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Abstract

All existing transformer-based approaches to
NLP using subword tokenisation algorithms en-
code whitespace (word boundary information)
through the use of special space symbols (such
as ## or _) forming part of tokens. These sym-
bols have been shown to a) lead to reduced mor-
phological validity of tokenisations, and b) give
substantial vocabulary redundancy. As such, re-
moving these symbols has been shown to have
a beneficial effect on the processing of mor-
phologically complex words for transformer
encoders in the pretrain-finetune paradigm. In
this work, we explore whether word bound-
ary information is at all useful to such mod-
els. In particular, we train transformer encoders
across four different training scales, and investi-
gate several alternative approaches to including
word boundary information, evaluating on two
languages (English and Finnish) with a range
of tasks across different domains and problem
set-ups: sentence classification datasets, NER
(for token-level classification), and two classifi-
cation datasets involving complex words (Su-
perbizarre and FLOTA). Overall, through an ex-
tensive experimental setup that includes the pre-
training of 35 models, we find no substantial
improvements from our alternative approaches,
suggesting that modifying tokenisers to remove
word boundary information isn’t leading to a
loss of useful information.

1 Introduction

Transformer (Vaswani et al., 2017) pretrained lan-
guage models for NLP, such as BERT (Devlin et al.,
2019) and the GPT family (Brown et al., 2020;
Achiam et al., 2023), typically use subword tokeni-
sation algorithms, such as WordPiece (Schuster and
Nakajima, 2012), to process text. Previous work
(Church, 2020; Park et al., 2021) has shown that
such methods have limited alignment with word
morphology, resulting in worsened downstream
performance for various tasks (Klein and Tsarfaty,

2020; Bostrom and Durrett, 2020; Pinter et al.,
2020). In fact, it has been shown that the morpho-
logical validity of tokenisation can be improved by
removing all whitespace markers (and hence word
boundary (WB) information) from the tokenisers
(Gow-Smith et al., 2022). However, the full impact
of this modification on downstream performance is
unknown, and the question of whether WB informa-
tion is at all useful to models is as yet unanswered.
In this work, we first perform a morphological eval-
uation of WordPiece and WordPiece′, a version
which has been modified to have no WB informa-
tion. We find that WordPiece′ significantly im-
proves the alignment with morphological gold stan-
dard references. Then, we evaluate WordPiece and
WordPiece′ as tokenisers on downstream tasks. We
also introduce models which modify WordPiece′ by
including WB information in various ways – either
explicitly through the input or implicitly through
the pretraining objective. Much interest recently
has been in the scaling laws of language models
(Kaplan et al., 2020; Hoffmann et al., 2022), and
a direction towards training larger models. On the
other hand, there has been recent work investigat-
ing sample-efficient pretraining on datasets of a de-
velopmentally plausible size (Warstadt et al., 2023).
In companion to such work, we train our models
across four training scales, from approximately 6M
params and 250M tokens at the lowest scale to ap-
proximately 370M params and 23B tokens at the
highest scale.

Across these scales we pretrain all of our models
and evaluate in English on four downstream tasks

tthis game unis beat able

 WordPiece:

WordPiece':

tthis game un ##beis ##ble##ata

Figure 1: Tokenisations generated by WordPiece and
WordPiece′ for the input sequence “this game is unbeat-
able”.
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(comprising 16 datasets): Named Entity Recogni-
tion (NER), GLUE, and two tasks involving clas-
sifying complex words. We additionally train and
evaluate in Finnish across two tasks: NER and
Sequence Classification.

The findings of our work are as follows: (1) we
show that modifying WordPiece to remove WB
information (giving WordPiece′) substantially im-
proves the morphological validity of the resulting
tokenisations across English and Finnish; (2) across
four training scales, we find that WordPiece′ out-
performs WordPiece on downstream tasks involv-
ing complex words, and gives better performance
across most datasets at the lower training scales;
(3) we find that none of our methods for including
WB information into models, whether implicit or
explicit, or through finetuning alone, significantly
affects the performance across four downstream
tasks and three training scales. Our results indi-
cate that word boundary information isn’t provid-
ing additional useful information to models, with
morphemes being the most important subunit.

2 Tokenisers

One particular design choice of subword tokenisers
used by transformer models is the addition of pre-
fixes such as “_” and “##” in order to encode space
information, hence representing word boundaries
in languages with spaces between words. Previous
work (Gow-Smith et al., 2022) has investigated the
impact of these prefixes, showing they lead to less
morphologically valid tokenisations, and also to
a reduced efficiency, since the dual representation
of subwords (e.g. “beat” and “_beat”) gives a vo-
cabulary redundancy (of approximately 9%). As
such, removing these tokens for Unigram (Kudo,
2018) and BPE (Sennrich et al., 2015) has been
shown to have a beneficial effect on downstream
performance for complex word tasks, whilst re-
taining equivalent performance in general natural
language understanding tasks. We refer readers to
Gow-Smith et al. (2022) for a full analysis, but here
we focus on WordPiece′ – WordPiece modified
such that WB information is removed. We train this
model and the default on 1 million sentences from
Wikipedia for two languages (English and Finnish).
We show an example of the tokenisations gener-
ated by this compared to the default for English in
Figure 1. We perform a morphological evaluation
of WordPiece′ compared to WordPiece across the
two languages, shown in Table 2. For English, we

use four datasets (LADEC (Gagné et al., 2019),
MorphoLex (Sánchez-Gutiérrez et al., 2018), Mor-
phyNet (Batsuren et al., 2021), DagoBERT (Hof-
mann et al., 2020)), and we average across all four
(full breakdown in Table 7). For Finnish, we use
the subset of MorphyNet. Here, we follow the eval-
uation standard from Creutz et al. (2004), reporting
precision and F1. Averaging across English and
Finnish, we see that WordPiece′ gives 14% shorter
sequences, 46% higher precision, and 34% higher
F1 compared to WordPiece. We also show exam-
ples of English tokenisations for WordPiece and
WordPiece′ in Table 1. In general, we can see that
WordPiece generates more meaningful tokenisa-
tions, but sometimes they are still of limited mor-
phological validity, as for “undesirable” where the
prefix is incorrectly split and the base form of the
word is lost: we note that WordPiece (like BPE) is
a greedy algorithm, meaning it has a tendency to
overlengthen the initial token of a word.

WordPiece WordPiece′

hyp ##ores ##po ##n ##s ##iveness hypo respons iveness
non ##m ##ult ##ipl ##ayer non multi player

over ##pr ##iced over price d
un ##icy ##cle uni cycle

und ##es ##ira ##ble und es ira ble

Table 1: Some examples of the tokenisations from
WordPiece and WordPiece′.

3 Models

The sequences generated by WordPiece′ have no
word boundary information, which means some in-
formation is lost when using it to encode sequences.
We aim to answer the question of whether such in-
formation is at all useful to transformer encoders –
i.e. can it be incorporated in an alternative way
to improve performance? We investigate trans-
former encoders pretrained using the masked lan-
guage modelling (MLM) task, and then finetuned
on downstream tasks (pretrain-finetune paradigm).

English Finnish

Len Precis. F1 Len Precis. F1

WordPiece 3.29 24.8 33.8 3.21 28.3 38.9
WordPiece′ 2.75 42.6 52.7 2.86 34.7 45.0

Table 2: Performance of WordPiece and WordPiece′

across English and Finnish, showing the average se-
quence length, precision and F1 score generated follow-
ing the standard introduced by Creutz et al. (2004).
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L = L1 

Transformer

Encoder

MLM1

1 2this 1game 1is 1un 2[MASK] able

beat

(a) Explicit model, where word boundary embeddings
are passed in the input.

MLM2

L = L1+L2 

Transformer

Encoder

MLM1

game is un [MASK] able

beat 2

this

(b) Implicit model, with an additional MLM head for
predicting word boundaries.

Figure 2: Network diagrams for the modified transformer architectures trained in this work.

We then look to include WB information in two
ways, either directly as input (both in pretraining
and finetuning), or through a modification of the
pretraining task.

3.1 Explicit Model

One approach is to include WB information ex-
plicitly through the input. Naively, we could add
WB tokens in the input sequence, shown in Fig-
ure 3. However, this is rather inefficient as it leads
to much longer sequences and has been shown to
lead to reduced downstream task performance, even
when the number of epochs (rather than steps) is
matched (Gow-Smith et al., 2022). Nevertheless,
we implement this as a baseline. An alternative,
and significantly more efficient, way to include
this information is to add “word boundary embed-
dings” to the input, added element-wise with the to-
ken embeddings and standard position embeddings,
shown in Figure 2a. These embeddings are equiva-
lent to the standard position embeddings in being
randomly-initialised and then learned through train-
ing.

ungametthis [WB] [WB] [WB]is beat able

Figure 3: WordPiece′ with word boundary tokens.

We experiment with three methods for indexing
the WB embeddings: binary index, word index,
and subword index, shown in Figure 4. The word
index is the position of the word the correspond-
ing token belongs to, whereas the subword index
is the position within the word. These are cho-
sen to align with how the standard position indices

work within transformer architectures, but the bi-
nary index aligns with how standard WordPiece
processes word-initial and word-internal tokens,
having a value of 1 if a token appears at the start of
the word, and a value of 2 otherwise. The binary
index is also more parameter-efficient, since it only
requires an embedding dimension of 2. In fact, for
our experiments the subword index gives the most
new parameters, since even in our English pretrain-
ing corpora (Wikipedia and C4) we encounter large
chunks of (e.g. Chinese) text with no whitespace,
requiring a high embedding dimension.1

tthisTokens:

Binary Index:

Word Index:

Subword Index:

game ablebeatunis

1 1 1 1 2 2

1 2 3 4 4 4

1 1 1 1 2 3

Figure 4: Three alternative indexing methods for the
word boundary embeddings.

3.1.1 Finetuning
Alongside including WB information at pretraining,
we also experiment with pretraining using the de-
fault MLM task and architecture, and then passing
the WB information during finetuning only, either
with binary index WB embeddings, or WB tokens.

3.2 Implicit Model
One possible drawback of the explicit approach
is the reduced difficulty of the MLM task: pass-

1We set the embedding dimension at 512, which covers
all text encountered for all scales. For the word index, the
embedding dimension is set at the max sequence length (256).
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# Articles (M) Params (M) Batch Size # GPUs Steps (k)
Eng. Fin.

V Low 0.1 0.1 5.8 1024 1 25
Low 0.5 2 21.2 512 1 50
High 6.5 10 98.2 256 1 400
V High 40 - 370.4 128 4 400

Table 3: The four training scales we use to evaluate our
models.

ing WB information in the input allows the model
to utilise this directly for predicting the masked
token, rather than inferring it from context alone.
Thus, as an alternative, we modify the architecture
with an additional MLM head such that the model
has to predict the word boundaries from the input,
which we state as implicitly using WB information
through backpropagation. We show the architec-
ture in Figure 2b. In this set-up, we simply sum the
losses from the two MLM heads to give the overall
loss.2

4 Experiments

We evaluate the two tokenisers (WordPiece and
WordPiece′) and our seven explicit and implicit
models in the pretrain-finetune paradigm for En-
glish and Finnish across three training scales (V
Low, Low, High), with an additional scale (V High)
for English WordPiece and WordPiece′ (unmodi-
fied) – due to the high computational cost of train-
ing, we don’t train the other models at this scale.
Across these scales we vary the number of param-
eters, batch size, and training steps, shown in Ta-
ble 3, with further detail in the appendix in Tables 8
and 9. The first three set-ups for English, and the
first two for Finnish, take the training data from
Wikipedia, whilst the remaining take data from C4
(Raffel et al., 2020). The number of parameters
is altered by adjusting the layers, attention heads,
and embedding dimension, and a breakdown of
this is given in the appendix in Table 10. We train
our models in the manner of RoBERTa (Liu et al.,
2019) (in comparison to BERT, this involves no
next sentence prediction, and dynamic masking is
performed), and we mask 15% of tokens. Across
all set-ups, we linearly warmup the learning rate to
a maximum value of 1e-4, and then linearly decay
to 0. We use a sequence length of 256. All training
is performed on A100 or H100 GPUs. Training
and validation losses for these models are given in
the appendix: Figures 7 and 8.

2In preliminary experiments we tried weighting the two
losses, but no increase in performance was observed.

For these models, we run an evaluation on four
downstream tasks. The first two tasks focus on nat-
ural language understanding across a broad range
of domains:

GLUE We evaluate on 8 GLUE (Wang et al.,
2018) tasks (excluding the 9th task of WNLI
(Levesque et al., 2012), following previous work,
due to its adversarial nature). These tasks all in-
volve sequence classification, and cover a wide
range of domains and set-ups: two single-sentence
tasks, three similarity and paraphrase tasks, and
three inference tasks. We report the average metric
across all tasks.

NER We evaluate on three NER datasets from
different domains: the English portion of the
CoNLL-2003 NER dataset (Tjong Kim Sang and
De Meulder, 2003), consisting of sentences taken
from the Reuters news corpus (Rose et al., 2002);
the NCBI Disease corpus (Doğan et al., 2014), con-
sisting of PubMed abstracts; and the WNUT2017
Shared Task (Derczynski et al., 2017), with train-
ing data taken from Twitter, and test data from
YouTube.

The final two tasks specifically involve morpho-
logically complex words, where we expect more
morphologically valid tokenisations to result in im-
proved performance:

Superbizarre The Superbizarre datasets (Hof-
mann et al., 2021) involve the binary classification
of standalone complex words. We take the two top-
icality datasets: Arxiv, which involves predicting
whether a word comes from the Physics or Com-
puter Science subject areas; Reddit, which involves
predicting whether a word comes from an enter-
tainment or discussion subreddit. We report the
average macro F1 across the two datasets.

FLOTA The datasets introduced alongside the
FLOTA tokenisation method (Hofmann et al.,
2022) involve classifying the title of an Arxiv pa-
per into one of 20 subareas for three subject areas
(Computer Science, Maths, Physics). We take the
small version of the dataset, with a train set of 2 000
titles per subject area. We report the average macro
F1 across the three datasets.

4.1 Finnish
In addition to our experiments on English, we
train models on Finnish, to see whether our re-
sults are transferable to a morphologically complex
language – one could hypothesise that with greater

121



GLUE NER Superbizarre FLOTA

V Low Low High V High V Low Low High V High V Low Low High V High V Low Low High V High

WordPiece 54.7 (.6) 67.7 (1.5) 77.9 (.4) 83.1 (.4) 54.3 (.5) 68.9 (.4) 76.9 (.3) 81.5 (.4) 65.7 (.1) 66.2 (.1) 67.3 (.1) 68.6 (.1) 19.5 (.8) 31.2 (3.7) 50.4 (.7) 55.0 (1.1)
WordPiece′ 56.2 (.4) 69.8 (.5) 78.0 (.2) 83.7 (1.1) 53.6 (.6) 68.0 (.5) 75.7 (.2) 81.5 (.4) 66.9 (.1) 67.6 (.1) 68.4 (.3) 69.5 (.2) 23.6 (.4) 43.1 (.2) 52.3 (.5) 55.2 (1.0)

Table 4: English results across the four tasks and training scales for WordPiece and WordPiece′, with standard
deviations in parentheses. Results in bold are those better by more than the combined standard deviation ranges.

GLUE NER Superbizarre FLOTA

V Low Low High V Low Low High V Low Low High V Low Low High

WordPiece′ 56.2 (.4) 69.8 (.5) 78.0 (.2) 53.6 (.6) 68.0 (.5) 75.7 (.2) 66.9 (.1) 67.6 (.1) 68.4 (.3) 23.6 (.4) 43.1 (.2) 52.3 (.5)
WordPiece′ implicit 56.2 (.3) 69.0 (.2) 77.8 (.8) 55.3 (.3) 69.2 (.2) 75.6 (.4) 66.9 (.1) 67.6 (.1) 68.3 (.1) 23.5 (1.1) 45.1 (.8) 51.8 (1.3)
WordPiece′ explicit binary 55.7 (.4) 70.1 (.2) 78.4 (.5) 54.4 (.4) 68.2 (.8) 75.3 (.4) 66.9 (.1) 67.6 (.1) 68.2 (.1) 24.5 (1.7) 44.5 (.9) 51.8 (.6)
WordPiece′ explicit word 57.2 (.4) 69.2 (.1) 78.8 (.3) 54.9 (.3) 68.4 (.3) 75.4 (.4) 66.8 (.1) 67.6 (.1) 68.4 (.1) 22.3 (.7) 43.2 (1.0) 51.0 (2.7)
WordPiece′ explicit subword 55.6 (.6) 70.3 (.2) 78.1 (.4) 55.0 (.3) 68.1 (.4) 75.4 (.3) 67.0 (.1) 67.7 (.2) 68.2 (.2) 24.3 (1.2) 38.2 (4.9) 51.8 (2.8)
WordPiece′ explicit WB tokens 55.3 (.6) 68.7 (.2) 77.5 (2.0) 52.4 (.5) 67.6 (.2) 74.1 (.2) 66.6 (.1) 67.5 (.1) 68.3 (.2) 23.3 (1.1) 43.5 (.2) 52.3 (.1)
WordPiece′ explicit f/t WB tokens 55.1 (.2) 69.8 (.3) 76.7 (.5) 53.6 (.6) 68.3 (.4) 75.7 (.2) - - - 23.4 (1.5) 43.7 (.7) 52.5 (.8)
WordPiece′ explicit f/t binary 56.2 (.6) 69.9 (.4) 77.8 (.4) 53.6 (.3) 68.6 (.5) 75.4 (.4) 66.9 (.1) 67.5 (.1) 68.1 (.4) 23.4 (1.2) 43.6 (1.5) 52.6 (1.3)

Table 5: English results across the four tasks and three training scales for WordPiece′ and the modified architectures
which include word boundary information, with standard deviations in parentheses.

NER SeqClass

V Low Low High V Low Low High

WordPiece 72.2 (.2) 84.2 (.6) 89.9 (.3) 73.1 (.2) 78.7 (.3) 83.6 (.2)
WordPiece′ 73.0 (.6) 85.0 (.4) 89.8 (.2) 73.0 (.6) 79.0 (.5) 84.1 (.3)

Table 6: Finnish results across the three tasks and train-
ing scales for WordPiece and WordPiece′, with standard
deviations in parentheses. Results in bold are those
better by more than the combined standard deviation
ranges.

morphological complexity, word boundary infor-
mation would be more helpful in disambiguation.
We run our experiments on Finnish for WordPiece
and WordPiece′ across three training scales, and
evaluate on two downstream tasks:

NER We evaluate on the FiNER dataset (Ruoko-
lainen et al., 2020), consisting of news articles an-
notated with six entity classes, reporting macro F1.

Sequence Classification We look at two se-
quence classification datasets: the Eduskunta
dataset,3 consisting of ministers’ answers to ques-
tions from MPs, labelled with the relevant ministry;
the FinnSentiment dataset (Lindén et al., 2023),
consisting of sentences from social media labelled
with their polarity. We report the accuracy over
these two datasets.

4.2 Finetuning Procedure

An overview of all datasets is given in Table 11. We
finetune on each dataset by updating all parameters,
with the following hyperparameters: batch size

3https://github.com/aajanki/eduskunta-vkk

32, max sequence length 128, learning rate of 2e-
5, warm-up for 5% of steps. We evaluate every
epoch on the dev set, taking the best-performing
epoch. We train five seeds for every model and
report the average metric across these. We also
remove outliers which lie more than two standard
deviations from the mean, or when very low scores
suggest the model failed to train.4 For the English
NER and Complex Words Datasets, and all Finnish
datasets, we train for 20 epochs, but for GLUE we
limit it to 10 epochs per dataset due to the relatively
high training time.

5 Results

We report our full results across all individual
datasets for all models in the appendix (Tables 12
and 13). Here, we look at the overall metrics from
the four tasks across the training scales, and present
our main findings. We note that the plots produced
(Figures 5 and 6, and Figures 9 to 12 in the ap-
pendix) are approximately logarithmic in training
scale, and we reproduce them using a scale factor
on the x-axis in the appendix: Figures 15 to 19.

Firstly, we compare WordPiece and WordPiece′

in Table 4 and Figure 5. On GLUE, we see that
WordPiece′ performs better than WordPiece across
all scales, with a bigger performance difference

4This occurs for the following. High: one seed of
WordPiece′ FLOTA CS (score of 7), one seed of WordPiece′

FLOTA Maths (score of 11), one seed of WordPiece′ f/t WB
tokens (score of 3); V High: one seed of WordPiece′ WB
tokens CoLA (score of 0), two seeds of WordPiece CoLA
(scores of 0 and 8), one seed of WordPiece′ STS-B (score of
2), one seed of WordPiece FLOTA CS (score of 4), one seed
of WordPiece FLOTA Maths (score of 3).
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Figure 5: English results for WordPiece and WordPiece′ across four training scales and four tasks.
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Figure 6: Finnish results for WordPiece and WordPiece′

across three training scales and two tasks.

at the lower scales (+1.5 and +2.1 for the V Low
and Low training scales, respectively). We note
that at the higher scales, the differences are within
two standard deviations of the baseline, so these
results are consistent with those by Gow-Smith
et al. (2022). For NER, on the other hand, we find
that WordPiece′ performs worse than WordPiece
across all training scales except V High, where
they perform equivalently. Looking at the individ-
ual dataset performances (Table 12 in the appendix)
we see that the worse performance on WNUT2017
(-2.5 average decrease across scales) accounts for
the worse overall NER performance, with the other
two datasets giving similar results (apart from at
the V Low scale, where WordPiece′ performs sub-
stantially better on them). This dataset involves tag-
ging “unusual, previously-unseen entities”, which
means morphological composition cannot be lever-
aged – we hypothesise that the improved ability
of WordPiece′ to do this is the cause of the perfor-
mance drop, due to the futility of composing the

meaning of novel surface forms from subunits. Our
results on Finnish (Table 6 and Figure 6) show no
significant performance difference between Word-
Piece and WordPiece′ across the sequence classi-
fication and NER tasks, apart from for the High
training scale on sequence classification, where
WordPiece′ outperforms WordPiece.

For the complex word tasks, WordPiece′ substan-
tially outperforms WordPiece: averaging across the
training scales, we get 1.1 average increase for Su-
perbizarre, and 4.5 average increase for FLOTA.
The relative performance difference is most sig-
nificant for Superbizarre: at the V Low scale, we
would require approximately 20 times the train-
ing scale for WordPiece to match WordPiece′ (Fig-
ure 15c in the appendix). In general, we find the
performance differences to decrease as the training
scale increases, as expected,5 however this effect
seems significantly less for Superbizarre, which
still has a large performance difference at the V
High training scale (+0.9).

Next, we look at the models that attempt to use
WB information, with results in Table 5.

Comparing WordPiece′ and the implicit variant
(shown also in Figure 9 in the appendix), we find
that adding the extra loss term gives mixed results
across the four tasks and training scales. We do
however see that at the V Low and Low training
scales, the implicit model improves performance
for NER (+1.7 and +1.2, respectively). Since this
prediction task is very similar to the finetuning
task of token classification, this may explain the
effect on performance. The additional MLM head
increases the total loss (see Figure 13 in the ap-

5Improved morphological validity should matter less when
the model capacity is greater, and when morphologically com-
plex and rare words have been encountered more times during
pretraining.

123



pendix), but when we look at the evaluation accu-
racies for the two MLM heads (Figure 14 in the
appendix), we see that the default MLM head has
very similar accuracies to the WordPiece′ baseline.
We also note that for the Very Low training scale,
there is a 3.5% (relative) improvement in default
MLM accuracy, which could be contributing to the
performance improvement – in a low resource sce-
nario (both compute and data), the extra prediction
task may help to leverage additional information.

Next, we look at the explicit variants. Naively
including the WB information through additional
tokens leads to decreased performance across all
tasks except for FLOTA, where there is no sub-
stantial performance difference (Figure 10 in the
appendix). Overall, these differences are small:
around 1 for GLUE, 0.5-2 for NER, 0.1-0.3 for
Superbizarre. This is despite a significantly lower
MLM loss (approximately 60%: Figure 13 in the
appendix) due to the high probability of WB tokens,
and the fact that this model trains for around 40%
fewer epochs (Table 8 in the appendix). We next
look at the three variants for WB embeddings (see
appendix: Figure 11). Overall, none of these mod-
els consistently improve over WordPiece′, and the
relative performance of the three indexing methods
varies with training scale and task. The subword
index model has the greatest number of additional
parameters, which might explain why this model
performs the best overall at the V Low scale. In
this setting this model has 2.3% more parameters
than the baseline, compared to 1.1% for the word
index model, and 0.01% for the binary index model.
The model achieves an average performance across
the four tasks of 50.5, compared to 50.3 for the
other two variants, and 50.1 for the baseline. How-
ever, at the Low training scale, this model actually
performs worse than the other two variants (61.1
average compared to 62.6 and 62.1 for binary and
word, respectively). At the High training scale
they all perform equivalently (68.4 average). Since
all three indexing methods are encoding equivalent
information through trivial transformations, the per-
formance equivalence is perhaps expected.

Finally, we look at two approaches to includ-
ing WB information during finetuning only (Fig-
ure 12 in the appendix) – with WB tokens or bi-
nary index WB embeddings. We find that nei-
ther of these approaches improve over the baseline,
with the WB tokens approach performing overall
slightly worse: averaged across all training scales
and datasets, we get 57.5 for default WordPiece′,

57.5 for WordPiece′ f/t binary index, and 57.3 for
WordPiece′ f/t WB tokens. This corroborates the
results by Abdou et al. (2022), who find that adding
position embeddings after pretraining without them
does not lead to improved performance. On aver-
age, including the WB embeddings during finetun-
ing decreases training stability (increased standard
deviation across seeds).

6 Discussion

Overall, we find that incorporating word bound-
ary information in transformer encoders, either
explicitly or implicitly, does not lead to substan-
tial performance improvements. This suggests that:
a) modifying tokenisers such as WordPiece to re-
move space information does not result in the loss
of useful information, b) the default MLM task is
sufficient for such models to pretrain effectively.

The pre-tokenisation step of splitting on whites-
pace prevents tokens from ever crossing word
boundaries, which is perhaps a sufficient restriction.
Our results indicate the importance of a morpheme
compared to a word as the key feature which con-
tributes to meaning.

For English, across all models and training
scales, we only see a weak correlation between
performance on NER and GLUE – if we compare
the difference compared to WordPiece′ for the im-
plicit and explicit models, we find a correlation
with Pearson’s ρ = 0.332.

The Superbizarre task is significantly less af-
fected by model scaling than the other tasks we
evaluate on, but much more affected by the choice
of tokeniser. This suggests that morphologically
valid tokenisation is vital for generating good rep-
resentations of complex words in the absence of
context. This task is also less likely to be depen-
dent on spurious correlations (annotation artefacts)
in the data.

All of our models at the High and V High train-
ing scales outperform the dev results reported by
Hofmann et al. (2022) on the FLOTA ArXiv-S
datasets using their tokenisation method. We hy-
pothesise this is likely an effect of hyperparameters,
e.g. we use a batch size of 32 rather than their 64,
and we use a learning rate scheduler with warm-up,
whereas they do not.

7 Related Work

This work aligns with other works that aim to im-
prove the morphological validity of subword to-
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kenisers: Westhelle et al. (2022) introduce Mor-
phologically Informed Segmentation (MIS), a to-
keniser based on Morfessor for Portuguese; Hof-
mann et al. (2022) introduce Few Longest Token
Approximation (FLOTA), which preserves the mor-
phology of complex words without necessarily
keeping all the characters. Jimenez Gutierrez et al.
(2023) introduce a tokeniser for the biomedical do-
main that is better aligned with morpheme segmen-
tation, and then train their BioVocabBERT model
using it. There has also been work looking at the
impact of how subword tokens are marked, either
with word-initial or word-final prefixes (Jacobs and
Pinter, 2022).

There is previous work which has passed addi-
tional position indices to transformer models. Jia
et al. (2021) introduce a model for neural text-
to-speech called PnG BERT which uses word-
position embeddings to provide alignment between
phonemes and graphemes at the word level. In NLP,
Bai et al. (2020) introduce Segatron, a model which
modifies the Transformer-XL (Dai et al., 2019)
with two additional position embeddings: a sen-
tence index and a paragraph index. They also apply
the same modifications to BERT, giving SegaBERT.
They find that SegaBERT gives lower validation
losses during pre-training, lower language mod-
elling perplexities, and improves upon the GLUE
score of BERT. Cheng et al. (2023) include POS
tags as additional input embeddings during BERT
pretraining, which they find to reduce performance
on (Super)GLUE (Wang et al., 2019) and MSGS
(Warstadt et al., 2020).

There has also been work which has modified
the pretraining objective of transformer models.
Yamaguchi et al. (2021) introduce various alterna-
tives to MLM, and pre-train models using them,
finding that default MLM is superior in the higher-
parameter setting. There have been various works
using linguistically-motivated pretraining objec-
tives (Zhou et al., 2019; Levine et al., 2020), with
the closest to our work being that by Cui et al.
(2022), who find improved performance through
simply adding additional MLM heads for linguistic
tasks and summing their losses.

8 Conclusion

In this work we investigate whether word boundary
information is useful for transformer encoders. In
particular, we start with WordPiece′, a version of
WordPiece modified to remove word boundary in-

formation, and show that it leads to more linguisti-
cally meaningful tokenisations, as well as improved
performance on tasks involving morphologically
complex words, whilst having no significant effect
on performance for general domain tasks across
English and Finnish. We also investigate modi-
fications to the default model architecture which
involve incorporating word boundary information,
either explicitly (through the input), or implicitly
(through the pretraining task), and through pretrain-
ing or finetuning alone. Across all models and
training scales, we find that these modifications
give no substantial improvements in performance,
which suggests transformer encoders can perform
well without word boundary information, either in
the form of prefixes (“##” or “_”), word boundary
tokens, word boundary embeddings, or through a
modification to the pretraining task.
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Limitations

In this work we have only looked at transformer
encoder architectures. For encoder-decoder or de-
coder models, word boundary information needs to
be generated in the output – i.e. WordPiece′ is lossy
which is problematic for generation. Not including
such architectures is a significant limitation of the
scope of our work and an important future direc-
tion. Despite running pretraining across four scales,
we don’t look at altering the vocabulary size of our
tokenisers, which is another limitation. Whilst we
have investigated many approaches to including
word boundary information through modified ar-
chitectures, it is possible that there are alternative
approaches which would perform better than these.
In addition, whilst we have tried to run experiments
on a extensive range of downstream tasks with two
languages, it is possible that there are other tasks
and languages where the omission of word bound-
ary information would have a significant negative
impact on performance.
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LADEC MorphoLex MorphyNet DagoBERT MEAN

Len Precis. F1 Len Precis. F1 Len Precis. F1 Len Precis. F1 Len Precis. F1

WordPiece 3.34 38.0 53.3 2.91 26.0 31.4 3.43 13.2 19.7 3.47 21.9 30.7 3.29 24.8 33.8
WordPiece′ 2.66 53.7 67.1 2.55 50.0 55.1 2.95 25.5 36.1 2.85 41.1 52.5 2.75 42.6 52.7

Table 7: Performance of WordPiece and WordPiece′ across four English morphological datasets, showing the
average sequence length, precision and F1 score generated following the standard introduced by Creutz et al. (2004).

Base Dataset # Articles (M) Examples (M) Params (M) Batch Size # GPUs Steps (k) Epochs Train Time (h)
WP WP’ WP’ spaces WP WP’ WP’ Spaces

V Low Wikipedia 0.1 1.2 1.1 1.8 5.8 1024 1 25 21.5 23.0 13.9 11.0
Low Wikipedia 0.5 4.1 3.8 6.3 21.2 512 1 50 6.3 6.7 4.1 19.0
High Wikipedia 6.5 19.8 18.5 30.2 98.2 256 1 400 5.2 5.5 3.4 29.2
V High C4 40 88.0 82.2 - 370.4 128 4 400 2.3 2.5 - 70.9

Table 8: The four training scales we use to evaluate our models in English.

Base Dataset # Articles (M) Examples (M) Params (M) Batch Size # GPUs Steps (k) Epochs Train Time (h)
WP WP’ WP WP’

V Low Wikipedia 0.1 0.3 0.3 5.8 1024 1 25 78.9 84.8 4.1
Low Wikipedia 2 1.0 1.0 21.2 512 1 50 24.7 26.6 7.8
High C4 10 37.6 34.6 98.2 256 1 400 1.4 1.5 78.4

Table 9: The three training scales we use to evaluate our models in Finnish.
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Figure 7: Training and valid losses for WordPiece and WordPiece′ across three training scales for English.
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Figure 8: Training and valid losses for WordPiece and WordPiece′ across three training scales for Finnish.
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Figure 9: Results for WordPiece′ and WordPiece′ implicit.
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Figure 10: Results for WordPiece′ and WordPiece′ explicit with word boundary tokens.
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Figure 11: Results for WordPiece′ and WordPiece′ explicit with word boundary embeddings.
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Figure 12: Results for WordPiece′ and WordPiece′ finetuned with either word boundary tokens or binary index
word boundary embeddings.
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Layers Att. Heads Embed. Dim.

V Low 2 4 256
Low 4 8 512
High 12 12 768
V High 26 16 1024

Table 10: Layers, attention heads, and embedding di-
mension for the four training scales.

Figure 13: Pretraining MLM losses for all English
models across three training scales, averaged across the
last 100 steps.

Figure 14: English pretraining evaluation accuracies
for WordPiece′ and the two MLM heads for WordPiece′

extra loss.
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Figure 15: Results for WordPiece and WordPiece′ with log training scale on the x-axis.
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Figure 16: Results for WordPiece′ and WordPiece′ implicit with log training scale on the x-axis.
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Figure 17: Results for WordPiece′ and WordPiece′ explicit with word boundary tokens with log training scale on
the x-axis.
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Figure 18: Results for WordPiece′ and WordPiece′ explicit with word boundary embeddings with log training scale
on the x-axis.
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Figure 19: Results for WordPiece′ and WordPiece′ finetuned with either word boundary tokens or binary index
word boundary embeddings with log training scale on the x-axis.
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|Train| (k) |Dev| (k) Metric Domain

CoLA (Warstadt et al., 2018) 8.5 1 Matthew’s Correlation Books and Journal Articles
SST-2 (Socher et al., 2013) 67 1 Accuracy Film Reviews
MRPC (Dolan and Brockett, 2005) 3.7 0.4 F1 / Accuracy Online News
STS-B (Cer et al., 2017) 5.8 1.5 Pearson / Spearman Correlation Various
QQP (https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) 364 40 F1 / Accuracy Quora questions
MNLI (Williams et al., 2018) 393 9.8 Accuracy Various
QNLI (Rajpurkar et al., 2016) 105 5.5 Accuracy Wikipedia
RTE (Bentivogli et al., 2009) 2.5 0.3 Accuracy Wikipedia and News
Superbizarre-Arxiv (Hofmann et al., 2021) 58 19 F1 Arxiv Papers
Superbizarre-Reddit (Hofmann et al., 2021) 51 17 F1 Reddit
FLOTA (Hofmann et al., 2022) 1.2 0.4 F1 Arxiv Paper Titles
FiNER (Ruokolainen et al., 2020) 13.5 1.0 F1 Online News
Eduskunta (https://github.com/aajanki/eduskunta-vkk) 49.1 3.0 Accuracy Parliamentary Questions
FinnSentiment (Lindén et al., 2023) 24.3 2.7 Accuracy Social Media

Table 11: Information for the datasets we use for evaluation.

mnli SB FLOTA
conll ncbi wnut17 cola sst2 mrpc stsb qqp m mm qnli rte A R CS M P

V Low WP 79.5 59.5 24.0 6.9 79.7 76.0 15.7 74.0 59.9 61.1 64.6 54.2 66.1 63.9 20.8 16.9 20.8
WP′ 80.2 60.4 20.4 3.5 80.8 76.2 15.8 77.4 63.8 65.1 67.3 56.0 68.3 65.4 23.0 23.1 24.7
WP′ extra loss 80.1 61.3 23.0 6.7 80.6 75.6 16.0 76.7 63.3 64.9 65.7 55.3 68.4 65.4 21.6 20.3 28.7
WP′ binary 79.7 60.8 22.6 7.4 82.7 76.0 15.2 74.7 62.5 63.6 63.6 55.4 68.3 65.4 24.2 21.8 27.4
WP′ word pos 80.3 60.5 23.9 7.7 81.4 76.1 20.6 78.6 63.7 65.1 68.0 53.8 68.3 65.4 21.7 19.6 25.6
WP′ subword pos 80.9 62.5 21.6 5.7 82.8 75.9 13.1 74.2 63.0 64.3 65.0 56.0 68.6 65.3 26.0 22.3 24.6
WP′ spaces 78.0 58.8 20.4 7.3 80.6 76.5 14.4 75.6 62.0 62.6 64.9 53.6 67.8 65.3 20.0 19.9 23.2
WP′ f/t binary 80.3 60.3 20.1 4.7 81.0 75.5 16.0 77.3 63.8 65.0 66.4 55.7 68.4 65.4 22.1 22.1 25.6
WP′ f/t spaces 80.2 60.4 20.4 1.9 81.4 76.5 14.0 74.4 63.3 64.6 65.2 54.9 - - 22.3 21.9 26.0

Low WP 89.3 78.0 39.5 11.9 85.0 78.2 66.1 85.2 71.9 72.2 82.0 56.7 68.1 64.4 30.3 28.7 34.7
WP′ 89.9 77.0 37.3 16.9 85.3 79.0 78.0 85.6 72.2 72.7 81.6 56.6 69.3 66.0 44.1 38.7 46.6
WP′ extra loss 90.7 77.6 39.3 15.5 84.6 77.3 75.2 85.2 72.6 73.1 81.2 56.3 69.2 65.9 46.3 41.0 48.1
WP′ binary 89.9 77.5 37.2 18.5 87.1 77.0 76.3 85.3 73.4 73.4 82.7 57.3 69.1 66.0 44.6 41.7 47.3
WP′ word pos 89.7 77.1 38.3 16.3 84.2 78.0 76.4 84.8 71.4 72.0 81.8 57.5 69.2 66.0 42.9 39.4 47.4
WP′ subword pos 90.0 77.0 37.1 18.4 86.3 78.9 77.5 85.6 72.8 73.0 82.5 58.1 69.5 66.0 40.2 33.6 40.8
WP′ spaces 89.1 76.3 37.5 16.3 84.3 76.0 74.3 85.0 72.0 72.2 80.0 58.1 69.2 65.7 43.2 40.4 47.0
WP′ f/t binary 90.0 77.3 38.6 16.0 84.9 79.1 77.5 85.5 72.4 73.0 82.3 58.6 69.3 65.8 44.0 40.6 46.1
WP′ f/t spaces 90.0 76.9 38.1 16.3 84.3 78.2 79.6 85.3 71.9 72.9 81.4 57.1 - - 45.8 39.3 46.0

High WP 95.0 83.7 52.1 34.7 90.0 87.2 85.6 88.9 80.3 80.4 89.1 65.1 69.5 65.2 51.6 47.6 52.0
WP′ 94.9 83.7 48.6 40.2 90.8 87.3 85.7 88.6 79.9 80.0 87.1 62.8 70.3 66.5 53.2 49.8 53.8
WP′ extra loss 94.9 83.2 48.7 34.6 90.4 87.2 85.7 88.5 79.5 80.0 88.5 65.6 70.6 66.1 53.5 48.5 53.3
WP′ binary 94.6 84.0 47.4 40.4 90.5 87.6 85.7 88.7 79.9 80.3 88.5 64.3 70.1 66.2 52.0 48.1 53.0
WP′ word pos 94.6 83.1 48.5 40.0 90.7 88.2 86.3 88.7 80.5 80.4 88.2 66.1 70.3 66.5 51.9 49.0 54.7
WP′ subword pos 94.4 83.7 48.1 38.4 90.4 86.5 85.7 88.8 80.4 80.6 87.9 63.8 70.0 66.4 47.3 46.3 51.0
WP′ spaces 93.8 83.8 44.6 38.0 90.2 86.6 84.9 88.3 79.3 79.5 86.4 64.3 70.3 66.2 54.0 49.6 53.2
WP′ f/t binary 94.8 83.3 48.2 39.0 90.9 87.1 85.8 88.5 79.9 80.0 87.0 61.9 70.1 66.0 51.6 51.6 54.7
WP′ f/t WB tokens 94.9 83.7 48.6 36.3 90.5 87.1 85.7 88.4 80.1 80.6 86.7 63.3 - - 52.9 49.9 54.7

V High WP 95.6 86.1 62.9 61.3 92.3 89.2 89.0 89.9 85.6 85.7 91.2 63.9 70.6 66.5 59.2 51.4 54.3
WP′ 95.7 86.5 62.2 61.3 93.1 90.9 89.4 90.0 85.2 85.3 90.9 67.1 71.6 67.4 60.4 49.4 55.6

Table 12: Full English results across all datasets, training scales, and models.

FiNER Eduskunta FinnSentiment

V Low WP 72.2 64.6 81.6
WP′ 73.0 65.2 80.9

Low WP 84.2 71.3 86.3
WP′ 85.0 71.1 86.8

High WP 89.9 75.9 91.3
WP′ 89.8 75.3 92.9

Table 13: Full Finnish results across all datasets, train-
ing scales, and models.
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