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Abstract

Detecting prosodic boundaries is a frequently
studied task as it has a direct impact on au-
tomatic speech recognizers and synthesizers.
For Brazilian Portuguese, this task has been
mainly studied for the linguistic variety of Mi-
nas Gerais via supervised machine learning
methods. As manually annotating a large cor-
pus with prosodic boundaries is a costly task,
this paper brings three main contributions: (1)
a publicly available corpus, prosodically an-
notated automatically and manually revised;
(2) the code of the heuristic method of Biron
et al. (2021), that uses discontinuities in speech
rates and silence pauses, adapted to segment
Brazilian Portuguese spontaneous speech; and
(3) the evaluation of the method in the scope
of NURC-SP corpus, linguistic variety of São
Paulo, which suggests that: (i) the method is
more suitable for defining non-terminal bound-
aries than for defining terminal boundaries1; (ii)
the method performs best by using all heuristics
conjointly, but the silences’ heuristics stands
out; and (iii) there are no significant differences
in performance among different speech genres
(conversational or talks) but further analysis
should be carried out. The pipeline created was
intended to accelerate the manual revision of
prosodic boundaries, and therefore, a simple
and fast method was chosen as it does not re-
quire a training phase.

1 Introduction

Information in spoken language is transmit-
ted through words associated with several non-
segmental features (prosodic cues), such as pitch,
volume, speech rate, rhythm, and timbre. Those
speech chains bounded by prosodic cues can com-
municate coherent messages with a variety of lin-
guistic functions that are expressed by different

1Terminal boundaries mark the conclusion of the utterance.
Non-terminal boundaries mark breaks of non-conclusive se-
quences of the utterance.

types of utterances (imperative, interrogative, as-
sertive, or exclamatory). These prosodic groups
are often called intonational phrases or intonation
units (IUs) and although they are hard to define,
one of their features is a well-defined (“single”)
pitch contour (Biron et al., 2021).

Detecting prosodic boundaries in natural lan-
guages is a frequently studied task in the speech
processing literature (Wightman and Ostendorf,
1991; Ananthakrishnan and Narayanan, 2008;
Huang et al., 2008; Jeon and Liu, 2009; Kocharov
et al., 2017; Biron et al., 2021). This task remains
an open problem due to multiple sources of varia-
tion in speech, including: speaker characteristics,
such as age, gender, dialect variety; the recording
environment, e.g., microphone used, room acous-
tics and noises; and production style, i.e., spon-
taneous vs. read speech, which are instances of
the continuum unplanned-planned production style.
This task has a direct impact on automatic speech
recognizers (ASR) and speech synthesizers (TTS).
For ASR, if the excerpt of speech used to train a
model is based on IUs, the error rates for sylla-
ble, character, and word recognition are reduced
(see Chen and Hasegawa-Johnson, 2004; Lin et al.,
2019) and in the case of TTS, the adequate use
of pause duration (for example), that are naturally
used by human speakers, improves speech intelligi-
bility, helping to capture the meaning of an excerpt
of speech (Liu et al., 2022). It is expected that
an effective automatic identification of prosodic
boundaries will (i) facilitate linguistic studies on
spontaneous speech, (ii) help to create more useful
datasets to train ASR models and (iii) extend the
power of speech-related applications working on
spontaneous speech.

Automatic prosodic boundary recognition meth-
ods range from rule-based or heuristic systems (see,
e.g., Biron et al., 2021) to supervised machine learn-
ing models using lexical and syntactic features that
are combined with acoustic features (e.g. Kocharov



et al., 2017), generally applied to scripted speech,
in which syntactic and prosodic conventions coin-
cide, as disfluencies in this type of speech are rare.
More recently, Roll et al. (2023) fine-tuned Whis-
per (Radford et al., 2023), a pretrained end-to-end
ASR model, to segment spontaneous speech into
IUs with great performance.

For American English, there are two resources
frequently used in applications that consider
prosodic boundaries: Santa Barbara Corpus of Spo-
ken American English (SBC) (du Bois et al., 2000–
2005) and the Boston University Radio Speech Cor-
pus (BURSC) (Ostendorf et al., 1995). The first
contains ≈20 hours of spontaneous speech of vary-
ing genres, transcribed and manually segmented
into final and non-final IUs (du Bois et al., 1992),
following the identification of a boundary. The sec-
ond contains 10 hours of radio news, of which 3.5
hours are prosodically annotated according to the
ToBI system (Beckman et al., 2005). For British
English, the IViE Corpus2 (Grabe et al., 2001) is a
resource focusing on nine urban dialects of English
spoken in the British Isles and is transcribed with
an intonational phrase methodology — the IViE
labeling system — adapted from the ToBI frame-
work. It contains 36 hours of speech data and the
speakers are male and female adolescents.

For Brazilian Portuguese (BP), the automatic
detection of prosodic boundaries was explored
within the scope of the C-ORAL-Brasil project3,
advancing studies in spontaneous speech by us-
ing phonetic-acoustic parameters and boundaries
identified perceptually by trained annotators (Teix-
eira et al., 2018; Teixeira and Mittman, 2018; Raso
et al., 2020). The studies use excerpts of male infor-
mal monological spontaneous speech (8 min 39 s
of audio), from the annotated corpora C-ORAL-
Brasil I and media and formal speech in natural
context (8 min 29 s of audio), from C-ORAL-Brasil
II, mainly of linguistic varieties of the Minas Gerais
state (Raso and Mello, 2012; Mello et al., To ap-
pear).

The study reported in this paper was set out to
accomplish three research objectives:

1. make publicly available the implementation of
a simple rule-based method with three heuris-
tics related to discontinuities in speech rate
(DSRs) and silent pauses, which are prosodic
acoustic cues marking prosodic boundaries,

2www.phon.ox.ac.uk/files/apps/old_IViE/
3www.c-oral-brasil.org/

already evaluated for the English language
(Biron et al., 2021). This method was adapted
for BP using a forced aligner based on ASR,
named UFPAlign (Batista et al., 2022). The
code is available at https://github.com/
nilc-nlp/ProsSegue;

2. evaluate the method in excerpts of the NURC-
SP corpus, with ≈334 hours of transcribed
speech, of which 19 hours were prosodically
annotated in two types of IU boundaries (ter-
minal and non-terminal), henceforth TB and
NTB (Santos et al., 2022); different than Biron
et al. (2021) that evaluates only IU terminal
boundaries without specifying them; and

3. make publicly available a subcorpus of
NURC-SP corpus, prosodically annotated
with the method described in this paper
and manually revised. The subcorpus is
available at http://tarsila.icmc.usp.br:
8080/nurc/catna.

NURC-SP (NURC-São Paulo)4 recordings fea-
ture speakers with higher education; born and
raised in the city; children of native Portuguese
speakers; equally divided into men and women;
and distributed into three age groups (25–35, 36–
55, and 56 years onwards). The recordings were
made in three situations, generating different dis-
cursive genres: lectures/classes in a formal context
given by a speaker (EF); dialogues between doc-
umenters and a participant (DID); and dialogues
between two participants mediated by documenters
(D2). The version of NURC-SP used in this re-
search is made up of 375 inquiries, some of which
already had transcriptions — but, until then, not
aligned with the audio — and the vast majority
is composed of audio only. NURC-SP was di-
vided into three work subcorpora: (i) the Mini-
mum Corpus (MC) (21 recordings + transcriptions)
used to evaluate automatic processing methods of
the entire collection (Santos et al., 2022); (ii) the
Corpus of Non-Aligned Audios and Transcriptions
(CATNA) (26 recordings + transcriptions), which
is the focus of this paper, as we are making this sub-
corpora publicly available; and (iii) Audio Corpus
(328 recordings without transcription), which has
been automatically transcribed by WhisperX (Bain
et al., 2023) that provides fast automatic speech
recognition (70x realtime with the large-v2 model

4https://nurc.fflch.usp.br/

www.phon.ox.ac.uk/files/apps/old_IViE/
www.c-oral-brasil.org/
https://github.com/nilc-nlp/ProsSegue
https://github.com/nilc-nlp/ProsSegue
http://tarsila.icmc.usp.br:8080/nurc/catna
http://tarsila.icmc.usp.br:8080/nurc/catna
https://nurc.fflch.usp.br/


of Whisper (Radford et al., 2023)) and speaker-
aware transcripts, using the speaker diarization tool
pyannote-audio5.

2 The Heuristic-based Method to Detect
Prosodic Boundaries

According to Biron et al. (2021), the lengthening of
speech rate at the end of a unit together with the ac-
celeration at its beginning, called discontinuities in
speech rate (DSRs), is a prominent signal for iden-
tifying boundaries. Using two acoustic cues related
to timing, DSRs and silent pauses, they proposed a
heuristic method, using the output of an ASR sys-
tem, to identify boundaries in spontaneous speech
in English. The first heuristic made use of a thresh-
old set to 88% of the largest difference in speech
rate values of a single turn. Differences among
consecutive speech rate measurements that were
higher than this threshold were tagged as bound-
aries; the second heuristic set the threshold to 70%
and was applied only to the resulting stretches that
were longer than 3 seconds and contained more
than 10 words; finally the third heuristic used silent
pause durations longer than 0.3 seconds as a cue
to indicate a boundary. To measure the speech rate
values, an average of all non-silent phonemes in-
side a time window of 0.3 seconds is estimated for
each word, starting at their beginning.

Biron et al. (2021) uses the Kaldi-based soft-
ware Montreal Forced Aligner (MFA) Version 0.9.0
(McAuliffe et al., 2017) in order to obtain the times-
tamps of the beginning and ending of each phone
present in the transcription. However, we opted
for the Brazilian forced aligner UFPAlign (Batista
et al., 2022), as it is also Kaldi-based and specifi-
cally adapted to Brazilian Portuguese. It is impor-
tant to note that inquiries of NURC-SP vary, gen-
erally, from thirty minutes to one hour and thirty
minutes (see Table 1), therefore, the original ver-
sions were split into files of ten minutes, along with
their corresponding transcriptions, to be used in the
forced aligner UFPAlign and merged back at the
beginning of the prosodic segmentation method.

For our initial results, presented in this paper, we
maintained the values of the six parameters used in
Biron et al. (2021):

1. time window (window_size) used to measure
the discontinuity rate: 300 ms (average word
duration in English);

5https://github.com/pyannote/pyannote-audio

2. pause duration (silence_threshold) to deter-
mine a prosodic boundary: 300ms;

3. threshold (delta1) that determines the largest
difference in speech rate values for the first
heuristic: 88% ;

4. threshold (delta2) that determines the largest
difference in speech rate values for the second
heuristic: 70% ;

5. minimum number of words (interval_size) to
determine any stretch between consecutive
DSRs as eligible: 3;

6. minimum duration (min_words_h2) to deter-
mine any stretch between consecutive DSRs
as eligible: 10 seconds.

The final output is a Textgrid document com-
posed of two layers for each speaker, one for ter-
minal boundaries and one for non-terminal bound-
aries, each containing their speech divided by the
identified boundaries (further details in Section
3.1). As the method is not yet adapted to estimate
these two types of boundaries differently, these lay-
ers are identical for the same speaker. To evaluate
our results (further details in Section 3), we exper-
imented a hit threshold varying among 0.01, 0.1,
0.2, and the chosen value of 0.25 seconds, as its f1-
score was better and was still beneath 0.3 seconds,
our threshold for defining a silence boundary. Our
complete pipeline can be seen in Figure 1.

3 Experiments and Results

3.1 Dataset
Six inquiries were selected from the NURC-SP
MC, two from each discourse genre, to carry out an
acoustic analysis in order to select the study corpus
of the segmentation method (see Table 1). Five
inquiries were classified as good/clear audio qual-
ity and one inquiry as low audio. Figure 2 shows
the multilevel transcription of NURC-SP MC us-
ing interval layers annotated in the speech analysis
program Praat (Boersma and Weenink, 2023): (i)
2 layers (TB-, NTB-) in which the speech of each
main speaker (-L1, -L2) and documenter (-Doc1,
-Doc2) is segmented into prosodic units and tran-
scribed according to standards adapted from the
NURC project; (ii) 1 layer (LA) for transcribed and
segmented speech from any random speaker; (iii) 1
layer for comments regarding the audio recording;
(iv) 1 layer containing the normalized (-normal)

https://github.com/pyannote/pyannote-audio


Figure 1: An audio file (.wav) and its transcription are fed to the forced aligner, which outputs a .TextGrid document.
Then, the resulting document, along with a .txt document that contains each sentence of the inquiry and its respective
speaker (“speaker diarization”), is used as input to the method. The output of the pipeline is a textgrid with the
prosodically segmented content of the inquiry.

version of the transcript of all TB and LA layers;
and (v) 1 layer containing the punctuation (-point)
that ends each TB (. ? ! . . . ).

Appendix A presents the acoustic analysis and
Section 3.2 presents the evaluation of the segmen-
tation method adapted for BP.

3.2 Evaluation of the Segmentation Method
Adapted for BP

Our evaluation dataset is composed of four in-
quiries and totals 4:47:18 h (see the inquiries in
bold in Table 1; we calculated the number of filled
pauses in four of these inquiries, using the follow-
ing list: hum, uhum, éh, ah, ha, ahn, han, uhn, eh,
ehn, hein, oh, hun).

Here, we use the same metrics to evaluate the
boundary identification task reported in Biron et al.
(2021) that are derived from the true positive (TP),
false negative (FN), false positive (FP), and true
negative (TN) values of the automated boundary
detection method compared to the reference corpus.
In our specific scenario, there are cases where the
method creates a boundary that does not exist at
the reference (FP), cases where the method does
not identify a boundary that exists at the reference
(FN), and cases where the boundary is placed at a
similar timestamp for both documents (TP). Times-
tamps when neither the reference nor the method
places a boundary (TN) can not be accounted for
because the timeline is continuous. We also com-

puted the metric SER (Slot Error Rate) that calcu-
lates the total number of wrong slots annotated by
the method divided by the total number of slots
annotated in the reference corpus that corresponds
to the NIST SU error rate (Liu and Shriberg, 2007),
and can have values greater than 100%. Therefore,
here, precision (p), recall (r), F1-score (f1) and slot
error rate (ser) are defined as: p = TP/(TP+FP),
r = TP/(TP+FN), f1 = 2*p*r/(p+r) and ser =
(FP+FN)/(TP+FN). Table 2 illustrates our results.

Concerning our first research question — Is the
heuristic method more suitable for segmenting TB
or NTB? —, by looking at the f1-scores for all
inquiries, we can see that the method performed
better at identifying NTB (results varied from 33%
to 50%) than at identifying TB (results ranged from
16% to 29%).

As for the second one — What is the best of
the three heuristics for the boundary types TB and
NTB (i.e., which one performs best for each type
of boundary)? —, for all examples, the version
that outperformed the others considered all heuris-
tics. However, it should be noted that the silences’
heuristics alone nearly achieved the same numbers
in all cases (with a difference ranging from 0 to
3%). And only at inquiry SP_D2_360, heuristics 1
and 2 contributed more significantly, with a higher
f1-score than the silences’ heuristics at TB and val-
ues still significantly higher at NTB (ranging from
16% to 18%) than at the other inquiries (ranging



Discourse
genre

Audio
quality Duration Interviewee’s

Gender

Voice of the speakers
and external events # Filled

Pauses
SP_EF_153 + 01:11:11 M very good audio —
SP_EF_156 + 01:35:37 F very good sound 73
SP_DID_242 + 00:44:08 F clear audio 71
SP_DID_235 + 00:34:49 F clear audio —
SP_D2_255 + 01:24:01 M/M clear sound 104
SP_D2_360 - 01:03:32 F/F a little bit low audio 260
Total Duration 06:33:18

Table 1: Six inquiries of the Minimum Corpus were used in the acoustic analysis. They are characterized by
discourse genre, audio quality, duration, interviewees’ gender, a description related to both the voice of the speakers
and external events, and number of filled pauses. Those four in bold were chosen to evaluate the speech segmentation
method.

Figure 2: Excerpt from the SP_EF_153 inquiry with five layers annotated in Praat: the first is used to indicate the
punctuation that ends each TB (. ? ! . . . ), the second contains the normalized excerpt, without the annotation used
for transcription in the NURC project, the next two for each speaker that appears in the inquiry (TB-L1, NTB-L1)
and the last one for comments on the audio recording (com).

SP_EF_156 SP_DID_242
TB NTB TB NTB

H sil h1 h1 + h2 all sil h1 h1 + h2 all sil h1 h1 + h2 all sil h1 h1 + h2 all
f1 0.18 0.0 0.01 0.18 0.4 0.0 0.03 0.41 0.29 0.02 0.05 0.29 0.49 0.01 0.05 0.5
p 0.12 0.14 0.04 0.12 0.48 0.43 0.38 0.47 0.23 0.14 0.14 0.22 0.71 0.27 0.36 0.68
r 0.38 0.0 0.01 0.38 0.34 0.0 0.01 0.36 0.4 0.01 0.03 0.41 0.38 0.0 0.02 0.39
ser 3.41 1.01 1.16 3.55 1.03 1.0 1.01 01.04 1.91 1.04 1.15 02.03 0.78 1.01 1.02 0.79
mf1 0.295 0.395

SP_D2_255 SP_D2_360
TB NTB TB NTB

H sil h1 h1 + h2 all sil h1 h1 + h2 all sil h1 h1 + h2 all sil h1 h1 + h2 all
f1 0.16 0.02 0.05 0.16 0.32 0.02 0.04 0.33 0.17 0.19 0.18 0.2 0.4 0.16 0.18 0.42
p 0.11 0.08 0.08 0.11 0.4 0.19 0.24 0.39 0.13 0.2 0.17 0.14 0.5 0.34 0.32 0.43
r 0.3 0.01 0.03 0.32 0.27 0.01 0.02 0.28 0.24 0.17 0.19 0.37 0.33 0.11 0.13 0.42
ser 3.11 1.15 1.35 3.31 1.14 1.03 1.05 1.17 2.32 1.52 1.71 2.92 1.01 1.1 1.14 1.14
mf1 0.245 0.31

Table 2: Overall results of the adapted method for BP. We also show an ablation study to measure the impact of the
three heuristics in the adapted method, in row H: silence pauses (sil), heuristic 1 (h1), and heuristic 2 (h2), all show
results for the three heuristics combined. mf1 stands for macro-f1, i.e. arithmetic mean over harmonic means. The
macro-f1 measure of our dataset is 0.31125.



from 0 to 5%).
With respect to speech genre (our third ques-

tion — Which speech genre has the best segmenta-
tion performance (EF/D2/DID)? —, the best results
were achieved with SP_DID_242 with a macro-f1
score of 39.5%, which might suggest that, for this
method, dialogues between documenters and a par-
ticipant are the most adequate speech genre among
the ones tried. However, with only four inquiries
analyzed, it is hard to draw any conclusions. To
support that argument, inquiries of type D2 were
not adjacently ranked, and their difference of 6.5%
is relatively close to the difference of 15% among
the highest and lowest macro-f1 scores obtained.

Regarding the number of filled pauses in each
inquiry, there is no direct correlation to the impact
on the macro-f1 measure, as the second best value
of macro-f1 is related to SP_D2_360 (31%) which
has the largest number of filled pauses (260) (see
Table 1). But we cannot be sure that filled pauses
are not affecting all the inquiries as they appear
more in conversation inquiries (D2 and DID) and
less in classes and talks, but in all the inquiries of
NURC-SP MC.

It is important to note that all the results re-
ported in Table 2 use the transcriptions provided
by the original NURC-SP project. Therefore, we
performed an evaluation to measure the impact of
using the revised transcription with the support of
the software tool Praat in the pipeline of Figure 1.
We reran the pipeline for the inquiry SP_DID_242.
Our findings exhibited a change within the range
of 0-2%, with an updated macro F1-score of 41%
for SP_DID_242.

When dealing with boundaries identified by
more than one heuristic, Biron et al. (2021) at-
tributes the hits to the DSRs, rather than to the si-
lences’ heuristic. In our ablation study, each heuris-
tic’s performance was calculated separately and
there may be overlaps among the boundaries cov-
ered. Therefore, on Table 2, it can be seen that
the summation of the value obtained using each
heuristic separately does not necessarily equal the
value obtained using all of them conjointly.

4 Discussion

4.1 Related Work on Automatic Detection of
Prosodic Boundaries

Table 3 presents six studies that have developed
boundary detection methods, and compares their
methodologies and results. Three of them deal with

the Portuguese language (Brazilian and European)
and three with the English language. With regard
to datasets, only the BP one is small (≈17 min)
compared to the others which are longer than four
hours. All the datasets but one (the dataset that was
crawled from the site of RTP6) are resources fre-
quently used in applications that consider prosodic
boundaries. Three of them are annotated with TB
and NTB boundary types, although in one of them
(Hoi et al., 2022), the terms used are sentences and
phrases, respectively. This dataset annotated with
labels of sentences and phrases is balanced, being
composed of 7.500 sentences and 7.500 phrases
for training, and 200 samples of each for testing.
The model proposed by Hoi et al. (2022) was set
to identify if a silent pause indicates a terminal or
non-terminal boundary but uses the spectrogram
of speech as a feature in order to recognize and
segment sentences/phrases. There are three stud-
ies that deal with only one type of boundary (IU).
While the method presented in Kocharov et al.
(2017) was initially developed for processing Rus-
sian speech, here we only show results for English
speech to facilitate the comparison among studies,
notwithstanding the fact that the methods were not
applied to the same dataset.

Table 3 summarizes evaluation metrics of pre-
vious boundary identification methods for sponta-
neous speech. It is important to note that Raso et al.
(2020) and Biron et al. (2021) remove IUs com-
posed of filled pauses from the evaluation. There is
no information about the treatment of filled pauses
in the other three studies described in this section.
Our work was evaluated with filled pauses and this
choice was due to the important discursive roles
that these elements play. Filled pauses are typical
manifestations of oral speech planning and can play
the role of discursive markers with an interactional
and cohesive function of the spoken text.

Preserving filled pauses may be one of the causes
for the discrepancy between our results and the re-
sults of Biron et al. (2021). Another one could be
the different average length of IUs between lan-
guages (English and Portuguese) as we have not
yet customized the parameters used in the method
for our corpus. Finally, we selected a challenging
corpus (see details in Section 4.2), created in the
1980s when acoustic tools were not available to aid
annotators in audio transcriptions.

Raso et al. (2020) reports a lower performance

6www.rtp.pt/noticias/

www.rtp.pt/noticias/


Source Dataset Lang. Training Features Boundary Types F1-score/Accuracy

This work Part of the
NURC-SP MC (∼5hrs) BP No DSR and

Silent Pause
TB
NTB 31%/—

Raso et al. (2020)
C-Oral-Brasil I
C-Oral-Brasil II
(∼17 min)

BP Yes, LDA
algorithm

Speech Rate,
Duration, f0,
Intensity, Pause

TB
NTB 68%/—

Hoi et al. (2022) RTP (∼33 hrs) EP Yes, CNN API
of keras Library Spectrogram TB

NTB —/95%

Biron et al. (2021) SBC (∼20 hrs) EN No DSR and Silent Pause IU 66%/—

Kocharov et al. (2017) BURSC
(∼10 hrs) EN

Yes. Two-stage
procedure combines
syntax and acoustics

Pause,
PBL,
Df0C

IU 76.2/—%

Roll et al. (2023) SBC (∼20 hrs)
IViE (∼36 hrs) EN Whisper was fine-

tuned to annotate IU — IU 87%/96% (SBC)
73%/93% (IViE)

Table 3: Segmentation Methods and Corpora containing spontaneous speech used in the previous boundary
identification methods for spontaneous speech. TB stands for Terminal Boundary, NTB stands for Non-Terminal
Boundary. DSR stands for Discontinuities in Speech Rate. PBL stands for pre-boundary lengthening and Df0C
stands for declination of f0 contour.

of the classifier of NTB (54.5% F1) than the TB
classifier (81.5% F1). The main features respon-
sible for the performance of TB were pause and
f0, while for NTB these features were pause, f0,
and speech rate. In our evaluation, we found the
inverse: our best results came from the detection
of NTB labels. Kocharov et al. (2017) proposes
a two-stage procedure that combines syntax and
acoustics, using a rule-based system over a depen-
dency tree followed by a Random Forest classifier
based on acoustic features. Their results, F1 of
76%, show 10% of improvement over the heuristic-
based method of Biron et al. (2021) although the
methods were evaluated in different corpora. It is
amazing how the best results of the methods com-
pared here (Roll et al., 2023) are obtained with a
simple fine-tuning of Whisper for the task of de-
tecting prosodic boundaries. The authors justify
the reasons for this performance showing that ASR
Whisper captures, in its model, the prosodic char-
acterization to segment speech in IUs, in addition
to the task for which it was modeled, which is au-
tomatic transcription of speech.

4.2 Error Analysis of the Automatic
Segmentation

Through error analysis, we aimed to verify whether
the automatic segmentation method impacts posi-
tively or negatively on the annotation process. To
this end, we measured the time required to anno-
tate an inquiry — namely, SP_D2_012 — in two
situations: (i) from the final output generated by
the method and (ii) manually, that is, without the
help of the method.

In order to prepare the textgrid for evaluation, we
added an interval tier to the SP_D2_012 textgrid
(generated by the method), dividing it into 300-

second chunks. We selected two subsequent ex-
cerpts in the initial, medial, and final positions of
the file; then, one excerpt of each pair was anno-
tated from the method output and the other was
manually annotated7. The intervals were adjusted
to match the beginning and end of a complete TB.
We then copied the timestamped tier to another
textgrid to be used in the manual annotation pro-
cess.

The annotation was carried out by one of the
authors, an expert in prosodic annotations.

For the manual annotation process (without the
method), it was necessary (i) to create tiers for an-
notation (TB, NTB, comments), (ii) to copy the
text from an external textfile (the diarized transcrip-
tion) into the tiers, audio-aligning it according to
the TB and NTB concepts, (iii) and to review the
transcription, according to the annotation standards
adopted for CATNA8. As for the annotation pro-
cess using the method output, since the tiers (TB,
NTB, comments) were already created and the text
was already aligned and segmented, it was only
necessary (i) to adjust the text-to-audio alignment
according to the division into TBs and NTBs and

7The selection of excerpts at relatively distributed points
in the inquiry was designed to reduce possible differences
between more complex and less complex transcription parts,
whether due to automatic segmentation or to the dialogue
dynamics itself.

8CATNA’s annotation standards — a simplified version of
those used in MC (see Santos et al., 2022) — are as follows:
(a) transcription for words is based on written BP standards;
(b) no punctuation mark or any special character; (c) lower-
case letter only; (d) numbers are written in full; (e) phatic
expressions are always written; (f) empty parentheses for in-
comprehensible words; (g) single parentheses for hypotheses
of what was heard; (h) laughs are transcribed as a tag ((risos))
and segmented as a separate NTB; (i) acronyms are expanded
for their forms of pronunciation, and the tag ((sigla)) is set in
the comments tier; (j) proper names are extended (e.g., M. →
Maria), and the tag ((name)) is set in the comments tier.



(ii) to review the transcription.
We present the annotation time measurements

for each excerpt in Table 4. In short, the data show
that the manual annotation was relatively faster,
with a difference of -1h37min, even though the
annotation speeds between the revision methods
are similar.

Interestingly, regardless of the position of the
excerpt (initial, medial, final) or the nature of the
review (based on the method or completely man-
ual), we noticed that all six excerpts are balanced
in terms of duration, the number of characters, and
the total number of IU boundaries, be it before or
after the review (see Table 5). We therefore believe
that these factors had a similar impact on the time
taken to annotate all the excerpts.

On the other hand, the text-to-audio misalign-
ment seen throughout the inquiry seems to be cru-
cial for the annotation slowdown. The initial 82%
of the first excerpt of the inquiry is relatively well
aligned (i.e., much of the text corresponds to the
audio recording); after that, the match is lost, mean-
ing that none of the text contained in an interval
from the second and third excerpts matches the
recording to which it was forced-aligned. Because
of this, text from later intervals had to be moved to
the preceding ones, slowing down the annotation
process.

During the transcription review, the following
adjustments had to be made: (a) space insertion be-
tween words (casovocê → caso você); (b) spelling
correction and adequacy to writing standards (mu-
sica → música, pro → para o); (c) word correc-
tion (fachoto → pacheco), (d) extra or missing
words/phrases adjustment (“jornal informar o ar-
tigo” → “jornal informativo”, “eu pela manhã” →
“eu começo pela manhã”). Thus, in addition to low
audio quality and overlapping voices, the transcrip-
tion used as input for the forced aligner may have
contributed to the misalignment we have noted,
especially in the cases specified in (c) and (d).

Therefore, the misalignment negatively affects
the phones’ timestamps to be used in the automatic
segmentation method and, consequently, the in-
sertion of DSR-based prosodic boundaries. All
these factors lead us to the need to create a human-
reviewed version of the CATNA transcription files
in order to provide a transcription that is faithful to
the audio recordings and suitable for training future
natural language processing systems. Despite the
evaluation results, we believe that the prosodic seg-

mentation method presented here has the potential
to assist in the segmentation of other corpora (pro-
vided that an adequate transcription is guaranteed
as input for the forced aligner), as well as to assist
annotators less experienced in prosodic annotation.

5 Concluding Remarks and Future Work

The relevance of a prosodically processed and anno-
tated BP corpus lies in the fact that the delimitation
of prosodic boundaries improves the performance
of natural language processing systems and is input
for automatic punctuation prediction, such as the
Whisper ASR does. Manually annotating a large
corpus with prosodic boundaries is a costly task,
therefore, to have a baseline method available, as
the one made available in this work, can help to
foster this research area. Furthermore, it is possible
to use the corpus, also made available, as a refer-
ence set for training ASRs and, thus, leveraging
the development of BP speech processing methods
and enabling new linguistic studies. Regarding our
results, our f1-macro reaches 31%, significantly
lower than Biron et al.’s (2021) performance of
66% (see Table 3). We suspect that is due to three
reasons. The first one is that we did not remove the
filled pauses from the corpus, as was part of Biron
et al.’s (2021) pre-processing. The second reason
is that Biron et al. (2021) is adapted to English and
for our initial results, we applied the method to our
corpus without customizing the six parameters (see
Section 2) to BP. The third is due to a few chal-
lenges of the NURC-SP corpus: (1) “overlapping
speakers’ voices” present in inquiries of types D2
and DID, (2) low audio quality in some of the in-
quiries, which impacts even manual transcription,
causing several annotations of “incomprehension
of words or segments” and “hypothesis of what was
heard” (Gris et al., 2022), (3) the transcriptions of
the corpus were carried in the 1980s, when acoustic
tools were not available to support the annotators,
who had to rely solely on auditory perception.

Regarding future work, we foresee two lines
of research. In the first one, we intend to per-
form hyperparameter tuning for Portuguese, using
the complete Minimum Corpus of NURC-SP and
techniques such as grid search or random search
(e.g., GridSearchCV and RandomizedSearchCV
(Pedregosa et al., 2011)). The second is inspired
by the best results that can be seen in Table 3, ob-
tained using Whisper’s fine-tuning at Roll et al.
(2023). We intend to study the correlation between



Excerpt Revision from the method Manual revision
Duration (s) Annotation time spent (h:m:s) Annotation speed Duration (s) Annotation time spent (h:m:s) Annotation speed

Initial 296.6 2:03:48 25 304 1:43:43 20.5
Medial 300.6 2:33:35 30.7 294 1:28:25 18
Final 285.5 2:00:35 25.3 310.2 1:48:31 21

882.8 6:37:57 27 908.2 5:00:39 19.9

Table 4: Duration, annotation time spent, and annotation speed (= ratio of annotation time to duration) for the
SP_D2_012 inquiry excerpts.

Excerpt
Characters Boundaries (TB,NTB)

Revision from the method Manual revision Revision from the method Manual revision
Original Reviewed Original Reviewed Original Reviewed Original Reviewed

Inital 4004 4121 4781 4963 508 455 472 477
Medial 4778 4953 4383 4618 456 547 496 480
Final 5025 5185 5497 5839 332 439 526 618

13807 14259 14661 15420 1296 1441 1494 1575
Incr. = 452 (3.3%) Incr. = 759 (5.2%) Incr. = 145 (11.2%) Incr. = 81 (5.4%)

Table 5: Number of characters and TB/NTB boundaries before and after human review on SP_D2_012 inquiry
excerpts. The number of characters includes spaces. Original stands for the original transcription (whose source is
the diarization textfile). Incr. stands for the increase over the reviewed version.

punctuations provided by Whisper and the prosodic
boundaries of our method presented in this paper.
For this study, we intend to transcribe the evalu-
ation dataset with the ASR Whisper in order to
compare the boundaries of both.
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A Acoustic Analysis of the Sampling from
Minimum Corpus

Mel scale spectrograms, also known as Mel spec-
trograms, constitute an extension of traditional
spectrograms in which the frequency scale is trans-
formed to the Mel scale, approximating the way
the human ear perceives sounds. This makes Mel
spectrograms particularly useful for tasks where
frequency discrimination is critical, such as iden-
tifying phonemes in speech recognition, separat-
ing sound sources in noisy environments, and an-
alyzing melodic features in music (Rabiner and
Schafer, 2010; Zakariah et al., 2022). Bark scale
spectrograms represent a sophisticated approach
to analyze audio signals, offering a perspective
that comes even closer to human auditory percep-
tion (Rabiner and Schafer, 2010; He et al., 2009).
The Bark scale is designed to map frequencies in
terms of the 25 critical bands of hearing, taking
into account how the human ear perceives different
frequencies at different sound intensity levels.

Both Mel scale and Bark scale spectrograms
address the challenge of representing the spectral
characteristics of an audio signal in a more mean-
ingful way than a simple Fourier Transform. Their

main differences lie in the details of the mapping
scale: Mel scale spectrograms map frequencies in
terms of the Mel scale, which is designed to ap-
proximate how the human ear perceives frequency
differences. This makes them especially effec-
tive in tasks such as speech and music recogni-
tion (Rabiner and Schafer, 2010), where frequency
discrimination is critical. Conversely, Bark scale
spectrograms take into account the critical hearing
bands and the variation of auditory perception with
the level of sound intensity, resulting in an even
more accurate representation of human perception.
Therefore, Bark scale spectrogram was chosen in
this work to present an acoustic analysis. Here, we
analyzed the acoustics of the six audio sampling
from the Minimum Corpus in order to choose one
of each type (EF, D2, DID) to pursue the segmen-
tation analysis (see Figure 3).

Considering the acoustics involved in the EF sit-
uation, we can notice that, as expected, there is a
concentration of signal energy in low frequencies,
particularly in those frequencies that are responsi-
ble for the physical human way of speaking. Fur-
thermore, due to the formal/illustrative nature of
the EF class, we can also notice a more continu-
ous dialogue, without major discontinuities in the
spectrograms. Continuing with the D2 case study,
we can now infer, based on the spectrograms, two
particular situations:

• A more intense dialogue in the SP_D2_255
example, evidenced by the high distribution
of energy within the entire conversation, with
some “negative” spikes caused by the media-
tor; and

• A calmer example in SP_D2_360, with the
energy concentrated in low frequencies, below
2048 Hz. We can also mention the low general
amplitude of the signal caused by some effect
during audio recording.

Moving on to the case of the last conversation
(DID), we can deduce the more abrupt peaks and
discontinuities compared to the EF and D2 scenar-
ios, highlighting intervals of thought between the
questions/inferences raised by the interviewee’s re-
sponse time. To have a more quantitative way of
describing the above statements, the speed and
acceleration of the signal were calculated, repre-
sented by ∆ and ∆2 extracted by Mel Frequency
Cepstral Coefficients (MFCCs) (Abdul and Al-
Talabani, 2022; Godino-Llorente and Gomez-Vilda,
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2004). It is worth mentioning that the adopted num-
ber of MFCC coefficients is 13, representing an
average between the lower and upper limits that
generally define the number of MFCCs to be ex-
tracted. A more in-depth study on MFCCs and
other forms of application involving cepstral coeffi-
cients can be found in Contreras et al. (2023). That
said, the values ∆ and ∆2 are shown in the Table 6.

Discourse genre ∆ ∆2

EF −13.594 −23.953

D2 4.039 −64.476

DID 43.985 14.921

Table 6: Table of Average Speed (Delta) and Acceler-
ation (Delta-Delta) for Each Conversation Class of the
Minimum Corpus.

As expected, the dynamics of the signal recorded
for EF conversation presents negative values for
speed and acceleration, a behavior that emphasizes
the continuous speech with low frequencies ex-
pected in classrooms/speeches. Note: here, the
negative represents that the sporadic peaks that the
speaker applies in the recording are immediately
followed by a slowdown in intonation, i.e., high
frequencies to low frequencies, to resume the “nor-
mal” mode of speech. For the D2 and DID speech
types (case studies), we can note that: for the first,
a positive speed indicates that speech occurs with
quick responses, and negative acceleration also in-
dicates that the conversational flow presents abrupt
changes between speakers; for the latter, a posi-
tive ∆ and ∆2 shows that, even with the presence
of considerable discontinuities generated by the
speaker thinking about his response to speeches,
we have direct conversational behavior that flows
optimally within the scope of the speech interview.

Therefore, considering the differences between
SP_D2_255 and SP_D2_360, we decided to bring
both to the segmentation analysis shown in Section
3.2.



Figure 3: Bark scale spectrograms for the six inquiries selected from the NURC-SP Minimum Corpus: SP_EF_153,
SP_EF_156, SP_D2_255, SP_D2_360, SP_DID_235, and SP_DID_242, respectively. Here, warmer colors, such
as yellow and red, indicate greater energy intensity (range 0 dB to -40 dB), while cooler colors, such as blue and
purple, indicate lower energy intensity (range -40 dB to -80 dB).


