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Abstract
People with schizophrenia spectrum disorder (SSD)—a psychiatric disorder, and people with Wernicke’s aphasia—
an acquired neurological disorder, are both known to display semantic deficits in their spontaneous speech outputs.
Very few studies directly compared the two groups on their spontaneous speech (Gerson et al., 1977; Faber
et al., 1983), and no consistent results were found. Our study uses word (based on the word2vec model with
moving windows across words) and sentence (transformer based-model) embeddings as features for a machine
learning classification model to differentiate between the spontaneous speech of both groups. Additionally, this
study uses these measures to differentiate between people with Wernicke’s aphasia and healthy controls. The
model is able to classify patients with Wernicke’s aphasia and patients with SSD with a cross-validated accuracy
of 81%. Additionally, it is also able to classify patients with Wernicke’s aphasia versus healthy controls and SSD
versus healthy controls with cross-validated accuracy of 93.72% and 84.36%, respectively. For the SSD individuals,
sentence and/or discourse level features are deemed more informative by the model, whereas for the Wernicke
group, only intra-sentential features are more informative. Overall, we show that NLP-based semantic measures
are sensitive to identifying Wernicke’s aphasic and schizophrenic speech.
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1. Introduction

The language of individuals with schizophrenia
spectrum disorder (SSD) and Wernicke’s aphasia
are both characterized by semantic impairments,
although they have distinct etiologies (Faber and
Reichstein, 1981). While the former is a long-term
psychiatric disorder that requires medication and
sometimes hospitalization (American Psychiatric
Association, 2013), the latter is an acquired neu-
rological language disorder resulting most com-
monly from a cerebrovascular accident (Acharya
and Wroten, 2023). Despite the differences in
etiology and overall symptomatology, both disor-
ders are known to affect the ability of individuals
to comprehend and to produce semantically coher-
ent speech. For example, speech by people with
SSD may include incoherence, derailment, tan-
gentiality and neologisms, and these features are
routinely used by clinicians as one of the strongest
diagnostic markers of schizophrenia in their men-
tal health examinations (Kuperberg, 2010). Sim-
ilarly, speech by people with Wernicke’s apha-
sia is characterized by incoherence, use of neolo-
gisms and jargon. Interestingly, in the literature on
both schizophrenia and Wernicke’s aphasia, “word
salad” (meaningless speech) has been used to de-
scribe panients’ speech (Butler and Zeman, 2005).

This evident resemblance between the two pa-
tient groups poses a challenge in distinguishing
them, potentially leading to misidentification of
Wernicke’s aphasia as a manifestation of a psychi-

atric thought disorder, particularly in the absence
of neuroimaging examination (Butler and Zeman,
2005). The advent of natural language process-
ing (NLP) and other machine learning (ML) tech-
niques, and their sensitivity to detect subtle pat-
terns in language data, enables us to quantify
and observe semantic patterns in speech and lan-
guage in general (e.g., Tang et al., 2021; Corcoran
et al., 2020; Sarzynska-Wawer et al., 2021; Fraser
et al., 2013; Themistocleous et al., 2021). There-
fore, the goal of the current study is to use NLP-
derived semantic measures to assess the degree
of (dis)similarity between speech characterized by
schizophrenia and Wernicke’s aphasia.

A typical approach in examining language dis-
ruptions in individuals with schizophrenia involves
assessing a deficit in ”connectedness” of lan-
guage, as a measure of coherence (Covington
et al., 2005). Given that words that occur to-
gether within the same sentence tend to share the
same meaning, connectedness can be measured
both at the intra- and inter-sentential level. Re-
cent advances in NLP have provided a means to
quantify connectedness between words, but also
across sentences, using word and sentence em-
beddings, respectively. This methodology has
demonstrated comparable or even superior effi-
cacy to current clinical scales in the diagnosis of
schizophrenia (Voppel et al., 2021; Tang et al.,
2021). Therefore, the current study aims to ad-
dress the question of whether NLP-derived mea-
sures can be used to distinguish people with Wer-
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nicke’s aphasia, schizophrenia and healthy con-
trols, based on spontaneous speech transcripts.

There have been few studies that have di-
rectly examined potential differences and similar-
ities between schizophrenic and fluent aphasic
speech. Gerson et al. (1977) compared people
with conduction, transcortical sensory, and Wer-
nicke’s aphasia with people with schizophrenia,
and showed that the former (three fluent aphasic)
group had more paraphasic errors while the lat-
ter had more bizarre themes. Faber et al. (1983)
compared the verbal abilities of 14 people with
schizophrenia, diagnosed with formal thought dis-
order, with 13 (11 of which were fluent) of those
with aphasia. The spontaneous speech transcripts
of the patients were presented for blind classifi-
cation to a language and speech therapist, two
psychiatrists and two neurologists. Their find-
ings showed that only three raters performed bet-
ter than chance level in correctly identifying flu-
ent aphasics, and with poor inter-rater reliability.
Most errors were associated with misclassification
of aphasia as schizophrenia than the other way
round (23 errors out of 65 ratings vs 9 errors
out of 70). No aphasic patient was unanimously
classified correctly, while 8 schizophrenic patients
were. In terms of speech differences, out of 14 lan-
guage abnormalities rated by the blind assessors,
five differentiated both groups: word approxima-
tions/private use of words, derailment/tangentiality
were seen more in schizophrenia, while the other
(aphasic) group demonstrated poverty of speech
content, reduced auditory comprehension, and
word finding difficulty. Contrary to the findings of
Gerson et al. (1977), there is no indication that the
schizophrenia group displayed a distinct thinking
disorder: Both groups had equal number of para-
phasias and neologisms, and only a third of the
schizophrenic group demonstrated illogical think-
ing.

This raises the question of whether clinicians
can reliably differentiate between the two disorders
solely based on examining their speech and lan-
guage (Gerson et al., 1977; Faber et al., 1983).
However, to the best of our knowledge, no study
has used an NLP-based or other ML approaches
to investigate this research problem. Since the cur-
rent determination of the etiology of individuals pre-
sented with this type of language impairment (ei-
ther Wernicke or schizophrenia) requires language
assessment, neurological examination and thor-
ough psychiatric evaluation, using an NLP method
for automatic classification can provide physicians
and neuropsychologists with objective and cost-
effective measures to assess and diagnose pa-
tients, and to track their responses to treatments.

2. Data and Participants

We obtained secondary data from two sources
for this study. The first source was the Aphasia-
bank (MacWhinney et al., 2011), from which we
obtained data of 26 patients with Wernicke’s apha-
sia (WA) and 37 healthy controls (HC: randomly
selected). The second source was the data pub-
lished and shared by Tang et al. (2021), from which
we included 27 patients with schizophrenia spec-
trum disorder (SSD). All participants were native
speakers of English. The data included sponta-
neous speech transcripts based on participants’ re-
sponses to semi-structured interview where ques-
tions such as “Tell me about an important event in
your life” were asked (see Appendix A for an ex-
ample of interviewer-participant dialogue for both
group). Although the data from these two sources
included picture descriptions which were different
depending on data source, we decided to focus
only on the open-ended personal questions since
participants’ responses to these questions would
always be different regardless of whether (1) the
data originates from the same source or not, (2)
the testing conditions remained consistent or not.
Data were pre-processed, and fillers or any sym-
bols inserted by annotators in the transcripts were
all removed.

3. Semantic Feature Extraction

The NLP-derived semantic scores in this study are
cosine similarity scores, based on two pre-trained
word and sentence embedding models: word2vec
(Mikolov et al., 2013) and Sentence-Bidirectional
Encoder Representation from Transformers
(sBERT: Reimers and Gurevych, 2019), respec-
tively. Semantic space models like word2vec
aim to capture the interconnectedness within
language by exploiting ‘similarities’ among words.
A cosine similarity of 1 means the two vectors are
identical, while a cosine similarity of 0 means the
two vectors are orthogonal. In this study we use
cosine similarity computed from the word2vec and
the sBERT models as a measure of how similar
words and sentences are to other words and
sentences, respectively. We assume that a lower
average cosine similarity in the speech output of
a speaker implies lower coherence. We used two
approaches for calculating similarities: (1) word
and sentence similarities within only participants’
utterances, (2) word and sentence similarities
within participants’ utterances in relation to the
interview question or prompt. This was done with
both the word2vec and the sBERT models, which
are described below.
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3.1. Word2vec

3.1.1. Participants’ utterances

For every interview question, we calculate the av-
erage and variance of cosine similarities between
the words in the participants’ utterances. To cap-
ture a wide range of similarity within and between
sentences, we use a moving window ranging from
1 to 19 (we adapted this method from Voppel et al.,
2021). To illustrate, if the moving window is one,
we would calculate the cosine similarity in the sen-
tence “I enjoy doing the laundry” as shown in Ta-
ble 1.

For each given window, cosine similarity be-
tween individual words uttered by the participants
are calculated, and then averaged to produce a sin-
gle average similarity value, reflecting the degree
of word connectedness within that window. Addi-
tionally, the variance in similarity scores is com-
puted over all similarities across the utterances of
the participant. For every participant, we ended up
with 19 average scores and 19 variance scores.

3.1.2. Participants’ utterance in relation to
interview questions

In addition to the word embeddings derived from
only participants’ utterances as described above,
we compute cosine similarities across the words
within the interviewer’s questions or prompts, and
then average them. We then measure the co-
sine similarity between the interviewer’s ques-
tion against the participant’s utterance, which we
split into three segments using the moving win-
dows. The first, second and third segments corre-
sponded with 1–7, 7–13, and 13–19 moving win-
dows, respectively. The rationale behind this is
to be able to capture potential derailment in an-
swers given by participants in relation to the ques-
tion by the interviewer, from the start of their ut-
terance to the end. For instance, if the individ-
uals with schizophrenia derailed more, then they
would have lower cosine similarity scores on the
second or third segments in relation to the aver-
aged cosine similarity score based on the inter-
viewer’s question. That is, their first response to
the interviewer’s question would be semantically
closer to the question than the second or third seg-
ment of their utterance, indicating derailment.

3.2. sBERT

3.2.1. Participants’ utterances

Contrary to word2vec, we used sBERT to create
sentence embeddings from the participants’ utter-
ances. We used moving windows from one to
three, where each moving window represents a

sentence rather than a word. Sentences were seg-
mented based on “.,!,?” separators. The mov-
ing window paradigm was used to create 1–3 win-
dows of sentence embedding, using both aver-
ages and variance of cosine similarity between the
sentences of each participant.

3.2.2. Participants’ utterance in relation to
interview questions

For every utterance by the participant and inter-
viewer, we averaged the vectors of all the sen-
tences, and measured their variance as well. Ad-
ditionally, similar to word2vec, we calculated the
cosine similarity between the average of the inter-
viewer’s questions and each of the 1–3 moving
windows of sentences based on participants’ utter-
ance, in order to capture derailment.

4. Method

We run a Random Forest (RF) model with all 51
predictors (features extracted using both word2vec
and sBERT) included, with diagnosis as the tar-
get containing Wernicke, SSD and Healthy con-
trols (Healthy_C). We compared the performance
of the RF model with Naive Bayes and Support
Vector Machine, but the RF was the best perform-
ing model. Therefore, we only report the experi-
ment with the RF model. We run three classifica-
tions in total comparing the Wernicke group vs the
SSD group; the Wernicke group vs the Healthy_C
group; and the SSD group vs the Healthy_C group.
Prior to running the RF model, we run a majority
class baseline classifier for each comparison.

We use k-fold stratified cross-validation with
k = 5 to train the model. This involves dividing the
training set into k parts, referred to as folds, and
subsequently training a model using each fold as
a validation set. For each fold, the remainder of
the data serves as its training set, with the goal of
mitigating overfitting to noise in the dataset. We
split the data into 80–20 for training and test sets,
respectively, due to the small sample size of our
dataset (Wernicke = 26, SSD = 27, Healthy_C
= 37, total features = 51). The experiment is
performed using the Scikit-learn module (Pe-
dregosa et al., 2011) for the Python programming
language. The code used is publicly available
on GitHub: https://github.com/FrankTsi/
NLP-Schizophrenia-Wernicke-s-aphasia.

5. Results and Discussion

Table 2 shows the classification scores for each
group comparison. Using a random forest bi-
nary classification algorithm based on mean, vari-
ance in connectedness, and sBERT scores, a k-

https://github.com/FrankTsi/NLP-Schizophrenia-Wernicke-s-aphasia
https://github.com/FrankTsi/NLP-Schizophrenia-Wernicke-s-aphasia
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Sentence: I enjoy doing the laundry
Moving Window 1

I-enjoy enjoy-doing doing-the the-laundry
Moving Window 2

I-enjoy-doing enjoy-doing-the doing-the-laundry

Table 1: Moving window example

SSD vs Wernicke Healthy_C vs Wernicke Healthy_C vs SSD
accuracy 81.27 93.72 84.36
precision 81.74 94.67 87.23
recall 81.00 93.32 83.58
f1-score 81.06 93.13 83.40

Table 2: The RF classification scores for the three group classifications based on the k-fold (k=5) cross
validation. Scores represent the means of all folds.

fold cross validation (k = 5) accuracy of 81.27%
is attained in distinguishing individuals with Wer-
nicke’s aphasia—a neurological language disor-
der, and schizophrenia—a psychiatric thought dis-
order. This performance significantly surpasses
the baseline model, which achieves only 51% ac-
curacy. Notably, this level of accuracy is higher
than previous attempts using clinical measures,
which often results in challenges with differentiat-
ing schizophrenic speech from that of Wernicke’s
aphasia, usually accompanied by poor inter-rater
reliability (Faber et al., 1983). Our results sug-
gest that the underlying language impairments in
schizophrenia and Wernicke’s aphasia are distinct,
despite both being associated with “word salad”
(meaningless speech), implying a perceived sim-
ilarity in their speech characteristics (Butler and
Zeman, 2005). Thus it can be argued that based
solely on spontaneous speech, psychiatric lan-
guage disorders can largely be distinguished from
neurological language disorders.

Turning now to the classification between the
healthy controls and each of the patient groups,
our model achieves a remarkably high accuracy
of 93.7% in classifying Wernicke’s aphasic individ-
uals and healthy controls (see Table 2). To the best
of our knowledge, this is the first study to report the
use of an NLP approach to automatically detect
Wernicke’s aphasia. Furthermore, our random for-
est classifier demonstrated an accuracy of 87.6%
in classifying the SSD group against the healthy
control group. It is worth noting that these accu-
racy scores are based on a k-fold cross-validation
(k = 5) report. This level of accuracy for distin-
guishing SSD from healthy controls is consistent
with findings from other studies using NLP meth-
ods to detect schizophrenia (Voppel et al., 2021;
Tang et al., 2021; Iter et al., 2018).

After demonstrating the sensitivity of our ran-
dom forest classifier to discriminate between Wer-

nicke’s aphasic and the SSD speech transcripts,
we now turn to the question: which word connect-
edness features are more important for our clas-
sifier to distinguish schizophrenic spontaneous
speech from that of Wernicke’s. We approached
this by first comparing both the Wernicke’s apha-
sic and the SSD speech against the healthy con-
trol speech, and then calculating the random for-
est’s Gini importance of features to evaluate the
importance of each feature used by the classifier.
We report only the top ten Gini importance features
and their scores, as demonstrated on Figure 1 (see
Appendix B for the scores of all features). Our
findings demonstrate that for Wernicke’s aphasic
speech and the healthy control, the features that
were consistently deemed more important for our
classifier were the word level embeddings captur-
ing the average (ave_windows 1, 3, 5, 9, 10, 12,
14) cosine similarities, and variance (var_window
1). The feature ‘INT_PAR_distance_score’ (indi-
cating the distance between the average cosine
similarity score of the Interviewer’s questions vs
the participant’s response) was the most informa-
tive to the model. The sBERT score from the first
sentence (sBERT_ave_window_1) uttered by Wer-
nicke’s aphasic participants was also informative
to the model, with a rank of three. Overall, for in-
dividuals with Wernicke’s aphasia, intra-sentence
word connectedness is deemed more informative
in distinguishing them from healthy controls.

Conversely, the features that were most impor-
tant for our classifier to distinguish individuals with
SSD from healthy controls are the sentence-level
characteristics extracted from sBERT sentence
embeddings. Interestingly, all three sentence-
level windows from sBERT ranked among the top
4 features deemed most significant by the random
forest classifier. Specifically, for the SSD group,
unlike the Wernicke group, discourse incoherence
spanning across sentences emerged as the most
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Figure 1: Feature importance scores.

critical feature in distinguishing them from healthy
controls. This finding is in line with the sponta-
neous speech characteristics of individuals with
schizophrenia, as reported in the literature (Cov-
ington et al., 2005; Voppel et al., 2021; Tang et al.,
2021; Iter et al., 2018).

6. Limitations

We now consider the limitations of this study. First,
the sample sizes of both patient groups were small
for a classification model that splits data into train-
ing and testing data. We only had a testing sam-
ple of 6 or 7 for each of the Wernicke and SSD
groups. This limits the generalizability of the cur-
rent results. Second, we used interviewer-related
measures with the assumption that all interview-
ers frame questions in the same way and make an
equal number of turns in the conversation. This
may not always be the case. Interviewer styles
might differ across questions, interviews, and pro-
tocols. Such variation can affect the reliability of
the measure. Additionally, our approach did not
account for the occurrences of neologisms and
misspellings, which could potentially affect the sim-
ilarities scores from the word2vec model. We
suggest that future efforts address these issues.
Lastly, it is known that medication also influences
the speech of patients with SSD (de Boer et al.,
2020; Sinha et al., 2015). We recommend that fu-
ture studies take into account the potential effect
of medication on the performance of the patients
with SSD, although such data was not available for
the cohort involved in this project.

7. Conclusion

In summary, our results demonstrate that
semantics-based, NLP-derived metrics alone can
potentially serve as a diagnostic tool to differenti-
ate not only individuals with Wernicke’s aphasia
and schizophrenia from healthy controls but also
between these two patient cohorts. In spite of the
limitations discussed in the previous section, the
results of this study are particularly promising, as
the current method of distinguishing Wernicke’s
aphasia and schizophrenia necessitates language
assessment, neurological examination, and com-
prehensive psychiatric evaluation, which can be
resource-intensive and time-consuming.
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A. Example of spontaneous speech
sample from both groups

Interviewer - SSD dialogue
Interviewer: Now I’m just going to ask you two

open ended questions, so just try to respond to my
prompts with as much detail as you can. Okay?
Interviewer: Tell me about yourself.
Participant: So
I’m the devil.
And
I can’t talk like the devil so I have to change my
face a lot.
But that’s one of my faces on the inside and out.
So I guess
I have to be kind to that one and let him talk at all.
You know, the things he would have said if he was
a naughty person.
But not be like him, and save the world.
Interviewer: Anything else?
Participant: breath I have a wife.
with three
hundred gazillion and twenty-six kids.
I have a mother that’s name is [Patricia].
I love my dad the most,
because he never hits me.
Mom used to whip me.
But she’s the devil’s
daughter.
And that’s just a role she had to play, not because
she wanted to play.

Wernicke’s participant - Interviewer dialogue
Interviewer: well thinking back um can you tell

me about something important that happened in
your life?
Participant: being born i guess.
best.
i when i was about three i was three years.
yeah.
he’s he drawing you know.
oh yeah.
oh yeah.
i have three girls brothers who were babies you
know.
and i got a i got we can see my brothers if you
wanna.
over there i got here over there.
okay.
yeah for for a minute.
mhm.
well firstname J and firstname W they they fought
all the time you know for high school.
and they at time that they’re they were about
seven eight high school you know.
they fought a little bit.
me and firstnamew got two fights.
wayne no firstnamej what one fight me and me

and him.
yeah.
i wish they one time we had a girl and her and just
three boys.
i i wish i was not the baby and a girl and they had
four no kids you know.
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B. All Features with scores for both
the SSD and Wernicke groups
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