was trained with a minibatch size
of 64 for a maximum of 50 epochs, employing early
stopping with patience 25 for the development loss.

– Wav2vec 2.0 XLSR-53: This model was cho-
sen to assess its performance in the classification
task, especially considering that de Almeida (2022)
work utilized the Wav2vec 2.0 base model. We
aimed to determine if a model specifically fine-
tuned with Portuguese data could yield improved
results. Consequently, we conducted fine-tuning
based on previous research.

Due to computational constraints, we limited
fine-tuning of these models on Spotify-B to 5
epochs. Following the methodologies of Gris et al.
(2021) and Conneau et al. (2020), we chose to keep
the base model frozen. We introduced a dense layer
with 1024 neurons and tanh activation followed by
a classification head. The training was carried out
on GPU NVIDIA Titan RTX, with batch size 16,
gradient accumulation over 4 steps, learning rate of
3e-5, and the Adam optimizer. Checkpoints were
saved at regular intervals. The selection of the best
checkpoint was based on the model’s performance
on a validation dataset.

3.6 Evaluation

We used normalized confusion matrices and the
f1-score (weighted for the multiclass results). Each
model was trained 5 times using different and fixed
seeds (42, 101, 123, 1, 5) for binary classification
using CNN-LSTM. All reported results are means
and standard deviations of those 5 runs. For fine-
tuning, we employed fixed seed 42.

4 Results and Discussion

We evaluate the models using closed-dataset valida-
tion, where training and testing occur on the same
dataset, and cross-dataset validation, where test-
ing is conducted on a dataset that was not part of
the training data. We employed both the CNN1D
LSTM architecture and Wav2vec 2.0 XLSR-53.



In the first part, we examined two scenarios us-
ing the CNN1D LSTM model: scenario A with
a more limited number of speakers and multiple
classes (9), and scenario B focusing on a binary
classification task with a more extensive set of
speakers. This way we can assess the impact of the
number of available speakers in the results.

In the second part, only for the binary classifica-
tion task, we employed the Wav2vec 2.0 XLSR-53
model with the Spotify-B dataset.

4.1 Experiments with Fewer Speakers
(Spotify-A)

– Random train/test split: this experiment uses the
whole subset Spotify-A (9 classes) – recall such
subset has fewer speakers, ranging from 1 to 3 for
each accent –, where each instance has an audio
clip of 10 seconds. Then, we randomly defined the
training and testing datasets without caring about
the speaker, that is, different segments of a given
speaker may fall in both training and testing sets.
It is evident that, when the model sees all speakers
during training instances, even if different segments
are used in the testing stage, the performance is
high. This result may not reflect the models’ ability
to learn the accents, but other features related to
the speaker and the recording.

– Out-of-speaker train/test split: in order to
evaluate the model’s ability to generalize to unseen
speakers within the same accent variation, we used
the same Spotify-A subset, but now ensuring dif-
ferent podcasts and speakers are in the training,
development and testing sets. This way we ensure
that there is no leakage of speaker or recording. We
carried out three experiments, varying the number
of classes: (i) all available 9 classes, (ii) 3 classes:
MG, SP, and PE, and (iii) binary SP, PE.

In Figure 2 we show the confusion matrices for
the multiclass test results. Overall, the same model
that had a great performance in the previous ex-
periment, now cannot generalize in any scenario,
achieving f1-scores 24% for the 9-class, 53% for
the 3-class, and 34± 11% for the binary one. The
results show a bias towards classes with a greater
number of audio samples, like MG and PE, across
all three experiments, with very few accurate pre-
dictions for the SP class.

Table 4 presents the results of binary classifica-
tion using 5 different seeds. The accuracy for the
“PE” accent is relatively high (83±9)%, indicating
that most positive classifications are correct. How-
ever, while positive classification is accurate, many

Figure 2: Confusion matrices for closed-dataset valida-
tion with unseen speakers and recordings using a test
set of Spotify-A. Top: 9 classes, Bottom: 3 classes (MG,
SP, PE)

class Precision Recall F1-score
PE 83± 9% 20± 20% 28± 24
SP 26± 2% 87± 17% 40± 4

Overall 34± 11%

Table 4: Closed-dataset f1-scores for the Spotify-A
dataset and the CNN-LSTM model (binary classifica-
tion - PE, SP)

real examples of the “PE” accent are not correctly
identified. On the other hand, for the “SP” class,
we observe a high recall rate (87 ± 17%), mean-
ing that most real examples of the “SP” accent are
correctly identified. However, the precision for this
class is low. The overall F1-score for this classifi-
cation was 34%, indicating an imbalance between
the recall rate and precision.

– Cross-dataset: in this experiment, we train
with all available Spotify-A data, and evaluate it
on CORAA ASR as the test set. In Figure 3, the
results showed a contrasting pattern compared to
the cross-dataset validation for 3-class.

The model confuses Pernambuco (PE) with Mi-
nas Gerais(MG) and vice versa with an f1-score of
27%. Among the possible hypotheses to consider,
besides class imbalance, are the characteristics of
the speakers in each dataset. In the binary classifi-
cation scenario (Table 5), the model misclassified
PE as SP, with most results concentrated in that



Figure 3: Confusion matrices for cross-dataset valida-
tion with unseen speakers and recordings using CORAA
ASR as test set: (i) 3-class (MG, SP, PE).

class Precision Recall F1-score
PE 35± 10% 10± 3% 15± 5
SP 48± 2% 81± 6% 60± 3

Overall 38± 3%

Table 5: Cross-dataset f1-scores for the Spotify-A
dataset and the CNN-LSTM model (binary classifica-
tion - PE/SP)

class, achieving f1-scores 38± 3%.
In the Spotify Podcast dataset, many speakers

had some knowledge about the topics they dis-
cussed, whereas in CORAA, there are interviews
with everyday people on diverse topics, and the
presence of audio noise is notable. Another hypoth-
esis is that in both states (MG, PE), despite their
distinctiveness, there is a tendency to frequently
use diminutives in language and exhibit a slightly
more melodic and musical intonation.

4.2 Experiments with More Speakers
(Spotify-B)

The Spotify-B subset presents a significantly supe-
rior amount of speakers concerning the Spotify-A.
Spotify-B has 102 distinct speakers from Pernam-
buco and 85 from São Paulo.

– Closed-dataset Validation Out-of-speaker:
we trained the models using audio data from the
training and development sets described in Table 2.
Samples were balanced so that the training set has
51 and 52 speakers from Recife and São Paulo, re-
spectively. For the development set, we employed
16 speakers from São Paulo and 25 from Recife.
For testing, 11 distinct speakers were chosen for
each condition from various podcasts, also balanc-
ing instances for each condition.

Table 6 presents the results, where the preci-

class Precision Recall F1-score
PE 61± 3% 58± 7% 59± 4
SP 57± 3% 60± 7% 58± 4

Overall 59± 2%

Table 6: Closed-dataset f1-scores for the Spotify-B
dataset and the CNN-LSTM model

class Precision Recall F1-score
PE 50± 1% 96± 4% 66± 9
SP 73± 7% 11± 4% 19± 6

Overall 43± 3%

Table 7: Cross-dataset f1-scores using Spotify-B to train
and CORAA to test and the CNN-LSTM model

sion rate is slightly higher than the recall rate for
the PE class, while the opposite scenario occurs
for the SP class. This indicates that, even after
balancing the number of audio samples for each
class during training, the model performs slightly
better for class PE. Furthermore, the inclusion of
a greater variety of speakers led to a better bal-
ance between precision and recall for both classes.
For the PE accent, although precision was slightly
lower (61±3)%, we observed a significant increase
in recall (58 ± 7)% compared to previous results
(20± 20)%. Similarly, for the SP accent, there was
an improvement in precision (57± 3)% compared
to previous results with a smaller number of speak-
ers. The overall F1-score was 59± 2%, indicating
an enhanced balance between precision and recall
compared to the previous results in Table 4. More-
over, the results with a larger number of speakers
showed less variability compared to the Subset-A
results in Spotify.

– Cross-dataset Validation: for cross-dataset
validation, the results corroborate the conclusions
highlighted by Batista, where the models used have
difficulty generalizing to other datasets. Table 7
presents the results for cross-dataset. In particu-
lar, the model’s predictions favored the PE (Recife)
class, however presenting many false PE classi-
fications. On the other hand, class SP has bet-
ter precision but low recall. In comparison with
the scenario with fewer speakers, for the PE class,
there’s a significant improvement in its detection
capability, with a considerably higher recall rate
(96 ± 4)% compared to the Spotify-A(10 ± 3%.)
This indicates that the model is much better at cor-
rectly identifying the PE accent.

For the SP class, although precision has in-



class Precision Recall F1-score
PE 90% 72% 80%
SP 75% 92% 83%

Table 8: Closed-dataset f1-scores for the finetuning of
Wav2Vec model using Spotify-B

creased (73±7%), the ability to accurately identify
the SP accent has decreased significantly(11±4%).
This means that despite the improved precision,
the model struggles to detect the SP accent. The
overall F1-score with Spotify-B is slightly better at
43±%. This is primarily due to the improvement
in both precision and recall for the PE accent.

Therefore, the classification of different vari-
ations proves to be challenging across different
datasets, as reported by Batista et al. (2018); Batista
(2019), even when increasing the amount and vari-
ety of training speakers.

– Wav2Vec Finetuning Closed-dataset and
Cross-dataset: the Wav2vec 2.0 XLSR pre-trained
model was fine-tuned with the Spotify-B subset
(binary classification PE, SP). Table 8 presents the
results for a closed-dataset scenario and Table 9 the
cross-dataset scenario. The results are remarkable
in comparison with the previous model, reaching
an F1-score of 82% for the closed-dataset scenario,
and 75% for the cross-dataset, demonstrating the
potential of using pre-trained models for this task.

Even with the superior metrics, we noticed a
similar effect of favoring precision and recall on
different classes and tasks (e.g. closed-dataset task
is more precise on PE, while the cross-dataset is
more precise on SP). The fact it happened for the
same classes, indicates there are probably a set of
examples or patterns that the model hardly learns.

In summary, it was observed that utilizing a
dataset with a larger and balanced set of speak-
ers for fine-tuning with the Wav2vec 2.0 XLSR-
53 model can have a considerable impact on the
model’s performance for accent classification. In
addition to an increased number of speakers pro-
viding greater linguistic variability, the recording
conditions in Spotify-B, characterized by minimal
noise compared to other datasets, play a significant
role. It is important to note that the success in the
classification task depends on other factors, such
as consistent data preprocessing, and the use of
additional datasets for model evaluation.

class Precision Recall F1-score
PE 68% 99% 80%
SP 99% 55% 70%

Table 9: Cross-dataset f1-scores for the finetuning
of Wav2Vec model using Spotify-B and testing with
CORAA

5 Conclusions

Our results show that accent classification is still an
open problem, with challenges going beyond the
use of different datasets, as reported by Batista et al.
(2018); Batista (2019). In fact, our results indicate
that both models: CNN1D LSTM and Wav2vec
2.0 XLSR may be learning spurious features, e.g.
related to the speakers and/or the recording condi-
tions. This raises questions about the ability of the
models to learn accent attributes. We believe the
Spotify podcasts dataset is valuable in this context
since it has subtle speakers and recording variations
within the same dataset.

When comparing results with preatrained mod-
els, de Almeida (2022) could not reach good results
with Wav2Vec 2.0 base (trained just using English
language), when evaluating the closed-dataset sce-
nario on a different dataset. Our choice of the
Wav2Vec 2.0 XLSR multilingual model achieved
results superior to those using a CNN1D-LSTM
trained from scratch. This indicates a larger and
multilingual model may be more effective.

In general, we found two main guidelines for
improving results in the accent classification tasks.
First, improving the resources for a given language
is paramount, i.e. increasing the number of speak-
ers to cover the accent characteristics better. Sec-
ondly, using larger and pre-trained models appears
to excel training from scratch. Nevertheless, a more
in-depth analysis is still needed to understand what
the models are truly learning, in particular biases
related to individual speakers or recordings.

Future work may devote efforts to investigating
the explainability of models, as well as gathering
more data from different sources. Exploring other
pre-trained models is also a matter of future studies.
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