
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 163–176
August 15, 2024 ©2024 Association for Computational Linguistics

Learn it or Leave it: Module Composition and Pruning
for Continual Learning

Mingyang Wang1,2,3 Heike Adel4 Lukas Lange1
Jannik Strötgen5 Hinrich Schütze2,3

1Bosch Center for Artificial Intelligence, Renningen, Germany
2LMU Munich, Germany 3Munich Center for Machine Learning (MCML)

4Hochschule der Medien, Stuttgart, Germany
5Karlsruhe University of Applied Sciences, Germany

mingyang.wang2@de.bosch.com

Abstract

In real-world environments, continual learn-
ing is essential for machine learning models,
as they need to acquire new knowledge incre-
mentally without forgetting what they have
already learned. While pretrained language
models have shown impressive capabilities on
various static tasks, applying them to contin-
ual learning poses significant challenges, in-
cluding avoiding catastrophic forgetting, fa-
cilitating knowledge transfer, and maintaining
parameter efficiency. In this paper, we intro-
duce MOCL-P, a novel lightweight contin-
ual learning method that addresses these chal-
lenges simultaneously. Unlike traditional ap-
proaches that continuously expand parameters
for newly arriving tasks, MOCL-P integrates
task representation-guided module composi-
tion with adaptive pruning, effectively balanc-
ing knowledge integration and computational
overhead. Our evaluation across three con-
tinual learning benchmarks with up to 176
tasks shows that MOCL-P achieves state-of-
the-art performance and improves parameter
efficiency by up to three times, demonstrating
its potential for practical applications where
resource requirements are constrained.

1 Introduction

Continual learning (CL) is a learning paradigm
aiming at incrementally acquiring and integrating
new knowledge over time without forgetting ex-
isting knowledge. This capability is essential for
machine learning models to stay effective as they
encounter dynamic and evolving real-world en-
vironments. While pretrained language models
(PLMs) have demonstrated remarkable capabilities
on various static tasks, adapting them for continual
task learning remains challenging.

In particular, there are three notable challenges
for continual learning. (1) Avoiding catastrophic
forgetting: The newly learned information should
not disrupt and degrade previously acquired knowl-

edge (McCloskey and Cohen, 1989). (2) Facili-
tating knowledge transfer: The knowledge from
past tasks should be reused for efficient learning of
new tasks. (3) Maintaining parameter efficiency:
The language models need to stay lightweight and
effective even if the continual learning sequence
scales to hundreds of tasks.

To mitigate catastrophic forgetting, a line of
prior works adopt the idea of parameter isolation
(Razdaibiedina et al., 2022; Wang et al., 2023d,e,
2024), which allocates isolated parameters dedi-
cated for each task to avoid inter-task interference.
While parameter isolation typically does not al-
low knowledge transfer across tasks (Wang et al.,
2023d,e), there are attempts to address both chal-
lenges of catastrophic forgetting and knowledge
transfer at the same time, e.g., by progressively
concatenating (Razdaibiedina et al., 2022) or com-
posing task-specific modules (Wang et al., 2024).

Despite their effectiveness in terms of task per-
formance, parameter isolation methods do not
scale well with the number of tasks. When the
number of tasks in a continual learning sequence is
growing into the hundreds, the progressive expan-
sion of task-specific parameters leads to parameter
inefficiency and significantly increases computa-
tional and storage costs.

In this paper, we address all three continual
learning challenges simultaneously and introduce
MOCL-P, a lightweight continual learning ap-
proach that leverages task representation-guided
module composition and adaptive pruning. First,
to avoid catastrophic forgetting, MOCL-P continu-
ally adds task-specific modules to PLMs for learn-
ing new tasks while keeping the modules frozen
once the training on the respective tasks is finished.
In addition, to enable knowledge transfer across
tasks, MOCL-P allows the model to reuse existing
knowledge via module composition. Finally, to
keep the language model lightweight, MOCL-P
adopts an adaptive pruning strategy by removing
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modules with redundant information and retain-
ing only the most salient modules throughout the
continual learning process.

In our evaluation on three popular datasets as
continual learning benchmarks with up to 176 tasks
in the learning sequence, MOCL-P stands out by
not only showing state-of-the-art performance but
also outperforming prior algorithms in parameter
efficiency by up to three times across benchmarks.

To the best of our knowledge, this is the first
paper that tackles the three challenges of continual
learning simultaneously: MOCL-P avoids catas-
trophic forgetting, allows knowledge transfer and
ensures parameter efficiency. Thus, MOCL-P pro-
poses a sustainable way for continual learning, al-
lowing models to remain lightweight and effective
as they evolve with accumulating tasks.

The code base for MoCL is available online.1

2 Related Work

2.1 Avoiding Catastrophic Forgetting in
Continual Learning

A major challenge in continual learning is known
as catastrophic forgetting, where newly learned
information disrupts and degrades previously ac-
quired knowledge (McCloskey and Cohen, 1989).
Existing approaches to overcome this issue can be
broadly divided into three categories (Wang et al.,
2023a): (1) Regularization-based methods explic-
itly add regularization terms to the loss function to
restrict model updates and preserve existing knowl-
edge (Li and Hoiem, 2017; Kirkpatrick et al., 2017;
Aljundi et al., 2018); (2) Rehearsal-based methods
leverage a memory buffer to store real examples
(Rebuffi et al., 2017; Rolnick et al., 2019; Zhang
et al., 2022a) or generated pseudo-examples of
past tasks for future rehearsal to avoid catastrophic
forgetting (Shin et al., 2017; Su et al., 2019); (3)
Parameter isolation-based methods construct task-
specific parameters to prevent inter-task interfer-
ence by either dynamically expanding model capac-
ity or isolating existing model weights (Madotto
et al., 2020; Zhang et al., 2022b; Razdaibiedina
et al., 2022; Wang et al., 2023e,d, 2024).

Our method, MOCL-P, belongs to the
parameter-isolation based category. We use task
representation-guided module composition and
adaptive pruning to effectively manage isolated
parameters.

1https://github.com/boschresearch/MoCL-Pruning

2.2 Transferring Knowledge in Continual
Learning

Recent studies in continual learning demonstrate
the effectiveness of parameter isolation methods
in avoiding catastrophic forgetting (Razdaibiedina
et al., 2022; Wang et al., 2023e,d, 2024). How-
ever, naive parameter isolation methods do not
allow knowledge transfer across tasks, which leads
to inefficient learning as the model cannot lever-
age previously acquired knowledge to facilitate
learning new tasks. To address this, Yoon et al.
(2017) and Zhu et al. (2022) attempt to first iden-
tify reusable modules and only add new parame-
ters when necessary. Ke et al. (2021) and Wang
et al. (2022) introduce knowledge-sharing modules
to facilitate knowledge transfer while maintaining
task-specific parameters to prevent interference.
Razdaibiedina et al. (2022) progressively concate-
nate task-specific modules to incrementally build
a composite model that leverages both new and
existing knowledge. Wang et al. (2024) introduce
a modular and compositional continual learning
framework to compose the new module with exist-
ing ones based on task module matching.

2.3 Parameter-Efficient Continual Learning

With the ever-increasing number of parameters
in PLMs, it becomes increasingly important to
develop machine learning systems that are more
scalable, practical, and resource-efficient. In the
context of continual learning, this necessitates
parameter-efficient approaches that can effectively
integrate new knowledge without excessive com-
putational and storage costs as the number of tasks
in the continual learning sequence increases.

Recent advancements in continual learning inte-
grate parameter isolation with parameter-efficient
fine-tuning (PEFT), i.e., they allocate task-specific
PEFT modules for learning and inference (Razdai-
biedina et al., 2022; Wang et al., 2023e,d, 2024).
Various PEFT techniques, such as adapter tuning
(Houlsby et al., 2019), prefix tuning (Li and Liang,
2021), and LoRA (Huang, 2022), have been ap-
plied in continual learning. Although they reduce
the number of training parameters to some extent
by freezing the PLM and only updating the PEFT
module parameters, it remains challenging to apply
them to long-sequence benchmarks that consist of
hundreds of tasks. The continuous expansion of
task-specific modules leads to significant computa-
tional overhead as the number of tasks increases.
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Figure 1: Overview of our proposed method MOCL-P for parameter-efficient continual learning. Step 1: We match
the n-th task input with task feature vectors to determine the contribution of each existing module for learning the
current task. Step 2: We compose the newly initialized module with existing ones and perform adaptive module
pruning to preserve only the dominant modules. Step 3: Finally, we combine the composed module p′m with the
PLM for training and inference.

Our approach builds on the idea of Wang et al.
(2024) by utilizing task representations for module
composition, ensuring that the model effectively
reuses relevant knowledge from previous tasks. Be-
yond that, we introduce an adaptive pruning strat-
egy to keep the language model lightweight and
effective throughout the continual learning process,
thus making it scalable for continual learning sce-
narios with long task sequences.

3 Problem Definition

Continual learning focuses on addressing a series
of tasks which arrive in a sequential order. The
primary goal is to optimize the model’s average
performance across all tasks after learning them
sequentially. Formally, the sequence of tasks is
denoted as {T1, . . . , TN}. Each task contains a set
of input samples {(xin, yin)}. For the text classifica-
tion tasks we study in this work, xin is the input text,
yin is the ground-truth label, and n ∈ {1, . . . , N}
is the task identity.

In this work, we focus on rehearsal-free con-
tinual learning, i.e., data from earlier tasks is not
available when training later tasks. Therefore, our
model does not suffer from the memory or pri-
vacy issues associated with rehearsal-based meth-
ods. We assume the task labels are provided dur-
ing both training and testing, i.e., task-incremental
continual learning (Wang et al., 2023a). However,
MOCL-P can be adapted for class-incremental
learning, where the task labels are not given during
testing, with minor modifications following Wang
et al. (2024). We leave the exploration of other
continual learning settings for future work.

4 Method

In this section, we describe MOCL-P, our pro-
posed CL approach for language models, as il-
lustrated in Figure 1, which tackles catastrophic
forgetting and enhances knowledge transfer with
superior parameter efficiency at the same time.

4.1 Continual Learning with PEFT

We inherit the idea of parameter isolation with
parameter-efficient fine-tuning (PEFT) introduced
in prior work (Razdaibiedina et al., 2022; Wang
et al., 2023d,e, 2024), which allocates trainable
PEFT parameters for each task while keeping other
parameters frozen.

We utilize prefix-tuning (Li and Liang, 2021) as
the PEFT module in consistency with prior works.2

For each task in the CL sequence, we add a set
of trainable PEFT parameters, i.e., a task-specific
module, to the pretrained language model (PLM)
for downstream task fine-tuning. Instead of up-
dating the whole model, only a small number of
the PEFT parameters are optimized. Once training
on one given task is completed, the corresponding
PEFT module is frozen to preserve the task-specific
knowledge in the subsequent training process, thus
avoiding catastrophic forgetting.

4.2 Task Representation-Guided Module
Matching

In contrast to completely isolating task-specific
parameters during continual learning, which ex-
cludes knowledge transfer, we follow the idea of

2Other PEFT methods like Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2021) can also be combined with MOCL-
P in general. We leave such exploration for future work.
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task module composition introduced in Wang et al.
(2024) to facilitate knowledge transfer.

To this end, we utilize task representations for
task module matching, and consequently for com-
posing old and new modules for learning. The
module matching aims to determine the contribu-
tion of each existing module to learning the current
task, i.e., to what extent previously learned mod-
ules can be reused for the current task.

We introduce trainable feature vectors V ∈
RN×D as task representations to capture the fea-
tures of each task in the CL sequence.3 We set the
dimension of each task feature vector v ∈ RD to
the same value as the dimension of the input em-
beddings xn ∈ RD. Then, we calculate the cosine
similarity between the input embeddings xn and
each feature vector vi up to the current task as the
matching score αi = cos(xn, vi). Consequently,
we get the module matching weights {α0, α1, ...}
for module composition (details will be introduced
in Section 4.3) to reuse existing knowledge.

4.3 Module Composition with Adaptive
Pruning

When the CL learning sequence scales to dozens or
hundreds of tasks, the need for efficiency increases.
Continuously expanding the module pool to assign
a PEFT module to each task, as done in prior works
(Wang et al., 2023e; Razdaibiedina et al., 2022;
Wang et al., 2024), leads to large computational
costs. In contrast, we employ an adaptive pruning
strategy to make our approach scalable in scenarios
with long task sequences.

In particular, our pruning strategy aims at pre-
serving only those modules that add new and
valuable information to the set of already se-
lected modules. Given a set of selected mod-
ules {P0, . . . , Pm−1} from previous tasks and a
new task Tn, (m − 1 ≪ n), we initialize a
trainable module Pm and add it temporarily to
the model. For each instance4 xin of the cur-
rent task Tn, we compute the matching weights
{α0, . . . , αm} by matching xn with all task fea-
ture vectors {v0, . . . , vm} from our current set of
modules. Specifically, we calculate the cosine sim-
ilarity between xn and {v0, . . . , vm} as module
matching weights α0:m as detailed in Section 4.2.

3Note that MOCL-P is agnostic to different types of task
representations. In addition to the trainable feature vectors,
other static task representations such as task embeddings or
Gaussian task distributions can also be combined with MOCL-
P. We analyze these options in Section 6.2.

4For simplicity, we refer to this as xn in the following.

Then, we compose the new and old modules via
a weighted sum: P ′

m =
∑m

k=0 αkPk. Finally, the
composed module P ′

m is combined with the PLM,
consisting of all the selected module components
up to the current task.

After the training on Tn is finished (specifically,
the training of the PEFT module Pm and the task
feature vector vm), we compare αm, the matching
weight of the new module Pm, with a threshold5 to
decide whether to prune Pm or leave it in the set of
existing modules. The intuition is that large match-
ing weights indicate new and valuable information,
while task modules with small matching weights
do not contribute new information and, thus can,
be discarded.

4.4 Training and Inference
The training objective for the n-th task in the con-
tinual learning sequence is to find the PEFT mod-
ule Pm and the task feature vector vm that mini-
mize the cross-entropy loss of training examples,
and, at the same time, maximize the cosine similar-
ity between the task-specific feature vector vm and
the corresponding task input embeddings xn:

min
Pm,vm

−
∑

xn,yn

log p(yn|xn, P
′
n, θ)−

∑

xn

cos(xn, vm)

Here P ′
n =

∑m
k=1 αkPk is the weighted sum-

mation of the new trainable task module and the
existing frozen task modules as introduced in Sec-
tion 4.3. During inference, MOCL-P performs
per-instance task module matching and composi-
tion. The resulting module is combined with the
PLM for inference.

5 Experimental Setup

In this section, we describe datasets, training de-
tails and baselines for our experiments.

5.1 Datasets
To evaluate the performance of our method and the
effectiveness of its module pruning functionality,
we experiment with three continual learning bench-
marks, each with long task sequences. Following
prior work (Razdaibiedina et al., 2022; Wang et al.,
2024), we use MTL15, a multi-task continual learn-
ing benchmark comprising 15 classification tasks,
and AfriSenti (Muhammad et al., 2023), a multi-
lingual sentiment analysis dataset that includes 12
low-resource African languages. Additionally, we

5The threshold is a tunable hyperparameter.
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Method
AfriSenti WikiAnn

AVG O1 O2 O3 # Params AVG O1 O2 O3 # Params

Seq FT (F) 6.17 5.62 6.52 6.30 560M 14.50 3.44 23.36 16.70 110M
Seq FT 49.10 50.05 49.74 47.53 0.4M 67.99 68.25 65.05 70.66 0.1M
Per-task FT 52.41 52.41 52.41 52.41 4.5M 71.22 71.22 71.22 71.22 24.8M
ProgPrompt 49.07 50.16 46.74 50.30 4.5M 73.20 73.24 73.22 73.15 24.8M
EPI 43.10 41.49 42.65 45.16 4.5M 67.34 67.72 67.12 67.18 24.8M
MoCL 59.31 59.56 58.98 59.40 4.5M 73.80 73.78 73.81 73.82 24.9M
MOCL-P (Ours) 59.41 59.52 58.97 59.76 2.2M±0.4 73.91 73.94 73.94 73.86 8.0M±0.1

Table 1: Summary of the continual learning results on two multilingual benchmarks: AfriSenti and WikiAnn
NER, with 12 and 176 languages in the task sequence, respectively. We compare MOCL-P with various baseline
methods, and show the average model performance (AVG) across different task orders (O1, O2, O3) with the
number of trainable parameters (# Params) used by each method. MOCL-P outperforms other methods with
significantly fewer parameters, demonstrating its superiority in both model performance and parameter efficiency
in long-sequence continual learning scenarios.

include WikiAnn (Pan et al., 2017), a multilingual
named entity recognition (NER) dataset covering
176 languages; its long task sequence provides an
adequate testbed for the pruning ability of our ap-
proach.

We report macro-weighted F1 scores on the
AfriSenti benchmark, accuracy on MTL15, and
micro-weighted F1 scores on WikiAnn. On the
MTL15 benchmark, we select 1000 random sam-
ples per class for training each task and hold out
500 samples per class for validation.6 We explore
three task orders for each benchmark, adopting the
same multiple task orders as the prior work. Please
refer to Appendix A.1 for more details about the
benchmarks and task orders.

5.2 Training Details

We deploy three LMs for these datasets, in line with
prior work (Razdaibiedina et al., 2022; Wang et al.,
2024). We use encoder-based models for AfriSenti
and WikiAnn NER (AfroXLM and BERT, respec-
tively), and the encoder-decoder model T5 for
MTL15. Prefix-tuning is used as the task-specific
modules for all deployed models. All design
choices are consistent with previous works to en-
sure a fair comparison. The reported results rep-
resent the average performance after training on
all tasks consecutively and are averaged over three
random seeds. The detailed experimental settings
are provided in Appendix A.2.1.

6All design choices of MOCL-P are kept consistent with
previous works (Wang et al., 2023b,d, 2024) to ensure a fair
comparison.

5.3 Baselines
To compare different CL methods, we include the
following baselines: (1) Sequential fine-tuning con-
tinuously fine-tunes the language model on the task
sequence: (a) Seq FT (F) refers to all model param-
eters are updated (fully fine-tuning), while (b) Seq
FT only fine-tunes the PEFT parameters; (2) Per-
task FT trains a separate PEFT module for each
task; and the parameter isolation-based methods (3)
ProgPrompt (Razdaibiedina et al., 2022) assigns
task-specific parameters and progressively concate-
nates modules of all tasks to encourage knowledge
transfer; (4) EPI (Wang et al., 2023e) introduces
a non-parametric task identification technique to
select modules for task training and inference; (5)
O-LoRA (Wang et al., 2023d) learns tasks in differ-
ent low-rank vector spaces that are kept orthogonal
to each other to minimize interference; and (6)
MoCL (Wang et al., 2024) introduces a modular
and compositional framework that progressively
expands task-specific modules and composes the
new module with existing ones to facilitate knowl-
edge transfer. A detailed description of these meth-
ods can be found in Appendix A.2.2.

6 Results and Analysis

In this section, we present and analyze our experi-
mental results.

6.1 Overall Results
Table 1 shows the performance of MOCL-P
and other baseline methods on the AfriSenti and
WikiAnn benchmarks. MOCL-P consistently out-
performs the baselines while significantly reduc-
ing the number of trainable parameters. Using
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only 50% and 30% of the trainable parameters
compared to other CL methods on Afrisenti and
Wikiann respectively, MOCL-P showcases an ex-
ceptional balance of efficiency and performance.
In the MTL15 benchmark, as illustrated in Table 2,
MOCL-P also shows superior performance. As
mentioned in prior work (Wang et al., 2024), tasks
in this benchmark share lower similarity compared
to AfriSenti and WikiAnn, resulting in weaker
reusability of task modules. Therefore, we do not
observe a significant drop in the number of train-
able parameters here as seen in the other bench-
marks. However, we still achieve a 25% reduction
in parameter size while maintaining final perfor-
mance.

Overall, MOCL-P demonstrates its superiority
in efficiently managing the continual learning pro-
cess without the substantial parameter overhead.
The competitive performance of MOCL-P across
different benchmarks highlights its robust adapt-
ability and scalability to the continual learning se-
quence up to 176 tasks long.

Method
MTL15

AVG O1 O2 O3 # Params

Seq FT-F 7.4 7.4 7.4 7.5 770M
Seq FT-P 64.7 69.9 58.9 65.1 1.4M
Per-task FT 80.5 80.5 80.5 80.5 21.1M
ProgPrompt 77.9 78.0 77.7 77.9 21.1M
EPI 65.4 62.8 65.3 68.1 21.1M
O-LoRA 69.6 78.0 77.7 77.9 33.8M
MoCL 82.5 82.9 82.8 81.9 21.1M
MOCL-P (Ours) 82.5 83.0 82.7 81.8 15.6M±1.1

Table 2: Summary of the continual learning results
on the MTL15 benchmark with the T5-large model.
MOCL-P achieves the best average performance (AVG)
while using fewer parameters (# Params), demonstrating
its effectiveness on the multi-task CL benchmark.

6.2 Task Representation Comparison
In this work, we adopt learnable task feature vec-
tors as task representation, and based on these, we
perform module composition and pruning. In Sec-
tion 6.1, we demonstrate the effectiveness of this
design choice. While this is not the only option
for task representations, in this section, we experi-
ment with two other types of task representation:
(1) using Gaussian distributions to model the input
embeddings of each task (w/ Gaussian) and (2) cal-
culating the mean of the input embeddings of each
task for task representations(w/ Embed mean).

Table 3 provides the results of using different
task representation options for module composition

AfriSenti WikiAnn
AVG # Params AVG # Params

Per-task FT 49.10 4.5M 71.22 24.8M

MoCL 59.31 4.5M 73.80 24.9M
w/ Gaussian 42.25 4.5M 67.38 24.8M
w/ Embed mean 52.63 4.5M 70.12 24.8M

MOCL-P (Ours) 59.41 2.2M±0.4 73.91 8.0M±0.1

w/ Gaussian 42.15 4.1M±0.0 67.46 5.4M±0.3

w/ Embed mean 52.13 3.9M±0.2 70.21 20.3M±0.7

Table 3: Performance comparison of different task rep-
resentation methods for module composition and prun-
ing. Specifically, we use Gaussian distribution to model
the input embeddings of each task (w/ Gaussian rep)
and calculate the mean of the input embeddings of each
task (w/ Embed mean). Notably, the use of these vari-
ations results in substantially lower performance com-
pared to the original MoCL and MOCL-P which uti-
lizes learnable feature vectors as task representations.

and pruning. A significant performance drop oc-
curs when using Gaussian distributions or the mean
of task input embeddings as the task representation.
In most cases, their performance is worse than the
Per-Task FT baseline, indicating that using these
task representations for module composition leads
to performance degradation rather than beneficial
knowledge transfer across tasks.

We believe that this degradation is due to the fact
that both of these task representations are static and
are solely based on the input embeddings. In con-
trast, MOCL-P utilizes trainable task feature vec-
tors, meaning the model can automatically learn
to capture the salient task features necessary for
effective module composition. Trainable task rep-
resentations are a better choice because not all
information in the input embedding is relevant
for module composition. To effectively capture
reusability between task modules, the model must
focus on the salient features while ignoring irrel-
evant ones. Static task representations, which are
purely based on input embeddings, fail to achieve
this selective focus.

6.3 Ablation Study: Varying the Training
Epochs for Task Feature Vectors

To substantiate our assumption introduced in Sec-
tion 6.2, we additionally conduct ablation exper-
iments on WikiAnn where we vary the training
epochs for task feature vectors in MOCL-P. As
illustrated in Figure 3, training the task feature vec-
tors for different epochs shows a clear pattern: the
model performance improves significantly with the
initial increase of the number of training epochs.
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Figure 2: Visualization of task feature vectors on the WikiAnn benchmark using PCA for dimensionality reduction.
We vary the training epochs for task feature vectors in MOCL-P. As the training epochs increase, the task feature
vectors spread out from the initial dense cluster. Notably, the feature vectors of preserved modules (in orange) are
spread across a large area while the discarded modules (in blue) form a dense cluster, indicating their redundancy.

Beyond a certain point (epoch = 4), additional train-
ing does not yield further benefits and converges
towards a performance plateau. This observation
suggests that by allowing the model to adapt these
vectors over several epochs, MOCL-P can more
accurately identify and leverage the most relevant
features for module composition. This underscores
the critical importance of the trainable nature of
task feature vectors in MOCL-P.

In Figure 2, we visualize the task feature vec-
tors at different training epochs on the WikiAnn
dataset, which includes a total of 176 tasks. The
colors represent two categories of task modules:
those that are eventually discarded (blue) and those
that are preserved (orange) through the learning
process. Initially (training epoch = 0), the vec-
tors are evenly distributed around the origin since
they are uniformly initialized. As the training
epochs increase, the task vectors spread out and
become more distinct, suggesting that the model
captures distinct features of tasks and utilizes them
for module pruning. Notably, the feature vectors of
preserved modules are spread across a large area,
while the discarded modules form a dense cluster,
indicating their redundancy. The embeddings of
task feature vectors stabilize by epoch 5, indicating
a convergence in the task representation learning
process. These observed patterns demonstrate the
effectiveness of our strategy of using trainable task

representations for module composition and prun-
ing, which helps in preserving only the most salient
modules for continual learning.
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Figure 3: Experimental results with different training
epochs for task feature vectors in MOCL-P. The model
performance improves rapidly with the initial increase
of the number of training epochs and converges towards
a performance plateau after epochs > 4. MOCL-P
achieves significantly better performance than other
task representation options. It highlights the advantage
of trainable task representations in capturing salient task
features for effective module composition.
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Figure 4: Impact of pruning thresholds on the performance and parameter size of MOCL-P across different
benchmarks. The performance of MOCL-P exhibits robustness to different thresholds, with a significant reduction
in the number of trainable parameters. This demonstrates that MOCL-P can maintain effective performance despite
using fewer parameters.

6.4 Ablation Study: Varying the Pruning
Threshold

In this section, we study the impact of using dif-
ferent thresholds on the performance of MOCL-
P. As introduced in Section 4.3, we compare the
matching weight of the newly initialized task mod-
ule αm with the pre-specified threshold αths, if
αm < αths, then we discard the newly learned
module. We vary αths from 0 to 0.25 for the three
benchmarks used in this work.

The results are shown in Figure 4. The figure il-
lustrates how varying the pruning threshold affects
both the average performance and the parameter
size across different benchmarks.

For the model performance, we observe that the
initial increase in the pruning threshold leads to
a performance increase on all three benchmarks.
This indicates that excluding the redundant mod-
ules benefits performance. As the threshold con-
tinues to increase, the average performance on
AfriSenti and MTL15 remains relatively stable,
while the performance on WikiAnn drops, possi-
bly due to the loss of information in potentially
useful modules. Additionally, it is worth noting
that the performance of MOCL-P is consistently
and significantly better than the Per-Task FT base-
line, suggesting that MOCL-P achieves effective
knowledge transfer at different pruning thresholds.

Furthermore, for the parameter size, a significant
reduction is observed as the threshold increases
on all three benchmarks. This demonstrates the
superiority of MOCL-P on parameter efficiency.
We observe that the parameter size decreases more
pronounced and faster on AfriSenti and WikiAnn,
while it decreases less and more slowly on MTL15.

We believe it is due to the characteristics of the
benchmarks. As mentioned in Section 6.1, tasks in
this benchmark share a lower similarity, therefore,
most task modules are highly specialized to these
distinct tasks and cannot be discarded.

We choose different pruning thresholds for dif-
ferent benchmarks reported in Table 1. For each
benchmark, we select the pruning threshold that
best balances performance and parameter size to
report the results in Table 1. Specifically, we use
αths = 0.025 for AfriSenti and WikiAnn, and
αths = 0.25 for MTL15. With these thresholds,
MOCL-P achieves equally good performance with
only 50%, 30%, and 75% of the number of train-
able parameters compared to MoCL without prun-
ing on these three benchmarks, respectively.

7 Conclusion

In this paper, we introduce MOCL-P, a novel
continual learning approach that addresses the
core challenges of catastrophic forgetting, knowl-
edge transfer, and parameter efficiency in contin-
ual learning. We utilize learnable task representa-
tions for module composition and adaptive pruning,
maintaining a lightweight model while achieving
state-of-the-art performance across various bench-
marks. Notably, MOCL-P scales effectively to
long continual learning sequences, handling up
to 176 tasks without compromising performance.
These experimental results showcase MOCL-P’s
potential to enhance practical machine learning ap-
plications by effectively managing computational
costs, thus providing a scalable and efficient so-
lution for real-world scenarios where minimum
resource requirements are crucial.
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Limitations

While MOCL-P demonstrates significant advance-
ments in continual learning, our study has some
limitations that should be addressed in future work.
First, we only use the long sequence multilingual
benchmark, i.e., WikiAnn with 176 tasks, in this
work due to the lack of existing long sequence
multi-task benchmarks. The absence of these
benchmarks limits the evaluation of MOCL-P’s
performance across diverse multi-task scenarios.
Building a long sequence multi-task benchmark
for continual learning would be an interesting re-
search direction, although it is beyond the scope
of this work. Second, as we follow the evaluation
setup from prior works, we do not include gener-
ative tasks for evaluation. Therefore, we may not
capture the potential of MOCL-P in a wider range
of continual learning challenges. Including gener-
ative tasks in future evaluations would provide a
more comprehensive understanding of MOCL-P’s
capabilities.
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A Appendix

A.1 Dataset Information

Here we provide detailed information on the
datasets used in this work. The MTL15 bench-
mark consists of 15 classification tasks, combin-
ing five datasets from the standard CL bench-
mark MTL5 (AG News, Amazon reviews, Yelp
reviews, DBpedia, and Yahoo Answers) (Zhang
et al., 2015), four tasks from the GLUE benchmark
(MNLI, QQP, RTE, SST2) (Wang et al., 2018), five
tasks from the SuperGLUE benchmark (WiC, CB,
COPA, MultiRC, BoolQ), and the IMDB movie
reviews dataset (Maas et al., 2011). Details of
the MTL15 benchmark are provided in Table 4.
Following Wang et al. (2024), we use AfriSenti
(Muhammad et al., 2023; Wang et al., 2023c),
a multilingual sentiment analysis dataset cover-
ing 12 low-resource African languages, including
Amharic (am), Algerian Arabic (dz), Hausa (ha),
Igbo (ig), Kinyarwanda (kr), Moroccan Arabic
(ma), Nigerian Pidgin (pcm), Mozambican Por-
tuguese (pt), Swahili (sw), Xitsonga (ts), Twi (twi),
and Yoruba (yo). Additionally, to further evalu-
ate the module pruning capability of MOCL-P,
we include WikiAnn, a multilingual named en-
tity recognition (NER) dataset that covers 176
languages. The long task sequence in WikiAnn
provides an adequate testbed for evaluating the
pruning functionality of MOCL-P. Due to space
constraints, we do not list the names of the 176
languages and their corresponding abbreviations.
The specific language information is available at
https://huggingface.co/datasets/wikiann.

We use different task orders for each dataset to
evaluate the robustness of continual learning meth-
ods against changing task orders. For the MTL15
and AfriSenti benchmarks, we follow the task or-
ders used in prior works, while for the WikiAnn
benchmarks, we generate three random task orders
for evaluation. The task orders used are summa-
rized in Table 6.

A.2 Experiment Details

In this section, we provide the implementation de-
tails for the experiments and a detailed description
of the baseline methods used in this work.

A.2.1 Implementation Details
We use the AdamW optimizer (Loshchilov and
Hutter, 2017) for all experiments. We choose the
same maximum sequence length and prefix length

as prior work (Razdaibiedina et al., 2022; Wang
et al., 2023e). Table 5 provides detailed hyper-
parameter choices for MOCL-P across different
datasets. The training was performed on Nvidia
A100 GPUs.7

A.2.2 Baseline Methods
In Section 6, we evaluate MOCL-P and prior con-
tinual learning methods on different benchmark
datasets. Here, we provide a more detailed descrip-
tion of the baseline methods used in this work.

ProgPrompt (Razdaibiedina et al., 2022): A pa-
rameter isolation-based continual learning method
that assigns task-specific parameters to avoid catas-
trophic forgetting. During continual learning, Prog-
Prompt progressively concatenates all task-specific
modules to encourage forward transfer.

EPI (Wang et al., 2023e): A parameter isolation-
based method applicable to the class-incremental
learning setting (CIL), where task identities are
not given during inference. EPI introduces a non-
parametric task identification module that identifies
tasks during testing. Given reliable task identifica-
tion, the CIL performance of EPI could be compa-
rable to TIL, where the ground truth task identities
are given during inference.

O-LoRA (Wang et al., 2023d): A parameter
isolation-based method that learns tasks in differ-
ent low-rank vector spaces that are kept orthogonal
to each other to minimize interference. It mitigates
catastrophic forgetting by constraining the gradient
update of the current task to be orthogonal to the
gradient space of past tasks. However, the orthogo-
nality of the gradient subspace for individual tasks
also limits knowledge transfer between tasks.

MoCL (Wang et al., 2024): Introduces a mod-
ular and compositional continual learning frame-
work to compose the new module with existing
ones based on task module matching. This compo-
sitional strategy enables effective knowledge trans-
fer by considering task interaction.

As discussed in Section 2, we build on the idea
of MoCL (Wang et al., 2024) by utilizing task
representations for module composition, ensuring
that the model effectively reuses relevant knowl-
edge from previous tasks. Beyond that, we intro-
duce an adaptive pruning strategy to keep the lan-
guage model lightweight and effective throughout
the continual learning process, making it scalable
for continual learning scenarios with long task se-
quences.

7All experiments ran on a carbon-neutral GPU cluster.
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Dataset name Category Task Domain
Yelp MTL5 sentiment analysis Yelp reviews
Amazon MTL5 sentiment analysis Amazon reviews
DBpedia MTL5 topic classification Wikipedia
Yahoo MTL5 QA Yahoo Q&A
AG News MTL5 topic classification news
MNLI GLUE NLI various
QQP GLUE paraphrase detection Quora
RTE GLUE NLI news, Wikipedia
SST2 GLUE sentiment analysis movie reviews
WiC SuperGLUE word sense disambiguation lexical databases
CB SuperGLUE NLI various
COPA SuperGLUE QA blogs, encyclopedia
BoolQ SuperGLUE boolean QA Wikipedia
MultiRC SuperGLUE QA various
IMDB Other sentiment analysis movie reviews

Table 4: The details of 15 datasets used in the MTL15 benchmark. NLI denotes natural language inference, and QA
denotes questions and answers task.

Hyperparameters
AfriSenti-AfroXLMR WikiAnn-BERT MTL15-T5

Epochs 40 5 40
Early stop patience 5 N/A 5
Batch size 8 32 8
Learning rate 2e-4 1e-3 5e-2
Max. sequence length 256 128 512
Prefix length 16 8 10

Table 5: Hyperparameters used in this work across different CL experiments.
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Table 6: The different orders of task sequences used for continual learning experiments.

Dataset Order Model Task Sequence

AfriSenti
1 AfroXLMR

am → dz → ha → ig → kr → ma
→ pcm → pt → sw → ts → twi → yo

2 AfroXLMR
ma → pcm → kr → pt → ig → sw
→ ha → ts → dz → twi → am → yo

3 AfroXLMR
am → dz → ha → ma → ig → kr

→ sw → ts → twi → yo → pcm → pt

MTL15
1 T5

mnli → cb → wic → copa → qqp → boolq → rte → imdb →
yelp → amazon → sst2 → dbpedia → ag → multirc → yahoo

2 T5
multirc → boolq → wic → mnli → cb → copa → qqp → rte →

imdb → sst2 → dbpedia → ag → yelp → amazon → yahoo

3 T5
yelp → amazon → mnli → cb → copa → qqp → rte → imdb →

sst2 → dbpedia → ag → yahoo → multirc → boolq → wic

WikiAnn
1 BERT

ga → fi → sco → bs → co → pnb → eu → vls → os → de →
hy → mwl → ca → or → wa → rw → simple → tl → crh →

lij → min → ko → scn → an → mk → hi → ug → ext → sl →
sw → nap → et → wuu → uz → mzn → ast → jv → su →

ilo → csb → cdo → tk → ckb → lv → ur → th → am → kn →
pms → ba → tt → pl → vec → ru → cs → ne → bn → es →
fy → fiu-vro → bo → mt → fr → mr → nn → bar → ang →
no → fo → el → qu → fa → eml → kk → tr → pt → km →

dv → hsb → rm → ta → fur → war → frr → ps → io → da →
zh-yue → ms → cv → diq → mn → lb → cy → sa → ig →

oc → hu → arc → ln → ku → hr → nds → az → ar → ce →
lt → zea → it → zh-classical → be-x-old → mi → ia → is →
la → sv → nl → gd → pa → xmf → ksh → zh-min-nan →

lmo → tg → sh → eo → zh → te → he → vep → as →
yi → cbk-zam → yo → ro → ace → id → jbo → nov → bg →
map-bms → be → sr → sah → ml → my → vo → so → gu →
br → gl → ka → li → pdc → ky → bat-smg → als → mg →

szl → gn → ceb → vi → sq → mhr → ay → en → bh → uk →
gan → sk → si → hak → af → ja → arz → sd

Continued on next page
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Table 6 – continued from previous page
Dataset Order Model Task Sequence

2 BERT

wuu → cy → mwl → eu → gn → scn → ka → pdc → it →
ro → pnb → ig → tl → sah → is → ga → ml → wa →

vo → simple → hr → dv → mn → csb → sl → gl → fy →
bn → tg → fr → th → vls → arz → zh-classical → ln → tr →

su → min → si → ur → sr → et → eo → sh → li →
fiu-vro → rw → no → mg → mr → oc → nap → yi → pa →
lt → ug → co → tt → sv → uk → so → ext → ky → ru →
kk → sa → la → el → hsb → be-x-old → bg → pt → bh →

br → mt → ne → id → te → cv → fo → cdo → bs →
lij → sw → he → ceb → hak → es → kn → mk → am →

or → ms → az → als → my → ce → os → ca → tk → diq →
zh → fi → jbo → mhr → ay → pms → rm → zea → en →

zh-yue → sco → ang → bo → ar → ia → zh-min-nan → ckb →
fa → crh → as → yo → szl → fur → hi → eml → mi → lb →
de → bat-smg → uz → lv → nov → ast → cs → hy → sk →

sq → be → xmf → af → ps → qu → da → ja → vep → ku →
mzn → nl → vec → map-bms → ace → io → gu → bar →

ilo → km → arc → cbk-zam → pl → ksh → war → gd → ba →
lmo → gan → ko → an → frr → vi → hu → jv → sd →

nds → nn → tas

3 BERT

tl → sah → ckb → qu → az → ast → mr → eo → wa →
zh-classical → fiu-vro → eu → nl → map-bms → id → szl →

mi → io → lt → war → my → bat-smg → jv → en →
zh-min-nan → sh → su → frr → am → hu → hy → zh → ps →

hi → tg → pl → nov → dv → min → jbo → diq → ksh →
gn → vec → nds → lij → pdc → os → rw → als → sq →
fi → da → sr → ru → uz → fr → scn → tt → bh → bn →
mwl → et → hsb → kn → rm → nn → mhr → bg → sd →
ko → la → ka → de → he → pt → cs → hr → tk → cy →

co → or → csb → bar → mt → vo → oc → simple → ml →
bs → km → sk → ang → br → xmf → ay → zea → ln →

sco → ku → ilo → lv → mzn → zh-yue → gan → ta → gl →
ca → hak → mg → ne → ur → cbk-zam → uk → mn → fy →
ba → nap → kk → yo → tr → so → fo → ug → ace → fur →
pa → lmo → it → be-x-old → sa → arc → ig → lb → ms →

th → cv → arz → bo → el → eml → gd → pnb → cdo →
ky → af → vls → be → ga → es → yi → si → ext → gu →
mk → ja → is → no → ceb → ro → sv → ar → an → te →
sl → sw → wuu → pms → fa → vi → as → ce → vep →

li → ia → crh
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