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Abstract

The paper focuses on machine translation from
Portuguese text to Brazilian Sign Language
(Libras) using Transformer-based models. In
recent years, the Transformer architecture
has established itself as a state-of-the-art
approach for machine translation between
written languages. To allow the use of the
Transformer architecture for translating
Portuguese into Brazilian Sign Language,
we represent the sign language in a written
form with glosses. As Brazilian Signing
Language is a low-research language, the
effective training of the Transformer model is
challenging. The paper presents experimental
results exploring transfer learning from pre-
trained models of ten different language pairs:
Portuguese-Galician, Galician-Portuguese,
Portuguese-Catalan, Catalan-Portuguese,
Portuguese-Ukrainian, Ukrainian-Portuguese,
English-Spanish, English-French, German-
Dutch, and German-Ukrainian. After transfer
learning and considering the BLEU metric
as the evaluation parameter, the experimental
results show that the language pairs whose
parent models had the biggest training datasets
and vocabulary (English-Spanish, English-
French, and German-Dutch) displayed the
highest performances. The English-Spanish
pair, the pair with the biggest training set,
achieved the highest performance, followed by
the English-French pair, the second biggest
training set. The Galician-Portuguese pair,
the pair with the smallest training set and
vocabulary, presented the fourth-best BLEU
score. One possible conjecture to explain this
last result is the close relation between the
languages.

1 Introduction

Sign Language Translation refers to the process of
machine translating between spoken languages and
sign languages, and also between sign languages,
and presenting the result in a visual form using

video or animation. The article focuses on machine
translation from a spoken/written language, specifi-
cally Portuguese text, to a sign language, namely
the Brazilian Sign Language (Libras). Our research
tackles the sign translation task in two steps: 1) the
machine translation from text to gloss using neural
network architectures and 2) the animation of a 3D
avatar controlled by the glosses generated by the
translation step. In the paper, we present experi-
ments using Transformers to perform the neural
translation from text to gloss. The second step of
our process is beyond the scope of the paper.

Sign languages are natural languages that convey
meaning through manual and non-manual compo-
nents. The manual elements include features like
the configuration of the hand and its orientation
and movement. Facial expressions, eye gaze, and
upper body movement are examples of non-manual
components. The visual-gestural modality of sign
languages precludes the direct application of ma-
chine translation techniques devised for translat-
ing between spoken/written languages. To apply
machine learning approaches for translation tasks
involving sign language, glossing has been used to
represent signs in a textual form and build parallel
corpora (Zhu et al., 2023; De Martino et al., 2023;
Ananthanarayana et al., 2021; Amin et al., 2021;
McCleary et al., 2010). As a common practice, the
written language used for glossing is the language
of the speaking community in which the deaf com-
munity is immersed. For translation, in general,
sign language glosses do not describe how signs
are produced but are intended to label and encode
the meaning of the signs. Typically, a gloss is a set
of one or more words written in capital letters that
labels a lexical item. In addition to the word(s) in a
written language, glosses can be extended with spe-
cial words and additional textual information in the
form of prefixes, suffixes, and symbols such as the
at sign (@), colon, and parentheses are used to iden-
tify partially-lexical signs like buoys and classifiers



Brazilian Portuguese Gloss Representation
Dura em média 30 dias. DURAR MAIS_OU_MENOS TRÊS_ZERO DIAS
Livrei-me de um bicho de pé ALIVIO ANIMAL.2 PÉ
Leonardo faz homenagem a festeiros de São
Benedito.

DAT:LEONARDO FAZER HOMENAGEM
FESTA.2 SÃO_BENEDITO

De repente senti um leve toque de dedos em
meu ombro.

DEPOIS EU SENTIR CL:TOQUE_OMBRO

Escreva uma palavra que também tenha esse
som e compartilhe com a turma.

ESCREVER UM PALAVRA TAMBÉM TER
PTF:EFI_CEN(SOM) SOM DEPOIS COMPARTIL-
HAR TURMA

Table 1: Examples of Brazilian Portuguese sentences (translation source) and their respective gloss representations
(translation target) .

and non-lexical signs like dactylology (Johnston,
2019, 2008; De Martino et al., 2023; McCleary
et al., 2010). In this work, we adopt the glossing
scheme described in De Martino et al. (2023) to
build our text-to-text parallel corpus. This scheme
is exemplified in Table 1 and commented in further
detail in Section 3.2.

For visually presenting sequences of glosses rep-
resenting sign language sentences, in our approach,
the articulation of the sign labeled by the gloss is
registered with motion capture. The motion capture
data drives the animation of our 3D avatar.

Due to its better performance over alternative
machine learning models, such as convolutional
and recurrent neural networks, the Transformer ar-
chitecture introduced by Vaswani et al. (2017) has
increasingly been used for machine translation. A
transformer is a deep learning architecture based on
an encoder-decoder model that relies on a parallel
multi-head attention mechanism to handle language
context dependencies. Currently, Transformer ar-
chitectures produce state-of-the-art (SOTA) results.
However, training SOTA Transformer models is
challenging because of the requirement of vast vol-
umes of parallel corpora. The challenge is even
greater for low-resource languages, like the Brazil-
ian Sign Language, that lack sufficient parallel cor-
pora for building neural models.

To cope with the lack of data, transfer learning
methods have successfully been applied in a diver-
sity of natural language processing tasks. Typically,
transfer learning methods reuse pre-trained models
on high-resource language datasets to reduce the
amount of training data required for low-resource
languages (Zhuang et al., 2021; Torrey and Shavlik,
2009; Pan and Yang, 2010).

A relevant question associated with trans-

fer learning concerns the choice of the base
model for transfer learning. Seeking to
cast some light on this issue, the paper
presents experimental results exploring trans-
fer learning from pre-trained models of ten
different language pairs: Portuguese-Galician,
Galician-Portuguese, Portuguese-Catalan, Catalan-
Portuguese, Portuguese-Ukrainian, Ukrainian-
Portuguese, English-Spanish, English-French,
German-Dutch, and German-Ukrainian. Many re-
search groups, institutions, and companies release
models on large datasets that can be used as can-
didate models for transfer learning. This paper ex-
plores transformer models pre-trained and shared
by the OPUS-MT project (Tiedemann and Thottin-
gal, 2020). We test and evaluate transfer learning
to tune the ten different models for translating from
Portuguese text into a Brazilian Sign Language
gloss representation.

Adhering to the terminology used in Zoph et al.
(2016), we call the pre-trained models the parent
models, and the models fine-tuned to translate from
Portuguese to Brazilian Sign Language glosses the
child models.

The remainder of this paper is organized as fol-
lows: We present an overview of related work in
the field in Section 2. In Section 3, we describe
our experiments, elaborating on the equipment and
methods applied. Section 4 shares the results of
our experiments. Finally, Section 5 concludes the
paper.

2 Related Work

Machine translation (MT), the automatic transla-
tion of text from a source into a target natural
language, has experienced major developments in
the last decades. In recent years, Neural Machine



Translation (NMT) has established itself as a SOTA
technique to overcome the deficiencies of transla-
tion strategies of the past, such as Rule-Based Ma-
chine Translation (RBMT) (Bhattacharyya, 2015)
and Statistical Machine Translation (SMT) (Koehn,
2010). Unlike those strategies, the NMT approach
seeks to define and train a neural network that can
accommodate wider textual context windows in a
flexible way (Bahdanau et al., 2015).

Sign Language Machine Translation (SLMT)
cannot directly utilize MT approaches devised for
translation between written languages. To over-
come this barrier, written representations of sign
languages have been tailored by different research
groups. Despite its limitation as a linguistic repre-
sentation (Pizzuto et al., 2006), glossing has been
used to build parallel corpora to train machine learn-
ing translation approaches (Zhu et al., 2023). Pre-
vious research in SLMT-Text2Gloss includes Stoll
et al. (2020); Saunders et al. (2020b). Stoll et al.
(2020) apply a Recurrent Neural Network for
Text2Gloss combined with Motion Graphs to esti-
mate pose sequences. The pose sequences are fed
to a Generative Adversarial Neural Network (GAN)
to produce videorealistic animations. Saunders
et al. (2020b) propose the Progressive Transformer
model to translate from discrete text sentences to a
skeleton representation of the sign language. Zhu
et al. (2023) present experiments to improve the
performance of Transformer models via data aug-
mentation, semi-supervised technique, and transfer
learning. All three works describe approaches to
translate to the Deutsche Gebärdensprache (DGS
– the German Sign Language) using the RWTH-
PHOENIX14T dataset (Forster et al., 2014). Also,
using the PHOENIX14T dataset, Egea Gómez et al.
(2022) leverage Transformer models via (1) inject-
ing linguistic features that can guide the learning
process towards better translations and (2) applying
a Transfer Learning strategy to reuse the knowl-
edge of a pre-trained model. Differently, our ex-
periments focus on Brazilian Sign Language as the
target language and Brazilian Portuguese as the
source language.

Recent advances in realistic video generation
guided by text prompts, such as seen in Ho et al.
(2022) may eventually facilitate end-to-end mod-
els that perform translation from text to sign lan-
guages video without relying in a intermediate rep-
resentation such as glosses. Some works already
demonstrate translation pipelines that don’t rely
on glosses, such as Saunders et al. (2020a), where

spoken language text is first fed to models that gen-
erate a sequence of poses which are then passed to
a second model that attempts to generate realistic
video from those poses.

Please refer to Kahlon and Singh (2023); Núñez-
Marcos et al. (2023); Naert et al. (2020) for further
surveys related to the main subject of the paper.

3 Materials and Methods

3.1 Parent Models

Ten different parent models were selected for fine-
tuning. All chosen models are part of the OPUS-
MT (Tiedemann and Thottingal, 2020) repository.
Originally trained using MarianMT, a C++ ma-
chine translation framework (Junczys-Dowmunt
et al., 2018), these models are available as PyTorch
models on Hugging Face Hub and could be easily
retrieved by code and fine-tuned using Hugging
Face Transformers library1.

Three of the ten models chosen were pre-trained
to translate from Portuguese into a target language
(Galician – pt-gl, Catalan – pt-ca, Ukrainian – pt-
uk). The other three selected models involved the
same language pairs but with reversed translation
directions. Models involving Portuguese and some-
what related languages (Galician, Catalan) were
chosen based on evidence that language related-
ness between languages in parent and child mod-
els plays a role in transfer learning effectiveness
(Dabre et al., 2017; Nguyen and Chiang, 2017;
Zoph et al., 2016). The other four chosen models
do not include Portuguese as the source or target
language in their original task (English-Spanish –
en-es, English-French – en-fr, German-Dutch – de-
nl, German-Ukrainian – de-uk) and are included for
comparison with those pre-trained on a translation
task involving Portuguese. Furthermore, these mod-
els, with the exception of the German-Ukrainian
model, were trained with a much larger dataset than
the ones including Portuguese. There is evidence
that the size of the training dataset plays a relevant
role in the child model performance (Kocmi and
Bojar, 2018).

To the best of our knowledge, all parent models
were trained with the Tatoeba Challenge (Tiede-
mann, 2020) training datasets, subversion v2020-
07-282.

1https://huggingface.co/docs/transformers/
index

2https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/data/subsets/
v2020-07-28

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data/subsets/v2020-07-28
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data/subsets/v2020-07-28
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data/subsets/v2020-07-28


Model BLEU Vocab. # Train
opus-mt-en-es 54.9 65001 952526014
opus-mt-en-fr 50.5 59514 180923860
opus-mt-de-nl 52.8 57567 38009174
opus-mt-pt-uk 39.8 62090 2350476
opus-mt-uk-pt 38.1 62090 2350476
opus-mt-de-uk 40.2 62523 1661237
opus-mt-pt-ca 45.7 20554 1164333
opus-mt-ca-pt 44.9 20554 1164333
opus-mt-pt-gl 55.8 5835 541122
opus-mt-gl-pt 57.9 5835 541122

Table 2: Summary of employed parent models with re-
ported BLEU scores on their original test set, vocabulary
size, and number of sentences in the original training
dataset. Displayed BLEUs were reportedly measured
against the Tatoeba Challenge test set for the language
pair.

All models share the exact same architecture,
with embedding output dimension of 512, 6 en-
coders, and 6 decoders, each with 8 attention heads
and SiLU activation function. Each model has its
own vocabulary and SentencePiece3 pre-trained
tokenizers. Further information on these models
can be found on Helsinki-NLP Hugging Face Hub
page4.

3.2 Parallel Corpus

The corpus employed for model training and test-
ing is composed of sentences from two elementary
school textbooks chosen from the National Pro-
gram of Books and Teaching Materials, a program
of the Brazilian federal government. The trans-
lation was carried out sentence by sentence, first
registering the translation in a reference video and
then annotated with glosses. Along with the gloss
translation, each sentence was also recorded with
a Vicon Motion Capture System5 and annotated
on Elan6. The motion capture data and the Elan
annotation are not used in the present work. The
translation team was composed of four bilingual
members fluent both in Brazilian Portuguese and
Brazilian Sign Language and four deaf researchers
who are native speakers of Libras.

Glosses were annotated using the formalism de-
scribed in De Martino et al. (2023). The scheme is
an adaptation of the concepts presented by Johnston

3https://github.com/google/sentencepiece
4https://huggingface.co/Helsinki-NLP
5https://www.vicon.com/
6https://archive.mpi.nl/tla/elan

(2019). In our project, a gloss represents a simpli-
fied “translation” of a sign expressed by Brazilian
Portuguese words and is uniquely associated with
the realization of the sign. The annotation follows
the general form [PREFIX:]ID-GLOSS[.n], where
elements in the square bracket are optional. The
ID-GLOSS element is composed of one or more
Brazilian Portuguese words in capital letters. If the
ID-GLOSS is formed by several words, they are
separated by underscores. The optional numeric
value “n” is included in the case of sign variation,
that is, if the sign associated with ID-GLOSS can
be articulated in more than one manner. The nu-
meric index allows the correct identification of the
associated articulation. PREFIX supplements the
information expressed by ID-GLOSS. Although
other prefixes are specified in the glossing scheme,
our dataset, beyond glosses with no prefix, contains
only glosses with the prefixes DAT: for dactylology
(fingerspelling), CL: for classifiers, and PTF: for
pointing signs where a fixed referent is pointed in
the signing space.

Examples of the used glossing schema are shown
in Table 1. Further details on the glossing scheme
can be found in De Martino et al. (2023).

Before use, all Brazilian Portuguese sentences
were spelled, checked, and corrected if needed. All
Brazilian Sign Language glossed sentences were
checked for typos and to see if they were all con-
forming to the glossing scheme.

Selected Transformer-based models were fine-
tuned for Text2Gloss translation using a parallel
corpus of 4553 Portuguese - Brazilian Sign Lan-
guage gloss sentence pairs. 4096 (90%) were used
in training, while the remaining 457 were used for
testing. When splitting in train/test, the dataset
was stratified so that splits contained a balanced
number of sentences from each of the two selected
textbooks. The glossed sentences contain 5109
unique glosses and a total of 31284 glosses. Out of
this total, 1909 (6.1%) glosses accommodate pre-
fixes that convey additional meaning for that gloss
(i.e. DAT:, CL:, PTF:)

3.3 Experiments
Experiments were performed using two different
pre/post-processing pipelines over the dataset de-
scribed in Section 3.2.

In the first one, named “lower”, glosses are just
lower-cased before being passed to the tokenizer.
Due to our usage of pre-trained tokenizers from
the selected models, passing the glosses in their

https://github.com/google/sentencepiece
https://huggingface.co/Helsinki-NLP
https://www.vicon.com/
https://archive.mpi.nl/tla/elan


Original Glossing DAT:LEONARDO FAZER HOMENAGEM FESTA.2 SÃO_BENEDITO
Variant “lower” dat:leonardo fazer homenagem festa.2 são_benedito
Variant “tags” [DAT_BEG] leonardo [DAT_END] [GLOSS_BEG] fazer [GLOSS_END]

[GLOSS_BEG] homenagem [GLOSS_END] [GLOSS_BEG] festa [VAR_2]
[GLOSS_END] [GLOSS_BEG] são benedito [GLOSS_END]

Table 3: Example of a glossed sentence, in original form and as it is passed to model on “lower” and “tags”
experiments.

original upper-case format would likely negatively
impact tokenization and model performance.

In the second one, named “tags”, we additionally
wrap each gloss inside tags to cue the start/end of
the gloss, the gloss prefixes, and the optional infor-
mation associated with it. After wrapping, glosses
are stripped of the special symbols used by the an-
notation scheme (prefixes, underscore, parenthesis,
colon, etc.), as the tags already unambiguously de-
note what was implied by the original annotation.
The employed tags are added as additional tokens
on the pre-trained tokenizers so that each tag is
tokenized as a single unique token. We enlarge the
pre-trained models’ token embedding layer input
dimension to accommodate the new tokens.

The tagging scheme is an attempt to improve
tokenization of glosses. After sentences are tagged,
they become a sequence of special tokens (i.e. the
tags) and plain text Portuguese words without un-
derscores and other notation-specific characters and
constructions that do not occur in parent languages.

In both schemes, when decoding results to com-
pute metrics, we post-process the generated text to
revert to the original annotation scheme. Table 3
shows an example of the schemes.

For each of the two pre/post-processing
pipelines, we executed 3 fine-tuning runs on each
selected parent model. Additionally, each experi-
ment variation was also trained once with random-
ized weights instead of the pre-trained weights to
verify whether knowledge transfer was actually oc-
curring. In total, 80 training runs were executed.
Each run was comprised of 6 training epochs with a
constant learning rate of 1e-4, batch size 8, adamW
optimizer, and cross-entropy loss. The training
phase was conducted with the aid of the Hug-
ging Face Transformers, Accelerate, and Tokeniz-
ers libraries. We employed an NVIDIA GeForce
RTX2080 Ti card to execute training and testing.
Each training and testing run took an average of 8
minutes.

3.4 Metrics

We used SacreBLEU v2.2.1 (Post, 2018) library
to compute BLEU scores for our test set. When
configuring SacreBLEU parameters, we explicitly
direct the library not to perform any additional tok-
enization since glosses should not be additionally
broken down (e.g. “DAT:BORGES” would be split
to “DAT: BORGES”) and skew the metric. All
other configurable parameters were left with their
standard value provided by the library.

Furthermore, we compute two additional met-
rics. The first one, called “Vocabulary Score”, is
the ratio of glosses generated by the model that are
present in the training dataset. An ideal Vocabu-
lary Score of "100" means that all glosses gener-
ated were previously seen on the training dataset.
Since leveraging the parent models’ weights meant
using their pre-trained SentencePiece tokenizers,
we expected our child models to generate glosses
that were not originally seen in the training dataset.
This effect is troubling because, since glosses are
linked to their unique realization in Brazilian Sign
Language, we wouldn’t want the model to gener-
ate glosses that don’t necessarily have a realization
associated with them. Therefore, we compute this
metric to quantify this effect.

The second one, called “Syntax Score,” is the ra-
tio of glosses generated by the model that correctly
follows the annotation scheme syntax mentioned
in Section 3.2. An ideal Syntax Score of "100"
means that all glosses generated by the model con-
form to the annotation scheme. For instance, if
the model generated the gloss "CAT:FESTA", the
Syntax Score would decrease since "CAT" is not a
valid prefix in our notation. In the same manner, if
it generated the gloss "GATO_", the Syntax Score
would decrease since glosses never end with an
underscore. This way, this metric tries to quantify
how well the child model is capable of correctly
reproducing our glossing scheme.



Experiment Randomized BLEU BLEU Vocab. Score Syntax Score
en-es-lower 1.32 24.06 92.56 99.13
en-es-tags 0.19 22.21 91.10 99.48
en-fr-lower 1.70 22.44 90.76 99.38
en-fr-tags 0.30 22.09 90.36 99.61
de-nl-lower 1.69 21.62 90.29 99.11
de-nl-tags 0.32 20.40 89.23 99.67
pt-uk-lower 1.71 16.79 93.16 98.90
pt-uk-tags 0.09 15.64 94.15 99.38
uk-pt-lower 1.22 16.68 90.83 99.16
uk-pt-tags 0.17 16.13 94.75 99.75
de-uk-lower 1.48 18.31 87.23 99.43
de-uk-tags 0.14 16.81 86.80 99.60
pt-ca-lower 1.31 19.16 90.81 98.89
pt-ca-tags 0.19 18.33 90.52 99.58
ca-pt-lower 1.10 18.83 90.59 98.92
ca-pt-tags 0.21 19.44 91.68 99.41
pt-gl-lower 1.85 19.76 89.52 98.97
pt-gl-tags 0.21 18.55 88.40 99.68
gl-pt-lower 1.44 19.68 89.16 98.92
gl-pt-tags 0.41 20.50 91.68 99.45

Table 4: Measured Randomized BLEU, BLEU, Vocabulary, and Syntax Score for each experimental setup.
Randomized BLEU was obtained in 1 run where parent model weights were discarded before the training procedure.
BLEU, Vocabulary, and Syntax Score are mean values for the 3 runs of each setup. The table is ordered by parents’
training dataset size (see Table 2) and grouped by language pairs.

4 Results and Discussion

The experimental results are presented in Table 4.
In the cases where the parent models’ weights

were discarded before the training procedure (Ran-
domized BLEU column), all models performed
poorly (below 1.85 BLEU for the "lower" variant
and below 0.41 BLEU for the "tags" variant) indi-
cating that the parent model’s pre-trained weights
were beneficial for the child’s translation task.

The best-performing experiment, BLEU-wise,
was the "en-es-lower" variant. The English-
Spanish parent model was trained with the most
sentences on their original translation task, com-
pared to all other parent models. It was trained
on 1760 times more sentences than the Portuguese-
Galician model, which is the parent pair with fewer
training sentences. This way, its superior perfor-
mance is consistent with findings that report that
parent training set size may play a significant role
in child model performance, such as seen in Kocmi
and Bojar (2018). Nevertheless, language relat-
edness may also have played a role in the result
since Spanish and Portuguese are closely related
romance languages. The same may be said of the

second-best performing model, trained with the
English-French parent.

Between experiments where Portuguese was part
of the parent models, the Portuguese-Galician and
Galician-Portuguese models achieved the best re-
sults in general, with the experiment "gl-pt-tags"
achieving the best BLEU among these. Portuguese-
Catalan and Catalan-Portuguese models followed
closely. Interestingly, Portuguese-Galician was the
parent model with fewer sentences in its original
training set. Therefore, the model’s performance
may be related to the fact that, in addition to the
presence of Portuguese in the parent pair, the sec-
ond language of the pair is also closely related to
Portuguese. This is consistent with reports of more
efficient transfer learning in cases of closely re-
lated languages, such as seen in Dabre et al. (2017);
Nguyen and Chiang (2017).

In general, experiments using the "tags" scheme
had slightly lower BLEU than their "lower" coun-
terparts, except in the "gl-pt" and "ca-pt" experi-
ments, where a small increase in BLEU was ob-
served. Syntax scores for the “tags” variant were,
for all models, slightly better than their counter-
parts. Nevertheless, all experiments resulted in a



Brazilian Portuguese Nome dado a determinado tipo de história.
Reference Translation NOME PRÓPRI@ TIPO HISTÓRIA
Best en-es-plain NOME PRÓPRI@ HISTÓRIA TIPO
Best en-es-tags NOME PONTO DETALHE TIPO HISTÓRIA
Brazilian Portuguese Releia o que o Sapo gritou. O que significa o sinal de pontuação !?
Reference Translation LER NOVAMENTE O_QUE SAPO GRITAR.2 O_QUE SIGNIFICA

SINAL DAT:PONTUAÇÃO PONTO_EXCLAMAÇÃO
Best en-es-plain RELER O_QUE SAPO GRITAR O_QUE SIGNIFICAR SINAL

DAT:PONTUAÇÃO
Best en-es-tags RELER O_QUE SAPO GRITAR O_QUE SIGNIFICAR SINAL

DAT:PONTUAÇÃO
Brazilian Portuguese Assinale a alternativa correta.
Reference Translation MARCAR RESPOSTA CORRET@
Best en-es-plain MARCAR RESPOSTA CORRETA
Best en-es-tags ASSINALAR ALTERNATIVA CERT@
Brazilian Portuguese Qual é a relação entre essa placa e o quadro?
Reference Translation PLACA PTF:ESI_CEN(PLACA) QUADRADO OS_DOIS RELAÇÃO

O_QUE
Best en-es-plain QUAL RELAÇÃO PLACA TAMBÉM QUADRO
Best en-es-tags QUAL RELAÇÃO ENTRE ESSA PLACA TAMBÉM QUADRO

Table 5: Examples of translations produced by the fine-tuned pre-trained English-Spanish model.

Syntax Score of over 98.89, and the improvement
brought by the “tags” scheme was marginal and,
in this case, possibly not worth the decrease in
other metrics. Additionally, inspecting the gener-
ated translation, we found translations made by
models trained with the "tags" scheme to be more
conservative on the generation of glosses contain-
ing special annotation prefixes, producing roughly
half as much prefixed glosses as their "lower" coun-
terparts over the test set.

In relation to obtained Syntax Scores, results
show that the child models successfully learned to
reproduce the gloss annotation schema when gener-
ating text, regardless of their BLEU scores. Vocab-
ulary Scores show that, in all models, roughly 10%
of produced glosses were not previously present
on the training set. Although this is not ideal,
post-processing pipelines that deal with out-of-
vocabulary glosses by removing or replacing them
with similar known ones could be sufficient to mit-
igate this effect.

Some examples of glossed text generated by the
best "en-es-plain" and "en-es-tags" models can be
seen in Table 5.

5 Conclusion and Future Work

In this work, we presented experiments conducted
to explore the possibility of leveraging pre-trained
translation models to perform Brazilian Portuguese
to glossed Brazilian Sign Language translation.
The observed results lead us to believe that the
parent model’s previous competence in process-
ing Portuguese is not a necessary factor for reach-
ing relatively good performance in our translation
task, seeing that the best-performing model was
pre-trained to translate English to Spanish. The
English-Spanish parent model was also the model
with the most sentences in its original training
dataset, with up to 1760 times more sentences than
the parent model with the least sentences (Galician-
Portuguese). This suggests that the size of the
parent’s original training dataset plays a significant
role in the child model performance, consistent
with what is reported in Kocmi and Bojar (2018).
Nevertheless, the fourth best-performing language
pair parent, Galician-Portuguese, yielded better re-
sults than other models despite having the smallest
training dataset among all models. In this case, we
believe language relatedness may have played a
part and mitigated the effects of the small training
set.

Experiments were also conducted utilizing a tag-



ging scheme devised to facilitate glossed text to-
kenization and also force the model to correctly
produce glosses that comply with the annotation
scheme syntax. In general, the tagging scheme pro-
duced marginal improvements in compliance with
the glossing scheme but reduced measured BLEU
in most cases.

In our experiments, we repeated a simplistic fine-
tuning scheme for all experiments, with a fixed
number of epochs and a constant learning rate. It
is likely that refining the training procedure with
techniques such as learning rate scheduling or early
stopping could improve model performance. Data
augmentation through back-translation or other
techniques could also be employed to tackle data
scarcity, such as those described by Zhu et al.
(2023). Techniques that would allow us to more
efficiently use pre-trained model tokenizers and
enable us to increase its vocabulary could also be
applied, like seen in Lakew et al. (2018).

If the presented models were used to drive sign
language video generation or drive a 3D avatar, fur-
ther post-processing measures would have to be
conceived to deal with out-of-vocabulary or incor-
rect syntax glosses, which we believe are bound to
be generated (even if seldom) in the present case
where we leverage pre-trained models and their
SentecePiece tokenizers.

We intend to conduct further investigations using
a larger Portuguese-Libras dataset in the future.
Further expansion of the used corpus is expected,
increasing its size and vocabulary variety.
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