
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 136–162
August 15, 2024 ©2024 Association for Computational Linguistics

Beyond Link Prediction: On Pre-Training
Knowledge Graph Embeddings

Daniel Ruffinelli and Rainer Gemulla
University of Mannheim

Germany
{druffinelli, rgemulla}@uni-mannheim.de

Abstract

Knowledge graph embeddings (KGEs) provide
low-dimensional representations of the entities
and relations in a knowledge graph (KG) in or-
der to reason about the KG and to inject struc-
tured knowledge into various downstream ap-
plications. Most prior work, however, focuses
almost exclusively on training and evaluating
KGE models for the task of link prediction. In
this work, we explore KGE models as general-
purpose representations of KGs and study their
suitability (i) for more generally capturing prop-
erties of the KG and (ii) for downstream tasks
such as entity classification and regression. For
(i), we designed a new set of graph-structure
prediction tasks to assess whether models cap-
ture different structures in the graph. For (ii),
we investigate whether models provide useful
features for a variety of downstream tasks. We
found that strong link prediction performance
was neither an indication that models generally
capture patterns in the graph, nor that they were
more useful in downstream tasks. As a result,
we included our proposed graph-structure pre-
diction tasks as additional training objectives
and found that models trained with this multi-
task approach generally, but not always, per-
formed better at both graph-structure prediction
and downstream tasks. However, the most suit-
able choice of pre-training tasks varies across
KGE models and types of downstream tasks,
suggesting opportunities for more research into
the relation between pre-training KGE models
and their usability on downstream applications.

1 Introduction

Knowledge graph embeddings (KGE) provide rep-
resentations of the entities and relations in a knowl-
edge graph (KG). Although a large number of KGE
models have been proposed, e.g. Ge et al. (2023);
Xiao et al. (2022); Bai et al. (2022), most prior
work focuses on the task of link prediction, i.e.,
answering questions such as (Austin, capitalOf, ?)
by reasoning over an incomplete KG. In addition

to link prediction, it is often argued that KGEs
can provide representations that capture semantic
properties of the entities (Wang et al., 2022a; Ji
et al., 2021; Wang et al., 2017; Nickel et al., 2015;
Bordes et al., 2013, 2011) and, indeed, pre-trained
KGE models have been used to inject structured
knowledge into recommender systems (El-Kishky
et al., 2022; Wang et al., 2018), question answer-
ing systems (Ilyas et al., 2022) and other types of
downstream applications (Ji et al., 2021).

Despite their use as KG representations in down-
stream applications, the question of whether pre-
trained KGE models are generally useful represen-
tations of KGs—i.e. representations that are useful
beyond the link prediction task—remains largely
unexplored. Specifically, it is not well-understood
how different pre-training settings affect these rep-
resentations. This stands in contrast with represen-
tation learning of natural language, where represen-
tations are intrinsically tested for known linguistic
properties (Mikolov et al., 2013) and extrinsically
on their usability in downstream applications (De-
vlin et al., 2019; Radford et al., 2018), and where
different pre-training settings are known to improve
performance (Raffel et al., 2020; Liu et al., 2019).

In this work, we study the suitability of KGE
models as general-purpose KG representations.
First, we intrinsically assess whether KGE models
capture known properties of the graph, by evalu-
ating their performance on basic graph-structure
prediction tasks. We focus on new tasks that are
similar to link prediction, but that test different
forms of structural knowledge, such as predicting
the relation of a triple (e.g., the relationship be-
tween Austin and Texas), the domain and range of
a relation (e.g., whether Austin is a capital), and the
entity and relation neighborhood of an entity (e.g.,
which entities are related to Austin). We found that
commonly trained KGE models often performed
poorly on such tasks, challenging the intuition that
KGE models preserve the structure of a KG.

136

Second, we extrinsically evaluate whether KGE
models are useful pre-trained representations for
node-level downstream tasks such as entity clas-
sification (e.g., the profession of a person) or re-
gression (e.g., the rating of a movie). We conduct
an empirical study using 35 downstream tasks on
three different KGs. We found that KGE models
often perform decent on these tasks, almost always
exceeding the performance of graph neural net-
works that train directly on the downstream task,
such as KE-GCN (Yu et al., 2021). However, the
KGE models with best downstream task perfor-
mance were often not the best-performing models
for link prediction. For example, the basic TransE
model (Bordes et al., 2013) can be superior to KGE
models with stronger performance on link predic-
tion, such as ComplEx (Trouillon et al., 2016) or
RotatE (Sun et al., 2019). This suggests that good
link prediction performance is not necessarily in-
dicative of good downstream task performance.

Both of these findings suggest that the focus on
link prediction tasks is too narrow for pre-training
KGE models, i.e., to provide generally useful rep-
resentations of a KG. We thus included the graph-
structure prediction tasks discussed above as ad-
ditional training objectives. The resulting multi-
task KGE models had significantly better overall
performance for graph-structure prediction tasks,
suggesting that the learned representations capture
more information about the graph, at the cost of a
small drop in link prediction performance.

Perhaps more importantly, when using pre-
trained KGEs in downstream tasks, we found that
multi-task training often (but not always) improved
downstream performance, especially as data be-
comes scarce. In fact, excluding the link prediction
task during pre-training resulted in better down-
stream performance more often than not. However,
capturing more information about the graph did
not directly translate to better downstream perfor-
mance, as the best performing models in down-
stream applications were often those that were not
pre-trained using all possible tasks. In general, the
best choice of pre-training tasks depends on the
dataset, KGE model, and type of downstream task,
suggesting opportunities for more research to bet-
ter understand how to pre-train KGE models so
they provide generally useful KG representations.
We provide all of our resources1 to promote future
work in this direction.

1Available at https://github.com/uma-pi1/kge-pretraining.

2 Preliminaries and Related Work

We briefly describe KGE models, training and eval-
uation methods for link prediction, as well as prior
work on other tasks. For a more comprehensive
discussion, please see surveys from Nickel et al.
(2015); Wang et al. (2017); Ji et al. (2021).

Link prediction. A knowledge graph G ⊆
E × R × E is a collection of (subject, predicate,
object)-triples over a set E of entities and a set R
of relations. Triples represent known facts such as
(Austin, capitalOf, Texas). In the KGE literature,
the link prediction task is defined as predicting the
subject or object to questions of the form (?, capi-
talOf, Texas) and (Austin, capitalOf, ?), resp.

KGE models. KGE models represent each
entity and each relation of a KG with a low-
dimensional embedding. Each model has a scoring
function s : E × R × E → R that maps each
possible triple to a real-valued score. Intuitively,
high scores indicate plausible triples, low scores
implausible triples. For example, TransE (Bor-
des et al., 2013) is a translation-based model with
s(i, k, j) = −∥ei + rk − ej∥, where ei ∈ Rd and
rk ∈ Rd are entity and relation embeddings, resp.
Scoring functions can be more involved, e.g., based
on transformers (Chen et al., 2021a).

Standard training. KGE models are com-
monly trained on the link prediction task. For each
training triple (s, p, o), models are trained such
that score s(s, p, o) is high (a known positive) but
score s(s, p, o′) is low for (pseudo-)negative triples
(s, p, o′), where o′ ̸= o ∈ E ; similarly for subjects
s′ ∈ E with negative triple (s′, p, o). Different
training objectives exist, all of which follow this
approach, but otherwise differ in other hyperparam-
eters; for details, see Ali et al. (2021).

Standard evaluation. The most common evalu-
ation protocol is entity ranking (ER), and it is also
based on link prediction. Given test triple (s, p, o),
models answer the link prediction queries (s, p, ?)
and (?, p, o) by ranking all possible answers to each
query by their scores, after filtering other known
answers. Metrics such as mean reciprocal rank
(MRR) and Hits@K are then computed based on
the rank of the answers s and o, resp. As an evalua-
tion method, entity ranking has been questioned in
prior work (Zhou et al., 2022; Tiwari et al., 2021;
Safavi and Koutra, 2020; Wang et al., 2019). In this
work, we focus mostly on other evaluation tasks.

Other training approaches. Nickel et al. (2011)
and Li et al. (2021) trained on the reconstruction

137

https://github.com/uma-pi1/kge-pretraining

task, which aims at reconstructing the training
set using cost functions such as

∑
t∈Gtrain

∥I[(t)]−
s(s, p, o)∥22, for training set Gtrain and where I[·] is a
0/1 indicator. We do not consider such methods due
to excessive training costs. Chen et al. (2021b) aug-
mented the link prediction task with relation predic-
tion during training (but not evaluation). We extend
this work by including additional pre-training tasks
and by focusing on graph-structure prediction and
downstream task performance instead.

Other evaluation approaches. Some works
evaluate KGE models using triple classifica-
tion (Socher et al., 2013; Lin et al., 2015; Wang
et al., 2022b). We do not consider this task be-
cause performance estimates are typically overly
optimistic and misleading unless hard negatives are
used (Safavi and Koutra, 2020); such hard neg-
atives are generally not available. Chang et al.
(2020) evaluated KGE models on the relation pre-
diction task, which we also consider as one evalua-
tion task in this work. There is also work on prob-
ing KGE models (Meilicke et al., 2018; Allen et al.,
2021; Rim et al., 2021), which focus on link predic-
tion performance across different types of relations,
e.g. symmetric. In contrast, we focus on studying
whether models provide useful representations, i.e.
we focus on embedding quality, not just on link
prediction performance. In addition, pre-trained
KGE models have been used as components in lan-
guage models (He et al., 2020; Zhang et al., 2019),
visual models (Baier et al., 2017), recommender
systems (El-Kishky et al., 2022; Wang et al., 2018),
or question answering systems (Ilyas et al., 2022).
Similarly, some studies have evaluated pre-trained
KGE models for entity classification or regression
tasks (Pezeshkpour et al., 2018; Jain et al., 2021),
as we do. We extend this line of work with a larger
set of downstream tasks, and by being the first (to
our knowledge) to study the impact of different pre-
training methods on downstream task performance.

3 Graph Structure Prediction

In this section, we describe the new graph-structure
tasks used in our study. Specifically, how we use
them to test whether KGE models preserve known
properties in a KG, and how we adapted KGEs to
efficiently train on these tasks.

3.1 Graph-Structure Tasks

An example and summary of the graph-structure
tasks that we use in our study is given in Table 1.

We describe the queries for each task as a triple
such as (s, ?, ∗), where s or o denote input entities,
p denotes an input relation, ? denotes the prediction
target, and ∗ acts as a wildcard. Using this notation,
we consider the following tasks and queries:

• Link prediction (LP): Given a relation and a sub-
ject, predict the object (denoted (s, p, ?)). Like-
wise, given a relation and an object, predict the
subject (denoted (?, p, o)).

• Relation prediction (REL, Chang et al. (2020);
Chen et al. (2021b)): Given two entities s and
p, predict the relation between them (denoted
(s, ?, o)).

• Domain prediction (DOM): Given a relation,
predict its domain (denoted (?, p, ∗)) or its range
(denoted (∗, p, ?)).

• Entity neighborhood prediction (NBE): Given
a subject entity, predict related objects (denoted
(s, ∗, ?)). Likewise, given an object, predict re-
lated subjects (denoted (?, ∗, o)).

• Relation neighborhood prediction (NBR):
Given a entity, predict the relations where it oc-
curs as subject (denoted (s, ?, ∗)) and where it
occurs as object (denoted (∗, ?, o)).

Note that we use the wildcard to denote existential
quantification. For example, given a ground-truth
KG G and domain prediction query (?, p, ∗), an
entity s ∈ E is a correct answer if there exists an
entity o ∈ E such that (s, p, o) ∈ G. We illustrate
these new tasks in Figure 2 in Appendix A.

We chose this particular set of tasks because
they are simple, they capture basic information
about the graph structure beyond link prediction,
and they only have one prediction target (an en-
tity or a relation). The latter property allows ef-
ficient pre-training and evaluation, as discussed
below. For this reason, we exclude tasks such as
entity-pair prediction (Wang et al., 2019) (denoted
(?, p, ?)) or reconstruction (Nickel et al., 2011) (de-
noted (?, ?, ?)). In our experimental study in Sec. 4,
we found that the exclusion of some of the above
pre-training tasks (e.g., LP) often improves down-
stream task performance. The optimal choice of
tasks depends on dataset, KGE model, and down-
stream task, however. We leave the exploration of
task selection as well as on exploring additional
pre-training tasks to future work.

138

Knowledge graph Task Example query Some answers

(Dallas, locatedIn, Texas) Link (LP) (Austin, locatedIn, ?) Texas, USA
(Texas, locatedIn, USA) (?, locatedIn, Texas) Austin, Dallas
(Austin, capitalOf, Texas) Relation (REL) (Austin, ?, Texas) locatedIn, capitalOf
(Austin, locatedIn, Texas) Domain (DOM) (*, locatedIn, ?) Texas, USA, North A.
(Arkansas, borders, Texas) (?, locatedIn, *) Dallas, Texas, USA
(USA, locatedIn, North A.) Entity neighb. (NBE) (Austin, *, ?) Texas, USA
(Austin, locatedIn, USA) (?, *, Texas) Dallas, Arkansas

Relation neighb. (NBR) (Austin, ?, *) capitalOf, locatedIn
(*, ?, Texas) borders, capitalOf

Table 1: Graph-structure prediction tasks used for self-supervised pre-training and evaluation along with example
queries. Here ? denotes the prediction target and ∗ acts as a wildcard.

3.2 Multi-Task Ranking

To intrinsically evaluate whether KGE models pre-
serve properties that are known to exist in a KG,
we use the set of graph-structure prediction tasks
described above to generalize the entity ranking
(ER) protocol for link prediction (see Sec. 2) to a
multi-task ranking (MTR) protocol. Intuitively, for
each of the nine queries (LP/REL/DOM/NBE/NBR
for both subject and object targets), we construct a
query from each test triple, obtain a ranking of the
prediction targets that do not already occur in the
training/validation/test data (filtered setting), and
use metrics such as MRR or Hits@K. The final
metric is the micro-average over all nine queries.

We now describe how to obtain task-specific
rankings. First, for a REL query of form (s, ?, o),
we proceed as in Chang et al. (2020) and rank all
p′ ∈ R such that (s, p′, o) /∈ Gtrain in descend-
ing order of their scores s(s, p′, o). For the other
tasks, which involve wildcards, it is not imme-
diately clear how to perform prediction using a
KGE model. We first discuss scoring and rank-
ing, then filtering of data for evaluation. Consider
for example the NBR query (s, ?, ∗), where our
goal is to rank relations. The perhaps simplest ap-
proach to obtain a relation ranking is to first rank
all triples of form (s, p′, o′), where p′ ∈ R and
o′ ∈ E , and then rank relations by their first ap-
pearance (e.g., the relation of the highest-scoring
triple is ranked at the top). Generally, we make
use of an extended score function that accepts wild-
cards (described in Algorithm 2 in Appendix A).
The approach just described corresponds to using
s(s, p′, ∗) = maxo′∈E s(s, p′, o′), i.e, the score of
a relation p′ is the score of its most plausible triple.
Although other aggregation functions are feasible,

we only consider max-aggregation because it does
not make any additional assumptions on the scoring
function. To filter training/validation/test data dur-
ing model evaluation (as done in the literature), we
remove all relations p′ such that (s, p′, o′) ∈ Gtrain
for some o′ ∈ E ; i.e., we remove all prediction tar-
gets that are already implied by the filtering splits.
We proceed similarly for all other tasks involving
wildcards. Note that the number of score compu-
tations needed to predict entity targets for queries
without wildcards is O(|E|), whereas the one for
queries with wildcards is O(|E||R|). Similarly, pre-
dicting target relations costs O(|R||E|) and O(|R|)
with and without wildcards, respectively. We dis-
cuss in the next section how to reduce the additional
cost of using wildcards to O(|E|) or O(|R|).

3.3 Multi-Task Training

We generalize standard KGE model training to
all of the graph-structure prediction tasks, called
multi-task training (MTT). Our goal is to be able
to train KGE models on multiple tasks simultane-
ously, while keeping training and prediction cost
low. We do this by constructing a task-specific cost
function for each individual task first; the final cost
function is then given as a weighted linear com-
bination of the task-specific costs (and additional
regularization terms), where the weights are hy-
perparameters (costs increase only linearly in the
number of tasks, see Table 12). We formalize the
MTT training objective in Appendix A.

The task-specific cost functions for link pre-
diction and relation prediction are obtained as in
standard training (Sec. 2): for each positive triple
(s, p, o) ∈ G, we construct a set of negatives accord-
ing to the query (i.e., by perturbing the position of
the prediction target) and then apply the loss func-

139

tion (e.g., cross entropy). For our proposed tasks in-
volving wildcards, we proceed differently. Instead
of performing some form of (costly) score aggrega-
tion during training, we “convert” these tasks with
wildcards into tasks without wildcards. To do so,
we make use of three virtual wildcard objects—one
for subjects (anyS), one for relations (anyR), and
one for objects (anyO)—and learn embeddings for
these objects. During training, we conceptually
replace wildcards by their corresponding wildcard
entity and proceed as before. For example, for
training triple (s, p, o) and NBR query (s, ?, ∗), we
consider the virtual triple (s, p, anyO) along with
query (s, ?, anyO). By doing so, we convert the
NBR task into a REL task. We also use these wild-
card embeddings during inference in the same way;
e.g., we set s(s, p′, ∗) = s(s, p′, anyO). Instead
of performing score aggregation, the model thus
directly learns extended scores at the same cost
(per task) as standard link prediction, i.e. O(|E|)
for target entities, and O(|R|) for target relations.

4 Experimental Study

To our knowledge, no prior work has studied the
impact that different training objectives have on
KG embedding quality, despite this being com-
mon practice, e.g. in language models (Raffel et al.,
2020; Liu et al., 2019). We conducted a large exper-
imental study with the following goals: (i) to assess
whether KGE models capture various properties
of a KG by intrinsically evaluating their perfor-
mance on new graph-structure prediction tasks, (ii)
to determine whether (and by how much) KGEs im-
prove their performance on these tasks when simul-
taneously trained for them, and (iii) to assess the
impact that different pre-training approaches have
on downstream tasks by extrinsically evaluating
pre-trained KGE models. We briefly describe our
experimental setup here, for details, see Sec. B.1.

Pre-Training Setup. For training and evaluating
KGEs, we closely follow Ruffinelli et al. (2020).
We implemented everything in LibKGE (Broscheit
et al., 2020), used four benchmark datasets com-
monly used in recent work (Ge et al., 2023; Xiao
et al., 2022; Zhu et al., 2022), all models were
trained under the same conditions (as much as pos-
sible) and tuned with a large hyperparameter space
using random search. For MTT training, we used
all tasks in Table 1 (LP, REL, DOM, NBE, NBR),
and evaluated models on each of these tasks using
filtered MRR, and aggregated these metrics into

multi-task ranking MRR (MTR). We selected stan-
dard (STD) models with LP and MTT models with
both the LP and MTR task, all on validation.

Choice of KGE models. We focused on models
that provide entity representations, so we may test
their quality in downstream tasks, as done in the
industry (El-Kishky et al., 2022; Ilyas et al., 2022).
We chose four popular models: TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), Ro-
tatE (Sun et al., 2019) and ComplEx (Trouillon
et al., 2016). These are not the latest KGE models,
but they are common baselines in recent work (Ge
et al., 2023; Gui et al., 2022; Chao et al., 2021), and
are common choices for pre-trained models (Zhu
et al., 2022; El-Kishky et al., 2022; Ilyas et al.,
2022). They can also reach SOTA performance
with reasonable embedding sizes (Ruffinelli et al.,
2020), allowing us to scale our study, and with
larger embedding size (Lacroix et al., 2018) and
additional training objectives (Chen et al., 2021b),
ComplEx outperforms more involved models, e.g.
the transformer-based HittER model (Chen et al.,
2021a). Some recent models achieve better perfor-
mance on link prediction, but focus exclusively on
that task and do not directly provide entity repre-
sentations for downstream tasks, e.g. HittER (Chen
et al., 2021a) and NBFNet (Zhu et al., 2021).

Downstream Tasks Setup. To extrinsically eval-
uate our pre-trained models, we collected/created
data for 35 downstream tasks on FB15K-237,
YAGO3-10 and WIKI5M (examples in Table 2).
For downstream models, we used scikit-learn (Pe-
dregosa et al., 2011) models that use only entity
embeddings from pre-trained KGE models as input
features. We used multilayer perceptrons (MLP),
logistic regression, KNN, and random forests for
classification, and linear regression and MLP for
regression, and treated the choice of downstream
model as a hyperparameter. For entity classifica-
tion, we report weighted F1 (as Jain et al. (2021))
aggregated across all classification tasks (denoted
EC). For regression, we chose relative squared er-
ror (RSE) (defined in Sec. B.2), as it allows mean-
ingful averaging across different regression tasks
(denoted REG, lower values are better). We report
mean and standard deviation over 3 training runs.
As baseline, we included KE-GCN (Yu et al., 2021),
a state-of-the-art GNN for entity classification. In
contrast to KGEs, this model is directly trained on
the downstream task (i.e., no pre-training) and uses
the KG for inference. Tuning, training, evaluation
was done as with KGEs and downstream models.

140

Benchmark Name Train Size
E

C
FB15K-237 Entity Type 6 719

Profession 2 537
YAGO3-10 Entity Type 69 592

Player Type 33 928

R
E

G

FB15K-237 Birth Year 3 538
Latitude 2 568

YAGO3-10 Born on Year 60 409
Created on Year 23 896

Table 2: Some datasets for entity classification (EC) and
regression (REG) downstream tasks used to evaluate
pre-trained KGEs. See Appendix B for a complete list.

4.1 Results on Graph-Structure Prediction

In Table 3, we report test MRR of graph-structure
prediction tasks using standard (STD) and MTT
training. We report both training approaches with
LP for model selection, as we found this to often
produce better downstream performance with MTT
(such “cross-over” selection was not useful for STD
training, see Table 11). We report MTT with MTR
for model selection, and results for WNRR and
WIKI5M in Appendix C (Tables 13 and 14, resp.)

Every model is able to capture more information
about the KG when trained on multiple tasks simul-
taneously. For a given model, the improvement can
be large, often by a factor of 2x and up to 10x de-
pending on model, task and dataset (or even larger
when MTT is used with MTR for model selection,
see Table 13). This suggests that, unless trained for
it, KGE models often fail to capture graph struc-
ture beyond what is necessary to perform link
prediction. MTT models had slightly lower perfor-
mance on LP, but the decrease was often small and
outweighed by significantly improved performance
on other tasks. Moreover, the best models for LP
with STD training are often far outperformed on
other tasks by other STD models with lower LP
performance, suggesting that good LP performance
is not indicative of general KG representation. For
example, the best LP performance on FB15K-237
is ComplEx STD, but RotatE STD outperforms it
considerably on REL and TransE STD on DOM.
Similar observations also hold for the best mod-
els on MTR, but the compromise on other tasks
is significanly smaller. In general, MTT im-
proved significantly on STD for graph structure
prediction and can thus be used so models si-
multaneously learn more properties in a KG.

Note that our performance on LP, even with MTT,
is comparable and sometimes better than recently
published works that use comparable embedding
sizes (Yang et al., 2022; Dong et al., 2022), or even
larger embedding sizes (Gui et al., 2022).

Discussion. From a training perspective, these
results are not surprising, as STD training only
focuses on the LP task. However, these results do
challenge studies that describe KGEs as generally
capturing semantic properties of a KG (Ge et al.,
2023; Xiao et al., 2022; Gui et al., 2022; Nickel
et al., 2015; Bordes et al., 2013), which were likely
inspired by work on capturing properties of words
despite not directly training for it (Mikolov et al.,
2013; Bordes et al., 2013). In addition, some of the
new tasks are similar enough to link prediction that
the results are indeed unexpected. For example, a
good link prediction model may be able to answer
(Austin, capital of, ?) and (?, capital of, Texas),
yet it may not be able to predict that capital of is a
relation connected to Austin and/or Texas (NBR).
Similar arguments can be made for other tasks.
Generally, if the goal is purely link prediction, STD
training is more suitable. But we show empirically
in Sec. 4.3 that the choice of training objective has
an impact on the learned representations and that
including the LP task during pre-training is often
detrimental for downstream performance.

4.2 Results on Downstream Tasks
Table 3 also reports downstream performance using
models pre-trained with STD and MTT. The EC
column reports mean weighted F1 across all clas-
sification datasets, and REG column reports mean
RSE across all regression datasets. We report on
individual downstream tasks in Appendix C.

The best overall downstream task performance
across all KGE models was achieved by MTT in all
cases, and often combined with LP for model selec-
tion. While the margin compared to STD was some-
times small (e.g., EC on YAGO3-10) and some-
times large (e.g., REG on FB1K-237), training only
for link prediction (STD) resulted in worse average
downstream performance compared to MTT more
often than not (especially when considering MTT
with MTR selection, see Table 13). Nevertheless,
for a given KGE model, STD training did perform
better at times. In addition, we found that the best
models for both LP and MTR are often not the
best models in downstream applications. Perhaps
more importantly, the best downstream perfor-
mance often comes from models with weaker LP

141

Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT LP .336 .964 .557 .195 .794 .525 .858±.005 .394±.057

DistMult STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT LP .334 .944 .557 .139 .818 .516 .865±.005 .472±.026

RotatE STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT LP .319 .965 .758 .136 .880 .572 .890±.003 .573±.062

TransE STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT LP .317 .963 .653 .152 .855 .547 .855±.007 .795±.257

KE-GCN – – – – – – .829±.526 .501±.001

YA
G

O
3-

10

ComplEx STD LP .550 .900 .120 .215 .517 .411 .712±.008 .589±.023
MTT LP .538 .941 .836 .591 .978 .759 .729±.005 .466±.017

DistMult STD LP .539 .881 .010 .327 .613 .429 .734±.003 .519±.019
MTT LP .536 .945 .861 .581 .978 .762 .746±.006 .472±.029

RotatE STD LP .436 .809 .046 .400 .656 .432 .701±.002 .696±.018
MTT LP .509 .918 .011 .609 .366 .434 .708±.002 .659±.059

TransE STD LP .504 .860 .178 .287 .175 .349 .742±.002 .447±.036
MTT LP .462 .940 .037 .476 .338 .396 .723±.004 .441±.029

KE-GCN – – – – – – .700±.223 .398±.008

Table 3: Performance on test data of graph-structure prediction and downstream tasks. Bold entries show perfor-
mance per task and dataset. Underlined entries show best performance between STD and MTT.

performance (e.g. RotatE on EC in FB15K-237)
or weaker MTR performance (e.g. ComplEx on
REG in FB15K-237). This is more clearly visi-
ble in Table 15 in Appendix C. This is problem-
atic, as it suggests that MTR and, perhaps more
importantly, LP are often inadequate tasks to
guide the choice of the more suitable KGE mod-
els for downstream applications. Ultimately, we
conclude that the choice of pre-training objective
clearly has an impact on downstream performance,
but it is unclear how to make this choice in order
to maximize downstream performance.

Downstream Baseline Performance. Com-
pared to KE-GCN, KGE models clearly outperform
KE-GCN almost every time (except in REG on
YAGO3-10) These results suggest that the informa-
tion captured by KGE models during pre-training
is useful for simple downstream models to be com-
petitive with, and even outperform, more involved
downstream models that train directly on the task.

4.3 Impact of Pre-Training Task Selection

Table 4 summarizes our results about the impact
that pre-training task selection has on downstream
tasks. To keep computational costs feasible, we

focused on FB15K-237. We explored perfor-
mance using MTT without either the LP, REL,
DOM, NBE, or NBR pre-training task, and with-
out LP+REL or without DOM+NBR. We report
models and sets of tasks relevant for our discussion.
For details, see Table 16.

Impact on Graph-Structure Tasks. We found
that for graph-structure predictions, excluding a
task generally led to lower performance on that
task, as expected. It may also, however, lead to a
boost in performance on other tasks. For example,
RotatE performs best on DOM when the standard
LP task is excluded from the training objective.

Impact on Downstream Tasks. For down-
stream performance, the choice of pre-training
tasks has a significant impact, but good choices
differ between KGE models and the type of down-
stream task. For example, compared to full MTT
training, using a subset of tasks led to improve-
ments almost every time. Surprisingly, excluding
the LP task during pre-training improved down-
stream performance half of the time compared to
STD and full MTT training, suggesting that pre-
training with LP can often be detrimental to down-
stream performance.

142

Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

C
om

pl
E

x

STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037
w/o LP MTR .154 .972 .831 .200 .932 .579 .870±.002 .512±.044
w/o NBE MTR .315 .958 .850 .005 .936 .575 .856±.002 .562±.038
w/o LP+REL MTR .001 .009 .843 .177 .939 .436 .849±.011 .542±.054

R
ot

at
E

STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060
w/o LP MTR .204 .914 .842 .126 .928 .568 .874±.000 .661±.043
w/o DOM MTR .319 .965 .661 .170 .883 .559 .898±.001 .593±.078
w/o NBR MTR .318 .964 .710 .168 .673 .522 .863±.007 .552±.035

Table 4: Performance on test data of graph-structure and downstream tasks for FB15K-237 of STD and various
MTT objectives. Objectives such as w/o LP are MTT objectives with all tasks in Table 1 except one, e.g. LP.

4.4 Data Efficiency Tests

To see whether KGE models that capture more
information during pre-training are more benefi-
cial as downstream data becomes scarce, we tested
models in a few-shot scenario. For classification,
we sampled n positive and n negative examples
per class, where n ∈ {3, 5, 10}. Figure 1 shows
the results for the YAGO3-10 classification tasks
(higher is better). We found that as less data be-
comes available, the average performance of STD
models becomes considerably lower compared to
pre-trained MTT models, except TransE, where
performance difference is not as significant. We ob-
served the same pattern in FB15K-237 (see Fig. 3).

0.50

0.60

0.70

ComplEx DistMult

100%
10 Shots

5 Shots
3 Shots

0.50

0.60

0.70

RotatE

100%
10 Shots

5 Shots
3 Shots

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 1: Few-shot performance of entity classification
tasks for YAGO3-10 (higher is better). Each n-shot
training set consists of n sampled positive and negative
examples for each class.

The few-shot scenario applied to regression tasks
produced unsatisfactory models almost every time.
We thus constructed a different scenario with scarce
training data. We randomly sampled n% of the
training set, where again n ∈ {3, 5, 10} (see Fig-
ures 5 and 7 in Appendix C, lower is better). For
most models, the trend observed with a complete
training set is mostly maintained, suggesting that
pre-trained MTT models are not always more ben-
eficial with less training data. Still, at no point
do models pre-trained with STD become a better
choice. Overall, although not every time, we
observed the clear trend that MTT models are
more data efficient than STD models, especially
for the classification tasks in our tests.

5 Conclusion

To explore KGE models as general-purpose repre-
sentions of KGs, we designed a new set of graph-
structure prediction tasks for intrinsic evaluation.
We found that standard KGE models are not good
at predicting simple structures in the graph, chal-
lenging the intuition that these models generally
capture properties in a KG. In addition, we extrinsi-
cally evaluated pre-trained KGE models on several
entity-level downstream tasks. We found that link
prediction was not indicative of good downstream
performance, and that multi-task pre-training was
generally better for downstream tasks, often when
excluding link prediction during pre-training. How-
ever, the best choice of pre-training tasks depends
on both KGE model and downstream task, suggest-
ing more research is needed into pre-training KGEs
to obtain generally-useful KG representations.

143

6 Limitations

In our study, we explored the use of different self-
supervised tasks for training KGE models. How-
ever, as a first step, we tested models using only
a limited set of simple pre-training tasks. Aside
from the link prediction task that is almost exclu-
sively used in the literature, we also included the
relation prediction task (as already done by Chen
et al. (2021b)), as well a new set of tasks that
we proposed (see Table 1). However, other pre-
training tasks are possible and should be explored,
e.g. self-supervised tasks such as predicting the n-
hop neighborhood of an entity, or even objectives
that resemble downstream tasks, such as predict-
ing the size of a neighborhood. It is also possible
to combine such objectives with supervised train-
ing objectives during training, as already done in
previous work (Aribandi et al., 2022).

Another limitation of our work is the small va-
riety in types of downstream tasks. While we
focused on entity-level classification and regres-
sion tasks, the impact of different pre-training ap-
proaches on more involved downstream applica-
tions should be explored. Some examples would
be testing the use of pre-trained KGEs in recom-
mender systems as in El-Kishky et al. (2022), or
question answering systems as in Ilyas et al. (2022).

Finally, while we take the first steps into explor-
ing alternatives for pre-training KGE models, our
work does not find a concrete solution to the prob-
lem, which may indeed by challenging, as models
need to encode hundreds or thousands of differ-
ent, and often uncorrelated, relation types between
entities. We observed the impact that different pre-
training tasks have both on capturing properties of
a graph, as well as in downstream application per-
formance. In particular, we found that training with
more tasks is beneficial for capturing more proper-
ties of a KG, and often for improving downstream
performance. However, we have no concrete sug-
gestions on how to pre-train KGE models more
generally. Different pre-training tasks should be
explored in the context of different types of down-
stream tasks, so that we may better understand
the relation between pre-training KGEs and their
quality as KG representations in downstream appli-
cations. As part of our work, we provide all of our
code as well as our collection of downstream task
data, to create opportunities for future research into
this unexplored question.

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2021. PyKEEN 1.0: A python li-
brary for training and evaluating knowledge graph
embeddings. J. Mach. Learn. Res.

Carl Allen, Ivana Balazevic, and Timothy Hospedales.
2021. Interpreting knowlege graph relation represen-
tation from word embeddings. In Ninth International
Conference on Learning Representations 2021.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni,
et al. 2022. ExT5: Towards extreme multi-task scal-
ing for transfer learning. In International Conference
on Learning Representations.

Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu
Song. 2022. Query2particles: Knowledge graph rea-
soning with particle embeddings. Findings of the
Association for Computational Linguistics: NAACL
2022-Findings.

Stephan Baier, Yunpu Ma, and Volker Tresp. 2017. Im-
proving visual relationship detection using semantic
modeling of scene descriptions. In ISWC.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
machine learning research.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
AAAI conference on artificial intelligence.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE-a
knowledge graph embedding library for reproducible
research. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations.

David Chang, Ivana Balažević, Carl Allen, Daniel
Chawla, Cynthia Brandt, and Richard Andrew Taylor.
2020. Benchmark and best practices for biomedical
knowledge graph embeddings. In Proceedings of the
conference. Association for Computational Linguis-
tics. Meeting.

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.
2021. Pairre: Knowledge graph embeddings via
paired relation vectors. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4360–4369.

144

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao,
Ruofei Zhang, and Yangfeng Ji. 2021a. HittER: Hi-
erarchical transformers for knowledge graph embed-
dings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Yihong Chen, Pasquale Minervini, Sebastian Riedel,
and Pontus Stenetorp. 2021b. Relation prediction as
an auxiliary training objective for improving multi-
relational graph representations. In 3rd Conference
on Automated Knowledge Base Construction.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Yao Dong, Lei Wang, Ji Xiang, Xiaobo Guo, and
Yuqiang Xie. 2022. Rotatect: Knowledge graph em-
bedding by rotation and coordinate transformation
in complex space. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 4918–4932.

Ahmed El-Kishky, Thomas Markovich, Serim Park,
Chetan Verma, Baekjin Kim, Ramy Eskander, Yury
Malkov, Frank Portman, Sofía Samaniego, Ying
Xiao, and Aria Haghighi. 2022. TwHIN: Embed-
ding the twitter heterogeneous information network
for personalized recommendation. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining.

Alberto García-Durán, Sebastijan Dumancic, and Math-
ias Niepert. 2018. Learning sequence encoders for
temporal knowledge graph completion. In EMNLP.

Xiou Ge, Yun Cheng Wang, Bin Wang, and C-C Jay
Kuo. 2023. Compounding geometric operations for
knowledge graph completion. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics.

Xiangyu Gui, Feng Zhao, Langjunqing Jin, and Hai Jin.
2022. Optice: A coherence theory-based model for
link prediction. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics.

Bin He, Di Zhou, Jinghui Xiao, Xin Jiang, Qun Liu,
Nicholas Jing Yuan, and Tong Xu. 2020. BERT-MK:
Integrating graph contextualized knowledge into pre-
trained language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020.

Han Huang, Leilei Sun, Bowen Du, Chuanren Liu,
Weifeng Lv, and Hui Xiong. 2021. Representation
learning on knowledge graphs for node importance
estimation. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining.

Ihab F Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jef-
frey Pound, Xiaoguang Qi, and Mohamed Soliman.
2022. Saga: A platform for continuous construction
and serving of knowledge at scale.

Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and
Ralf Krestel. 2021. Do embeddings actually capture
knowledge graph semantics? In European Semantic
Web Conference.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In International
Conference on Machine Learning.

Zelong Li, Jianchao Ji, Zuohui Fu, Yingqiang Ge,
Shuyuan Xu, Chong Chen, and Yongfeng Zhang.
2021. Efficient non-sampling knowledge graph em-
bedding. In Proceedings of the Web Conference
2021.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Twenty-
ninth AAAI conference on artificial intelligence.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian
Suchanek. 2014. Yago3: A knowledge base from
multilingual wikipedias. In 7th biennial conference
on innovative data systems research.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel
Ruffinelli, Rainer Gemulla, and Heiner Stucken-
schmidt. 2018. Fine-grained evaluation of rule-and
embedding-based systems for knowledge graph com-
pletion. In International semantic web conference.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of relational
machine learning for knowledge graphs. Proceedings
of the IEEE.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML.

145

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research.

Pouya Pezeshkpour, Liyan Chen, and Sameer Singh.
2018. Embedding multimodal relational data for
knowledge base completion. In Empirical Methods
in Natural Language Processing (EMNLP).

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research.

Wiem Ben Rim, Carolin Lawrence, Kiril Gashteovski,
Mathias Niepert, and Naoaki Okazaki. 2021. Behav-
ioral testing of knowledge graph embedding models
for link prediction. In 3rd Conference on Automated
Knowledge Base Construction.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You can teach an old dog new tricks!
on training knowledge graph embeddings. In Inter-
national Conference on Learning Representations.

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural tensor
networks for knowledge base completion. In NIPS.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding by
relational rotation in complex space. In International
Conference on Learning Representations.

Sudhanshu Tiwari, Iti Bansal, and Carlos R Rivero.
2021. Revisiting the evaluation protocol of knowl-
edge graph completion methods for link prediction.
In Proceedings of the Web Conference 2021.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning.

Theo Van Veen. 2019. Wikidata. Information technol-
ogy and libraries.

Feiyang Wang, Zhongbao Zhang, Li Sun, Junda Ye, and
Yang Yan. 2022a. Dirie: knowledge graph embed-
ding with dirichlet distribution. In Proceedings of
the ACM Web Conference 2022, pages 3082–3091.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. DKN: Deep knowledge-aware network
for news recommendation. In Proceedings of the
2018 world wide web conference.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on
Knowledge and Data Engineering.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans-
actions of the Association for Computational Linguis-
tics.

Xintao Wang, Qianyu He, Jiaqing Liang, and Yanghua
Xiao. 2022b. Language models as knowledge em-
beddings. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2022).

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
Samuel Broscheit, and Christian Meilicke. 2019. On
evaluating embedding models for knowledge base
completion. In RepL4NLP@ACL.

Huiru Xiao, Xin Liu, Yangqiu Song, Ginny Y. Wong,
and Simon See. 2022. Complex hyperbolic knowl-
edge graph embeddings with fast fourier transform.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowledge
bases. In Proceedings of the International Confer-
ence on Learning Representations (ICLR) 2015.

Jinfa Yang, Xianghua Ying, Yongjie Shi, Xin Tong,
Ruibin Wang, Taiyan Chen, and Bowei Xing. 2022.
Knowledge graph embedding by adaptive limit scor-
ing loss using dynamic weighting strategy. In Find-
ings of the Association for Computational Linguistics:
ACL 2022.

Donghan Yu, Yiming Yang, Ruohong Zhang, and
Yuexin Wu. 2021. Knowledge embedding based
graph convolutional network. In Proceedings of the
Web Conference 2021.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics.

146

Ying Zhou, Xuanang Chen, Ben He, Zheng Ye, and
Le Sun. 2022. Re-thinking knowledge graph comple-
tion evaluation from an information retrieval perspec-
tive. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Yushan Zhu, Wen Zhang, Mingyang Chen, Hui Chen,
Xu Cheng, Wei Zhang, and Huajun Chen. 2022. Du-
alde: Dually distilling knowledge graph embedding
for faster and cheaper reasoning. In Proceedings of
the Fifteenth ACM International Conference on Web
Search and Data Mining.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction.

A Multi-Task Training and Evaluation

We illustrate how training objectives are con-
structed using more than one training task, i.e.
query. To this end, we define both the standard
training objective (STD) based on link prediction
and our proposed multi-task objective (MTT) as
follows. Let To = {(t, l)} be the set of relevant
positive and negative examples t and corresponding
label l induced by the link prediction query (s, p, ?)
in a given training set. Let Ts be the analogous set
of examples for query (?, p, o). For some loss func-
tion L, the STD training approach optimizes the
following objective function (we omit the penalty
term for brevity):

f(θ) = argmin
θ

 1

|Ts|
∑

(t,l)∈Ts

L(s(t), l) +

1

|To|
∑

(t,l)∈To

L(s(t), l)

(1)

where s is a KGE score function parameterized by
model parameters θ. We generalize this objective
to define the following multi-task training (MTT)
objective:

f(θ) = argmin
θ

1

N

∑

Ti∈T

∑

(t,l)∈Ti

λiL(s(t), l) (2)

where T = {T1, T2, . . .} is a superset of training
examples for queries Ti, N is the sum of the car-
dinalities of each Ti and λi a hyperparameter that
controls the impact of query i in the training objec-
tive. Chen et al. (2021b) have already followed this
training approach by adding the relation prediction
task, i.e. (i, ?, j) to Eq. 1. They set λs = λo = 1

and tune λr. Note that Equations 1 and 2 do not
describe the exact training objective with some loss
functions, e.g. some losses require a positive and
corresponding set of negatives to compute a loss
value. However, the MTT objective can be refor-
mulated for every loss function commonly used to
train KGE models. We provide such a general de-
scription of the MTT approach in Algorithm 1. As
with loss functions, the MTT approach is agnostic
to the choice of model and training task.

W.r.t. to evaluation, Algorithm 2 describes the
extended score function described in Section 3.2.

B Experimental Settings

B.1 Experimental Setup: Pre-Training KGEs

Knowledge graphs. We chose four com-
monly used benchmark datasets for evaluating
KGE models: FB15K-237 (Toutanova and Chen,
2015), WNRR (Dettmers et al., 2018), YAGO3-
10 (Mahdisoltani et al., 2014), and WIKIDATA5M
(WIKI5M) (Wang et al., 2021). Each dataset is as-
sociated with a training, a validation and a test split.
FB15K-237 and WNRR are designed to be harder
benchmarks for link prediction. YAGO3-10 and
WIKI5M are considerably larger. Dataset statistics
are summarized in Table 5.

KGE training. We used LibKGE (Broscheit
et al., 2020) for STD training (LP only) as
a baseline and added MTT/MTR model train-
ing/evaluation. All KGE models were trained for
a maximum of 200 epochs with early stopping on
validation MRR checked every 10 epochs. We
used cross-entropy as loss function, as it system-
atically outperformed other losses in most prior
studies. We used 1vsAll training with FB15K-237
and WNRR (to achieve good results) and NegSamp
with YAGO3-10 and WIKI5M to scale to these
larger datasets. Models were selected w.r.t. perfor-
mance (MRR) on the validation data. We selected
STD models with LP task and MTT models with
the MTR task. For MTT training, we used all tasks
in Table 1.

KGE evaluation. As with training, we evalu-
ate KGE models with respect to each of the five
graph-structure prediction tasks in Table 1 (LP,
REL, DOM, NBE, NBR) using filtered MRR on
test data. We also aggregate these metrics into the
multi-task ranking MRR (MTR).

KGE hyperparameters. We closely follow the
approach of the experimental study of Ruffinelli
et al. (2020) to perform hyperparameter selection.

147

North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin

capitalOf lo
ca

ted
In

(a) Entity Neighborhood (NBE): (Austin, *, ?)

North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin
capitalOf lo

ca
ted

In

(b) Entity Neighborhood (NBE): (?, *, Texas)
North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin

capitalOf lo
ca

ted
In

(c) Relation Neighborhood (NBR): (Austin, ?, *)

North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin

capitalOf lo
ca

ted
In

(d) Relation Neighborhood (NBR): (*, ?, Texas)
North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin

capitalOf lo
ca

ted
In

(e) Domain (DOM): (*, locatedIn, ?)

North America

USA

locatedIn

Texas locatedIn

lo
ca

ted
In

Dallas

locat
edIn

Arkansas

borders

Austin

capitalOf lo
ca

ted
In

(f) Domain (DOM): (?, locatedIn, *)

Figure 2: Visualization of all proposed prediction tasks that use wildcards introduced in Table 1.

Algorithm 1: Multi-task Training (MTT)
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters,
Q: set of (q, w) pairs of training queries and corresponding weights

Ensure: Updated model parameters θ
1 foreach q, w ∈ Q do
2 N ← construct set of negatives for q using T
3 Tall ← T ∪N
4 sall ← COMPUTE_SCORES(Tall)
5 lq ← w ∗ COMPUTE_LOSS(sall, Tall) // loss weighted by w

6 θ ← UPDATE_PARAMETERS(θ, lq)

148

Algorithm 2: Extended Score Function (accepts wildcards)
Require: t: (i, k, j) triple to compute score

q: task query, e.g. (i, k, ∗)
s: model score function
C: set of candidates for wildcard slot

Ensure: Score of given triple t
1 max_score← 0
2 if q does not have a wildcard then
3 max_score← s(t)
4 else
5 foreach c ∈ C do
6 candidate_t = (i, k, c) // e.g. for q = (i, k, ∗)
7 candidate_score = s(candidate_t)
8 if candidate_score ≥ max_score then
9 max_score← candidate_score

10 return max_score

Dataset Entities Relations Train Valid Test

FB15K-237 14 505 237 272 115 17 535 20 466
YAGO3-10 123 182 37 1 079 040 5 000 5 000
WNRR 40 559 11 86 835 3 034 3 134
WIKIDATA5M 4 818 679 828 21 343 681 5 357 5 321

Table 5: Statistics of benchmark datasets for pre-training knowledge graph
embeddings.

We performed 30 random trials using SOBOL sam-
pling (Bergstra and Bengio, 2012) over a large
search space to tune several hyperparameters, e.g.
regularization, embedding size, batch size, dropout,
initialization, and task weights (each in [0.1, 10.0],
log scale). To keep our study feasible, we reduced
the maximum batch and embedding size for larger
datasets and expensive models. The full search
space can be found in Table 6.

B.2 Relative Squared Error
For evaluating regression performance, we chose
relative squared error (RSE), defined as follows:

RSE =

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(3)

where N is the number of evaluation examples,
yi are targets to predict, ŷi are model predictions,
and ȳ = 1

N

∑
n yi, i.e. the mean of targets to pre-

dict. We chose RSE because it is interpretable and
allows meaningful averaging across the different
regression tasks (denoted REG). An RSE value of
1 is equivalent to the performance of a model that

predicts the average of the dependent variable in
the evaluation data; lower values are better.

B.3 Experimental Setup: Downstream Tasks

Downstream tasks. We collected or created data
for 35 downstream tasks on FB15K-237, YAGO3-
10 or WIKI5M (see Tables 7 and 8). This includes
the datasets of Jain et al. (2021) for entity classifica-
tion on FB15K-237 and YAGO3-10, which aim to
predict the types of entities at different granularities.
For regression, we use the datasets of Pezeshkpour
et al. (2018) for YAGO3-10, which consist of tem-
poral prediction tasks (e.g., the year an event took
place), and the dataset of Huang et al. (2021) for
node importance prediction. We also created sev-
eral regression tasks for FB15K-237 from the multi-
modal data of García-Durán et al. (2018) by pre-
dicting literals associated to entities (e.g., a date, a
person’s height, the rating of a movie). To create re-
gression tasks for WIKI5M, we followed the same
approach using numerical relations extracted from
Wikidata (Van Veen, 2019). Datasets statistics are
given in Tables 7 and 8.

149

Hyperparameter Values

Embedding size† {128, 256, 512}
Training type {NegSamp (YAGO3-10), 1vsAll (FB15K, WNRR)}
Task Weights (MTT) [0.1, 10], log scale

No. subject samples (NegSamp) [1, 10000], log scale
No. object samples (NegSamp) [1, 10000], log scale

Optimizer {Adam, Adagrad}
Batch size* {128, 256, 512, 1024(except on YAGO3-10)}
Learning rate [10−4, 1], log scale
LR scheduler patience [0, 10]

Lp regularization {L1, L2, L3, None}
Entity emb. weight [10−20, 10−5]
Relation emb. weight [10−20, 10−5]
Frequency weighting {True, False}

Embedding normalization (TransE)
Entity {True, False}
Relation {True, False}

Dropout
Entity embedding [0.0, 0.5]
Relation embedding [0.0, 0.5]

Embedding initialization {Normal, Unif, XvNorm, XvUnif}
Std. deviation (Normal) [10−5, 1.0]
Interval (Unif) [−1.0, 1.0]
Gain (XvNorm) 1.0
Gain (XvUnif) 1.0

† For RotatE, embedding size is fixed 128 on WNRR and set to either 128 or 256 for YAGO3-10. For Transe,
this is set to either 128 or 256 for FB15K-237 and fixed to 128 for WNRR and 1024 for YAGO3-10.

* For RotatE, batch size is fixed to 256 in YAGO3-10 and to 128 on FB15K-237 and WNRR. For Transe, this is
set to either 128 or 256 on YAGO3-10.

Table 6: Hyperparameter search space for pre-training KGE models. Restrictions for RotatE and
TransE are due to higher memory consumption and runtime.

Benchmark Name Train Validation Test

FB15K-237 Entity Type 6 719 – 1 680
Profession 2 537 – 635
Organization Type 342 – 86
Writer Type 136 – 34

YAGO3-10 Entity Type 69 592 – 17 398
Player Type 33 928 – 8 483
Profession 14 480 – 3 621
Writer Type 4 870 – 1 218
Scientist Type 2 041 – 511
Organization Type 1 248 – 312
Artists Type 520 – 130
Waterbody Type 195 – 49

Table 7: Statistics of datasets for entity classification downstream tasks used to evaluate pre-trained KGEs. All
datasets were created by Jain et al. (2021), they are split into trainining and test only and each consists of predicting
entity types at different levels of the entity hierarchy.

150

Benchmark Name Train Validation Test

FB15K-237 Node Importance 9 877 1 380 2 823
Birth Year 3 538 442 444
Latitude 2 568 321 322
Longitude 2 560 320 322
Person Height 2 295 287 288
Size Area 1 731 216 218
Population 1 543 193 193
Film Release Year 1 493 186 188
Org Year Founded 985 123 124
Film Rating 591 73 75

YAGO3-10 Born on Year 60 409 – 6 730
Created on Year 23 896 – 2 638
Died on Year 13 582 – 1 513
Destroyed on Year 1 630 – 186
Happened on Year 749 – 73

WIKI5M Date of Birth 992 126 124 015 124 017
Album Publication 29 156 3 644 3 645
Asteroid Magnitude 16 722 2 090 2 091
River Length 10 092 1 261 1 262
Airport Elevation 9 054 1 131 1 133
Sports Season Start 7 631 953 955
Village Population 3 691 461 462
Municipality Area 3 158 394 396

Table 8: Statistics of datasets for regression downstream tasks used to evaluate pre-trained KGEs. YAGO3-10
datasets were created by Pezeshkpour et al. (2018). All FB15K-237 and WIKI5M datasets were created by us,
except node importance, created by Huang et al. (2021).

KGE models. Since we are interested in pre-
trained KGE models, we used the KGE models
trained for the experiments discussed in Sec. 4.1.
Thus, no information from downstream tasks was
used for KGE model training and selection; i.e.
the same KGE model is used for all downstream
tasks in each experiment. For model selection, we
selected STD models with LP task (the standard
approach), but combined MTT models with the
LP task or the MTR task. Further improvements
may be made by using downstream tasks during
training (Aribandi et al., 2022) at the cost, perhaps,
of obtaining less general representations; we leave
such exploration to future work.

Downstream models. We use scikit-learn (Pe-
dregosa et al., 2011) using only the node embed-
dings of the pre-trained KG model as input fea-
tures. For classification, we use multilayer percep-
trons (MLP), logistic regression, KNN, and random
forests. For regression, we use MLP and linear re-
gression.

Downstream training. Each model was trained
using 5-fold cross validation and selected based
on mean validation performance across folds (see
below). We then retrained the selected model on
the union of the training and validation split (if
present). To tune hyperparameters, we use 10 tri-
als of random search with SOBOL sampling for
each downstream model. The search space for each
downstream model is given in Table 9. Note that
we treat the choice of downstream model as a hy-
perparameter as well.

Downstream evaluation. For entity classifica-
tion, we report weighted F1, as in Jain et al. (2021),
aggregated across all classification tasks (denoted
EC). For regression, we chose relative squared er-
ror (RSE) because it is interpretable and allows
meaningful averaging across the different regres-
sion tasks (denoted REG). An RSE value of 1 is
equivalent to the performance of a model that pre-
dicts the average of the dependent variable in the
evaluation data; lower values are better. For each

151

metric, we report the mean and standard deviation
over 3 training runs of the downstream model.

Downstream baselines. We include KE-
GCN (Yu et al., 2021), a recent GNN with state-
of-the-art results for graph alignment and entity
classification. In contrast to KGEs, this model is
directly trained on the downstream task (i.e., no pre-
training) and needs to access the KG to perform
predictions. For regression tasks, we use a linear
layer after the final convolutional layer of KE-GCN,
as this led to better performance in our experiments
compared to using a single dimensional output in
the final convolution layer as done by Huang et al.
(2021). We tune hyperparameters using 30 SOBOL
trials (as for KGE models); the search space is
shown in Table 9. For training, evaluation, and
model selection, we follow the approach for our
downstream models (e.g,. 5-fold CV).

C Additional Experimental Results

Model selection using downstream information.
To explore whether results can improve by using
downstream information to select models, Table 10
reports performance on FB15K-237 of some KGE
models using both training approaches in combi-
nation with either LP for model selection (which
consistently provided better results for these mod-
els with both training approaches) or by selecting
directly on the metric used to evaluate the down-
stream task (weighted F1 for entity classification
and RSE for regression). We found that model se-
lection with the downstream task metric provides
only marginal benefits for both STD and MTT and
can in fact be detrimental, likely due to overfit-
ting on validation data. This indicates that model
selection without information about downstream
tasks—i.e., using LP or MTR—may be preferrable
to using downstream information. This is benefi-
cial, as including downstream information during
pre-training or model selection would likely make
the resulting representations less general.

Overall, we found that full MTT training with LP
for model selection was a suitable choice, but fur-
ther improvements are possible by dataset-, model-
and task-specific choices of pre-training task and
validation objective, as discussed in the next sec-
tion.

Further model selection approaches. For com-
pleteness, we also explored the impact of further
combinations of model selection methods with both
STD and MTT training. To explore whether there

would be improvements in STD models when se-
lecting them based on performance on the MTR
task, Table 11 reports downstream performance of
some KGE models using STD training combined
with either LP or MTR for model selection. We see
that the combination of STD with MTR leads to
lower downstream performance almost every time.

152

Model Hyperparameter Values

MLP Hidden Layer {(100,), (10,),
(100, 100), (10, 10)}

Alpha [0.00001, 0.001]
Learning Rate [0.001, 0.01]
Solver [Adam,LBFGS]

Logistic Regression C [100, 100000]

KNN n_neighbors [1, 10]

Random Forest num_estimators [10, 50, 100, 200]

Linear Regression Alpha [0.00001, 0.001]

KE-GCN Dimension {16, 32, 64}
Additional Layers {0, 1, 2}
Learning Rate {0.001, 0.005,

0.01, 0.05, 0.1}
Alpha {0.3, 0.5}

Table 9: Hyperparameter search space for training downstream models. All hyperparameters except those of
KE-GCN follow the semantics by scikit-learn.

Selection Method
EC - Weighted F1 REG - RSE

LP Weighted F1 LP RSE

ComplEx STD .844 .850 .447 .437
MTT .858 .827 .394 .393

DistMult STD .873 .846 .551 .539
MTT .865 .864 .472 .476

Table 10: Performance on FB15K-237 downstream
tasks for different KGE model training (STD and
MTT) and two model selection approaches: LP and
weighted F1 (higher is better) or RSE (lower is bet-
ter). Using downstream task data for model selection
provides only marginal gains and is sometimes detri-
mental to downstream performance, likely due to
overfitting on validation data.

Selection Method
EC - Weighted F1 REG - RSE

LP MTR LP MTR

ComplEx STD .844 .858 .447 .545
DistMult STD .873 .836 .551 .686

Table 11: Performance on FB15K-237 downstream
tasks for STD training and two model selection ap-
proaches: LP and MTR. On both types of tasks, the
best performance is obtained by combining STD
training with LP model selection.

Avg. epoch time in seconds
FB-237 YAGO WNRR WIKI5M

ComplEx STD 004.92 097.88 002.32 0823.80
MTT 010.83 137.13 008.13 1635.90

TransE STD 078.76 141.62 098.45 1115.65
MTT 245.05 219.42 278.60 2124.29

Table 12: Average training epoch time in seconds over
first 5 epochs of best models with STD and MTT train-
ing. All tests were done with an 11th gen. Intel Core
i7-11700K, 64GB of RAM and an NVIDIA GeForce
RTX 3090.

153

Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT LP .336 .964 .557 .195 .794 .525 .858±.005 .394±.057
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037

DistMult STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT LP .334 .944 .557 .139 .818 .516 .865±.005 .472±.026
MTT MTR .327 .939 .780 .142 .879 .577 .857±.006 .482±.026

RotatE STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT LP .319 .965 .758 .136 .880 .572 .890±.003 .573±.062
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060

TransE STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT LP .317 .963 .653 .152 .855 .547 .855±.007 .795±.257
MTT MTR .288 .960 .708 .112 .911 .555 .878±.009 .681±.095

KE-GCN – – – – – – .829±.526 .501±.001

YA
G

O
3-

10

ComplEx STD LP .550 .900 .120 .215 .517 .411 .712±.008 .589±.023
MTT LP .538 .941 .836 .591 .978 .759 .729±.005 .466±.017
MTT MTR .538 .930 .836 .591 .940 .749 .729±.005 .459±.020

DistMult STD LP .539 .881 .010 .327 .613 .429 .734±.003 .519±.019
MTT LP .536 .945 .861 .581 .978 .762 .746±.006 .472±.029
MTT MTR .536 .941 .861 .581 .967 .759 .735±.004 .466±.021

RotatE STD LP .436 .809 .046 .400 .656 .432 .701±.002 .696±.018
MTT LP .509 .918 .011 .609 .366 .434 .708±.002 .659±.059
MTT MTR .427 .933 .032 .550 .694 .482 .746±.001 .470±.017

TransE STD LP .504 .860 .178 .287 .175 .349 .742±.002 .447±.036
MTT LP .462 .940 .037 .476 .338 .396 .723±.004 .441±.029
MTT MTR .048 .954 .686 .046 .798 .457 .688±.005 .680±.026

KE-GCN – – – – – – .700±.223 .398±.008

Table 13: Performance on test data of graph-structure prediction and downstream tasks. Bold entries show best
performance per task and dataset. Underlined entries show best performance between STD and MTT.

154

Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

W
N

R
R

ComplEx STD LP .474 .782 .396 .246 .690 .488 – –
MTT MTR .459 .831 .593 .426 .953 .633 – –

DistMult STD LP .447 .767 .081 .253 .702 .415 – –
MTT MTR .431 .804 .573 .342 .952 .600 – –

RotatE STD LP .469 .794 .311 .432 .881 .553 – –
MTT MTR .431 .874 .512 .239 .955 .572 – –

TransE STD LP .174 .707 .044 .171 .332 .239 – –
MTT MTR .094 .603 .476 .095 .827 .399 – –

W
IK

I5
M

ComplEx STD* LP .288 – – – – – – .687±.032
MTT LP .204 .680 .028 .130 .197 .200 – .706±.025
MTT MTR .215 .804 .087 .136 .342 .263 – .720±.023

TransE STD* LP .288 – – – – – – .596±.011
MTT LP .250 .908 .185 .169 .503 .347 – .636±.025
MTT MTR .250 .908 .185 .169 .503 .347 – .650±.018

KE-GCN† – – – – – – – –
* Not evaluated on new graph-structure prediction tasks due to high cost.
† GCN-based model by Yu et al. (2021). Not evaluated due to OOM.

Table 14: Performance on test data of graph-structure prediction and downstream tasks with MTT training
and two model selection methods: LP and MTR. Due to high cost, we trained only two models for WIKI5M:
ComplEx and TransE. Bold entries show best performance per task and dataset. Underlined entries show best
performance between STD and MTT. For entity classification (EC) we report weighted F1 (higher is better),
and for regression (REG) we report relative squared error (lower is better).

Model Performance Sorted in Decreasing Order for each Pre-Training and Downstream Task
Graph-structure Downstream Tasks

LP (↑) MTR (↑) EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD .346 ComplEx MTT .606 RotatE MTT .890±.003 ComplEx MTT .394±.057
DistMult STD .342 RotatE MTT .598 TransE MTT .878±.009 ComplEx STD .447±.051
ComplEx MTT .331 DistMult MTT .577 TransE STD .873±.015 DistMult MTT .472±.026
TransE STD .330 TransE MTT .555 DistMult STD .873±.009 KE-GCN .501±.001
DistMult MTT .327 RotatE STD .342 RotatE STD .868±003 DistMult STD .551±.062
RotatE MTT .314 TransE STD .332 DistMult MTT .865±009 RotatE MTT .573±.062
RotatE STD .312 ComplEx STD .274 ComplEx MTT .858±005 TransE MTT .681±.095
TransE MTT .288 DistMult STD .139 ComplEx STD .844±008 TransE STD .742±.287

KE-GCN .829±.526 RotatE STD .797±.286

YA
G

O
3-

10

ComplEx STD .550 DistMult MTT .759 DistMult MTT .746±.006 KE-GCN .398±.008
DistMult STD .539 ComplEx MTT .749 RotatE MTT .746±.001 TransE MTT .441±.029
ComplEx MTT .538 RotatE MTT .482 TransE STD .742±.002 TransE STD .447±.036
DistMult MTT .536 TransE MTT .457 DistMult STD .734±.003 ComplEx MTT .459±.020
TransE STD .504 RotatE STD .432 ComplEx MTT .729±.005 RotatE MTT .470±.017
RotatE STD .436 DistMult STD .429 TransE MTT .723±.004 DistMult MTT .472±.029
RotatE MTT .427 ComplEx STD .411 ComplEx STD .712±.008 DistMult STD .519±.019
TransE MTT .048 TransE STD .349 RotatE STD .701±.002 ComplEx STD .589±.023

KE-GCN .700±.223 RotatE STD .696±.018

Table 15: Sorted performance on test data of graph-structure prediction tasks and downstream tasks
of all KGE models we tested, as well as KE-GCN by Yu et al. (2021). The ranking of models given
by their LP or MTR performance is not the same as the ranking of models given by their downstream
performance, which suggests that more work is needed to understand how to pre-train KGE models to
optimize downstream performance.

155

Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

C
om

pl
E

x

STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037
w/o LP MTR .154 .972 .831 .200 .932 .579 .870±.002 .512±.044
w/o REL MTR .322 .831 .831 .159 .927 .590 .851±.005 .486±.035
w/o DOM MTR .327 .966 .713 .198 .915 .586 .851±.003 .479±.029
w/o NBE MTR .315 .958 .850 .005 .936 .575 .856±.002 .562±.038
w/o NBR MTR .325 .967 .795 .199 .874 .595 .858±.000 .459±.062
w/o LP+REL MTR .001 .009 .843 .177 .939 .436 .849±.011 .542±.054
w/o DOM+NBR MTR .330 .970 .074 .199 .107 .266 .856±.001 .415±.029

D
is

tM
ul

t

STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT MTR .327 .939 .780 .142 .879 .577 .857±.006 .482±.026
w/o LP MTR .159 .954 .826 .087 .937 .553 .861±.008 .522±.067
w/o REL MTR .323 .857 .827 .057 .932 .571 .868±.008 .536±.077
w/o DOM MTR .323 .948 .703 .106 .914 .560 .849±.002 .478±.027
w/o NBE MTR .316 .928 .848 .003 .937 .571 .844±.002 .524±.047
w/o NBR MTR .325 .956 .801 .112 .775 .554 .859±.002 .493±.043
w/o LP+REL MTR .000 .019 .837 .108 .937 .420 .856±.001 .572±.085
w/o DOM+NBR MTR .307 .955 .136 .147 .279 .299 .839±.001 .545±.060

R
ot

at
E

STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060
w/o LP MTR .204 .914 .842 .126 .928 .568 .874±.000 .661±.043
w/o REL MTR .272 .887 .846 .137 .924 .583 .862±.003 .692±.079
w/o DOM MTR .319 .965 .661 .170 .883 .559 .898±.001 .593±.078
w/o NBE MTR .301 .960 .813 .003 .912 .558 .862±.003 .558±.050
w/o NBR MTR .318 .964 .710 .168 .673 .522 .863±.007 .552±.035
w/o LP+REL MTR .012 .031 .842 .124 .916 .424 .864±.001 .743±.123
w/o DOM+NBR MTR .322 .945 .016 .166 .019 .221 .854±.001 .809±.249

Tr
an

sE

STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT MTR .288 .960 .708 .112 .911 .555 .878±.009 .681±.095
w/o LP MTR .271 .968 .781 .138 .901 .572 .870±.000 .486±.027
w/o REL MTR .307 .944 .698 .124 .906 .557 .856±.001 .622±.061
w/o DOM MTR .325 .965 .626 .126 .879 .542 .863±.000 .539±.052
w/o NBE MTR .330 .966 .801 .012 .904 .562 .884±.002 .463±.032
w/o NBR MTR .329 .966 .723 .125 .790 .545 .857±.007 .458±.024
w/o LP+REL MTR .149 .930 .821 .116 .924 .550 .860±.001 .594±.032
w/o DOM+NBR MTR .312 .962 .360 .129 .580 .414 .864±.001 .497±.057

Table 16: Performance on test data of graph-structure prediction and downstream tasks for FB15K-237 of STD with
LP model selection and various forms of multi-task training, all using MTR for model selection. Objectives such as
w/o LP are MTT objectives with all tasks in Table 1 except one, in this case, LP. Our results show that excluding the
LP task during pre-training often results in improved downstream performance, and that using all pre-training tasks
is often not the best choice.

156

FB15K-237
Entity Classification (Weighted F1 - higher is better)

Type Profession Organization Writer

ComplEx STD+LP .986±.001 .808±.011 .921±.021 .661±.000
MTT+LP .986±.000 .820±.005 .946±.003 .682±.012
MTT+MTR .986±.000 .802±.004 .944±.003 .641±.000

DistMult STD+LP .984±.000 .811±.007 .912±.009 .785±.020
MTT+LP .987±.000 .810±.016 .974±.002 .690±.000
MTT+MTR .986±.000 .785±.006 .890±.000 .768±.018

RotatE STD+LP .985±.000 .797±.000 .908±.013 .781±.000
MTT+LP .989±.001 .807±.000 .934±.012 .828±.000
MTT+MTR .989±.000 .810±.000 .931±.003 .658±.000

TransE STD+LP .984±.001 .791±.005 .913±.032 .806±.021
MTT+LP .987±.000 .805±.006 .946±.009 .681±.014
MTT+MTR .987±.000 .796±.000 .942±.000 .789±.034

KE-GCN .988±.000 .738±.000 .906±.002 .685±.020

Table 17: Weighted F1 on test data of downstream classifiers (MLP, Logistic Regression, KNN and Random Forest)
that use pre-trained KGE embeddings as input to solve entity classification tasks about entities in FB15K-237; and
KE-GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Datasets are sorted by decreasing
size of the training set from left to right.

YAGO3-10
Entity Classification (Weighted F1 - higher is better)

Type Player Profession Writer Scientist Organization Artist Waterbody

ComplEx STD+LP .994±.000 .918±.001 .753±.004 .575±.006 .518±.013 .789±.005 .480±.018 .673±.015
MTT+LP .997±.000 .919±.002 .790±.002 .619±.006 .553±.011 .877±.003 .466±.013 .614±.000
MTT+MTR .996±.000 .914±.001 .776±.000 .617±.009 .556±.007 .871±.005 .491±.021 .614±.000

DistMult STD+LP .994±.000 .919±.001 .764±.003 .577±.000 .529±.003 .814±.011 .535±.007 .738±.000
MTT+LP .996±.000 .919±.002 .789±.002 .634±.019 .556±.003 .890±.010 .495±.010 .691±.000
MTT+MTR .996±.000 .918±.002 .776±.000 .622±.006 .539±.009 .876±.005 .462±.006 .691±.000

RotatE STD+LP .973±.001 .914±.000 .706±.002 .611±.000 .545±.000 .734±.014 .530±.000 .593±.000
MTT+LP .990±.001 .913±.001 .733±.000 .605±.000 .469±.009 .793±.005 .413±.000 .751±.000
MTT+MTR .994±.000 .919±.001 .768±.000 .643±.000 .576±.000 .830±.011 .534±.000 .707±.000

TransE STD+LP .993±.000 .919±.001 .762±.000 .623±.000 .630±.000 .833±.000 .507±.015 .670±.000
MTT+LP .991±.000 .912±.000 .728±.005 .583±.000 .603±.000 .804±.011 .506±.007 .654±.006
MTT+MTR .992±.000 .892±.000 .750±.000 .580±.000 .401±.012 .809±.003 .464±.015 .614±.012

KE-GCN .996±.000 .896±.001 .709±.000 .582±.005 .610±.006 .853±.006 .463±.014 .488±.014

Table 18: Weighted F1 on test data of downstream classifiers (MLP, Logistic Regression, KNN and Random Forest)
that use pre-trained KGE embeddings as input to solve entity classification tasks about entities in YAGO3-10; and
KE-GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Datasets are sorted by decreasing
size of the training set from left to right.

157

FB15K-237
Regression (RSE - lower is better)

Node Imp. Birth Year Latitude Longitude Person Height

ComplEx STD+LP .870±.048 .601±.239 .172±.013 .089±.010 .678±.010
MTT+LP .918±.142 .477±.190 .145±.015 .066±.008 .661±.011
MTT+MTR .909±.086 .214±.050 .143±.009 .096±.008 .678±.000

DistMult STD+LP .807±.023 .844±.042 .182±.031 .088±.005 .669±.003
MTT+LP .788±.006 .827±.065 .143±.001 .083±.013 .651±.009
MTT+MTR .802±.049 .701±.052 .232±.053 .070±.006 .691±.000

RotatE STD+LP .913±.000 .872±.027 .498±.057 .279±.003 .657±.000
MTT+LP .834±.016 .797±.069 .313±.014 .173±.003 .813±.136
MTT+MTR .856±.003 .811±.005 .411±.022 .225±.096 .847±.000

TransE STD+LP .886±.035 .836±.041 .170±.022 .084±.006 .722±.003
MTT+LP .833±.018 .812±.012 .078±.011 .061±.003 .769±.009
MTT+MTR .897±.044 .655±.053 .088±.005 .052±.006 .824±.000

KE-GCN .804±.005 .376±.035 .218±.023 .113±.003 .748±.002

Table 19: Part 1: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in FB15K-237; and KE-
GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the training set from left to right.

FB15K-237
Regression (RSE - lower is better)

Size Area Population Film Year Date Founded Film Rating

ComplEx STD+LP .234±.018 .442±.071 .156±.016 .494±.042 .736±.046
MTT+LP .046±.026 .260±.064 .138±.007 .431±.047 .795±.058
MTT+MTR .049±.021 .493±.097 .126±.003 .605±.033 .804±.065

DistMult STD+LP .412±.318 .914±.093 .152±.003 .627±.036 .813±.062
MTT+LP .435±.046 .503±.004 .134±.012 .429±.045 .728±.063
MTT+MTR .025±.008 .540±.030 .146±.005 .718±.012 .894±.043

RotatE STD+LP .700±.223 .463±.429 .176±.004 .618±.024 .792±.089
MTT+LP .708±.112 .537±.035 .146±.008 .514±.055 .897±.168
MTT+MTR .440±.190 .710±.158 .157±.010 .631±.060 .949±.056

TransE STD+LP .326±.075 .906±.574 .153±.019 .499±.046 .839±.045
MTT+LP .041±.744 .227±.730 .141±.004 .300±.013 .690±.031
MTT+MTR .833±.684 .675±.109 .130±.012 .708±.022 .946±.018

KE-GCN .754±.0180 .664±.051 .144±.008 .498±.034 .691±.009

Table 20: Part 2: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in FB15K-237; and KE-
GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the training set from left to right.

158

YAGO3-10
Regression (RSE - lower is better)

Born on Date Created on Date Died on Date Destroyed on Date Happened on Date

ComplEx STD+LP .519±.001 .672±.033 .555±.014 .872±.060 .324±.006
MTT+LP .345±.025 .603±.009 .377±.005 .709±.009 .296±.036
MTT+MTR .363±.010 .643±.016 .406±.023 .605±.029 .277±.023

DistMult STD+LP .432±.013 .612±.024 .466±.025 .773±.004 .311±.030
MTT+LP .345±.023 .565±.015 .416±.023 .724±.044 .312±.040
MTT+MTR .352±.006 .648±.016 .438±.035 .677±.024 .214±.022

RotatE STD+LP .689±.027 .800±.009 .849±.000 .913±.000 .227±.055
MTT+LP .538±.006 .717±.008 .657±.018 .886±.031 .497±.233
MTT+MTR .421±.016 .706±.012 .468±.003 .616±.043 .137±.013

TransE STD+LP .422±.018 .647±.008 .351±.037 .513±.057 .300±.059
MTT+LP .371±.006 .725±.022 .434±.009 .573±.081 .100±.027
MTT+MTR .494±.017 .777±.000 .521±.038 .942±.048 .666±.024

KE-GCN .256±.009 .611±.008 .299±.011 .657±.045 .167±.001

Table 21: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression) that use
pre-trained KGE embeddings as input to solve regression tasks about entities in YAGO3-10; and KE-GCN (Yu et al.,
2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered unsatisfactory.
Datasets are sorted by decreasing size of the training set from left to right.

WIKIDATA5M
Regression (RSE - lower is better)

Date of Birth Album Pub. Asteroid Mag. River Length

ComplEx STD+LP .475±.003 .760±.009 .436±.014 .559±.022
MTT+LP .481±.006 .844±.009 .519±.026 .540±.007
MTT+MTR .468±.010 .813±.006 .518±.014 .659±.025

TransE STD+LP .373±.002 .555±.004 .377±.015 .444±.016
MTT+LP .434±.007 .669±.003 .439±.013 .433±.029
MTT+MTR .455±.005 .667±.010 .455±.021 .418±.021

Table 22: Part 1: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in WIKIDATA5M; Models
with RSE above 1 are considered unsatisfactory. Datasets are sorted by decreasing size of the training set from left
to right.

WIKIDATA5M
Regression (RSE - lower is better)
Airport Elev. Season Start Population Munic. Area

ComplEx STD+LP .849±.007 .596±.002 .019±.197 .801±.000
MTT+LP .917±.000 .695±.014 .785±.139 .867±.000
MTT+MTR .928±.000 .657±.040 .841±.086 .877±.000

TransE STD+LP .734±.019 .546±.029 .928±.000 .811±.000
MTT+LP .894±.037 .654±.024 .739±.087 .825±.000
MTT+MTR .873±.000 .610±.011 .896±.080 .825±.000

Table 23: Part 2: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in WIKIDATA5M; Models
with RSE above 1 are considered unsatisfactory. Datasets are sorted by decreasing size of the training set from left
to right.

159

0.76

0.78

0.80

0.82

0.84

0.86

0.88
W

ei
gh

te
d

F
1

ComplEx DistMult

100% 10 Shots 5 Shots 3 Shots
0.76

0.78

0.80

0.82

0.84

0.86

0.88

W
ei

gh
te

d
F

1

RotatE

100% 10 Shots 5 Shots 3 Shots

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 3: Few-shot performance of entity classification tasks for FB15K-237 (higher is better). Each n-shot training
set consists of n sampled positive and negative examples for each class.

0.73

0.75

0.78

0.80

0.83

0.85

0.88

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10% 5% 3%
0.73

0.75

0.78

0.80

0.83

0.85

0.88

W
ei

gh
te

d
F

1

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 4: Performance on entity classification for FB15K-237 with downsampled training sets (higher is better).
Each training set was constructed by sampling (stratified) a percentage of the training set.

160

0.50

1.00

1.50

2.00

2.50
R

S
E

ComplEx DistMult

100% 10% 5% 3%

0.50

1.00

1.50

2.00

2.50

R
S

E

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 5: Performance of regression tasks for FB15K-237 with downsampled training sets (lower is better). Each
training set was constructed by sampling a percentage of the training set.

0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10% 5% 3%
0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 6: Performance on entity classification for YAGO3-10 with downsampled training sets (higher is better).
Each training set was constructed by sampling (stratified) a percentage of the training set.

161

0.40

0.60

0.80

1.00

1.20

1.40

R
S

E

ComplEx DistMult

100% 10% 5% 3%
0.40

0.60

0.80

1.00

1.20

1.40

R
S

E

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 7: Performance of regression tasks for YAGO3-10 with downsampled training sets (lower is better). Each
training set was constructed by sampling a percentage of the training set. The gap in performance between MTT
and STD models becomes larger as training data becomes less available.

162

