
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 191–202
August 15, 2024 ©2024 Association for Computational Linguistics

QAVSA: Question Answering using Vector Symbolic Algebras

Ryan Laube and Chris Eliasmith
University of Waterloo, ON, Canada

{rlaube,celiasmith}@uwaterloo.ca

Abstract

With the advancement of large pretrained lan-
guage models (PLMs), many question answer-
ing (QA) benchmarks have been developed
in order to evaluate the reasoning capabilities
of these models. Augmenting PLMs with ex-
ternal knowledge in the form of Knowledge
Graphs (KGs) has been a popular method to
improve their reasoning capabilities, and a com-
mon method to reason over KGs is to use
Graph Neural Networks (GNNs). As an al-
ternative to GNNs to augment PLMs, we pro-
pose a novel graph reasoning module using
Vector Symbolic Algebra (VSA) graph repre-
sentations and a k-layer MLP. We demonstrate
that our VSA-based model performs as well as
QA-GNN, a model combining a PLM and a
GNN-module, on 3 multiple-choice question
answering (MCQA) datasets. Our model has
a simpler architecture than QA-GNN and also
converges 39% faster during training.

1 Introduction

Models that perform question answering tasks re-
quire some amount of knowledge, whether it is
structured or implicit, about the concepts to be
reasoned over. Modern large pretrained language
models (PLMs), linguistic knowledge is implicit
in the token embeddings that have been learned
using a self-attention mechanism on large text cor-
puses to perform next-token prediction (Vaswani
et al., 2017). With enough model parameters and
training data, these PLMs have been successful in
a wide range of question-answering and reasoning
benchmarks. However, when analyzing deductive
reasoning performance, i.e. the ability to learn
and generalize from logic rules, smaller PLMs like
BERT and RoBERTa demonstrate inconsistent per-
formance (Yuan et al., 2023).

As a result, there have been many studies that
work to integrate external, structured knowledge
and reasoning modules with PLMs to perform more

reliable logical reasoning. One type of knowledge
structure that is commonly used are knowledge
graphs (KG), due to their suitability for symbolic
reasoning (Lan et al., 2021). Graph Neural Net-
works (GNNs) are deep learning networks that
have gained popularity for reasoning over graph-
structured data. Consequently, methods that inte-
grate KGs with PLMs often also use GNNs (Ye
et al., 2022). One recent approach to combin-
ing these techniques is captured by the QA-GNN
(Yasunaga et al., 2021), which is able to answer
multiple-choice questions by scoring the plausibil-
ity of each question answer.

Rather than using GNNs to model structured
data, our model, QAVSA, uses a lesser known
method, Vector Symoblic Algebras (VSAs; also
known as Vector Symbolic Architectures), to rep-
resent and combine high-dimensional concept vec-
tors in a structured way. The integration of PLMs
and VSAs has not been previously proposed, to our
knowledge. As a result, the focus of this paper is
to perform a comparison between our VSA-based
method and the GNN-based method of QA-GNN
for improving reasoning capabilities of PLMs in
the context of multiple-choice question answering.

Specifcally, we compare the performance of
QAVSA and QA-GNN on CommonsenseQA (Tal-
mor et al., 2019), OpenbookQA (Mihaylov et al.,
2018), and MedQA-USMLE (Jin et al., 2021), with
the first two datasets being focused on common-
sense reasoning, and the latter focusing on domain-
specific medical questions.

The main contributions of this paper are: 1) a
novel combination of PLM text encoders and VSAs
that performs as well as an analgous GNN-based
method on three MCQA datasets while training
faster; 2) a comparative evaluation of different
VSAs and PLMs used in the model; 3) a study
on ablation and variations of the model architec-
ture and graph embedding representations; and 4)
a new VSA-specific method of analyzing model

191

explainability.

2 Related Work

Many of the top performing models on MCQA
benchmarks involving reasoning are larger 10B or
100B+ parameter PLMs. High performance can
come from fine-tuning on MCQA datasets as has
been shown with UnifiedQA (Khashabi et al., 2020)
and UNICORN Lourie et al. (2021). High perfor-
mance with these models has also been shown to
be achievable with prompting techniques including
few-shot prompting (Anil et al., 2023), Chain-of-
Thought prompting with self-consistency (Huang
et al., 2023a), and ensemble refinement (Singhal
et al., 2023).

More relevant to our research, several ap-
proaches have been proposed to integrate external
knowledge graphs with PLMs in order to make
use of more domain-specific structured knowledge.
These include KEAR (Xu et al., 2022) and DEK-
COR (Xu et al., 2021), which use a PLM and
knowledge retrieved from an external KG and Wik-
tionary to train an attention mechanism on these
external knowledge bases and PLM representations
to improve commonsense reasoning.

Similarly, KagNet (Lin et al., 2019) performs
commonsense reasoning by grounding the con-
cepts within each question-answer (QA) pair of
multiple-choice datasets to extract subgraphs from
an external knowledge graph. KagNet then uses
a combination of Graph Convolutional Networks,
LSTM-based relational path encodings, and a path-
based attention mechanism to identify important
reasoning paths to generate graph vector encod-
ings for each QA pair to subsequently score them.
Adopting similar graph preprocessing to KagNet,
MHGRN (Feng et al., 2020) performs multi-hop,
multi-relation reasoning by using multi-hop mes-
sage passing from Relational Graph Convolutional
Networks, structured relational attention, and node
attention pooling to generate its graph representa-
tions and score QA pairs.

Another family of models that also use the same
graph processing above stem from the QA-GNN
(Yasunaga et al., 2021) model. QA-GNN fuses a
PLM representation of the QA context as a node
into the QA subgraphs. Using a Graph Attention
Network (GAT), QA-GNN updates the subgraph
concept embeddings, including the QA context
node and edge weights. The initial PLM QA con-
text representation, along with the final graph rep-

resentation of the QA context and graph concept
attention pooling is used to score the QA pairs.
This method is refined in GreaseLM (Zhang et al.,
2021) in which the PLM token and graph node
modalities of the QA context are mixed over sev-
eral layers to simultaneously update the PLM and
GNN concept embeddings. Further refinements are
made in DRAGON (Yasunaga et al., 2022a), where
the cross-modal encoder from GreaseLM is pre-
trained in a self-supervised fashion to perform both
masked language modeling and KG link prediction.
Our QAVSA model uses similar pre-processing to
QA-GNN but with a different representation of the
graph. Consequently, most of our direct compar-
isons are to QA-GNN.

There exist other models that use external KGs
but are not GNN-based, such as GSC (Wang et al.,
2022) and MVP-Tuning (Huang et al., 2023b).
GSC uses a simple graph neural counter to reduce
the node and embeddings to one dimension and
performs GNN-like embedding updates on these
single values. MVP-Tuning makes use of semanti-
cally similar QA pairs in the training set to improve
knowledge retrieval and tunes prompt tokens of the
PLM by using the QA context and retrieved KG
triplets as input to the PLM.

3 Vector Symbolic Algebras

Vector Symbolic Algebras (VSAs) are defined by
a set of three vector operations that are useful
for building up structured vector representations.
These include the similarity, bundling (or collect-
ing), and binding operations. There are a wide
variety of possible choices for these operations,
but we consider only two sets of operators, those
for Holographic Reduced Representations (Plate,
1995) and for Vector-derived Transformation Bind-
ings (Gosmann and Eliasmith, 2019).

A similarity operation is necessary to compare
different vectors within the VSA space, and it is of-
ten computed with a normalized vector dot product,
i.e., cosine similarity. For two VSA-encoded vec-
tors x,y ∈ Rd, this is defined as s(x,y) = <x,y>

∥x∥·∥y∥ .
Both HRRs and VTBs use this similarity operator.

A bundling operation is used to represent a set
of objects and is usually defined by element-wise
addition. Thus, the bundling of x,y ∈ Rd can by
defined by S(x,y) = x+ y. In a VSA, this oper-
ation should result in a new vector that is similar
to both x and y, as is the case with element-wise
addition. Both HRRs and VTBs use this bundling

192

operator.
A binding operation, is used to combine two

symbols together in a single representation, which
is often used to represent slot-filler pairs. In HRRs,
circular convolution is used as a binding operator,
defined by

(x⃝∗ y)i :=

d∑

j=1

xjy((i−j)modd)+1, i ∈ {1, 2, ..., d}.

A desired property of a binding operator is that the
resulting vector from x⃝∗ y should be dissimilar
to both x and y. Also, an unbinding operation,
or a pseudo-inverse to binding should exist. With
circular convolution, this is done by binding the
pseudo-inverse of the given operand: (x⃝∗ y)⃝∗ −1

y ≈ x⃝∗ y⃝∗ y+ ≈ x. For HRRs the approximate
inverse to y is y+ := (y1, yd, yd−1, ..., y2)

⊤ (Plate,
1995).

Since circular convolution is commutative, there
is no directional relation to two bound vectors in the
HRR VSA. In contrast, VTB has a non-associative
and non-commutative binding operation defined on
vectors x,y ∈ Rd. Specifically, given d

1
2 = d′ ∈

N>0, we have

x⃝∗ y := Vyx =

V
′
y 0 0

0 V
′
y 0

0 0
. . .

x

, where

V
′
y = d

1
4

y1 y2 · · · yd′

yd′+1 yd′+2 · · · y2d′
...

...
. . .

...
yd−d′+1 yd−d′+2 · · · yd

 .

The approximate inverse to y is y+, where the
elements of y are permuted such that Vy+ = V⊤

y .
The VTB binding operation has only right in-

verses and identities, so there exists an alternative
Transposed VTB (TVTB) algebra, with two-sided
inverses and identities with the following binding
operation:

x⃝∗ y := V⊤
y x =

V
′⊤
y 0 0

0 V
′⊤
y 0

0 0
. . .

x

where V
′
y is the same as in VTB.

Plate (1995) initially proposed the HRR VSA
in order to represent complex compositional struc-
tures, specifically ones used for language process-
ing and reasoning, with distributed representations

like neural networks. Jackendoff proposed four
linguistic challenges involving how to neurally rep-
resent the compositional structure and rules of lan-
guage that previously divided linguistic theory and
connectionist cognitive neuroscience. VSAs solve
these four problems (Gayler, 2004), which supports
the idea that VSAs are useful in studying linguis-
tics and reasoning within the context of neural net-
works. For example, VSAs have been used in neu-
ral models to represent lexical relations and recur-
sively structured sentences successfully (Crawford
et al., 2016). The quality of structural representa-
tion and mathematical ability to query information
from these VSA representations naturally lends
this method to QA tasks where representing and
extracting relational information pertaining to a set
of concepts is necessary.

As a simple example, a scene of a dog holding
a stick could be represented with VSAs in a slot-
filler fashion as: scene = subject ⃝∗ dog +
verb ⃝∗ holds + object ⃝∗ stick , given the
slot vectors subject,verb,object ∈ Rd and
filler vectors dog,holds, stick ∈ Rd. One could
then query the subject of the scene with unbinding:
scene⃝∗ subject+ ≈ dog + noise, which can
be cleaned up to the exact dog vector by finding
the VSA vector in the vocabulary with the highest
similarity to the result. We use these techniques for
representing structure to capture concept relations
in a knowledge graph to propose a novel question
answering neural network model.

4 Methods

Given a multiple-choice question q and an answer
option a, as in QA-GNN (Yasunaga et al., 2021),
the purpose of the model is to score the plausibility
of each (q, a) pair from the set of all answer op-
tions by performing joint reasoning using a (q, a)
context, z, generated from a PLM text encoder, and
a working graph Gw that contains relations and
concepts pertaining to each specific (q, a) pair. In
QA-GNN, the graph reasoning portion of the model
consists of a specific type of GNN called a Graph
Attention Network (GAT; Velickovic et al. (2018)).
As a replacement for the GAT in QAVSA, a single
VSA vector representation of the (q, a) graph is
generated. This representation is used as input to a
simple k-layer MLP to realize the graph reasoning
portion of QAVSA. Using this learned MLP along
with the PLM (q, a) context embeddings, the (q, a)
pair is scored, as shown in Figure 1.

193

Figure 1: QAVSA model outline. The QA context, [q|a], is inputted to a PLM to generate an LM Encoding for
the context and is also used to generate a KG subgraph. The LM encoded QA context is added to the graph,
and the graph is converted to a single vector using VSA. The VSA representation is feed through a k-layer MLP,
concatenated with the original QA context encoding, and passed through a single FF layer to score the QA pair.

4.1 Graph Data Pre-processing

To generate the working graph Gw, we follow the
exact pre-processing technique described in Lin
et al. (2019). The external domain-specific or world
knowledge relevant to the answer question task is
defined by a knowledge graph G = (V,E) made
up of a set of nodes, V , and a set of directed edges
to capture relations, E ⊆ V ×R× V , connecting
the nodes with relation types from the set R.

The nodes of the working subgraph Gw are se-
lected by first linking the concepts from the ques-
tion, Vq, and from the answer, Va, to nodes in G,
where Vq ∪ Va = Vq,a ⊂ V . All of the nodes on
a 2-hop path between the nodes in Vq,a, i.e., all
nodes in V related to two of the nodes in Vq,a are
also included in the working graph, producing Vw.
Finally, Vw is pruned down to 200 nodes by scoring
the relevance of each node to the (q, a) pair using a
PLM as described in Yasunaga et al. (2021). All of
the edges connecting each pair of nodes in Vw, de-
fined as Ew ⊂ E, are included in the final working
graph, Gw = (Vw, Ew).

Following Yasunaga et al. (2021), the initial
1024-dimensional embeddings of these nodes are
defined by feeding each triple composed of a head,
relation and tail entity, (h, r, t) ∈ Vw × R × Vw,
as a sentence into a PLM text encoder. The repre-
sentations for each concept are pooled using the
corresponding portion of each triple that they ap-
pear in. Computing relation embeddings r in Ya-
sunaga et al. (2021) in this way was unnecessary, as
they represent the relation type as a one-hot vector
for their GNN module. However, in our approach,
each relation is a distributed representation, r, so
we use an initial vector embedding computed in
the same way as each graph concept embedding is

computed.
Feng et al. (2020) provide embeddings computed

for each concept in the graphs used. However, these
embeddings do not include relations. As a result,
we computed all embeddings following the process
defined in Lin et al. (2019).

4.2 Model
Given the working graph for a (q, a) pair,
Gw = (Vw, Ew), and initial concept and rela-
tion embeddings vi, i ∈ [0, 1, . . . , |Vw|], rj, j ∈
[0, 1, . . . , |R|], the VSA representation of a given
triple can be computed as follows. For triple
triplek = (hk, ek, tk), k ∈ [0, 1, . . . , |Ew|], where
hk, ek, tk specifies the type of entity for the head,
relation, and tail of the triple, respectively, we
bind each of the elements together using the bind-
ing operation of the given VSA: triplekvsa =
vhk

⃝∗ rek ⃝∗ vtk . The working graph VSA rep-
resentation can be calculated by adding up all the
triple VSA representations in the graph:

gvsa =

|Ew|∑

k=1

triplekvsa =

|Ew|∑

k=1

vhk
⃝∗ rek ⃝∗ vtk .

Since circular convolution is commutative,
triplekvsa does not contain information on the
direction of the relation, so a specific permutation
σ can be applied to either the head or tail element
of each triple to specify the directionality of the re-
lation. To query this triple for a permuted concept,
σ−1 is applied after unbinding.

Given a QA input for question q and answer
option a, an LM representation of the context
is generated with a pretrained encoder to gen-
erate LM(q|a) = z. We can also integrate z
into gvsa, analogous to Yasunaga et al. (2021),

194

by forming new triples that bind z with two
new defined relation SPs, IsAnswerConcept and
IsQuestionConcept, along with the correspond-
ing answer and question concepts in gvsa. These
triples are then added to gvsa like usual.

For example, the question in the CSQA dataset
"What is the primary purpose of cars?" has the
answer options {cost money, slow down, move
people, turn right}, with the correct answer being
"move people". The subgraph for the QA con-
text [What is the primary purpose of cars? move
people] has question concepts Vq = {PURPOSE,
CAR, PRIMARY, CARS}, answer concepts Va =
{PEOPLE, MOVE, MOVE_PEOPLE}, and many
intermediate concepts, along with a set of triples,
E = {(MOVE, ANTONYM, STOP), (CAR, CA-
PABLEOF, GO_FAST), . . . }. The graph VSA vec-
tor is computed as

gvsa =

(MOVE⃝∗ ANTONYM⃝∗ STOP)vsa
+

(CAR⃝∗ CAPABLEOF⃝∗ GO_FAST)vsa
+ . . .

gvsa is then used as the input to a k-layer
MLP with dropout and layer normalization,
MLP (gvsa) = g∗

vsa, and is responsible for learn-
ing to update the VSA representations within the
graph vectors to solve the task (see Figure 1).

A plausibility score, i.e. the probability of an-
swer a being correct, is computed with p(a|q) ∝
exp(FF (z

⊕
g∗
vsa)), where the initial QA context

z is concatenated with the final graph VSA rep-
resentation, g∗

vsa, and is passed through a final
feedforward layer.

During training, the cross entropy between the
plausibility scores of all answer options are com-
puted, and are backpropagated through both the
LM and VSA MLP components of the model.

5 Experiments

In order to perform a comparison to QA-GNN,
we evaluate QAVSA on the same three datasets
that were used to evaluate QA-GNN in Yasunaga
et al. (2021). However, we hyperparameter tune
our model rather than keeping parameters the same
as those used in QA-GNN to maximize accuracy
on the benchmark development splits.

5.1 Datasets

CommonsenseQA (CSQA) (Talmor et al., 2019)
is a 5-way multiple choice commonsense reasoning
task that requires different types of commonsense
knowledge. The dataset has 12,102 questions, and
the inhouse train/dev/test split is adapted from Lin
et al. (2019) as 8500/1221/1241.

OpenbookQA (OBQA) (Mihaylov et al., 2018)
is a 4-way multiple choice dataset aiming to as-
sess human understanding of a subject in an open-
book setting. The dataset consists of a list of
1326 science facts along with 5957 elementary
school science questions with a train/dev/test split
of 4957/500/500.

MedQA-USMLE (MedQA) (Jin et al., 2021)
is a 4-way multiple choice dataset based on ques-
tions from the United States Medical License Ex-
ams (USMLE). The english version of the dataset
has 12,723 questions, with a train/dev/test split of
10178/1272/1273.

For CSQA and OBQA, the external KG used
is ConceptNet (Speer et al., 2017). ConceptNet
consists of 799,273 common words or phrases con-
nected by edges of 17 different merged relation
types, after preprocessing. The method to initialize
the concept and relation embeddings for Concept-
Net are also described in Section 4.1, and uses
PLMs BERT-large or RoBERTa-Large. Following
Yasunaga et al. (2021), RoBERTa-Large is he PLM
used to encode the QA contexts in QAVSA for
CSQA, and AristoRoBERTa (Clark et al., 2020) is
used for the QA contexts for OBQA.

The external KG used for MedQA is the Unified
Medical Language System (UMLS; Bodenreider
(2004)), a popular biomedical knowledge base with
300K nodes, 1M edges, and 98 relation types. The
PLM encoder used to generate concept and relation
vector embeddings is BioLinkBERT, following Ya-
sunaga et al. (2022a), which is a specific version
of LinkBERT that utilizes medical document hy-
perlinks. BioLinkBERT is pretrained on PubMed
with citation links to perform both masked lan-
guage modeling and document relation prediction
(Yasunaga et al., 2022b).

5.2 Implementation and Training Details

Because we had to recompute concept embeddings
for ConceptNet and UMLS, we reproduced results
from QA-GNN with these new embeddings as a
baseline. The LM and MLP learning rates and
learning schedule for QA-GNN are kept to their

195

Model IH Dev. Acc. IH Test Acc. (%)
RoBERTa-Large* (w/o KG) 76.27 (±0.45) 70.23 (±0.80)

+QA-GNN* 75.97 (±0.64) 71.88 (±1.11)
+QAVSA 76.61 (±0.54) 70.56 (±0.72)

Table 1: Accuracy and standard deviation on CSQA inhouse dev. and test splits. Reproduced results (*) use
reproduced node embeddings and all results are averaged over 5 different seeds.

Model Dev. Acc. (%) Test Acc. (%)
AristoRoBERTa* (w/o KG) 81.32 (±0.61) 81.00 (±0.65)

+QA-GNN* 81.92 (±0.78) 80.36 (±1.63)
+QAVSA 81.76 (±1.41) 81.92 (±0.88)

Table 2: Test accuracy on OBQA. Reproduced results (*) use reproduced node embeddings and all results are
averaged over 5 different seeds.

original values for all three datasets since their
model training proved to be unstable with the pa-
rameters that were optimized for QAVSA. The
number of training epochs for QA-GNN are 15,
40, and 30 for CSQA, OBQA, and MedQA, re-
spectively, to match the original amount epochs,
whereas QAVSA is trained for 15 epochs on each
dataset. As a baseline to both QA-GNN and
QAVSA model results, we reran our model con-
sisting of only the PLM encoder and final layer
scoring components, with all other parameters re-
maining unchanged.

Hyperparameter tuning was done using a Tree-
structured Parzen Estimater as a sampler for both
OBQA and CSQA. The variables optimized during
tuning and final model parameter values are shown
in Appendix A.1 in Tables 7 and 6, respectively.

Although the QA-context embedding, z, is
added to the graph in Figure 1, the QAVSA re-
sults in Section 6.1 are produced from a version of
QAVSA that uses working graphs without adding
z to them.

6 Results

6.1 Main Results

As shown in Table 1, QAVSA has an improvement
in mean accuracy of 0.34% and 0.61% compared
to QA-GNN and RoBERTa-Large, respectively, on
the CSQA inhouse dev. split. On the inhouse test
split however, QA-GNN outperforms QAVSA by a
difference of 1.32% and improves upon the base-
line by 1.65%.

On the OBQA dataset, QA-GNN has the best
performance on the dev. split with a mean accuracy
of 81.92%, as seen in Table 2. QAVSA is close

Figure 2: Mean accuracy of QA-GNN, QAVSA using
our tuned LR schedule, and QAVSA using the LR sched-
ule of QA-GNN on the CSQA dev. split for each epoch,
averaged over 5 seed runs.

behind with a mean accuracy of 81.76%, which is
a 0.44% increase compared to the AristoRoBERTa
baseline. However, on the test split QAVSA out-
performs QA-GNN by a larger margin with a mean
accuracy of 81.92%, which is a 0.92% improve-
ment on the AristoRoBERTa baseline and a 1.56%
improvement over QA-GNN.

As shown in Table 3, QAVSA outperforms QA-
GNN and the BioLinkBERT baseline on MedQA
by a mean accuracy of 0.37% and 0.61%, respec-
tively, on the dev. split and by 0.42% and 1.16%,
respectively, on the test split.

Also, as shown in Figure 2, QAVSA converges
faster during training. On average, it takes 11.2, 8.8,
and 6.8 epochs to reach within 5% of each run’s
maximum accuracy for QA-GNN, QAVSA (QA-
GNN LR schedule), and QAVSA (our LR sched-

196

Model Dev. Acc. (%) Test Acc. (%)
BioLinkBERT* (w/o KG) 43.55 (±0.08) 43.96 (±0.12)

+QA-GNN* 43.79 (±0.31) 44.7 (±0.47)
+QAVSA 44.16 (±0.57) 45.12 (±0.70)

Table 3: Test accuracy and standard deviation on MedQA. Reproduced results are denoted with * and all results are
averaged over 3 runs.

ule), respectively. Demonstrating that QAVSA can
be trained 39% faster than QA-GNN.

Overall, these results suggest that QAVSA per-
forms similarly to QA-GNN, but has a significantly
faster convergence time during training.

6.2 Model Variations and Ablation
Results of several QAVSA model variations on the
OBQA benchmark are shown in Table 4, with all
other architecture parameters in Table 6 kept con-
stant. The QAVSA result in Table 4 corresponds
to the results of one of the five seeds from Table 2.
Including the QA context into the working graph
drops the dev. and test accuracy by ∼ 3%, suggest-
ing that for this parameter configuration, dynami-
cally updating the graph representation in this way
either muddles the original graph representation, or
creates a VSA representation that is more difficult
to learn by the neural network.

Introducing directionality in the VSA triples by
means of permutation on the head or tail entities
in the triple does not improve accuracy, which in-
dicates that binding through circular convolution
stores enough semantic information from the graph
for the task. Furthermore, the HRR VSA is supe-
rior to other non-commutative algebras like VTB
and TVTB with this architecture, with improve-
ments of 1.6% and 2.2% in dev. accuracy and 3.2%
and 1.4% in test accuracy, compared to VTB and
TVTB, respectively.

Applying normalization to the graph VSA vec-
tors only drops performance when the concept vec-
tors are also normalized. This indicates that includ-
ing some type of information of the magnitude of
either the graphs or concepts in the VSA vectors
is useful for question answering. Not normalizing
both graphs and concepts resulted in graph VSA
vectors with too wide of a magnitude range for
stable training.

Also, BERT performs fairly similarly to
RoBERTa in initializing concept and relation em-
beddings (Section 4.1), with a drop in accuracy
only on the dev. split.

Results for an ablation study on the OBQA

benchmark are shown in Table 5. Replacing BERT-
encoded relation embeddings with random unit-
length 1024-D vectors, with a maximum similar-
ity to the concept vocabulary of 0.3, dropped the
test accuracy by 2%. However, the dev. accuracy
remained fairly consistent, suggesting that the dis-
similarity of the relation vectors may be enough to
properly represent the semantics of the graph.

Removing node pruning, so that all the nodes
and respective edges are included subgraph rather
than just the top 200 nodes, dropped test accuracy
the most significantly, which may suggest that the
extra nodes included in the graph vectors did not
add triples useful to reasoning over the question
and answer concepts.

Layer normalization between the VSA MLP lay-
ers also seems to be important for learning over
these graph representations, as seen in the 1.8%
drop in dev. and test accuracy when it is removed.

6.3 Explainable Graph VSA Representations
We can analyze the effectiveness of the MLP por-
tion of QAVSA by computing the similarities of
each triple VSA vector in a graph to the initial
graph vector, gvsa, and the final graph vector,
g∗
vsa = MLP (gvsa) using the similarity opera-

tor defined in Section 3. Such similarities can
be used to determine which triples become the
most prominent in the graph vector through the
MLP transformation. In the top 20 most sim-
ilar triples from the initial graph representation
in Section 4.2, we find triples relating to the con-
cept CAR, such as (CAR, RELATEDTO, DRIVE),
(MOTOR, RELATEDTO, CAR), and (STOP, RE-
LATEDTO, CAR), but it does not contain any
triple relating the answer "move people". After
the MLP, however, in the top 20 most similar
triples to g∗

vsa, the triples (STREET, USEDFOR,
TRANSPORTATION), (TRANSPORTATION, RE-
LATEDTO, CAR), and (STREET, RELATEDTO,
CARS) appear. Given that the concept TRANS-
PORTATION is closely related to the answer "move
people" and does not appear in the most similar ini-
tial triples, we can see that the g∗

vsa attends more to

197

Model Version Dev. Acc. (%) Test Acc. (%)
QAVSA 82.6 83.4

+ QA-context 79.8 80.2
+ Permutation (head) 81.8 82.6
+ Permutation (tail) 81.6 83.2

+ Graph norm 81.6 82.4
+ Graph norm - Concept not norm 83.0 82.8

RoBERTa Embeddings 81.0 83.4
VTB 81 80.2

TVTB 80.4 82.0

Table 4: Accuracy of different model variations on dev. and test splits of OBQA.

Model Version Dev. Acc. (%) Test Acc. (%)
QAVSA 82.6 83.4

− BERT rels 82.4 81.4
− Node Pruning 82 80.4
− Layer Norm 80.8 81.6

Table 5: Accuracy on OBQA of ablation study. The
minus sign (−) indicates what was removed.

concepts and reasoning paths necessary for answer-
ing the question. Since the learned graph transfor-
mations are not perfect, some unrelated triples do
appear in g∗

vsa, such as (CHROME, RELATEDTO,
METAL) and (FERRY, RELATEDTO, MOVE).

This method of analysis can also explain in-
correct answers produced by the model. For the
question from the CSQA dev. split, "What do
audiences clap for?", QAVSA predicted the an-
swer to be "hockey game" rather than the cor-
rect label "show". Looking at the 20 most sim-
ilar triples in g∗

vsa for the answer option "show",
there are triples relating to AUDIENCE and SHOW,
like (AUDIENCE, RELATEDTO, THEATRE) and
(PROGRAM, RELATEDTO, SHOW), but there
are no triples related to CLAP. Looking at the 20
most similar triples to g∗

vsa for the answer option
"hockey game", a reasoning path can be drawn with
(SPORT, RELATEDTO, PLAY), (PLAY, RELAT-
EDTO, EVENT), (BEAT, RELATEDTO, EVENT),
and (CLAP, HAS_SUB_EVENT, BEAT). Two dif-
ferent definitions of BEAT are used in the prior
triples, making the reasoning path illogical. The
concept "CLAP" appears in 3 out of the top 20
triples for answer option, thus potentially leading
QAVSA to choose this option as the most correct
answer. With this particular example, this VSA-
style analysis suggests that QAVSA may attend to
multiple meanings of the same concept incorrectly,

which could be useful information for finetuning
the method further or applying it to other tasks.

7 Discussion

On the CSQA and OBQA datasets, there is no
definitive top performer between QA-GNN and
QAVSA due to the fact that both models have the
best performance on one of the dataset splits. The
accuracy of QA-GNN is slightly lower than PLM
baseline for the CSQA inhouse dev. split and the
OBQA test split, and this is most likely due to a
combination of larger variance of model accuracy
between seeds along with the fact that the model
learning rate was not tuned for our recomputed
concept embeddings.

For MedQA however, QAVSA slightly outper-
forms QA-GNN on both the dev. and test splits.
MedQA is a significantly harder than CSQA and
OBQA due to the nature of the in-depth medical
questions asked. This is evidenced by the differ-
ence in accuracy of more than 30% compared to
CSQA and OBQA. This more consistent perfor-
mance increase may suggest that the increased se-
mantic complexity of the concepts and relations in
UMLS benefit more from the structured VSA repre-
sentations generated and reasoned over in QAVSA
rather than using multi-relational GNNs to update
concept embeddings.

Although QAVSA does not consistently outper-
form QA-GNN, the architecture is much simpler
than the Graph Attention Network in QA-GNN as it
feeds VSA vectors into standard MLP layers. There
is no requirement to use node embeddings matri-
ces during computation along with linear and non-
linear transformations on node and relation type
embeddings to perform message passing between
concepts. Also, there is no requirement to use
graph attention layers to create attention weights

198

on the relations between concepts. In QAVSA, the
attention on the relational edges within the graph
arises naturally and can be analyzed as shown in
Section 6.3.

Additionally, the QAVSA memory requirements
for its graph representation is constant at the di-
mensionality of the VSA vector, d. This compares
favorable to GNNs that require an N × d node em-
bedding matrix and an N × N adjacency matrix.
For these benchmarks, QA-GNN requires graphs
with exactly 200 nodes for each QA pair. If one
wanted to scale up the number of nodes in the graph
significantly, the memory resources required would
grow quadratically. In contrast, with an increase in
the number of graph nodes and edges, the memory
requirements for QAVSA are constant.

8 Conclusion

We presented QAVSA, a new type of model
that leverages VSA-represented knowledge graphs
along with general linguistic knowledge from
PLMs to perform reasoning on MCQA benchmarks.
Through a direct comparison to the GNN-based
model QA-GNN, we exhibit the ability of QAVSA
to perform similarly to QA-GNN on three datasets,
while using a simpler k-layer MLP reasoning mod-
ule. We also demonstrate faster convergence dur-
ing training than QA-GNN and highlight the ex-
plainability of our model outputs through our VSA
graph representations.

For future study, our method of representing
knowledge graphs with VSAs could be useful in
a wide variety of knowledge graph QA tasks in-
volving information retrieval, like multi-hop rea-
soning (Lan et al., 2021). There are many other
ways that KGs are integrated into LLMs, such as
using them to augment LLM input or using them
as training objectives during LLM pretraining, so
having an efficient VSA representation of these
KGs may be beneficial to these methods (Pan et al.,
2024). GNNs are also widespread for tasks out-
side of natural language processing, such object de-
tection, chemical reaction prediction, and disease
classification, and it is worthwhile to determine if
our VSA-based approach is useful for representing
structures that are not linguistic (Zhou et al., 2020).

Limitations

Our method depends on already constructed knowl-
edge graphs (i.e., ConceptNet, UMLS), and specifi-
cally with these benchmarks, a predefined subgraph

generation process. Thus, the quality of our graph
VSA representations for question answering tasks
is dependent on the quality of the initial graph con-
struction.

Similarly, the quality of the intitial concept
and relation embeddings is of great importance.
If the concept vector embeddings are too low-
dimensional, have large variance in their magni-
tude, or are too similar to each other, the individual
triple or graph VSA representations may not be
able to contain many graph triples.

Ethical Concerns

Our proposed model uses pretrained language mod-
els, and because of this, any biases or stereotypes
in their training data may be reflected in model
outputs.

Broader Impact

The augmentation of PLMs with GNNs is
widespread, so many further studies could be con-
ducted to compare this VSA-based method to any
of these models. Also, this paper encourages the
exploration of augmenting large language models
using VSAs outside the context of KGs and GNNs.

Acknowledgements

The authors would like to thank the members of
the Computational Neuroscience Research Group
(CNRG) for discussions that helped improve this
paper. This work was supported by CFI (52479-
10006) and OIT (35768) infrastructure funding as
well as the Canada Research Chairs program, and
NSERC Discovery grant 261453.

References

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu

199

Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. PaLM 2 Technical
Report. ArXiv:2305.10403 [cs].

Olivier Bodenreider. 2004. The Unified Medical Lan-
guage System (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research, 32(Database
issue):D267–D270.

Peter Clark, Oren Etzioni, Daniel Khashabi, Tushar
Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind
Tafjord, Niket Tandon, Sumithra Bhakthavatsalam,
Dirk Groeneveld, Michal Guerquin, and Michael
Schmitz. 2020. From F to A on the New York Re-
gents Science Exams — An Overview of the Aristo
Project. AI Magazine, 41(4):39–53.

Eric Crawford, Matthew Gingerich, and Chris Eliasmith.
2016. Biologically plausible, human-scale knowl-
edge representation. Cognitive science, 40(4):782–
821.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable
Multi-Hop Relational Reasoning for Knowledge-
Aware Question Answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1295–1309,
Online. Association for Computational Linguistics.

Ross W. Gayler. 2004. Vector symbolic architectures
answer jackendoff’s challenges for cognitive neuro-
science. ArXiv, abs/cs/0412059.

Jan Gosmann and Chris Eliasmith. 2019. Vector-
Derived Transformation Binding: An Improved Bind-
ing Operation for Deep Symbol-Like Processing in
Neural Networks. Neural Computation, 31(5):849–
869.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023a. Large

Language Models Can Self-Improve. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 1051–1068,
Singapore. Association for Computational Linguis-
tics.

Yongfeng Huang, Yanyang Li, Yichong Xu, Lin Zhang,
Ruyi Gan, Jiaxing Zhang, and Liwei Wang. 2023b.
MVP-Tuning: Multi-View Knowledge Retrieval with
Prompt Tuning for Commonsense Reasoning. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13417–13432, Toronto, Canada.
Association for Computational Linguistics.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What Dis-
ease Does This Patient Have? A Large-Scale Open
Domain Question Answering Dataset from Medical
Exams. Applied Sciences, 11(14):6421. Number:
14 Publisher: Multidisciplinary Digital Publishing
Institute.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. UNIFIEDQA: Crossing Format
Boundaries with a Single QA System. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A Survey
on Complex Knowledge Base Question Answering:
Methods, Challenges and Solutions. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, pages 4483–4491, Montreal,
Canada. International Joint Conferences on Artificial
Intelligence Organization.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. KagNet: Knowledge-Aware Graph Net-
works for Commonsense Reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2829–2839, Hong Kong,
China. Association for Computational Linguistics.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. 2021. UNICORN on RAINBOW:
A Universal Commonsense Reasoning Model on a
New Multitask Benchmark. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(15):13480–
13488. Number: 15.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question
Answering. ArXiv:1809.02789 [cs].

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

200

https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1609/aimag.v41i4.5304
https://doi.org/10.1609/aimag.v41i4.5304
https://doi.org/10.1609/aimag.v41i4.5304
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://api.semanticscholar.org/CorpusID:5943414
https://api.semanticscholar.org/CorpusID:5943414
https://api.semanticscholar.org/CorpusID:5943414
https://doi.org/10.1162/neco_a_01179
https://doi.org/10.1162/neco_a_01179
https://doi.org/10.1162/neco_a_01179
https://doi.org/10.1162/neco_a_01179
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.acl-long.750
https://doi.org/10.18653/v1/2023.acl-long.750
https://doi.org/10.3390/app11146421
https://doi.org/10.3390/app11146421
https://doi.org/10.3390/app11146421
https://doi.org/10.3390/app11146421
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.1609/aaai.v35i15.17590
https://doi.org/10.1609/aaai.v35i15.17590
https://doi.org/10.1609/aaai.v35i15.17590
https://doi.org/10.48550/arXiv.1809.02789
https://doi.org/10.48550/arXiv.1809.02789
https://doi.org/10.48550/arXiv.1809.02789

T.A. Plate. 1995. Holographic reduced representations.
IEEE Transactions on Neural Networks, 6(3):623–
641. Conference Name: IEEE Transactions on Neu-
ral Networks.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl,
Heather Cole-Lewis, Darlene Neal, Mike Schaeker-
mann, Amy Wang, Mohamed Amin, Sami Lachgar,
Philip Mansfield, Sushant Prakash, Bradley Green,
Ewa Dominowska, Blaise Aguera y Arcas, Nenad
Tomasev, Yun Liu, Renee Wong, Christopher Sem-
turs, S. Sara Mahdavi, Joelle Barral, Dale Webster,
Greg S. Corrado, Yossi Matias, Shekoofeh Azizi,
Alan Karthikesalingam, and Vivek Natarajan. 2023.
Towards Expert-Level Medical Question Answering
with Large Language Models. ArXiv:2305.09617
[cs].

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1). Number:
1.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A Ques-
tion Answering Challenge Targeting Commonsense
Knowledge. ArXiv:1811.00937 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. In International
Conference on Learning Representations.

Kuan Wang, Yuyu Zhang, Diyi Yang, Le Song, and Tao
Qin. 2022. GNN is a Counter? Revisiting GNN for
Question Answering. In International Conference on
Learning Representations.

Yichong Xu, Chenguang Zhu, Shuohang Wang, Siqi
Sun, Hao Cheng, Xiaodong Liu, Jianfeng Gao,
Pengcheng He, Michael Zeng, and Xuedong Huang.
2022. Human Parity on CommonsenseQA: Aug-
menting Self-Attention with External Attention. In
Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, vol-
ume 3, pages 2762–2768. ISSN: 1045-0823.

Yichong Xu, Chenguang Zhu, Ruochen Xu, Yang Liu,
Michael Zeng, and Xuedong Huang. 2021. Fusing
Context Into Knowledge Graph for Commonsense
Question Answering. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1201–1207, Online. Association for Computa-
tional Linguistics.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D. Manning, Percy S.
Liang, and Jure Leskovec. 2022a. Deep Bidirectional

Language-Knowledge Graph Pretraining. Advances
in Neural Information Processing Systems, 35:37309–
37323.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022b. LinkBERT: Pretraining Language Models
with Document Links. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8003–
8016, Dublin, Ireland. Association for Computational
Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with Language Models and Knowledge
Graphs for Question Answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan
Song, and Junsong Wang. 2022. A Comprehensive
Survey of Graph Neural Networks for Knowledge
Graphs. IEEE Access, 10:75729–75741. Conference
Name: IEEE Access.

Zhangdie Yuan, Songbo Hu, Ivan Vulić, Anna Korho-
nen, and Zaiqiao Meng. 2023. Can Pretrained Lan-
guage Models (Yet) Reason Deductively? In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 1447–1462, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2021. GreaseLM: Graph REA-
Soning Enhanced Language Models. In International
Conference on Learning Representations.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and applica-
tions. AI Open, 1:57–81.

A Appendix

A.1 Model Parameters
Final model and training parameters are shown in
Table 6. The parameters optimized for OBQA are
also used for MedQA. k specifies how many layers
the MLP will have. LR schedule cycles defines
how many cosine periods are in the LR schedule.
The encoder learning rate (LR) specifies the LR for
whatever PLM is in use to encode the QA context,
and the decoder LR applies to all other components
of the model. The unfreeze epoch defines after how
many epochs do the PLM weights unfreeze. The
ranges for these variables during hyperparameter
tuning are shown in Table 7.

201

https://doi.org/10.1109/72.377968
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.1609/aaai.v31i1.11164
https://doi.org/10.1609/aaai.v31i1.11164
https://doi.org/10.48550/arXiv.1811.00937
https://doi.org/10.48550/arXiv.1811.00937
https://doi.org/10.48550/arXiv.1811.00937
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=hzmQ4wOnSb
https://openreview.net/forum?id=hzmQ4wOnSb
https://doi.org/10.24963/ijcai.2022/383
https://doi.org/10.24963/ijcai.2022/383
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.18653/v1/2023.eacl-main.106
https://doi.org/10.18653/v1/2023.eacl-main.106
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001

Variable CSQA Value OBQA Value MedQA Value
k 5 4 4

Epochs 15 15 15
LR Schedule cosine w/ restarts cosine w/ restarts cosine w/ restarts

LR Schedule Cycles 1 2 1
Warmup Steps 200 200 200

Batch Size 64 64 64
Mini Batch Size 8 8 2

Encoder LR 1.77e-5 4.17e-5 4.17e-5
Decoder LR 3.71e-2 3.41e-2 3.41e-2

Unfreeze epoch 3 3 3
Dropout (VSA MLP) 0.2 0.4 0.4
Dropout (final layer) 0.4 0.8 0.8

Table 6: Model parameter values on all experiment datasets.

Variable Range
k {3, 4, 5}

LR Schedule Cycles {1, 2, 3}
Encoder LR [1e-7, 5e-4]
Decoder LR [1e-5, 5e-2]

Unfreeze epoch {0, 3, 6}
Dropout (VSA MLP) {0.2, 0.4, 0.6, 0.8}
Dropout (final layer) {0.2, 0.4, 0.6, 0.8}

Table 7: Variable ranges for hyperparameter tuning for CSQA and OBQA.

202

