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Abstract
Currently there are several methods to anno-
tate different levels of a document, however,
these methods all have their own output and
some even create their own formats to share
the results of processing. This makes it so that
retrieving, sharing, and comparing information
from these different methods is not a trivial task.
Knowledge graphs are a flexible tool that can
be used to counter this difficulty as it creates
the possibility of having annotations at differ-
ent levels of the text (document, sentence and
word for example). Besides this, Knowledge
Graphs also provide us with the possibility of
using different Machine Learning algorithms
which can be applied to different Natural Lan-
guage Processing tasks, such as Named Entity
Recognition.

In this work we present a first assessment of
using Graph Machine Learning algorithms to
perform Named Entity Recognition on the Por-
tuguese Language. We use the Portuguese por-
tion of the WikiNER dataset and process it as a
Knowledge Graph with extra features from Uni-
versal Dependencies to perform a Node Clas-
sification Task for Named Entity Recognition.
We present the results for 3 different GraphML
approaches with different sub-graph combina-
tions and discuss how this could be used in the
future to predict new nodes that come into the
network. The approach used can be adapted to
other languages as there is nothing specific to
the Portuguese language other than the dataset.

1 Introduction

With the the expansion of the internet and IoT, the
world saw a dramatic increase in the amount of
data that is generated every day (Hilbert, 2016)
from various sources in different formats. How-
ever, this data can become useful information, for
example, twitter, can be used to identify adverse
drug reactions (Cocos et al., 2017) or analyse com-
ments to have a better understanding of patient
feedback (Khanbhai et al., 2021).

With all these different sources of data, hav-
ing a format that can provide support to differ-
ent processing methods is crucial. Knowledge
graphs are a flexible format that can accommo-
date all the differences in these sources. These
graphs can accommodate different annotations at
different levels of the documents and are able to
be integrated in a vast, already existing, seman-
tic web ecosystem. To turn this data into infor-
mation we still need to apply Natural Language
Processing (NLP) techniques such as Named En-
tity Recognition (NER) and Relation Discovery
(RD). In the past few years the field of NLP has
seen a big leap forward thanks to the appearance
of models such as Convolutional Neural Networks
(CNNs) (Krizhevsky et al., 2012) and Bidirectional
Long Short-Term memory (Bi-LSTMs) (Lample
et al., 2016) and, more recently, the use of pre-
trained models, such as BERT (Devlin et al., 2019)
or BART (Lewis et al., 2020), coupled with the oth-
ers techniques further improved the state of the art.
However, as the authors of (Battaglia et al., 2018)
noted, in order for these models to improve even
further it is necessary to be able to generalize be-
yond their experiences, the current models rely on
relational assumptions to make correct predictions.
This is where the use of Graphs and GraphML can
be used to improve the field (Battaglia et al., 2018).
These methods can handle a wide range of prob-
lems and data types and can even be merged with
the previous techniques. Several works have al-
ready explored Graph Networks by themselves for
NLP tasks or by merging them with other Deep
Learning (DL) techniques (Carbonell et al., 2021;
Cetoli et al., 2017; Madan et al., 2023) in different
fields.

In this work we perform a first assessment of
Graph ML techniques for Portuguese Named En-
tity Recognition (NER). We process the Portuguese
part of the WikiNER (Nothman et al., 2013) dataset
with Universal Dependencies (UD) (de Marneffe



et al., 2014) annotations by using OntoUD (Silva
et al., 2023) and apply three different Graph ML
algorithms to the dataset, Graph Convolutional Net-
works (GCNs) (Kipf and Welling, 2017), Graph
Attention Networks (GATs) (Veličković et al.,
2018) and GCNs coupled with DeepGraphInfo-
max (Veličković et al., 2018). We attempt several
data splits and sub-graphs to see how the algorithms
perform in data-scarce environments and present
our findings.

The rest of the paper is structured as follows:
Section 2 will describe the methodology used to
build the testing of these different algorithms and
the preparation of the dataset. Section 3 we will
report the results achieved in each test that was
performed and highlight the best results. Section 4
will focus on the conclusions achieved in this work
as well as what can be done in the future to further
assess the suitability of Graph ML for Portuguese
NLP.

2 Methodology

This section will focus on the methodology taken
for preforming the different test on each algorithm.
We will talk about how the dataset was built, the dif-
ferent features of the edge nodes that will be used
to predict entities and the general testing methodol-
ogy.

2.1 Dataset Description and Processing

As was said in Section 1 the dataset used was the
Portuguese portion of WikiNER (Nothman et al.,
2013) with Universal Dependency (de Marneffe
et al., 2014) tags in it. The WikiNER dataset was
processed by OntoUD (Silva et al., 2023), this tool
takes care of the UD annotations and the NER
entity annotations and converts it into a Knowledge
Graph which was then uploaded onto Virtuoso1.
However, the dataset cannot be used directly from
Virtuoso. Using SPARQL 2 queries we fetch the
WikiNER sentences and all of their dependents
(the words) and build a rdflib 3 graph which we
can convert into features and targets with the help
of StellarGraph (Data61, 2018). This is also the
library that was used for the algorithms.

Most of the features used are the edges on each
of the "Word" nodes from each sentence, namely:
type, word, poscoarse, pos, lemma, id, feats, edge,

1https://virtuoso.openlinksw.com/
2https://www.w3.org/TR/sparql11-query/
3https://rdflib.readthedocs.io/en/stable/

Sentence ID sub-graph No PER LOC MISC ORG Total
1-300 405 391 295 59 50 1200

301-600 364 174 647 88 45 1318
1501-1800 373 145 452 130 82 1182
2123-2422 361 408 603 57 39 1468

Random 300 358 316 560 62 77 1373

Table 1: Entity count for each WikiNER sentence list
that was tested.

depGraph, previousWord, head, senttext, fromText,
nextSentence, fromSentence. With the targets be-
ing the edge "wikinerEntity" which helps us iden-
tify 4 different entity types as well as a target for
when a node is not an entity: "No", "PER", "LOC",
"MISC" and "ORG". These features are described
more in-depth in the OntoUD paper (Silva et al.,
2023).

Since WikiNER is a big dataset it is not feasible
to use the entirety of the dataset to train these al-
gorithms, as such, we create different sub-graphs
based on 300 different sentences. We try differ-
ent combinations of sentences to see how robust
these algorithms are both during training and test-
ing. These sub-graphs are then split into train-
ing, test and dev, using a static seed to keep the
same split across the algorithms, with the results
reported being the ones from the test set. The split
followed a stratified approach since the dataset is
imbalanced. We also reduced the number of "No"
that was present in the dataset as not to have an
overwhelmingly percentage of the dataset have no
entities and attempt to have a better balance be-
tween words that are not entities and words that are.
Table 1 will show the number of elements for each
class in each of the sub-graph group that was used.

As we can see despite always fetching 299 sen-
tences the number of nodes to classify is different.
This is due to sentences having a variable number
of words so we cannot expect the same number of
nodes. There was no criteria to picking these ranges
of sentences other than to have an ample sample
from different points in the dataset and see how
the algorithm performs for these different ranges.
For each of these sub-graphs we tried 5 different
train/test/dev splits to see how the model performs
with less data. The values for train test and dev
were the following: First split - 80% - 4% - 16%,
Second split - 70% - 9% - 21%, Third split - 50%
- 25% - 25%, Forth split: 30% - 49% - 20% and
Fifth split - 20% - 64% - 16%.

The goal is to test these algorithms in data scarce
environments as well as environments where there

https://virtuoso.openlinksw.com/
https://www.w3.org/TR/sparql11-query/
https://rdflib.readthedocs.io/en/stable/


is a lot of data available for training and check their
performance.

2.2 Testing

The testing was done with the Stellar-
Graph (Data61, 2018) library. This is a library
that is built on top of Keras (Chollet et al., 2015)
to simplify the pipeline of creating Graph ML
algorithms. We chose three different algorithms
to test: Graph Convolutional Networks, Graph
Attention Networks and DeepGraphInfomax with a
final GCN prediction layer. We kept the parameters
the same for every test to maintain consistency
between tests. For the GCN the parameters were
the following: 2 layers with size 16 with ReLU
activation, 0.4 dropout, ADAM optimizer with a
learning rate of 0.01 and categorical cross-entropy
as our loss function. For the GAT the parameters
were as follows: 2 layers of size 8 and number of
targets with elu and softmax activation respectively,
in and attention dropout at 0.5, Adam optimizer
with a learning rate of 0.005 and categorical
cross-entropy loss function.

All the testing was done with 500 epochs with
an early stop condition and the dataset splits are
mentioned in Section 2.1. The early stop condition
is tied to the accuracy on the validation set with the
patience parameter set to 50 for all three models.
The idea behind splitting the data into 5 sub-graphs
each with subsequently less training data was to
monitor how these models perform in environments
that do not have a lot of training data available to
them.

Since the DeepGraphInfomax (Veličković et al.,
2018) is an unsupervised algorithm whose goal is to
learn node representations within a graph we paired
it with a GCN to form a semi-supervised algorithm
and see if this pairing would improve our results
significantly. The DeepGraphInfomax model is
described in the original paper (Veličković et al.,
2018) and the GCN model is the same as the stand-
alone model. We train the DeepGraphInfomax on
our graph for 500 epochs and then use it as a pre-
trained model for the GCN.

3 Results

This section will discuss the results obtained with
the dataset and algorithms that were mention in
Section 2.

3.1 GCN

This was the first model to be tested due to it being
the more simple model and the basis for the last
model that was tested. The parameters used for
this testing are described in Section 2.2. Despite
being able to train for 500 epochs these models
only trained between 120 to 250 epochs depending
on the split and the amount of data the model had
available. Figure 1 shows an example of the train-
ing losses and accuracy but for different data splits.
These curves are pretty similar and the same pat-
tern can be found in the rest of the training curves
for the remainder of the splits with the different
data.

Figure 1: Example of a training curve for the GCN
algorithm with the three first datasplits. The top graphs
show the training accuracy and the bottom graphs the
loss. From left to right we have the First split, the
Second split and the Third split.

The best result achieved by the model was an
accuracy of 92.5% with a loss of 0.35. This
was achieved in the 301-600 sub-graph with the
First split (80/4/16), however for this same sub-
graph training with 10% less data, the second split
(70/9/21) achieved a comparable result of 92.4%
accuracy.

3.2 GAT

The Graph Attention Network was the one that per-
formed the worse by a decent margin. This model
is probably one that would require a more complex
network and fine-tuning in order to achieve better
results.

The difference from the best performing GAT
model to the best split GCN model is an accuracy
of 3.77% both for an 80/20 data split. In Figure 2
we can see that the training is a lot more hectic
when it comes to accuracy and loss than the one
done by the GCNs.

Some of these models also ended their training
a lot sooner than the GCN with an epoch range
between 60 and 270. The model that performed
best here was with a First split (80/4/16) with an
accuracy of about 88.14%, however, for the same



Figure 2: Example of a training curve for the GAT
algorithm with the 0-300 sub-graph with the three first
datasplits. The top graphs show the training accuracy
and the bottom graphs the loss. From left to right we
have the First split, the Second split and the Third split.

sub-graph a Third split (50/25/25) model managed
comparable results with 87.77% accuracy.

3.3 DeepGraphInfomax + GCN
This was the more complex model but it still fell
short to the GCN. In order to perform the testing
of this model there were two training steps. The
unsupervised training of the DeepGraph Infomax
network and then the training of the GCN using the
previously trained model. The best result for this
model was using the second data split (70/9/21)
with the 2123-2422 sub-graph with an accuracy
of 95.49%. Figure 3 shows the training loss and
accuracy for three different splits in the same sub-
graph.

Figure 3: Example of a training curve for the Deep-
GraphInfomax/GCN algorithm with the three first datas-
plits. The top graphs show the training accuracy and the
bottom graphs the loss. From left to right we have the
First split, the Second split and the Third split.

The discrepancy in accuracy when training with
80% and 20% of the data is consistent with the
results shown by the other models. Table 2 shows
the mean results for each data split. The model
had results close to the GCN, however, the extra
training step made it take a lot longer to train.

Table 2 shows the mean accuracy achieved by
each model in each of the data splits.

4 Conclusion and Future Work

This paper presents a first assessment of using
Graph ML algorithms to perform NER for the Por-

First Split Second Split Third Split Fourth Split Fifth Split
GCN 0.8962 0.8673 0.85469 0.8339 0.7892
GAT 0.7839 0.7928 0.7892 0.7334 0.6987

DGI+GCN 0.8858 0.8877 0.8231 0.7730 0.7780

Table 2: Mean accuracy results for the different sub-
graphs using different algorithms.

tuguese Language. The results are good, with the
best model achieving a mean accuracy of 89.62%
over all the sub-graphs and performing well on data
scarce environments with a difference of about 11%
in accuracy between the best model, which was the
GCN. The others models preformed comparatively,
but the GAT algorithm was lagging behind with
their best result tying the worst result of GCNs.

One of the limitations of some of these methods
is the need to have the whole Graph available to
them at training time, even if they will not use every
node to train, in order to generalize to other nodes.
This means that whenever a new node comes in
we have to re-train the whole graph just to be able
to classify that node. This leads to huge resources
being needed when the graphs start getting big and
lots of nodes get added.

From the results achieved we can see that Graph
ML is promising for Portuguese NLP tasks. The
approach was used for Named Entity Recognition,
however, it can be used for different tasks making
it promising and worth exploring even further. For
future work we intend to apply and extend this work
to different, more recent, Graph ML algorithms
such as, for example, Graphormers (Ying et al.,
2021).

We also intend to try different Graph ML alterna-
tives, ones that allow for inductive representation,
for example, GraphSAGE (Hamilton et al., 2017)
to overcome this limitation. Another option is to
find the best data split with the least amount of data
possible so that whenever new nodes come in we
can train the model with this constant set of data
and then perform prediction only on the new nodes
that come in. Another option is to look into fine-
tuning the parameters of these networks to achieve
better results.
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