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Abstract
Automatic text Readability Assessment (ARA) has been seen as a way of helping people with reading difficulties.
Recent advancements in Natural Language Processing have shifted ARA from linguistic-based models to more
precise black-box models. However, this shift has weakened the alignment between ARA models and the reading
literature, potentially leading to inaccurate predictions based on unintended factors. In this paper, we investigate
the explainability of ARA models, inspecting the relationship between attention mechanism scores, ARA features,
and CEFR level predictions made by the model. We propose a method for identifying features associated with the
predictions made by a model through the use of the attention mechanism. Exploring three feature families (i.e.,
psycho-linguistic, word frequency and graded lexicon), we associated features with the model’s attention heads.
Finally, while not fully explanatory of the model’s performance, the correlations of these associations surpass those
between features and text readability levels.
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1. Introduction

A significant proportion of the population suffers
from poor reading skills in their everyday life
(Schleicher, 2019, 2022). According to the results
of international surveys on reading abilities like
PISA (Schleicher, 2019), approximately 20% of 15-
year-old students are ranked as poor readers. This
highlights the widespread nature of reading difficul-
ties among young individuals globally and reminds
us of the importance of improving literacy skills and
assisting those struggling with reading difficulties.
Poor reading skills may make day-to-day life dif-
ficult, e.g., restricting access to medical informa-
tion (Friedman and Hoffman-Goetz, 2006) or com-
plicating administrative tasks (Kimble, 1992). Au-
tomatic Readability Assessment (ARA) has long
been seen as a means of combating these difficul-
ties, for example, by automating recommendations
of texts suited to a specific audience to support
reading practice and the development of reading
skills (Pera and Ng, 2014; Sare et al., 2020).

Research on readability assessment traces
back to the 1920s’ when Lively and Pressey (1923)
used statistical models for predicting the reading
difficulty of texts.1 These models are commonly
named readability formulas. At the time, readabil-
ity formulas were computed by hand and designed
as a trade-off between reliability and minimization
of effort (e.g., (Flesch, 1948; Dale and Chall, 1948).
Later, the first automatized formulas appeared,
such as the Automated Readability Index (Smith

1Readability should not be confused with Text Sim-
plification that aims to modify a text, making it simpler
(Saggion, 2017).

and Senter, 1967). In addition, readability formu-
las incorporate features (Bormuth, 1966; Coleman
and Liau, 1975; Kintsch and Vipond, 1979).

With the advent of the 21st century, the use of
Natural Language Processing (NLP) techniques
enabled researchers to capture complex textual
features automatically, and sophisticated Machine
Learning (ML) algorithms allowed them to com-
bine them better through feature engineering (see
François and Miltsakaki, 2012; Crossley and Mc-
Namara, 2012; Collins-Thompson, 2014; Vajjala,
2021). These models rely on linguistic features
exploiting knowledge about the reading process
from cognitive psychology (Chall and Dale, 1995),
offering insights on how textual characteristics af-
fect readers (Javourey-Drevet et al., 2022). For
instance, Collins-Thompson and Callan (2005)
showed that taking into account word distributions
across grade levels within a multinomial Naïve
Bayes classifier outperforms classic readability for-
mulas such as (Flesch, 1948). Schwarm and
Ostendorf (2005) captured several syntactic fea-
tures based on parsing trees, whereas Pitler and
Nenkova (2008) designed various semantic and
discourse features for capturing properties of lexi-
cal chains and discourse relations. In addition, the
relatively good interpretability of features allows
them to be included in tools that help writers sim-
plify a text by analyzing the reading difficulties of
the text (François et al., 2020).

Current ARA work relies on distributed repre-
sentations of texts (i.e. embeddings) (Cha et al.,
2017; Filighera et al., 2019) and Deep Learning
(DL) (Nadeem and Ostendorf, 2018; Azpiazu and
Pera, 2019; Martinc et al., 2021), yielding improve-
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ment over linguistic feature-based systems (e.g.,
Deutsch et al. (2020); Martinc et al. (2021) for En-
glish and Yancey et al. (2021a) for French). Con-
sequently, DL has become the standard in ARA.
Contrary to feature-based approaches, the inter-
pretability needs to be improved.

That being said, researchers have been making
progress in developing methods to provide expla-
nations for DL models, thus making them more
transparent (see Danilevsky et al., 2020; Liang
et al., 2021; Sun et al., 2021; Saleem et al., 2022).
These methods can provide global explanations
– i.e., an “overall understanding of deep neural
networks model features and each of the learned
components such as weights and structures pro-
viding” (Liang et al., 2021, 1) – or local explana-
tions that try to understand how the model makes
a decision based on individual observations. In
this paper, we will be concerned with the second
class of methods, including saliency maps, expla-
nation generation, probing, and attention scores.
Attention scores have been a popular interpreta-
tion technique. However, it is subject to some criti-
cisms2. Nevertheless, the association between at-
tention head, model’s predictions and the linguistic
features remains an open question.

In this work, we aim to narrow this gap by iden-
tifying if the scores from a attention head in a
fine-tuned transformer model for readability are re-
lated to ARA features. Our work concentrated on
French as a Foreign Language (FFL) readability,
using the Common European Framework of Refer-
ence for Languages (CEFR) scale (Council of Eu-
rope, 2001). Specifically, our objective in this pa-
per is to inspected whether the scores assigned to
the tokens by the attention mechanism may relate
the ARA features and the CEFR level predictions
made by the model. In this work, we focus on the
attention mechanism of the transformer model (i.e.,
self-attention) since it is one of the main keys to
the high performance of these models. The main
contributions of this work are two. A method for
identifying features associated with the prediction
made by a model through the attention mechanism.
This allows the generation of an explanation of the
model’s decision from the point of view of linguistic
features, which enables a justification of the pre-
dicted level to the model’s user. The second is
contribution consists of the identification that filter-
ing by attention seems to magnify the correlation
between feature and text level.

The structure of this paper is as follows. In
Section 2, we introduce the standard modeling ap-
proach for ARA and discuss related interpretability
approaches. Section 3 outlines the features, cor-
pus, and model utilized in this study, accompanied
by a detailed description of the proposed method.

2See Bibal et al. (2022).

Our findings, including an analysis of the features
related to model’s prediction and a feature-based
description of model’s decision process, are pre-
sented in Section 4. Finally, we offer concluding
remarks and suggest avenues for future research
in Section 5.

2. Related Work

As this paper combines different research lines,
this section first explores the work investigating
readability features, identifying informative fea-
tures for ARA and focusing on those that are ex-
plored in this paper (Section 2.1). In Section 2.2,
we examine the current literature to predict text
readability, focusing on their model’s architectures.
Finally, in Section 2.3, we discuss frameworks for
explaining models.

2.1. Linguistic Features for ARA
There exists a plethora of linguistic features for
readability (e.g., 484 are described by Kyle and
Crossley (2015), 154 by Chen and Meurers (2016),
380 by Kyle (2016), 16 by Crossley et al. (2016),
400 by Okinina et al. (2020) and 427 by Wilkens
et al. (2022)). These may be grouped in different
ways. For example, François and Fairon (2012)
grouped them by level of information (i.e., lexi-
cal, syntactic, semantic and specific) and Wilkens
et al. (2022) grouped them by families (e.g., word
length, lexical frequency, graded lexicons and lex-
ical norms). From those, our work focuses on lexi-
cal norms, lexical frequency and graded lexicons.

Psycho-linguistics explores the relationship be-
tween the human mind and language (Field, 2003),
where psycho-linguistics norms (or lexical norms)
describe how human beings process and under-
stand language and words. These norms are
also associated with the reading comprehension
of young readers (Crossley et al., 2017; Beinborn
et al., 2014), and their scores have been asso-
ciated with writing quality and development (Sa-
doski et al., 1995; Crossley et al., 2019; Cross-
ley, 2020). The most commonly explored psycho-
linguistic norms in readability research are age of
acquisition (AoA), subjective frequency (or familiar-
ity), and concreteness (sometimes conflated with
imageability).

Age of acquisition refers to the average age at
which individuals acquire a particular word in their
vocabulary. This norm is related to readability
because earlier acquired words tend to be eas-
ier to recognize and understand (Juhasz, 2005).
As regards subjective frequency, it measures the
perceived frequency of words as a result of indi-
vidual’s experience (i.e. reading experience, oral
input, etc.). Initially identified by Solomon and
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Postman (1952), the familiarity effect explains that
more familiar words to a given reader tend to be
processed more quickly and accurately (Balota
et al., 2004). Gernsbacher (1984) showed that (1)
frequency effects coexists with familiarity effects
and (2) word familiarity is fairly stable from one indi-
vidual to another, at least for high and median fre-
quency items, which justified building lists of famil-
iar words. In ARA, texts containing predominantly
familiar words are generally easier to read and
comprehend. The last lexical norms we focus on
is word concretness. Neuroscientists have found
that concrete and abstract words are processed dif-
ferently in the brain, and that concreteness gives
an advantage in recognition and recall tasks due
to their higher degree of imageability (Jessen et al.,
2000; Steacy and Compton, 2019).

Lexical frequency strongly predicts lexical com-
plexity and readability (Rayner and Duffy, 1986).
Howes and Solomon (1951) first identified the
frequency effect, which was subsequently con-
firmed by numerous studies in psychology (Mon-
sell, 1991; O’Regan and Jacobs, 1992). This ef-
fect corresponds to a more frequent word being
recognized more quickly. At the text level, a higher
reading speed puts less demand on memory re-
sources, which can be allocated to higher-level pro-
cesses related to comprehension. This explains
why word frequency also indirectly affects the com-
prehension rate of a text (Crossley et al., 2008).

Finally, commonly used for foreign language
teaching, graded lexical resources relate a vocab-
ulary to a proficiency scale, assigning each word
of the vocabulary to a given proficiency level, at
which the word is considered known by most learn-
ers of this level. It can be built based on expert per-
ceptions, such as the reference level descriptors
for the CEFR (Beacco et al., 2008; Capel, 2010),
or derived from an annotated corpus, as in the CE-
FRLex project (François et al., 2014). Graded lex-
icons have been already used in ARA as a way
to help readability models to encode readers’ ex-
pected knowledge (Xia et al., 2016; Yancey et al.,
2021a).

2.2. ARA models
Recent literature on ARA has consistently demon-
strated the superiority of DL methods over con-
ventional feature engineering approaches. Mart-
inc et al. (2021) compared these methods across
multiple manually labeled English and Slovenian
corpora, concluding that deep neural networks are
effective for both supervised and unsupervised
readability prediction tasks. However, they noted
that the choice of architecture depends on the
dataset. Similarly, Deutsch et al. (2020) evalu-
ated various models including conventional ma-
chine learning (ML) methods (e.g., SVMs, Linear

Models, Logistic Regression), Convolutional Neu-
ral Networks, Transformers, and Hierarchical At-
tention Networks, and also found that the optimal
architecture varies depending on the corpus being
tested. However, achieving superior performance
with DL models in readability assessment requires
fine-tuning the model; otherwise, its performance
would be comparable to that of a feature-based
model (Imperial, 2021).

Targeting French as foreign language readabi-
ilty, Yancey et al. (2021b) compared linguistic, cog-
nitive and pedagogical features and deep learning
models. Despite their efforts, non fine-tuned trans-
formers model (i.e., CamemBERT (Martin et al.,
2020)) failed to surpass the baseline model by
François and Fairon (2012). However, fine-tuning
CamemBERT led to a significant improvement,
outperforming the previous state-of-the-art model
for French.

2.3. Model Explainability
We begin this section by distinguishing inter-
pretability (or comprehensibility) from explainabil-
ity, to avoid the confusion existing in the litera-
ture (Rudin et al., 2022; Broniatowski et al., 2021).
In this work, we follow the definitions outlined by
Broniatowski et al. (2021): an interpretable model
offers only the essential information required to
make significant decisions, ensuring that the infor-
mation provided is justified based on the system’s
functional objectives, while an explainable model
elucidates the intricate mechanisms by which a
particular implementation produced a specific out-
put, without considering the significance of that
output to the decision-maker. Our work thus falls
under explainability.

In the context of explainability, Rogers et al.
(2020) review several papers investigating how
BERT encode linguistic information (e.g, repre-
sent phrase-structures (Reif et al., 2019), depen-
dency relations (Jawahar et al., 2019), semantic
roles (Kovaleva et al., 2019), and lexical seman-
tics (Garí Soler and Apidianaki, 2020). Most stud-
ies on linguistic information in transformers uses
the probing (or probing-like) method, thus training
a classifier (“probe”) to map LLM-states to linguis-
tic target labels (Tenney et al., 2019; Niu et al.,
2022). Although this allows inferring the linguistic
knowledge of a model, this method does not tell us
whether the model actually uses information asso-
ciated with these features in a given prediction.

Alternatively, Clark et al. (2019) proposed meth-
ods to analyze the attention mechanisms of pre-
trained models. They found that certain attention
heads process information in such a way that cor-
responds well to linguistic notions of syntax and
coreference. They also demonstrated that a sub-
stantial amount of BERT’s attention focuses on a
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limited number of tokens (e.g., the special token
[SEP]). Indeed, the inspection of attention heads
and attention weights assigned to words is a com-
mon method applied in explanatory visualization
systems such as Vig (2019); Braşoveanu and An-
donie (2020).

Diving deeper into the specifics of the Trans-
former architecture, it is important to note that
not all attention heads are equally important, and
some of them can be pruned with marginal perfor-
mance degradation (Hao et al., 2021). Moreover,
it is unclear what relationship exists between at-
tention weights and model outputs (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019; Bibal et al.,
2022). Therefore, the association between atten-
tion, prediction and the linguistic properties of the
model remains an open question.

The only other existing work that focuses specif-
ically on explainability of readability models, to the
best of our knowledge, is Imperial and Ong (2021).
Using ELI53, they analyzed the weights that clas-
sic ML models assign to the features that are part
of the model’s input vector. The explanation is an
interpretation of the features based on their mean-
ing and models’ weights.4

3. Methodology

Given our goal of identifying how ARA features
could explain the predictions of a transformer
model fine-tuned for ARA, our starting point is
to fine-tune such a model. In this work, we fol-
low the methodology described by Yancey et al.
(2021a) for fine-tuning CamemBERT (Martin et al.,
2020).5 Then, we use this model to study the
association between ARA features and the to-
kens on which the model’s attention mechanism
focuses on. CamemBERT is a model based on
the RoBERTa architecture, so it is made up of 12
layers, each with 12 heads of attention. As in all
transformers, each attention head uses an atten-
tion mechanism to assign weights to the tokens
and multiplies these weights by the embeddings of
the tokens, thus weighting them. This process is
carried out when multiplying value by the softmax
(i.e., a matrix of words by words where values indi-
cate the attention score) in Equation 1. The results
of these weightings are concatenated and fed the

3https://eli5.readthedocs.io/en/
latest/overview.html

4The main difference between Imperial and Ong
(2021)’s work and ours is the type of model used. While
we focus on one type of transformer, Imperial and Ong
(2021) focuses on classic ML models.

5Note that we explore CamemBERT in this work, but
the proposed methodology could be applied in any trans-
former encoder such as BERT (Devlin et al., 2018) or
RoBERTa (Liu et al., 2019).

next layer. The result of this process passes from
one layer to the next until, in the last layer, it is sent
to an Multi-layer Perceptron (MLP) which performs
the classification.

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

The method explored in this paper relies exclu-
sively on linguistic features (see Section 3.1) and
on the attention scores that the model assigns to
each token. To identify the attention score of each
token, we use the attention heads from the last
encoding layer since these are the closest to the
classification layer. Thus, we obtained 12 attention
scores for each token, each one corresponding to
a different head from CamemBERT.

It should be noted that the information produced
by an attention head is a matrix of tokens by tokens
produced by a self-attention mechanism. The val-
ues of this attention matrix indicate the weight of
attention to be given to all tokens when another is
processed. This mechanism is the core element
for creating contextual embeddings in the trans-
former’s architecture. Since an attention matrix
indicates weights for all tokens, identifying which
tokens receive the most attention is an important
question. A simple answer would be to use the n
biggest values. However, this method always indi-
cates the same number of tokens. As the model
may concentrate the attention scores on a few to-
kens, which often are punctuation marks, we follow
Clark et al. (2019) by considering that a token re-
ceives significant score attention only if it is greater
than the scores assigned to the punctuation marks
and special tokens. In this way, we can distin-
guish the tokens that receive attention from the oth-
ers for each attention head. For example, given
the output of softmax illustrated in Figure 1, our
method analyzes row by row, selecting the tokens
that have an attention score higher than the high-
est attention score between <s>, </s> and punc-
tuation. Therefore, for the token vous, in the sec-
ond row, the selected tokens are vous, étudier, un,
pays, european and pas. Next, in our method, we
annotate the select tokens with linguistic features
(see Section 3.1). In this way, given a feature f ,
we weight the token by the feature value.6 For ex-
ample, lets consider f as word length, the tokens
selected in the previous example would therefore
be f(vous) = 4, f(étudier) = 7, f(un) = 2, and so
on.

6The annotation process consists of a tokenization
normalization step, due to the fact that the tokenizer
used by the transformer model is different from the one
used by the lexical resources in which the linguistic fea-
tures are stored.

https://eli5.readthedocs.io/en/latest/overview.html
https://eli5.readthedocs.io/en/latest/overview.html
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Figure 1: Example of matrix from softmax

Then, we use the Equation 2 to calculate the
Spearman correlation (ρ) between all tokens that
receive attention and the level predicted by the
model.7 More precisely, this correlation is com-
puted based on the predicted CEFR level (l) of
a text and the average token score (score; see
Equation 3), which is the average, for each se-
lected token, of the value of linguistic feature (f )
corresponding to the token (f(token)) weighted by
the attention score assigned to it (α). Similarly,
we calculate the correlation for tokens whose at-
tention score were lower than the threshold. In
other words, we measure the correlation between
the features and the difficulty levels based on the
words either considered important to the model or
not.

ρ = corr(average(score(token)), l) (2)
score(token) = α(token)× f(token) (3)

As the final step of our analysis, we investigate
whether some attention heads tend to specialize
towards specific features. We attribute a feature to
a specific attention head when the correlation be-
tween the feature and the predicted level is higher
in the group of tokens selected by the attention
threshold than in the group of non-selected tokens.

3.1. Linguistic Features
We explored three families of linguistic features:
psycho-linguistic norms, frequency score and
graded lexicon. These are widely used in readabil-
ity studies, as outlined in Section 2. For the an-
notation of features associated with these families,
we used the FABRA toolkit (Wilkens et al., 2022),
thus obtaining 19 features:

psycho-linguistic norms: age of acquisition
(AoA), word concreteness, and word sub-
jective frequency (also know as subjective

7We used the level predicted by the model because,
in this study, we aim to explain the readability model and
not the readability phenomenon.

word familiarity). These scores are based
on (Ferrand et al., 2008; Alario and Ferrand,
1999) for AoA, (Desrochers and Thompson,
2009; Ferrand et al., 2008; Bonin et al.,
2003; Desrochers and Bergeron, 2000) for
subjective frequency, and (Bonin et al., 2018,
2011; Desrochers and Thompson, 2009;
Bonin et al., 2003; Desrochers and Bergeron,
2000) for concreteness.

frequency score: word frequency and word fre-
quency band. The latter identifies to which
frequency band each word belongs, based on
its rank in a reference frequency list. So, as
opposed to the word’s frequency, we consider
the value of the associated band in this feature
(e.g., 1000 for the 1000 most frequent words
and 2000 for words with a frequency between
1000 and 2000). Since this feature could also
be considered as a proportion of words be-
longing to a frequency band, we chose to use
this feature in two ways: the value of the fre-
quency band and the proportion of a band in
the text. For the latter, the proportion of each
band is named freq. band“band value” (e.g., freq.
band1000).

graded lexicon: proportion of words at one of the
6 CEFR levels (between A1 to C2). These fea-
tures are named word level“CEFR level”. In this
work, we use FLELex (François et al., 2014)
are reference for the expected CEFR level of
a word.

3.2. Corpus
A common way to build readability corpora is to
collect textbooks and label each extracted text
with the level of the textbook it comes from (e.g.,
Sato et al. (2008); Volodina et al. (2014)). In
this work, we focus on French as a Foreign Lan-
guage readability, using the CEFR scale (Coun-
cil of Europe, 2001), which includes six levels:
A1 (Breakthrough); A2 (Waystage); B1 (Thresh-
old); B2 (Vantage); C1 (Effective Operational Profi-
ciency) and C2 (Mastery). We used the same cor-
pus as Yancey et al. (2021a), which is composed
of 2.734 texts with a balanced distribution of texts
in each of the target levels, as described in Table 1.

This corpus is build upon pedagogical materi-
als published after 2001 indicate which CEFR level
they are intended for. It was originally proposed by
François and Fairon (2012) who creates an initial
version of 1.793 texts. Later, Yancey et al. (2021a)
expanded their collection into a larger and more di-
verse corpus extracted from 47 FFL textbooks pub-
lished between 2001 and 2018. In this corpus, the
level of a text is the level indicated in the textbook
it was extracted from; with the exception of the C1
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and C2 levels that the authors have grouped into
a single level.

Target Texts Words
A1 572 60,022
A2 574 83,294
B1 580 119,048
B2 442 130,877

C1 and C2 566 198,517
Total 2734 591,758

Table 1: Description of the corpus compiled by
Yancey et al. (2021a)

4. Results

The first result to report in this paper is the per-
formance of the readability prediction model. Af-
ter training, the fine-tuned model achieved an ac-
curacy of 0.57 and an F-score of 0.54 (0.74 for
level Al, 0.53 fro A2, 0.48 for B1, 0.26 for B2,
and 0.72 for C), estimated with a five-fold cross-
validation. These results are similar to those re-
ported by Yancey et al. (2021a). As the model is
not the focus of this work, we are looking for a
model close to the state of the art in terms of ar-
chitecture and performance. This being achieved,
this model can serve as the cornerstone for the re-
sults reported in the rest of this section.

4.1. Discrimination power
Before we start to study the applicability of the fea-
ture to explain the model, we assess their discrim-
ination power. So, we computed the correlation
between each of the 20 features studied and the
target levels, as is usually done in ARA studies.
Although these values are not connected with our
model, they will serve as a reference. As can be
seen at column “true label (0)” in Table 2, we found
correlations ranging from -0.65 (word levelA1) to
0.55 (word levelC1) when relating the true readabil-
ity level with the average feature value of all tokens
in a text. These correlations confirms that some
of our features are good predictor of the CEFR
level of a text. In addition, in column “pred (1)”,
we also calculate the correlation between the pre-
dicted readability level with the average feature
value, since our ultimate goal is to identify whether
the model might be explained by the features. We
observe tiny increases when comparing these cor-
relations, which suggest that the approximation
made by the model is closer from these features
than these features are from the real readability
level.

The model explainability analysis starts by con-
sidering the relationship between the features and

the model’s predictions. This is done without dis-
tinguishing the attention heads, meaning that we
calculate the attention for each head, but we do
not differentiate which head generates the associ-
ation. We calculated the correlation between the
level predicted by the model and each feature, but,
this time, we removed the words that had a small
attention score (see Section 3). These values can
be seen in the selected words column (2) of Table
2, and the absolute difference between these cor-
relations and the original correlations is in column
“(1) - (2)”. The latter shows an increase in corre-
lation for all the features, except for word levelA1,
which had a decrease of 0.23 in its correlation with
the predicted level. This already allow us to identify
that attention scores acts as a sort of filter that mag-
nifies the correlation between ARA features and
predictions, possibly by removing noise (i.e., word
embeddings unnecessary for the classification).

Although this analysis already reveals an as-
sociation between the features and the predic-
tions, it does not indicate how the model mea-
sures the features (as they are not provided to the
model). We, therefore, explored an alternative ver-
sion of the correlation between the predicted lev-
els and the values of the features in the list of se-
lected words. In this version, we weighted the fea-
tures’ values by the attention score assigned by
the model. These results are shown in column
“selected words weighted by attention (3)” of Ta-
ble 2. As can be seen, the weight of attention
does not affect the intensity of the correlation for
most of the features8, except AoA (increase of 0.16
points), concreteness (0.24), subjective frequency
(0.31) and frequency band (0.08). We therefore
observed that the attention-based word filter has
a greater impact than the combination of attention
weights.

In order to complement the analysis of the cor-
relation between the features and the readability
levels, we also analyzed the impact of the predic-
tive capacity of a simple machine learning model
to identify the readability level of the text using only
the words selected by the attention filter. The goal
of this analysis is to identify how the reduction in
the text length caused by the proposed filter would
affect the performance of a classification model
based purely on linguistic features. For that end,
we compared the performance of Random Forest
classifiers trained using all tokens in the document
with RF classifiers using only the tokens selected
by the proposed filter. Moreover, we also assess
the impact of training the RF classifiers on the true
labels and the transformer predictions. This al-
lowed us to further confirm the relation existing be-
tween the linguistic variables and the predictions
of transformer that are not leveraging any of these

8Absolute value of column “(2) - (3)” ≤ 0.05.
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Features
Correlation Differenceentire corpus selected words

true label (0) pred (1) (2) wgt att (3) (0) - (1) (1) - (2) (2) - (3)
AoA 0.31 0.33 0.36 -0.52 0.02 0.03 0.16
Concreteness -0.31 -0.34 -0.39 -0.63 0.03 0.05 0.24
Subjective F. -0.15 -0.17 -0.27 -0.58 0.02 0.10 0.31
Word Freq. 0.23 0.26 0.39 -0.34 0.03 0.13 -0.05
Freq. Band 0.34 0.37 0.39 -0.47 0.03 0.02 0.08

Freq.
Band

1000 -0.40 -0.45 0.47 0.45 0.05 0.02 -0.02
2000 0.26 0.31 0.54 0.58 0.05 0.23 0.04
3000 0.18 0.20 0.54 0.53 0.02 0.34 -0.01
4000 0.24 0.28 0.55 0.53 0.04 0.27 -0.02
5000 0.15 0.16 0.53 -0.05 0.01 0.37 -0.05
6000 0.20 0.21 0.51 0.46 0.01 0.30 -0.05
7000 0.24 0.24 0.51 0.46 0.00 0.27 -0.05
8000 0.27 0.27 0.50 0.45 0.00 0.23 -0.05

Word
Level

A1 -0.65 -0.73 0.41 0.46 0.08 -0.32 0.05
A2 0.25 0.28 0.54 0.51 0.03 0.26 -0.03
B1 0.27 0.32 0.58 0.58 0.05 0.26 0.00
B2 0.16 0.17 0.51 0.45 0.01 0.34 -0.06
C1 0.55 0.60 0.66 0.70 0.05 0.06 0.04
C2 0.38 0.44 0.63 0.63 0.06 0.19 0.00

Table 2: Correlation between features and CEFR target levels of documents. The last two columns
indicate the absolute difference between the correlations of the other three columns.

Target Attention Filter F1 Acc
true label no 0.43 0.45
true label yes 0.41 0.43
prediction no 0.48 0.51
prediction yes 0.47 0.51

Table 3: The ability of a feature to predict the target

features.
As can be seen in Table 3, the result of the pre-

dictive capacity shows a reduction of 0.02 of F1
and 0.01 of accuracy when using the word filter
for predicting the document readability level and
0.01 of F1 and accuracy when predicting the trans-
former predictions. These results point out that the
reduction of a considerable part of the words in the
documents does not strongly impact the model’s
performance, suggesting that the filter is remov-
ing possible duplicated or unnecessary words. In
other words, the filter allows us to train models with
similar performance with less input. However, it is
essential to note that this experiment aims to as-
sess whether the selected words can still be used
for the task, not to propose an explanation of the
transformer model.

4.2. Features and Attention heads

Moving on in our study, we compared the atten-
tion head level. This analysis found that psycho-
linguistic features tend to be associated with the

same attention heads. Similarly, the features re-
lated to frequency tend to be grouped in the same
way. Following the same behavior but with fewer
associated heads, the graded lexicon features
tend to be found in the same attention heads.

4.2.1. Base Method

The association between attention heads and fea-
tures is shown in Table 4. In this table, we can
see that several heads are related to at least one
feature of the three families of features. However,
some heads are associated with several features
from the same family. Furthermore, some of them
are associated with more than one family. For ex-
ample, Head 5 is associated with psycho-linguistic
and frequency features, Head 9 with graded lexi-
con and frequency features, and Head 7 is associ-
ated with all three groups of features. Considering
the perspective of features, the psycho-linguistics
features are related with, on average, 6.5 atten-
tion heads, 2.8 for frequency features, and 2.5 for
graded lexicon. In addition, psycho-linguistics fea-
tures are also associated with Head 4, 7 and 10,
and the frequency features are also associated
with Head 2 and 3. In general, these results are
in line with those of Clark et al. (2019), where it
was identified that only a few heads are related to
the model’s decision.
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Psycholinguistic Frequency Graded lexicon Count
Head 1 - - - 0
Head 2 subj.Freq. (-0.49) freq. band6000 (0.44) freq.

band8000 (0.45)
word levelB2 (0.45) 6

Head 3 subj.Freq. (-0.51) freq. band6000 (0.43) freq.
band8000 (0.44)

- 5

Head 4 aoa (-0.49) concrete-
ness (-0.58) subj.Freq.
(-0.54)

freq. band2000 (0.58) word levelC1 (0.7) 6

Head 5 aoa (-0.52) concrete-
ness (-0.58) subj.Freq.
(-0.54)

freq. band (-0.42)
wordFreq (-0.34) freq.
band2000 (0.56)

word levelC1 (0.69) 9

Head 6 subj.Freq. (-0.52) freq. band3000 (0.53) word levelC1 (0.7) 4
Head 7 aoa (-0.51) concrete-

ness (-0.57) subj.Freq.
(-0.56)

freq. band (-0.47) freq.
band1000 (0.45) freq.
band3000 (0.51) freq.
band5000 (0.48) freq.
band6000 (0.46) freq.
band8000 (0.45)

word levelB2 (0.45) word
levelC2 (0.63)

14

Head 8 - freq. band (-0.43) freq.
band6000 (0.46)

word levelA1 (0.46) word
levelB2 (0.44)

6

Head 9 concreteness (-0.54)
subj.Freq. (-0.53)

freq. band3000 (0.53) word levelB1 (0.58) word
levelC1 (0.69)

6

Head 10 aoa (-0.51) concrete-
ness (-0.63) subj.Freq.
(-0.58)

freq. band2000 (0.58) word levelC1 (0.69) 6

Head 11 aoa (-0.51) concrete-
ness (-0.59) subj.Freq.
(-0.53)

freq. band2000 (0.57) - 5

Head 12 - - - 0

Table 4: Association between attention heads and features. The number in brackets indicates the corre-
lation between the predicted CEFR level and feature weighted by attention score for each attention head.
Items in bold are those selected with a threshold of 0.02.

4.2.2. Acceptance threshold

The results we have presented so far rely on the
assumption that a feature is related to an attention
head if the correlation between the feature and the
level predicted is higher in the group of words se-
lected based on attention scores. In order to better
understand the method explored in this paper, we
relaxed this assumption. To do this, we defined a
simple acceptance threshold based on the differ-
ence in correlation between the groups of words
(selected v. non-selected). When this threshold is
set to zero, the results described above in this sec-
tion (with 67 associations between features and
heads) are obtained, while no association is ob-
served when it is set to 0.14. The other values
explored in this threshold show 53 heads selected
for 0.01, 35 for 0.02, 25 for 0.03, 19 for 0.04, 19 for
0.05, 16 for 0.06, 14 for 0,07, 8 for 0,08, 6 for 0,09,
4 for 0,10, 2 for 0,11, 2 for 0,12, and 1 for 0,13.
This trend towards a reduction in the method’s se-
lectivity should be considered in light of the range
of the correlation values. These have an average
value of 0.43. Thus, the 0.1 limit range explored ac-

counts for 23% of the correlation range available
for exploration. Taking a closer look at the distri-
bution of the distance between the absolute corre-
lation values of selected and non-selected words,
we see a median of 0.05 (variance of 0.004, Q1 of
0.02, Q3 of 0.09 and max of 0.32).

4.2.3. Base Method with Acceptance
threshold

We therefore revisited the association between the
attention heads and the features, setting a thresh-
old of 0.02. These values are in bold in Table 4.

The application of the threshold allows us to see
a clearer picture of the data. It can be seen that
psycho-linguistic family is the one most associated
with the attention heads, contrary to the previous
perspective marked by a similar presence of all
types of features. In fact, psycholinguistic features
are most related with 6 heads (Heads 4, 5, 7, 9, 10
and 11). Surprisingly, the features of family graded
lexicon, which represent features most associated
with the task the model was fine-tuned for, were
not associated with most of the heads. They were



110

only associated with Heads 2 and 8. For Head
2, the feature identified was word levelB2, which
had the lowest correlation with the corpus of fea-
tures in its family. Finally, the frequency family,
previously the most relevant feature, now is as-
sociated with 4 heads. However, it only has few
relevant features per head, in contrast to family
psycho-linguistic where there are several features
associated with the same head. In this family, the
most relevant features were Frequency Band6000,
which indicates words of medium complexity, and
Frequency Band3000 which indicates easy words.

5. Conclusion

The field of ARA has evolved a lot recently due to
recent advances in NLP: it has shifted from mod-
els based on theoretically-grounded linguistic fea-
tures to more accurate black-box DL models. As a
consequence, the relationship between readability
models and the literature about the cognitive pro-
cesses involved in reading has been weakened.
Thus, it could be possible for a model to identify
the expected level of a text, but for the wrong rea-
sons.

Aiming to narrow the gap opened by the
widespread use of black-box models, we proposed
a method to investigate whether the transformer ar-
chitecture, when fine-tuned on the readability task,
is sensitive to word characteristics that traditional
readability features were capturing. We also ex-
plore whether attention heads might get special-
ized to some ARA features. For that, we correlated
the level of the predictions made by the model with
the ARA features on tokens to which the model is
paying attention.

In our finding, we identified that the filtering of
word information by the attention layer seems to
magnify the correlation between features and the
predicted text level. In addition, we were able to
identify that attention heads are more sensitive to
some linguistic features than others, and describe
those which are associated to most of the ARA
features explored in this work. Despite being able
to identify a relationship between attention heads
and linguistic features, these do not explain 100%
of the model’s behavior as well as the ARA fea-
tures cannot fully explain the readability level in
the corpus. This might indicate that the method is
not capable of indicating the feature precisely, but
rather something more interesting: the readability
effect that the feature seeks to approximate.

As future work, we foreseen the extension of the
proposed method to include other than lexical fea-
tures, such as grammatical or discursive proper-
ties. We could also reproduce the analysis to the
other layers of the transformer, as it is expected
than some layers might be more sensitive to some

kind of information than others. Finally, it would be
necessary to assess our method on other corpora
and using more diverse transformer architectures
in order to assess its robustness.
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