@inproceedings{lindsay-etal-2024-cross,
title = "Cross-Lingual Examination of Language Features and Cognitive Scores From Free Speech",
author = {Lindsay, Hali and
Albertin, Giorgia and
Schwed, Louisa and
Linz, Nicklas and
Tr{\"o}ger, Johannes},
editor = "Kokkinakis, Dimitrios and
Fraser, Kathleen C. and
Themistocleous, Charalambos K. and
Fors, Kristina Lundholm and
Tsanas, Athanasios and
Ohman, Fredrik",
booktitle = "Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.rapid-1.3",
pages = "16--25",
abstract = "Speech analysis is gaining significance for monitoring neurodegenerative disorders, but with a view of application in clinical practice, solid evidence of the association of language features with cognitive scores is still needed. A cross-linguistic investigation has been pursued to examine whether language features show significance correlation with two cognitive scores, i.e. Mini-Mental State Examination and ki:e SB-C scores, on Alzheimer{'}s Disease patients. We explore 23 language features, representative of syntactic complexity and semantic richness, extracted on a dataset of free speech recordings of 138 participants distributed in four languages (Spanish, Catalan, German, Dutch). Data was analyzed using the speech library SIGMA; Pearson{'}s correlation was computed with Bonferroni correction, and a mixed effects linear regression analysis is done on the significant correlated results. MMSE and the SB-C are found to be correlated with no significant differences across languages. Three features were found to be significantly correlated with the SB-C scores. Among these, two features of lexical richness show consistent patterns across languages, while determiner rate showed language-specific patterns.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lindsay-etal-2024-cross">
<titleInfo>
<title>Cross-Lingual Examination of Language Features and Cognitive Scores From Free Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hali</namePart>
<namePart type="family">Lindsay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgia</namePart>
<namePart type="family">Albertin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louisa</namePart>
<namePart type="family">Schwed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicklas</namePart>
<namePart type="family">Linz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Tröger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitrios</namePart>
<namePart type="family">Kokkinakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathleen</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charalambos</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Themistocleous</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="given">Lundholm</namePart>
<namePart type="family">Fors</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athanasios</namePart>
<namePart type="family">Tsanas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fredrik</namePart>
<namePart type="family">Ohman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Speech analysis is gaining significance for monitoring neurodegenerative disorders, but with a view of application in clinical practice, solid evidence of the association of language features with cognitive scores is still needed. A cross-linguistic investigation has been pursued to examine whether language features show significance correlation with two cognitive scores, i.e. Mini-Mental State Examination and ki:e SB-C scores, on Alzheimer’s Disease patients. We explore 23 language features, representative of syntactic complexity and semantic richness, extracted on a dataset of free speech recordings of 138 participants distributed in four languages (Spanish, Catalan, German, Dutch). Data was analyzed using the speech library SIGMA; Pearson’s correlation was computed with Bonferroni correction, and a mixed effects linear regression analysis is done on the significant correlated results. MMSE and the SB-C are found to be correlated with no significant differences across languages. Three features were found to be significantly correlated with the SB-C scores. Among these, two features of lexical richness show consistent patterns across languages, while determiner rate showed language-specific patterns.</abstract>
<identifier type="citekey">lindsay-etal-2024-cross</identifier>
<location>
<url>https://aclanthology.org/2024.rapid-1.3</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>16</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Examination of Language Features and Cognitive Scores From Free Speech
%A Lindsay, Hali
%A Albertin, Giorgia
%A Schwed, Louisa
%A Linz, Nicklas
%A Tröger, Johannes
%Y Kokkinakis, Dimitrios
%Y Fraser, Kathleen C.
%Y Themistocleous, Charalambos K.
%Y Fors, Kristina Lundholm
%Y Tsanas, Athanasios
%Y Ohman, Fredrik
%S Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F lindsay-etal-2024-cross
%X Speech analysis is gaining significance for monitoring neurodegenerative disorders, but with a view of application in clinical practice, solid evidence of the association of language features with cognitive scores is still needed. A cross-linguistic investigation has been pursued to examine whether language features show significance correlation with two cognitive scores, i.e. Mini-Mental State Examination and ki:e SB-C scores, on Alzheimer’s Disease patients. We explore 23 language features, representative of syntactic complexity and semantic richness, extracted on a dataset of free speech recordings of 138 participants distributed in four languages (Spanish, Catalan, German, Dutch). Data was analyzed using the speech library SIGMA; Pearson’s correlation was computed with Bonferroni correction, and a mixed effects linear regression analysis is done on the significant correlated results. MMSE and the SB-C are found to be correlated with no significant differences across languages. Three features were found to be significantly correlated with the SB-C scores. Among these, two features of lexical richness show consistent patterns across languages, while determiner rate showed language-specific patterns.
%U https://aclanthology.org/2024.rapid-1.3
%P 16-25
Markdown (Informal)
[Cross-Lingual Examination of Language Features and Cognitive Scores From Free Speech](https://aclanthology.org/2024.rapid-1.3) (Lindsay et al., RaPID-WS 2024)
ACL
- Hali Lindsay, Giorgia Albertin, Louisa Schwed, Nicklas Linz, and Johannes Tröger. 2024. Cross-Lingual Examination of Language Features and Cognitive Scores From Free Speech. In Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024, pages 16–25, Torino, Italia. ELRA and ICCL.