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Abstract

This paper proposes ProtoBox, a novel method
to learn contextualized box embeddings. Un-
like an ordinary word embedding, which repre-
sents a word as a single vector, a box embed-
ding represents the meaning of a word as a box
in a high-dimensional space: that is suitable
for representing semantic relations between
words. In addition, our method aims to ob-
tain a “contextualized” box embedding, which
is an abstract representation of a word in a
specific context. ProtoBox is based on Pro-
totypical Networks, which is a robust method
for classification problems, especially focus-
ing on learning the hypernym–hyponym rela-
tion between senses. ProtoBox is evaluated
on three tasks: Word Sense Disambiguation
(WSD), New Sense Classification (NSC), and
Hypernym Identification (HI). Experimental re-
sults show that ProtoBox outperforms baselines
for the HI task and is comparable for the WSD
and NSC tasks.1

1 Introduction

Word embedding is an abstract representation of
a word, usually as a vector in a high dimensional
space. Nowadays, word embeddings are widely
used in models based on deep learning. Word em-
bedding can represent the meaning not only of a
word itself (Mikolov et al., 2013) but also of a word
in a context. For example, BERT (Devlin et al.,
2019) is often used to obtain vector representations
of words in a given sentence. In this paper, we
call such word embeddings “contextualized word
embeddings.” In addition, box embedding (Das-
gupta et al., 2020) is a kind of word embedding,
which represents a word not with a point but with
an area in vector space. While an ordinary word
embedding is primary used to measure the simi-
larity between two words, box embeddings can be
used to capture other semantic relations between

1Our code is available at: https://github.com/iehok/
ProtoBox.

Figure 1: Example of contextualized box embedding
and its application to New Sense Classification and Hy-
pernym Identification.

words such as that between a hypernym and a hy-
ponym. However, past studies of box embeddings
did not well consider the context of the word, that
is, the box embedding was not contextualized.

Contextualized word embeddings can be re-
garded as “sense embeddings,” since a word may
have two or more senses and convey one of those
possible senses in a specific context. Word Sense
Disambiguation (WSD) (Navigli, 2009) is a task
that aims to identify the meaning of a word in a
context. Most previous work on WSD has focused
only on the senses in a predefined inventory and
has ignored new (not predefined) senses. How-
ever, senses of words change day by day and new
senses are constantly created (Yu and Xu, 2023).
It is preferable that a WSD system can handle a
new sense by classifying a word even if it is being
used in a new sense, and, if possible, explaining
the meaning of the new sense.

In this paper, we propose ProtoBox, a method to
produce a contextualized box embedding of a word
in a given context. In general, box embeddings can
represent hypernym–hyponym relations between
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words, as illustrated in Figure 1 (a). If a box of
word wa subsumes the box of another word wb,
wa can be regarded as a hypernym of wb. Such
relations between words can be represented as tax-
onomy (Figure 1 (b)). Our ProtoBox can produce
contextualized box embeddings. For example, a
box embedding of x in the sentence “The x hopped
across the grass.” can be obtained as shown in Fig-
ure 1 (a). Contextualized box embeddings enables
us to judge that x has a new sense when the box
embedding of x does not overlap any other box em-
beddings of fine-grained senses such as “cat” and
“dog”. In addition, “animal” can be identified as
a hypernym of x, since the box embedding of x
is subsumed by that of “animal”. Identification of
a hypernym can provide a rough explanation of a
new sense, i.e., x is a kind of an animal. Further-
more, ProtoBox can expand the existing taxonomy
by adding a new node x to the structure as shown
in Figure 1 (b).

We evaluate ProtoBox with three tasks: WSD,
New Sense Classification (NSC), and Hypernym
Identification (HI). Three datasets of different do-
mains, one is large and two are small, are used to
thoroughly evaluate our proposed method. Exper-
imental results show that ProtoBox is better than
or comparable to the baselines for WSD and NSC,
and always outperforms the baselines for HI.

The contributions of this paper are summarized
as follows:

• We propose ProtoBox, a new method to learn
contextualized box embeddings based on Pro-
totypical Networks (Snell et al., 2017).

• We propose a method to construct an mini-
batch to learn hypernym–hyponym relations
between senses in the contextualized box em-
beddings.

• We empirically evaluate the effectiveness of
ProtoBox for three down-streaming tasks:
WSD, NSC, and HI.

2 Related Work

2.1 WSD

Many recent WSD methods use glosses (sense
definitions) and lexical relations (e.g., hypernym–
hyponym relations) to improve their performance
(Huang et al., 2019; Kumar et al., 2019; Bevilacqua
et al., 2020; Bevilacqua and Navigli, 2020; Blevins
and Zettlemoyer, 2020; Scarlini et al., 2020; Barba

et al., 2021). However, the accuracy of WSD for
infrequent senses tended to be lower than that for
the whole of the test data (Maru et al., 2022).

To address this problem, Chen et al. (2021) pro-
posed MetricWSD, a method to learn contextu-
alized embeddings using Prototypical Networks
(Snell et al., 2017). Prototypical Networks is a
meta learning method that works better on imbal-
anced data. MetricWSD achieved a state-of-the-art
WSD performance without additional lexical infor-
mation such as glosses or lexical relations.

Generationary (Bevilacqua et al., 2020) is an-
other approach for WSD. First, a definition of
a sense for a given word is generated by BART
(Lewis et al., 2020). Then, the similarity score
between the generated definition and each defini-
tion of the target word in WordNet (Miller, 1995)
is calculated by Sentence-BERT (Reimers and
Gurevych, 2019) and the most similar sense cho-
sen to be the predicted sense. Generationary aims
not only to improve the performance at WSD but
also explain a new sense. This paper also tries to
explain the meaning of a new sense using trained
contextualized box embeddings. Instead of gener-
ating a definition of a new sense, a hypernym of a
new sense is identified as a coarse meaning of it.

2.2 Taxonomy Expansion

Taxonomy Expansion is the task to infer a hyper-
nym of a new concept (Bordea et al., 2016). It has
been actively studied. Recent methods improved
the performance by using graph neural networks
(Shen et al., 2020) and learning the shortest path
between a target concept and the root concept (Yu
et al., 2020). Some methods (Aly et al., 2019; Ma
et al., 2021) used Hyperbolic space (Nickel and
Kiela, 2017) learn hypernym–hyponym relations.
This paper also presents a method of Taxonomy
Expansion, but a hypernym of a new concept is
guessed by contextualized box embeddings.

2.3 Contextualized Box Embeddings

There have been a few studies that have applied
contextualized box embeddings to some tasks. The
Entity Typing task is a multi-label classification
problem to predict appropriate types such as “event”
and “person”, for a target in a context (Choi et al.,
2018). Onoe et al. (2021) represented target entities
by contextualized box embeddings, and also repre-
sented types of entity by dedicated box embeddings.
The model was trained so that the contextualized
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box embedding of the target entity was enclosed
by the box embeddings of its type of entity.

Jiang et al. (2023) proposed a method for Taxon-
omy Expansion by learning the box embeddings of
concepts. The box embeddings of entities in the ex-
isting taxonomy were derived from their definition
sentences. The model, which converts a sentence
to a contextualized box embedding was trained by
hypernym–hyponym pairs in the taxonomy so that
the box embedding of a hypernym enclosed that of
a hyponym. Although the above studies presented
methods to learn contextualized box embeddings,
we adapt another approach. Specifically, our frame-
work follows that of Prototypical Networks, which
can work well for imbalanced training data. We
expect that our method can learn appropriate box
embeddings for infrequent senses.

3 Proposed Method

This section describes the details of ProtoBox, our
proposed method to train contextualized box em-
beddings. We first explain box embeddings, as
background, in subsection 3.1, then explain Proto-
Box in the succeeding subsections.

3.1 Box Embeddings
Single vectors represent items as points, while box
embeddings represent items as boxes. Box embed-
dings can naturally represent asymmetric relations
like hypernym–hyponym relations by the overlap
of two boxes. In this work, a box embedding b
is constructed from two vectors c, the center of
the box, and o, an offset from c. c is the center
of a box and o is the offset from c. Note that the
dimensions of c and o are equal. The area of the
ith dimension of the box embedding is defined as
the range [ci − oi, ci + oi].

Given two boxes bi and bj , the probability that
bi encloses bj can be defined as

P (bj |bi) =
Vol(bi ∩ bj)

Vol(bi)
, (1)

where bi ∩ bj is the are of the overlap of bi and
bj , and Vol(b) is the function that calculates the
volume of b.

The hard definition of the probability in Equation
(1) often leads a serious problem for training box
embeddings. When two boxes have no overlap,
P (bj |bi) is zero, causing the training to halt due to
the vanishing of the gradient. Therefore, in general,
a soft definition is often used. Following previous

work (Onoe et al., 2021; Jiang et al., 2023), we use
Gumbel Box (Dasgupta et al., 2020), one of the box
embeddings that calculates the above probability
with a soft definition. Specifically, the probability
that bi encloses bj is calculated with the Gumbel
distribution.

3.2 MetricWSD

Since ProtoBox is an extension of MetricWSD
(Chen et al., 2021), we first briefly introduce the
latter. The left side of Figure 2 shows an overview
of MetricWSD. It is a model for WSD, based on
Prototypical Networks. The training data is a col-
lection of sentences including a target word (e.g.,
‘dog’) labeled with its gold sense (e.g., dog.1). It
is divided into two sets: a support set and a query
set. Each sentence in the support set is converted
to a contextualized word embedding (or sense em-
bedding) by a model fθ. In MetricWSD, BERT
(Devlin et al., 2019) is used as fθ. The prototype
vector of each sense (e.g., dog.1, dog.2) is defined
as the average of the contextualized word embed-
dings of that sense. Next, the sentences in the
query set are converted to contextualized word em-
beddings by the same model fθ, and then the loss
is calculated by the distances between the query
vector and the prototype vectors. Finally, the pa-
rameters of the model, θ, are updated so that the
loss becomes minimized. At the inference, a test
sentence is converted to an embedding by fθ, and
then the similarities between it and the prototype
sense vectors are calculated, and the most similar
sense is chosen.

3.3 Learning Contextualized Box Embeddings

The right side in Figure 2 shows an overview of
ProtoBox. In our method, MetricWSD is modified
in three ways. First, instead of a single vector,
a sentence is converted to a box embedding by
the model. Following previous work (Onoe et al.,
2021), we add a Fully Connected Layer (FCL) after
BERT. For a sentence x where the zth word is the
target word, its contextualized box embedding is
obtained as follows:

b = fθ(x, z) = FCL(BERT(x)[z]). (2)

The input of FCL is BERT(x)[z], the contextual-
ized word embedding of the zth word when x is
entered to BERT. The output of FCL forms the box
embedding b, which is equally divided into two
vectors c and o by b = [c,o].
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Figure 2: Overview of MetricWSD and ProtoBox (ours).

Second, the episodes are constructed differently.
In Prototypical Networks, a mini-batch used to
train a model is called an “episode.” On the one
hand, an episode is a set of instances with differ-
ent senses of the same target word in MetricWSD.
On the other hand, an episode is a set of instances
with different senses of multiple target words (e.g.
dog.1, animal.1, and tree.1) in ProtoBox. The de-
tails of the construction of an episode will be ex-
plained in subsection 3.4.

Third, the loss is calculated between a query
representation (contextualized box embedding)
bq and each prototype representation (sense box
embedding) bp. Given a query set EQ =
{x1, x2, ..., xNQ

}, box embedding of each sample
xi is computed by

bq
i = fθ(xi, z). (3)

Let us suppose C = {s1, s2, ..., sNC
} is the set of

the senses (of different words) in the entire support
set and EPj = {xj1, xj2, ..., xjNP

} is the support
set of the jth sense sj . The prototype representa-
tion of sj , b

p
j , is defined as the mean of the box

embeddings of the samples in the support set:

bp
j =

1

NP

NP∑

i=1

fθ(xji, z). (4)

In the above two equations, z stands for the position
of the target word in the sentence.

Following Onoe et al. (2021), we use the binary
cross-entropy loss between the prototype sense sj
in the support set and the sample xi in the query
set:

l(bp
j ,b

q
i ) =− δ·logP (bp

j |b
q
i )

− (1− δ)·log (1− P (bp
j |b

q
i )).

(5)

Here, δ is 1 if the prototype sense sj is equal to the
sense of xi or sj is a hypernym of xi, otherwise 0.
Finally, the total loss L is defined as follows:

L =
1

NQNC

NQ∑

i=1

NC∑

j=1

1

2
(l(bp

j ,b
q
i ) + l(bq

i ,b
p
j )).

Intuitively, the model fθ is trained so that contex-
tualized box embeddings of the same sense overlap
each other and a contextualized box embedding of
a hypernym encloses that of a hyponym.

3.4 Episode Construction
The training data of ProtoBox is a collection of
“sense instances.” A sense instance is an example
sentence including a certain sense of a target word.
To train the model, the training data is divided into
episodes. Note that each episode is a pair of sup-
port and query sets, (ES , EQ). The following sets
are made: (1) W , a set of small number of ran-
domly chosen target words, (2) PS , a set of senses
of the target words inW , and (3) PH, a set of direct
hypernym senses of the senses inPS . Then, several
senses in PS and PH are chosen as the prototype
senses, thus the support set is formed by sense in-
stances of those prototype senses. The query set
is made up of the sense instances of the senses in
PS that are mutually exclusive with the support
set. We limit the number of the target words in
each episode to NW , the maximum number of the
prototype senses to NC , the maximum number of
sentences for each prototype sense to NP (the max-
imum number of sentences in the entire support
set is NC ×NP ), and the maximum number of the
sentences in the query set to NQ.

Algorithm 1 shows how the episodes are con-
structed. First, NW words are randomly chosen
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Algorithm 1 Construction of Episodes

1: Dtrain: the training data
2: V: all words in the training data
3: E ← ∅
4: while V ≠ ∅ do
5: W ← RANDOM(V, NW )
6: V ← V \W
7: PS ←

⋃
w∈W SENSEOFWORD(w)

8: PH ←
⋃

s∈S DIRECTHYPERNYMS(s)
9: if |PS |+ |PH| > NC then

10: /* ensure |PS |+ |PH| = NC */
11: PH ← RANDOM(PH, NC − |PS |)
12: ES ← ∅; EQ ← ∅
13: /* Dtrain

s : sense instances of s in Dtrain */
14: for s ∈ PS do
15: ẼS ← RANDOM(Dtrain

s , NP )
16: ES ← ES ∪ ẼS
17: EQ ← EQ ∪ (Dtrain

s \ ẼS)
18: for s ∈ PH do
19: ES ← ES ∪ RANDOM(Dtrain

s , NP )

20: EQ ← RANDOM(EQ, NQ)
21: E ← E ∪ {(ES , EQ)}
22: return E

(line 5). Second, all senses of the randomly cho-
sen target words are kept as PS (line 7), and all
direct hypernym of those senses are kept as PH
(line 8). The senses in PS and PH are used as the
prototype senses. More precisely, all the senses in
PS are kept as prototype senses, while the rest are
randomly chosen from PH so that the total num-
ber of prototype senses becomes NC (lines 9–11).
Then, the randomly chosen NP instances for each
prototype sense are kept as the support set ES (lines
15–16, 19), while the NQ instances of the senses in
PS , which were not selected in the support set, are
chosen as the query set EQ (lines 17, 20). Note that
the function RANDOM(S, n) randomly chooses n
samples at most from the set S; all samples are
chosen when |S| < n. The above procedure is
repeated until all words in the training data have
been used to make episodes.

Since instances of hypernym senses as well as
all the senses of a target word are included in the
support set, ProtoBox can consider not only the
sense discrimination, as does MetricWSD, but also
the hypernym–hyponym relations in the training of
the model that produces contextualized box embed-
dings.

4 Applications of ProtoBox

This section describes how ProtoBox is applied
to three tasks: Word Sense Disambiguation, New
Sense Classification, and Hypernym Identification.

4.1 Word Sense Disambiguation

Task Definition The goal of Word Sense Disam-
biguation (WSD) is to select the most appropriate
sense of the target word w in a given context x
from a predefined inventory Sw of senses.

Method First, we get the contextualized box em-
bedding bq of w in x. Second, we create the sense
embedding bp

i for each sense si in Sw from the
training data. Finally, we calculate the similarity
score between bp

i and bq using Equation (6), which
measures by how much two box embeddings over-
lap, then the most similar sense is chosen to be the
predicted sense.

sim(bp
i ,b

q) = 2× P (bp
i |bq)P (bq|bp

i )

P (bp
i |bq) + P (bq|bp

i )
(6)

4.2 New Sense Classification

Task Definition The goal of New Sense Classifi-
cation (NSC) is to classify the target word w in a
given context x, whether it has a new sense or not.
In this study, new senses are defined as senses that
do not appear in the training data.

Method First, we get bq and bp
i in the same

way that WSD does. For all senses si in Sw, if
sim(bp

i ,b
q) is smaller than a threshold αsi , w in x

is predicted to be a new sense, otherwise not.
Then αsi is determined for each sense using the

training and development data. Let Ddev
si be a set of

sense instances of si in the development data. The
threshold is set to be

αsi =
1

|Ddev
si |

|Ddev
si

|∑

j=1

sim(bp
i ,b

q
j), (7)

where bp
i is the box embedding of the prototype

sense si and bq
j is the box embedding of the jth

instance in Ddev
si . That is, αsi is determined as the

average similarity between the sense instance of si
in the development data and the prototype sense si
in the training data. When there is no sense instance
of si in the development data, the threshold is set
to the average of αsi for all senses.
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4.3 Hypernym Identification
Task Definition Hypernym Identification (HI) is
the task of predicting a hypernym of a new sense.
Specifically, for a given new sense of a target word
w in a context x, we choose and rank the top ten
senses that are most likely to be a hypernym of it.

Method First, we get the contextualized box em-
bedding bq of w in x and the box embeddings of
the prototype senses bp

i as in the WSD task. Then,
the setH of candidates of hypernym senses is cre-
ated:

H = {si | P (bp
i |bq) > β}, (8)

where β is a pre-defined threshold. Next, we
choose the sense where the difference of the vol-
ume of bp

i and bq is the smallest as the best hyper-
nym sense u.

u = arg min
si∈H
|Vol(bp

i )−Vol(bq)| (9)

The motivation to consider the difference of the
volumes is that when the volume of the box embed-
ding is large, the sense may be an abstract concept
and not likely to be a direct hypernym of an input
new sense. Finally, all other senses are ranked by
their similarity with u (using Equation (6)) and the
top nine senses are chosen to make the final ranked
list of the hypernyms.

5 Experiments

5.1 Dataset
Following the WSD framework proposed by Ra-
ganato et al. (2017), we use SemCor 3.0 (Miller
et al., 1994) as the training data, SemEval-2007
(Pradhan et al., 2007) as the development data, and
Senseval-2 (Edmonds and Cotton, 2001), Senseval-
3 (Snyder and Palmer, 2004), SemEval-2013 (Nav-
igli et al., 2013), SemEval-2015 (Moro and Navigli,
2015) as the test data. All datasets are corpora anno-
tated with sense labels defined by WordNet (Miller,
1995).

In this work, the only the senses of nouns in the
datasets are used. In WordNet, senses of nouns con-
nected by hypernym–hyponym relations form a Di-
rected Acyclic Graph of which the root is the synset
“entity.n.01”. We create three datasets: Dliving_thing,
Dartifact, and Dentity. These datasets consist of in-
stances of hyponyms of “living_thing.n.01”, “arti-
fact.n.01”, and “entity.n.01” in WordNet, respec-
tively. Here, Dentity is a large dataset that includes
all nouns, whileDliving_thing andDartifact are smaller
ones including a restricted number of nouns.

Training data The statistics of the training data
Dtrain are presented in Table 1. The sizes of
Dtrain

living_thing and Dtrain
artifact are almost the same, while

Dtrain
entity is much larger than they are.

Dtrain
living_thing Dtrain

artifact Dtrain
entity

#senses 1,713 1,939 12,760
#words 1,809 1,994 11,029
#instances 15,838 8,708 84,962

Table 1: The statistics of the training data.

Development and test data The development
and the test data for the WSD task are constructed
from instances including a target word that has
multiple senses and its gold sense appears in the
training data. Statistics are shown in Table 2. It is
found that a considerable number of test instances
have infrequent senses.

Dliving_thing Dartifact Dentity
ALL ≤ 10 ALL ≤ 10 ALL ≤ 10

dev 13 5 9 5 125 54
test 190 66 78 40 2,514 992

Table 2: The number of instances in development and
test data for WSD task. “ALL” means all instances.
“≤ 10” means instances of a sense that appears in the
training data less than or equal to 10 times.

The development and the test data for the NSC
task are constructed from instances including a
target word that appear in the training data. The in-
stances are labeled as “new sense” if its gold sense
does not appear in the training data, otherwise as
“not new sense”. The statistics are shown in Table
3.

Dliving_thing Dartifact Dentity
new not new not new not

dev 0 23 0 18 7 144
test 20 500 12 221 295 3,379

Table 3: The number of instances in development and
test data for NSC task. “new” and “not” mean new sense
and not new sense, respectively.

The development and the test data for the HI task
are constructed from instances whose gold senses
do not appear in the training data. The statistics
are shown in Table 4. The gold hypernym is deter-
mined by WordNet.
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Dliving_thing Dartifact Dentity

dev 2 2 11
test 107 32 658

Table 4: The number of instances in development and
test data for HI task.

5.2 Settings
Baselines We prepare two baselines: vanilla
BERT (BERT-NN) and MetricWSD (Chen et al.,
2021). These models output a contextualized em-
bedding (single vector) r for a given sense instance.
In BERT-NN, the embedding of a prototype sense
are obtained by the average of the vectors of sense
instances derived from the pre-trained BERT. The
similarity between two vectors ri and rj is defined
as the dot product sim(ri, rj) = ri · rj .

The baselines perform WSD and NSC in the
same way as our method, except that the similarity
between two instances is measured by two single
vectors. In HI, the baseline chooses the ten most
similar senses to make up a ranked list of hypernym
senses.

Parameters For all models in BERT-NN, Met-
ricWSD, and ProtoBox, we use bert-base-uncased
as the BERT model. We set the number of dimen-
sions of the output layer of FCL to 256 (i.e. the
size of c and o is 128), NW is 32, NC is 128, NP

is 5, and NQ is 64. As for the hyperparameters for
the fine-tuning of BERT, the learning rate is set to
1e-5. The number of epochs is optimized, that is, it
is varied from 1 to 200 and the best value is chosen
using the development data.

5.3 Results and Analysis
Word Sense Disambiguation Table 5 shows the
accuracy on the WSD task. As can be seen from
the column “ALL”, our ProtoBox outperformed the
two baselines for Dliving_thing, but was comparable
for Dartifact and Dentity. We guess that the poor per-
formance on Dentity was caused by the scale, that
is, our method failed to obtain appropriate contex-
tualized box embeddings when it was applied to
many sense instances. The reason why ProtoBox
was worse than MetricWSD on Dartifact may not be
a scale issue, but the semantic domain of the tar-
get noun, since the sizes of Dliving_thing and Dartifact
were almost the same.

A similar tendency for the disambiguation of in-
frequent senses can be seen in the column “≤ 10”.
Surprisingly, BERT-NN achieved the best accuracy

on Dentity, although the pretrained BERT model
was just applied without fine-tuning. MetricWSD
and ProtoBox still suffered from the data sparse-
ness when they were applied to the large dataset.

New Sense Classification The results on the New
Sense Classification task are shown in Table 6.
Comparing the F1-score, ProtoBox was compa-
rable to MetricWSD onDliving_thing andDentity, and
significantly worse on Dartifact. The poor perfor-
mance for NSC for the senses of artifacts was co-
incident with the results of the WSD task, where
ProtoBox was worse than MetricWSD on Dartifact.
The F1-score of BERT-NN on Dliving_thing was no-
table as it was better than that of MetricWSD and
ProtoBox. ProtoBox is designed to learn hypernym–
hyponym relations between senses, but such knowl-
edge may not be indispensable for New Sense Clas-
sification. This might be the reason why ProtoBox
could not outperform MetricWSD.

Hypernym Identification Following previous
work on Taxonomy Expansion (Shen et al., 2020;
Yu et al., 2020; Jiang et al., 2023), we evaluate the
baselines and ProtoBox in term of three metrics: ac-
curacy (ACC), Mean Reciprocal Rank (MRR), Wu-
Palmer similarity (W&P) (Wu and Palmer, 1994).
Accuracy measures the agreement ratio between
the gold hypernym and the highest ranked hyper-
nym, while Wu–Palmer similarity measures how
closely these two hypernyms are located in Word-
Net. The parameter β described in subsection 4.3
is set to 0.5, 0.7, or 0.9.2

The results on the HI task are shown in Table 7.
ProtoBox outperformed the baselines in all three
evaluation metrics on the three datasets. In particu-
lar, the difference between ProtoBox and the base-
lines was significant onDliving_thing. The many gold
hypernyms in the test data ofDliving_thing were “per-
son.n.01”, which were correctly predicted by Pro-
toBox. On the other hand, on Dartifact and Dentity,
the differences in terms of ACC and MRR between
ProtoBox and the baselines were small. However,
a significant difference of W&P was confirmed,
indicating that ProtoBox could predict hypernyms
closer to the correct ones. Finally, the performance
of ProtoBox was sensitive to the parameter β, es-
pecially in terms of ACC and MRR. Investigating
how to optimize β would be the important future
work.

2β was not optimized due to the insufficiency of the devel-
opment data.
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Model
Dliving_thing Dartifact Dentity

ALL ≤ 10 ALL ≤ 10 ALL ≤ 10

BERT-NN .816 .727 .744 .775 .579 .602
MetricWSD .821 .773 .872 .925 .711 .588
ProtoBox (ours) .884 .788 .859 .875 .707 .584

Table 5: Accuracy of WSD task. “ALL” indicates the results for all senses, and “≤ 10” for infrequent senses.

Model
Dliving_thing Dartifact Dentity

A P R F A P R F A P R F
BERT-NN .744 .099 .700 .174 .682 .069 .417 .119 .656 .119 .515 .194
MetricWSD .712 .055 .400 .096 .674 .119 .833 .208 .633 .138 .678 .229
ProtoBox (ours) .704 .053 .400 .094 .618 .086 .667 .152 .628 .132 .651 .219

Table 6: Results of New Sense Classification task. A, P, R, and F mean accuracy, precision, recall, and F1 score,
respectively.

Model β
Dliving_thing Dartifact Dentity

ACC MRR W&P ACC MRR W&P ACC MRR W&P
BERT-NN – .150 .259 .754 .094 .150 .567 .068 .113 .460
MetricWSD – .103 .219 .767 .062 .170 .505 .073 .124 .494

ProtoBox (ours)
0.5 .439 .502 .855 .125 .179 .628 .061 .084 .539
0.7 .533 .570 .876 .156 .175 .644 .081 .113 .558
0.9 .579 .604 .877 .062 .076 .621 .100 .126 .565

Table 7: Results of Hypernym Identification task.

5.4 Optimization of Number of Dimensions
We analyzed how the performance of WSD was
influenced by the number of the dimensions of
the box embeddings c and o. In this experiment,
the number of dimensions of the box embeddings
was set to {32, 64, 128, 192, 256}. Table 8 shows
the accuracy of WSD on the development data of
Dentity. It was found that the best performance for
both “ALL” and “≤ 10” was obtained when the
number of dimensions was set to 128. Therefore,
as described in subsection 5.2, the number of di-
mensions was set to 256 (128 + 128). For NSC
and HI tasks, we did not optimize this since the
development data was small, but set it to be the
same number as for the WSD task.

Dimension ALL ≤ 10

32 .744 .593
64 .784 .630

128 .792 .685
192 .752 .630
256 .736 .574

Table 8: Accuracy of WSD task on the development
data for different number of dimensions of c and o.

6 Conclusion

This paper proposed ProtoBox, an expansion of
MetricWSD to learn contextualized box embed-
dings. The representations of words in a context
were changed from single vectors in MetricWSD to
box embeddings in our ProtoBox, since box embed-
dings are suitable to represent semantic relations
between senses such as the hypernym–hyponym
relation. Additionally, we proposed a method to
construct episodes to train the model to produce the
contextualized box embeddings. We evaluated Pro-
toBox on three tasks: Word Sense Disambiguation
(WSD), New Sense Classification (NSC), and Hy-
pernym Identification (HI). ProtoBox outperformed
the baselines in terms of all evaluation metrics in
the HI task. This was reasonable, since ProtoBox
was designed to take the hypernym–hyponym rela-
tion into account when training the contextualized
box embeddings. In addition, ProtoBox achieved a
performance comparable with the baselines for the
other sense related tasks, WSD and NSC.

In the future, the scalability of ProtoBox should
be improved. As reported in subsection 5.3, the
performance of ProtoBox was degraded when the
number of sense instances was large. A more ef-
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ficient and precise method to learn contextualized
box embeddings should be investigated. In addi-
tion, the definition of the prototype representation
(the box embedding of a sense) can be reconsid-
ered. Currently, the prototype representation is an
average of box embeddings of the elements in the
support set. However, it can be a box that includes
all the elements in the support set. It is worth to
explore better ways to obtain the prototype repre-
sentation.

Limitations

In the experiments, ProtoBox was only applied
to nouns. Additional experiments are required to
investigate how ProtoBox can work well for other
parts of speech, such as verbs.

The parameter β in the HI task was not opti-
mized due to the insufficiency of the development
data. It is worth investigating how to find an appro-
priate threshold in the future.

We did not compare ProtoBox with other meth-
ods of contextualized box embeddings such as
Onoe et al. (2021) and Jiang et al. (2023) in the
experiments, since the target tasks were not com-
pletely the same as the three tasks in this paper.
However, empirical comparison is necessary to
clarify the contribution of our method.

Ethics Statement

Since ProtoBox was developed using the estab-
lished datasets for WSD that have been widely
used in the community and contain no private in-
formation, there is no concern for data and privacy.
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A Visualization of Box Embeddings

To verify whether ProtoBox could learn appro-
priate relations between senses, we visualize box
embeddings of several prototype senses. Figure
3 represents box embeddings of animal.n.01 and
dog.n.01 trained by ProtoBox from Dtrain

living_thing.
The horizontal axis represents the dimensions of
the boxes, while the vertical axis represents the
intervals of each dimension [ci − oi, ci + oi]. It
is found that the box of animal.n.01 almost en-
closes that of dog.n.01, indicating that animal.n.01
is a hypernym of dog.n.01. This is also sup-
ported by the fact that P (animal.n.01 | dog.n.01)
= 0.999. Therefore, the model learned the
hypernym–hyponym relation between animal.n.01
and dog.n.01. Next, let us consider cat.n.01
and dog.n.01, for which there is no hypernym–
hyponym relation in WordNet. Looking at Figure
4 and the two probabilities P (cat.n.01 | dog.n.01)
= 0.146 and P (dog.n.01 | cat.n.01) = 0.089, the
two boxes seem to not overlap very much. Even
though cat.n.01 and dog.n.01 are conceptually sim-
ilar, ProtoBox can learn that there is no hypernym–
hyponym relation between them.

Figure 5 shows box embeddings of building.n.01
and house.n.01 trained by ProtoBox from Dtrain

artifact,
and Figure 6 shows box embeddings of hotel.n.01
and house.n.01. The box embeddings of those
senses are also adequate. That is, the box of build-
ing.n.01 almost encloses that of house.n.01, and the
boxes of hotel.n.01 and house.n.01 do not overlap
very much.
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Figure 3: Box embeddings of animal.n.01 and dog.n.01 trained from Dtrain
living_thing. P (animal.n.01 | dog.n.01) = 0.999,

P (dog.n.01 | animal.n.01) = 3.12e-9.

Figure 4: Box embeddings of cat.n.01 and dog.n.01 trained from Dtrain
living_thing. P (cat.n.01 | dog.n.01) = 0.146,

P (dog.n.01 | cat.n.01) = 0.089.

Figure 5: Box embeddings of building.n.01 and house.n.01 trained from Dtrain
artifact. P (building.n.01 | house.n.01) = 0.766,

P (house.n.01 | building.n.01) = 2.97e-4.

Figure 6: Box embeddings of hotel.n.01 and house.n.01 trained from Dtrain
artifact. P (hotel.n.01 | house.n.01) = 0.011,

P (house.n.01 | hotel.n.01) = 0.013.
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