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Abstract 
Linguistic alterations represent one of the prodromal signs of cognitive decline associated with Dementia. In recent 
years, a growing body of work has been devoted to the development of algorithms for the automatic linguistic 
analysis of both oral and written texts, for diagnostic purposes. The extraction of Digital Linguistic Biomarkers from 
patients' verbal productions can indeed provide a rapid, ecological, and cost-effective system for large-scale 
screening of the pathology. This article contributes to the ongoing research in the field by exploring a traditionally 
less studied aspect of language in Dementia, namely the rhythmic characteristics of speech. In particular, the paper 
focuses on the automatic detection of rhythmic features in Italian-connected speech. A landmark-based system 
was developed and evaluated to segment the speech flow into vocalic and consonantal intervals and to calculate 
several rhythmic metrics. Additionally, the reliability of these metrics in identifying Mild Cognitive Impairment and 
Dementia patients was tested. 
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1. Introduction 

Dementia is a syndrome that causes the 
disturbance of multiple higher cortical functions, 
leading to the loss of functional autonomy (Altieri 
et al., 2021). It represents a major public health 
concern due to the high number of people 
affected in the world. Moreover, it is estimated 
that the number of cases will increase up to 139 
million by 2050 (Long et al., 2023). This syndrome 
can be caused by many pathologies (e.g., 
cerebral atrophies due to protein misfolding 
diseases, brain damage linked to vascular issues, 
and metabolic disorders) making the clinical 
manifestations varied. Moreover, the symptoms 
can be easily misinterpreted as effects of 
physiological ageing. This is particularly true in 
the very early stages of the disease, a prodromic 
state of cognitive decline called in the scientific 
literature “Mild Cognitive Impairment” (MCI, 
Petersen et al., 1999). This timeframe holds 
special interest for researchers focused on early 
intervention tools.  
A large body of evidence demonstrates that 
language is one of the cognitive domains affected 
by Dementia (Boschi et al. 2017; Gagliardi, 2024). 
More importantly, since the linguistic alterations 
manifest much earlier than other clinical 
symptoms (Eyigoz et al., 2020), a substantial 
amount of research explored the use of linguistic 
analysis as a screening tool (König et al., 2015; 
Gagliardi and Tamburini, 2021; 2022; 
Themistocleous et al., 2018; 2020). Therefore, 
language appears to be a promising and valuable 
source of biomarkers. Furthermore, with the 
emergence of sophisticated technologies for 
Natural Language Processing (henceforth: NLP), 
much work has been done in the past decade to 
develop automatic tools for linguistic analysis 
(Martínez-Nicolás et al., 2021; Calzà et al., 2021). 
The advantages of using NLP instruments as a 

screening tool are noteworthy: they are non-
invasive, fast, easy to employ, and significantly 
less expensive than other diagnostic techniques 
(Gagliardi et al., 2021; Duñabeitia et al., 2024).   
This work specifically focuses on the automatic 
detection of rhythmic features in Italian-connected 
speech, a level of analysis that has received less 
attention in the literature. A computational tool 
was developed and evaluated for their automatic 
extraction. Furthermore, their relationship with the 
pathological conditions of MCI and early 
Dementia (eD) was investigated.  
The paper is structured as follows. Section 2 is 
devoted to the discussion of the role played by 
rhythmic parameters in the study of pathological 
speech, as well as the task of their automatic 
detection. In section 3, a solution based on 
'acoustic landmarks' is presented. Section 4 
describes and discusses the evaluation of the 
system's performance. Section 5 illustrates the 
application of the algorithm on connected speech 
from Italian patients diagnosed with MCI or 
Dementia. Additionally, the relationship between 
the features and the pathologies is investigated 
through statistical analysis. In section 6, the main 
limitations of the study are outlined, along with 
some conclusions. 

2. The Analysis of Rhythm and its 
Application to Pathological 

Speech 

2.1 Automatic Detection of Rhythmic 
Features Using Landmarks-based 
Acoustic Analysis 

 
Although rhythmic linguistic analysis is a powerful 
tool for discriminating various pathological 
conditions (Keshavarzi et al., 2024; Lowit et al., 
2018), it comes with some downsides. It often 
requires manual (time-aligned) transcription and 
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annotation of the recorded speech. This 
procedure is not only extremely time-consuming 
but also demands a trained specialist for accurate 
execution. Furthermore, the results can be 
challenging to replicate due to the subjective 
element of human judgment. As a result, 
conducting large-scale studies is hardly feasible. 
Taken together, these obstacles make the actual 
use of linguistic analysis in the clinical setting very 
unlikely. In this respect, the development of 
algorithms for the automation of this task would 
be highly beneficial. 
One promising tool for this purpose is 
Speechmark® (Boyce et al., 2012), a software for 
landmark-based acoustic analysis. The notion of 
‘landmarks’ was first introduced by the Speech 
Communication Group at MIT (Stevens et al. 
1992), and it can be defined as timestamps, 
denoting sharp changes in speech articulation, 
corresponding to specific transitions between 
different classes of sounds in the signal (Stevens, 
2002). Thus, landmarks represent the acoustic 
correlate of distinctive articulatory features.  
Utilising landmarks in acoustic analysis appears 
particularly suitable for automatically computing 
rhythmic features: from the patterns of acoustic 
landmarks, vocalic and consonantal intervals can 
be derived, facilitating the calculation of many 
rhythmic metrics.  

2.2 Rhythmic Features in the Study of 
Pathological Speech 

Various kinds of linguistic rhythm metrics have 
been employed in the study of pathological 
speech, yielding robust results. For instance, 
rhythmic alterations have been found to be 
strongly linked to Dysarthria resulting from 
Parkinson’s disease (Pettorino et al., 2016; Lowit 
et al., 2018). Nevertheless, Ivanova et al. (2024) 
highlighted that rhythmic alterations in cognitive 
decline due to Dementia are less clear, given the 
largely inconsistent results available in the 
literature. Cera et al. (2018), among others, 
analysed several rhythmic features, such as 
vowel duration and the ratio between pauses and 
phonation time, in Dementia of the Alzheimer 
type. Their patients exhibited significantly longer 
vowel percentages and longer pauses compared 
to healthy controls matched by age. In Meilán et 
al. (2020), various acoustic and rhythmic 
parameters were detected, comparing subjects 
with non-amnesic MCI and subjects with 
prodromal Dementia. Regarding the rhythmic 
features, they effectively discriminate between the 
two groups. Contrary to expectations, in Beltrami 
et al. (2018) and Calzà et al. (2021), the computed 
rhythmic parameters do not significantly differ 
between healthy control subjects and patients, 
nor between MCI subjects and eD subjects.  
Therefore, it is even more complex to identify the 
physiological correlates of linguistic rhythm and 
their alterations due to pathological conditions. 
Likely the interplay of numerous physiological 

factors overall accounts for linguistic rhythm 
(Poeppel and Assaneo, 2020). As stated by Lowit 
(2014), anything that disturbs the natural flow of 
speech could essentially cause deviations in 
rhythmic structure. It is known that, since many 
rhythmic metrics are influenced by speech rate, 
rhythm is intertwingled with speech rate. In terms 
of physiology, it is reported that the overall speech 
rate declines with healthy aging (Pellegrino et al., 
2018; Linville, 1996). Specifically, the temporal 
properties of speech, such as articulation rate, 
articulation rate stability, and movement time (i.e., 
the time from movement initiation to completion), 
are disrupted in normal aging, most likely 
reflecting central difficulties at the level of speech 
motor planning or execution (Tremblay et al., 
2019) and muscular atrophy at the level of 
articulatory organs (Scholtz, 2007). Those 
difficulties in healthy older people may be 
exacerbated in people affected by a disease. In 
neuropathological conditions, specific and 
additional damages are present in the cortical 
areas affected by the disorder. For instance, 
Parkinson’s disease is characterised by a 
disruption in the cortical sensorimotor system 
(Chen et al., 2022) leading to neuromuscular 
control impairment that is reflected in the rhythmic 
alterations consistently associated with this 
disease (Lowit et al., 2018). With regard to 
Dementia, the cortical areas involved may vary 
considerably and the effects on linguistic rhythm 
depend on the localisation and the extension of 
the neural disruption which is described as 
atrophy. While in Alzheimer’s disease the 
temporoparietal regions are the most affected by 
the atrophy, in Frontotemporal Dementia it is the 
frontotemporal area to be mainly involved 
(Nicastro et al., 2020). According to Meilàn et al. 
(2020), the disordered rhythm in eD subjects is 
the result of alterations comparable to the ones 
found in neurogenic speech disorder patients: 
such as changes in speech timing and poor 
coordination in articulatory systems. Similarly, 
Cera et al. (2018) argue that these disorders are 
related to phonetic-motor planning, which leads to 
poor pronunciation and an alteration in 
phonological planning and rhythm. Overall, the 
evidence from the neurophysiology of Dementia 
seems to lead to the hypothesis of a speech 
impairment characterised by rhythmic problems. 
Nevertheless, more research is needed to identify 
the exact physiological mechanisms underlying 
the linguistic rhythm phenomena both in healthy 
and pathological subjects. 

3. A Landmark-based Algorithm 

In the present work, a landmark-based system 
was developed to automatically segment speech 
into vocalic and consonantal intervals and to 
calculate several rhythmic metrics. The algorithm 
comprises the software Speechmark (Boyce et 
al., 2012) and a custom-designed Python script. 
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A two-step procedure is foreseen:  
1. Landmarks are identified by Speechmark 

(SM), which provides a time-aligned 
annotation (i.e., each landmark is 
associated with a timestamp) (§ 3.1).  

2. The script extracts consonantal and 
vocalic intervals from the SM’s 
annotation, from which, in turn, rhythmic 
features are computed (§ 3.2). 

3.1 Speechmark  

Speechmark (Boyce et al., 2012) is a MATLAB® 
toolbox that automatically detects landmarks 
directly from the audio files. It was developed 
based on the work of Stevens (2002), Howitt 
(2000), and Liu (1996). The software (Ishikawa et 
al., 2017) has been largely employed in the 
clinical linguistics field to study numerous different 
pathologies: Dysarthria (Liu and Chen, 2021), 
Dysphonia (Ishikawa et al., 2023), Autism 
Spectrum Disorder (Lau et al., 2023), and Speech 
Sound Disorder (Valentine et al., 2023), to 
mention a few.  
In the present study, the vowel_segs_full function 
from the 1.3 version of the SM MATLAB toolbox 
was employed. The SM algorithm distinguishes 
among several types of landmarks based on 
whether they signal laryngeal or vocal tract 
events, as well as abrupt or peak events 
(MacAuslan, 2016). The peak events are detected 
when there’s a peak in the energy of the signal. 
For instance, a vowel peak landmark (V-lm) is 
found when there is «a local peak of harmonic 
power. Articulatorily, vowel landmarks often 
correspond to the maximum opening of the mouth 
within a syllabic unit» (MacAuslan and Boyce, 
2016). The abrupt ones are named as such 
because they are identified by a rapid rise or fall 
of energy across several frequency bands. For 
this reason, the abrupt landmarks come in pairs of 
positive and negative: positive (+) for energy 
rising and negative (-) for energy declining. For 
instance, one of the main abrupt landmarks 
detected by SM is the (+/-) g-landmark (g-lm). It is 
particularly significant since it signals the start and 
the end of vocal folds’ activation.  For a more 
comprehensive description of the landmarks, 
please refer to Appendix A.  
The pairs of abrupt landmarks serve as the 
starting point for our script to detect vowel and 
consonant segments. 

3.2 From Speechmark’s Annotation to 
the Rhythmic Features  

The script takes the landmark annotation as input 
and produces a list of vocalic and consonantal 
intervals as output. Rhythmic features are 
estimated from these intervals.  
First, the system locates the g-lms and defines the 
intervals between pairs of + g-lm and - g-lm. To 
identify vowels, it searches for intervals opened 
by a + g-lm, which indicates the activation of the 
vocal folds. Then, it checks if a V-lm exists within 

the same time interval. If one is found, the 
segment is labelled as vocalic. If there is no 
matching V-lm, the system looks for landmarks 
that correlate with voiced consonants (cf. 
Appendix A). If those are found, the segment is 
labelled as consonantal. If they are not found, the 
segment is labelled as vocalic. Thus, the primary 
criterion used to identify vocalic intervals is finding 
an interval opened by a + g-lm and a 
correspondent V-lm within the same time span. 
Conversely, if the interval starts with a - g-lm, it 
indicates that the speech segment is unvoiced. It 
is therefore labelled either as silence or as 
consonantal. Silence is identified if no other 
landmark is present between the - g-lm and the 
successive + g-lm, and the interval is at least 200 
ms long. In all other cases, the interval is labelled 
as consonantal.  
These intervals are utilised to compute the 
rhythmic features described in § 5.2. 

4. Algorithm Evaluation 

4.1 Materials and Methods 

The system was then evaluated for performance 
testing. The material selected for the evaluation 
was composed of 100 audio recordings extracted 
from the CLIPS corpus (Albano Leoni, 2007; 
2004), balanced by speaker gender and elicitation 
task. This linguistic resource provides different 
levels of manual annotation, including time-
aligned phonetic transcription, which was 
exploited as a starting benchmark for 
performance assessment, to carry out the 
automatic evaluation. Moreover, moving forward 
in the next stages of the system’s development, 
this baseline will be essential for tracking the 
evolution of performance. 
The evaluation was conducted by measuring the 
alignment between the system's annotation and 
the target annotation. The fair evaluation 
approach (FairEval), as described in Ortmann 
(2022), was adopted to make the metrics both 
insightful and suitable for comparison with other 
systems.  According to the scholar, traditional 
metrics, (i.e., precision, recall, and F1-score) can 
result in double penalties when applied naively to 
segmentation alignment measures. 
Consequently, the following types of errors were 
examined:  

- Deletion: the target span is missed. It 
counts as a false negative.  

- Insertion: the span is present in the output 
but doesn't correspond (not even 
partially) to any of the ones in the target 
annotation. It counts as a false positive.  

- Labelling error (L_E): the output span 
matches with the target span but the label 
is incorrect.  

- Boundary error (B_E): the output span 
partially overlaps with the target span and 
the label is correct.  
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- Labelling and boundary error (L_BE): the 
output span partially overlaps with the 
target span and the label is incorrect. 

A threshold of 20 ms was adopted.  

4.2 Results  

The Figure 1 displays algorithm errors across the 
five different types. 

 

Figure 1: Errors made by the landmark-based system. 

Precision, recall, and F1-score values were 
obtained by converting errors into false positives 
and false negatives (with true positives being 
annotations that had both matching boundaries 
and labels). According to the equation proposed 
by Ortmann (2022), different weights were 
assigned to different errors. The results of the 
evaluation are listed below: 

PRECISION = 0.576 
RECALL =0.325 
F1-score =0.415 

We can observe a trade-off between precision 
and recall. The system lacks in sensitivity (i.e., 
recall) what it gains in confidence (precision). In 
our data, this is due to the considerably higher 
number of false negatives compared to false 
positives. In other terms, these results can be 
explained by the disproportion between the 
number of deletions and the number of insertions 
(cf. Figure 1), with deletions accounting for 54% 
of the total errors. The proposed fine-grained error 
taxonomy allows us to separately analyse the 
performance of the system on both the 
segmentation and labelling tasks. Although the 
two stages of the model are not completely 
independent, since finding a span is preliminary to 
tagging it. Generally speaking, the overall 
unsatisfactory performance of the system is 
mainly due to the limited ability of the model to 
accurately predict the span's boundaries. In 
addition to deletions, a considerable number of 
boundary errors are reported, i.e., cases where 
the system correctly predicts the label but only 
partially predicts the boundaries of the span. 
Thus, most of the errors can be ascribed to 
segmentation. 

4.3 Discussion 

It is possible to make some hypotheses about the 
causes of the algorithm's low performance. One 
potential source of errors can be identified in the 
clusters of vowels and sonorant consonants, 
especially approximants, which are classified as 
consonants. As mentioned earlier, landmarks are 
detected based on an abrupt rise or fall of energy 
in the spectrum. In the case of a sequence of 
sounds that share many acoustic characteristics, 
such as heavy voicing, it is expected that there will 
be no abrupt transitions and therefore no 
landmarks. This issue is exacerbated by the effect 
of coarticulation. 
Moreover, often the landmark only appears to 
mark one side of the transition: for example, there 
may be a (+) sign landmark but not the respective 
(-) sign landmark closing the interval, because the 
fall in energy was not abrupt enough for the 
Speechmark system to detect it. This partly 
explains the missing spans (i.e., deletions). 
On the other hand, this highlights a more general 
issue related to the interface between phonology 
and acoustic phonetics. While landmarks are 
inherently acoustic in nature, a phonological 
criterion is adopted to distinguish between vowels 
and consonants.  Thus, even the most 
outperforming landmark annotation system would 
present discrepancies with the theoretical 
classification required by a phonological category, 
such as vowels and consonants. More 
importantly, the actual realization of speech is 
susceptible to great variability (i.e., the lack of 
invariance problem, Klatt, 1986; Liberman et al., 
1967).  As an example, it is not rare for an 
occlusive to be uttered as if it were an 
approximant. Therefore, the patterns of 
landmarks are considerably more varied than 
Stevens' model allows us to predict. 
For future improvements, instead of defining the 
algorithm solely based on the rules from Stevens' 
paradigm, an algorithm for automatic phoneme-
landmark mapping in Italian could be 
implemented, as described in DiCicco and Patel 
(2008). 
Furthermore, one substantial source of errors can 
be found in some unexpected SM behaviours. It 
was observed that the system often failed to 
detect voicing in the speech. Since landmarks 
come in pairs, the system’s ability to correctly 
predict subsequent ones is compromised if even 
just one is missing.  
Therefore, one prospect for future development 
could be integrating some formant tracking 
features into the system. This improvement could 
be achieved either by using the formant tracking 
function provided by SM itself or by implementing 
it with a custom-designed script. This would allow 
for a more precise identification of vowel spans 
and for a better distinction between vowels and 
consonants in heavily voiced clusters in the 
utterances. 
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5. Automatic Detection of the 
Rhythmic Features from the 
Speech of MCI and Dementia 

Patients 

5.1 Materials and Methods 

The landmark-based system was ultimately 
employed to detect rhythmic features in Italian-
connected speech. We used a subset of the 
speech corpus described in Gagliardi et al. 
(2016), thus replicating the results of Beltrami et 
al. (2018) by means of a novel landmark-based 
automatic detection system and extracting 
additional rhythmic features. 
The final dataset consisted of 198 audio 
recordings from 66 subjects, comprising 33 
healthy control subjects and 33 pathological 
subjects. The groups were balanced for age, 
gender, and years of education. The pathological 
group comprised 11 subjects with amnesic Mild 
Cognitive Impairment (aMCI), 11 subjects with 
multidomain Mild Cognitive Impairment (mdMCI), 
and 11 subjects with early Dementia (eD). All the 
subjects underwent a neuropsychological 
screening (Velayudhan et al., 2014) composed by 
MMSE – Mini-Mental State Examination (Folstein 
et al., 1975; Measso et al., 1993), MoCA – 
Montreal Cognitive Assessment (Nasreddine et 
al., 2005; Conti et al., 2015), GPCog – General 
Practitioner Assessment of Cognition (Brodaty et 
al., 2002; Pirani et al., 2017), CDT – Clock 
Drawing Test (Critchley et al., 1953; Lee et al., 
2011), and verbal fluency tests (phonemic and 
semantic, Carlesimo et al., 1996; Novelli et al., 
1986).  
Their semi-spontaneous monological speech was 
recorded in a clinical setting using off-the-shelf 
equipment. Each subject completed three 
elicitation tasks, resulting in three audio 
recordings per subject: describing a picture, 
describing a typical workday, and recounting the 
last dream they could remember. 
Following the requirements of SM, the audio files 
were subsampled to 16kHz. Thus, using SM, 
landmark annotations were obtained for each 
audio file. As described in Section 3, these 
landmark annotations were then converted into 
time-aligned segmentations of vocalic and 
consonantal intervals, and the rhythmic metrics 
were computed. 

5.2 The Features  

The following parameters have been computed 
based on landmark-derived intervals: 

- V%: Percentage of vocalic intervals within 
the utterance. It represents the sum of the 
duration of vocalic intervals over the total 
duration of the utterance (Ramus et al., 
2000). 

- Std_V and std_C: Standard deviation of 
both vocalic and consonantal interval 
durations (Ramus et al., 2000).  

- Varco_V and Varco_C: Variation 
coefficient of the standard deviation of 
vocalic and consonantal intervals 
(Dellwo, 2006). 

- nPVI and rPVI: Pairwise Variability Index 
(PVI), both raw and normalized. The 
index quantifies the level of variability in 
successive measurements of vowel 
intervals (Grabe and Low, 2002).  

- VtoV_mean and VtoV_std: Vowel onset 
point interval durations, including both 
mean and standard deviation (Pettorino 
et al., 2013). 

- Varco_VC: Coefficient of variation of 
interval duration between a vowel and the 
successive consonant. It approximates 
the duration of a syllable (Liss et al., 
2009). 

5.3 Statistical Analysis 

All the statistical analysis was carried out in 
Python. Table 1 summarizes the descriptive 
statistics of rhythmic metrics computed on our 
cohort. 
 

 

 
CON MCIa 

MCIm

d 
eD 

V_% 

17.35 

(15.38

) 

14.45 

(11.20

) 

20.94 

(14.93) 

15.94 

(12.58

) 

Std_V 
0.09 

(0.05) 

0.08 

(0.04) 

0.10 

(0.04) 

0.10 

(0.05) 

Std_C 
0.34 

(0.71) 

0.26 

(0.39) 

0.30 

(0.44) 

0.21 

(0.34) 

Varco_V 
0.93 

(0.22) 

0.86 

(0.12) 

0.94 

(0.16) 

0.93 

(0.24) 

Varco_C 
1.30 

(0.86) 

1.17 

(0.63) 

1.40 

(1.11) 

1.08 

(0.75) 

rPVI 
0.08 

(0.04) 

0.08 

(0.04) 

0.10 

(0.04) 

0.10 

(0.05) 

nPVI 
0.73 

(0.15) 

0.74 

(0.11) 

0.81 

(0.12) 

0.76 

(0.13) 

VtoV_mea

n 

1.11 

(0.99) 

1.10 

(0.79) 

0.90 

(0.91) 

1.22 

(0.89) 

VtoV_std 
1.26 

(0.90) 

1.47 

(1.02) 

1.19 

(1.39) 

1.46 

(0.95) 

Varco_VC 
1.20 

(0.29) 

1.35 

(0.36) 

1.19 

(0.32) 

1.26 

(0.30) 

 
Table 1. Rhythmic features across the cohorts. Values 

are expressed as means and (standard deviations). 

 
A non-parametric Kruskal-Wallis test was 
conducted on the data (α = 0.05). As shown in 
Table 2, the inferential analysis did not reveal any 
significant difference in the metrics across the 
different cohorts (i.e., CON, MCIa, MCImd, eD). 
 

 

 
statistics 

p-

value 

statistical 

significance  

V_% 3.96 0.26 / 

Std_V 3.51 0.31 / 

Std_C 0.81 0.84 / 
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Varco_V 5.94 0.11 / 

Varco_C 2.11 0.54 / 

rPVI 4.08 0.25 / 

nPVI 6.16 0.10 / 

VtoV_mean 6.02 0.11 / 

VtoV_std 7.05 0.07 / 

Varco_VC 6.55 0.08 / 

 
Table 2. Results of the inferential test of Kruskal-Wallis. 

5.4 Discussion 

In the previous sections, the experimental 
procedure adopted to investigate the relation 
between the rhythmic features and the 
pathological conditions of MCI and Dementia was 
described. The statistical analysis of the rhythmic 
parameters did not reveal any difference between 
the patients' group and the healthy control group. 
In fact, none of the parameters were found to be 
significantly divergent among the four sampled 
cohorts (healthy control, aMCI, mdMCI, and eD), 
(p-value > 0.05 at the Kruskal-Wallis test). Thus, 
it appears that linguistic rhythmic metrics are not 
able to discriminate between healthy controls and 
pathological subjects, nor between MCI and 
Dementia patients.  
Considering the inconsistency of the results 
obtained through this class of linguistic 
biomarkers (Ivanova et al., 2024) across different 
languages, further work is needed to determine 
the reason behind the negative results, whether it 
is the poor accuracy of the algorithm or the 
irrelevance of the rhythmic metrics. 

6. Concluding Remarks 

This work aimed to investigate the relationship 
between the pathological conditions of MCI, and 
early Dementia, and the rhythmic features 
extracted from semi-spontaneous speech. It also 
proposed the prototype of a landmark-based 
system for the automatic detection of these 
features from Italian-connected speech. The 
results from the system evaluation and metrics 
extraction were presented and discussed. 
To summarise, an unsatisfactory performance 
level of the algorithm was reported. The low 
evaluation metrics are mainly due to the system's 
limited ability to accurately predict the span's 
boundaries. Accordingly, several options for 
future improvements were discussed, including 
an algorithm implementation for automatic 
phoneme-landmark mapping and the integration 
of some formant tracking features. 
Moreover, in line with the results of Beltrami et al. 
(2018) and Calzà et al. (2021) on Italian, the 
analysis of rhythmic parameters did not reveal 
any difference between patients and healthy 
controls.   
Although the former is a clearly negative result, it 
remains to be clarified whether the lack of 
significance of the rhythmic features is due to the 
insensitivity of these indices or the poor reliability 

of the algorithm, given the variety of findings in 
languages other than Italian. 
It is also worth noticing that this study has several 
limitations that need to be addressed. Firstly, the 
syllable-based metrics are currently not included 
among the ones analysed. It would be interesting 
in future work to analyse those features as well, 
given the results reported by Meilán et al. (2020) 
on Spanish. Furthermore, the effect of the 
elicitation task employed should be considered. 
Several studies (Maffia et al., 2021) suggest that 
reading tasks are more sensitive in capturing 
rhythm alterations. Thus, they could be the 
subject of future investigations. 
Finally, the main limitation of the present work is 
the small dataset used for testing. A bigger 
sample size would enhance the accuracy of the 
results. 
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Appendix A  

List of Landmarks detected by Speechmark 

 

The following table summarizes the landmark symbols, the acoustic events they represent, and the rules 
adopted by Speechmark for detecting them.  

(source: MacAuslan, 2016) 

 

Symbol Mnemonic Rule 

+g Glottal onset Beginning of sustained laryngeal vibration, i.e., of periodicity 
or of power and spectral slope similar to that of a nearby 
segment of sustained periodicity 

-g Glottal offset End of sustained laryngeal motion 

+p Periodicity 
onset 

Beginning of sustained periodicity of appropriate period 

-p Periodicity 
offset 

End of sustained periodicity of appropriate period 

+j F0 jump upward Abrupt upward jump in F0 by at least 0.1 octave (approx.) 

-j F0 jump down Abrupt downward jump in F0 by at least 0.1 octave (approx.) 
+b Burst onset At least 3 of 5 frequency bands show simultaneous power 

increases of at least 6 dB in both the finely smoothed and 
the coarsely smoothed contours, in an unvoiced segment 
(not between +g and the next -g) 

-b Burst offset At least 3 of 5 frequency bands show simultaneous power 
decreases of at least 6 dB in both the finely smoothed and 
the coarsely smoothed contours, in an unvoiced segment 

+s Syllabic onset At least 3 of 5 frequency bands show simultaneous power 
increases of at least 6 dB in both the finely smoothed and 
the coarsely smoothed contours, in a voiced segment 
(between +g and the next -g) 

-s Syllabic offset At least 3 of 5 frequency bands show simultaneous power 
decreases of at least 6 dB in both the finely smoothed and 
the coarsely smoothed contours, in a voiced segment 

+f Frication onset At least 3 of 5 frequency bands show simultaneous 6-dB 
power increases at high frequencies and decreases at low 
frequencies (unvoiced segment) 

-f Frication offset At least 3 of 5 frequency bands show simultaneous 6-dB 
power decreases at high frequencies and increases at low 
frequencies (unvoiced segment) 

+v Voiced frication 
onset 

At least 3 of 5 frequency bands show simultaneous 6-dB 
power increases at 
high frequencies and decreases at low frequencies (voiced 
segment) 

-v Voiced frication 
offset 

At least 3 of 5 frequency bands show simultaneous 6-dB 
power decreases at high frequencies and increases at low 
frequencies (voiced segment) 

 

 


