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Abstract

Analyses of transformer-based models have
shown that they encode a variety of linguis-
tic information from their textual input. While
these analyses have shed a light on the rela-
tion between linguistic information on one side,
and internal architecture and parameters on the
other, a question remains unanswered: how is
this linguistic information reflected in sentence
embeddings? Using datasets consisting of sen-
tences with known structure, we test to what
degree information about chunks (in particular
noun, verb or prepositional phrases), such as
grammatical number, or semantic role, can be
localized in sentence embeddings. Our results
show that such information is not distributed
over the entire sentence embedding, but rather
it is encoded in specific regions. Understand-
ing how the information from an input text is
compressed into sentence embeddings helps un-
derstand current transformer models and help
build future explainable neural models.

1 Introduction

In the quest for understanding transformer-based
models, much work has been dedicated to uncover
what kind of information is encoded in the model’s
various layers and parameters. These analyses have
provided several enlightening insights: (i) differ-
ent types of linguistic information – e.g. parts of
speech, syntactic structure, named entities – are
selectively more evident at different layers of the
model (Tenney et al., 2019a; Rogers et al., 2020),
(ii) subnetworks can be identified that seem to en-
code particular linguistic functionalities (Csordás
et al., 2021), and (iii) fine-tuning for specific tasks
can be focused on very small subsets of parameters,
on different parts of a model’s layers (Panigrahi
et al., 2023). While these analyses and probes have
focused on the insides of the models, mostly their
parameters and layers, testing their impact is usu-
ally done by using the output of the model, namely

token or sentence embeddings, to solve specific
tasks. The link between the inside of the model and
its outputs is usually not explicitly investigated.

We ask several facets of this question here: how
are the internally-detected information types and
structures reflected in the model’s output? And how
are arbitrarily long and complex sentences encoded
systematically in a fixed-sized vector?

Understanding what kind of information the sen-
tence embeddings encode, and how, has multiple
benefits: (i) it connects internal changes in the
model parameters and structure with changes in
its outputs; (ii) it contributes to verifying the ro-
bustness of models and whether or not they rely on
shallow or accidental regularities in the data; (iii) it
narrows down the field of search when a language
model produces wrong outputs, and (iv) it helps
maximize the use of training data for developing
more robust models from smaller textual resources.

Transformer-based models usually use a token-
focused learning objective, and have a weaker su-
pervision signal at the sentence level – e.g. a next
sentence prediction (Devlin et al., 2018), or sen-
tence order information (Lan et al., 2019). Despite
this focus, high performance in a variety of tasks
(using raw or fine-tuned sentence embeddings) as
well as direct probing shows that sentence represen-
tations encode a variety of linguistic information
(Conneau et al., 2018). On the other hand, direct
exploration of BERT sentence embeddings has also
shown that they contain mostly shallow informa-
tion, related to sentence length and lexical variation,
and that many of their dimensions are correlated,
indicating that either information is redundantly
encoded, or that not all dimensions encode useful
information (Nikolaev and Padó, 2023). Some of
this preexisting work assumes that sentence embed-
dings encode information in an overt manner, for
example, each principal component dimension is
responsible for encoding some type of information.

We adopt the different view that information in
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sentence embeddings may be encoded in merged
layers, in a manner similar to audio signals being
composed of overlapping signals of different fre-
quencies. We hypothesize that each such layer may
encode different types of information. We aim to
test this hypothesis and check (i) whether we can
separate such layers, and (ii) investigate whether
information about specific chunks in a sentence
–noun,verb, or prepositional phrases– is encoded in
different layers and parts of a sentence embedding.

We perform our investigation in an environment
with data focused on specific grammatical phenom-
ena, while displaying lexical, structural and seman-
tic variation, and a previously developed system
that has been shown to detect the targeted phenom-
ena well (Nastase and Merlo, 2024). The system is
a variational encoder-decoder, with an encoder that
compresses the information in the input into a very
low-dimensional latent vector. Nastase and Merlo
(2024) have shown that the sentence embeddings,
and their compressed representations on the latent
layer, encode information about chunks – noun,
verb, prepositional phrases – and their linguistic
properties.

The current study investigates the general hy-
pothesis indicated above by specifically exploring
two new research questions in this setting:

1. Whether a targeted sparsification of the sys-
tem maintains a high performance on the task,
indicating that information about chunks in
the sentence is localizable.

2. Contingent on the answer to the first question,
we trace back the signal from the latent layer
to the input sentence embeddings, and analyze
how specific differences in chunk properties
– different number of chunks, or chunks that
differ from each other only on one property
(e.g. grammatical number) – are localized and
reflected in the sentence embeddings.

The code and data are available at
https://github.com/CLCL-Geneva/
BLM-SNFDisentangling.

2 Related work

Sentence embeddings Transformer models in-
duce contextual token embeddings by passing the
embedding vectors through successive layers us-
ing multi-head attention that allows for tokens to
influence each other’s representation at each suc-
cessive step (Vaswani et al., 2017). The model

focuses on the token embeddings, as the tokens
expected on the output layer provide the training
signal. There are numerous variations on the BERT
(Devlin et al., 2018) transformer model1, that vary
in the way the models are trained (Liu et al., 2019),
how they combine (or not) the positional and to-
ken embeddings (He et al., 2020), how the input
is presented to the model (Liu et al., 2019; Clark
et al., 2020). With regards to the sentence-level
supervision signal, BERT (Devlin et al., 2018) uses
the next sentence prediction objective, ALBERT
(Lan et al., 2019), aiming to improve coherence,
uses sentence order prediction. It is more common
to further train or fine-tune a pre-trained model to
produce sentence embeddings fitting specific tasks,
such as story continuation (Ippolito et al., 2020) or
sentence similarity (Reimers and Gurevych, 2019).

Electra (Clark et al., 2020) does not have a
sentence-level objective, but it relies on replaced
token detection, which relies on the sentence con-
text to determine whether a (number of) token(s)
in the given sentence were replaced by a generator
sample. This leads to sentence embeddings that
perform well on tasks such as Question Answering,
or detecting verb classes (Yi et al., 2022).

Probing embeddings and models for linguistic
information Most work investigating the kind of
knowledge captured by transformer-based models
have focused on analysing the architecture of the
model (Tenney et al., 2019b; Rogers et al., 2020) to
determine the localization and flow of information
through the model’s layers. There is also much
work on analyzing the induced token embeddings
to determine what kind of linguistic information
they encode, such as sentence structure (Hewitt
and Manning, 2019), predicate argument structure
(Conia et al., 2022), subjecthood and objecthood
(Papadimitriou et al., 2021), among others. Testing
whether sentence representation contain specific
types of linguistic information has been done using
task (or information)-specific classifiers (Adi et al.,
2017; Conneau et al., 2018; Goldberg, 2019; Wil-
son et al., 2023). Opitz and Frank (2022) aim to
map subsets of dimensions of fine-tuned sentence
embeddings to semantic features.

Sparsification Deep learning models have bil-
lions of parameters. This makes them not only
incomprehensible, but also expensive to train. The

1https://huggingface.co/docs/transformers/en/
model_summary
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lottery ticket hypothesis (Frankle and Carbin, 2018)
posits that large networks can be reduced to sub-
networks that encode efficiently the functionality
of the entire network. Detecting functional subnet-
works can be done a posteriori, over a pre-learned
network to investigate the functionality of detected
subnetworks (Csordás et al., 2021), the potential
compositionality of the learned model (Lepori et al.,
2023), or where task-specific skills are encoded in
a fine-tuned model (Panigrahi et al., 2023).

Instead of learning a sparse network over a pre-
learned model, Cao et al. (2021) use a pruning-
based approach to finding subnetworks in a pre-
trained model that performs some linguistic task.
Pruning can be done at several levels of granularity:
weights, neurons, layers. Their analyses confirm
previous investigations of the types of information
encoded in different layers of a transformer (Con-
neau et al., 2018). Conmy et al. (2023) introduce
the Automatic Circuit DisCovery (ACDC) algo-
rithm, which adapts subnetwork probing and head
importance score for pruning to discover circuits
that implement specific linguistic functions.

Sparsification can also be achieved using L0 reg-
ularization, as the pruning would be done directly
during training by encouraging weights to become
exactly zero. Louizos et al. (2018); Savarese et al.
(2020), among others, implement solutions to the
issue that L0 regularization is non-differentiable,
and test it on image classification.

The cited work focuses on the parameters of the
model, and sparsification approaches aiming to de-
tect the subnetworks to which specific skills or
linguistic information can be ascribed. Our focus,
instead, is the output of transformer-based mod-
els, in particular sentence embeddings, which we
investigate using targeted sparsification.

3 Approach overview

We investigate whether we can identify specific
sentence properties in sentence embeddings. Nas-
tase and Merlo (2024) have shown that using
an encoder-decoder architecture, sentence embed-
dings can be compressed into a latent representa-
tion that preserves information about chunks in a
sentence, and their properties necessary to solve a
specific linguistic task.

We first test whether we can sparsify this archi-
tecture in a targeted manner, such that each region
of the sentence embedding contributes a signal to
only one unit of the latent layer. This allows us to

isolate different parts of the sentence embedding.
After establishing that sparsification does not

lead to a dramatic drop in performance, we trace
back the signal from the latent layer to the sentence
embeddings, and test whether we can localize in-
formation about how different numbers of chunks,
or chunks with different properties, are encoded.

In the final step, we use the sparse encoder-
decoder sentence compression system as the first
in a two-layer system used to solve language tasks –
called Blackbird Language Matrices (Merlo, 2023)
– that require chunk and chunk properties informa-
tion. The first layer will compress each sentence
into a very small latent vector, and this represen-
tation is then used on the second layer to solve a
pattern detection problem that relies on information
about chunks in a sentence and their pattern across
a sequence of sentences.

4 Data

We use two data types: (i) a dataset of sentences
with known chunk structure and chunk properties,
(ii) two datasets representing two multiple-choice
problems, whose solution requires understanding
the chunk structure and chunk properties of the
sentences in each instance.

4.1 A dataset of sentences
We start with an artificially-created set of sentences
built from noun, prepositional and verb phrases.
Each sentence has one of the following structures:
NP [PP1 [PP2]] VP , where the parentheses sur-
round optional structure. Each chunk can have
singular or plural form, with agreement between
the first NP (the subject) and the VP. This leads to
14’336 sentences with one of 14 patterns.

The dataset consists of ordered pairs of one input
sentence and N (=7) output sentences, extracted
from the set described above. Only one of the out-
put sentences has the same chunk pattern as the
input sentence, and is considered as the correct
output. We select 4004 instances uniformly dis-
tributed over the 14 patterns, which are split into
train:dev:test – 2576:630:798.

4.2 Multiple Choice Problems: Blackbird
Language Matrices

Blackbird Language Matrices (BLMs) (Merlo,
2023) are language versions of the visual Raven
Progressive Matrices (RPMs). Like the RPMs, they
are multiple-choice problems. The input is a se-
quence of 7 sentences built using specific rules, and
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BLM agreement problem
CONTEXT TEMPLATE

NP-sg PP1-sg VP-sg
NP-pl PP1-sg VP-pl
NP-sg PP1-pl VP-sg
NP-pl PP1-pl VP-pl
NP-sg PP1-sg PP2-sg VP-sg
NP-pl PP1-sg PP2-sg VP-pl
NP-sg PP1-pl PP2-sg VP-sg

ANSWER SET
NP-sg PP1-sg et NP2 VP-sg Coord
NP-pl PP1-pl NP2-sg VP-pl correct
NP-sg PP1-sg VP-sg WNA
NP-pl PP1-pl NP2-pl VP-sg AE_V
NP-pl PP1-sg NP2-pl VP-sg AE_N1
NP-pl PP1-pl NP2-sg VP-sg AE_N2
NP-pl PP1-sg PP1-sg VP-pl WN1
NP-pl PP1-pl PP2-pl VP-pl WN2

BLM verb alternation problem
CONTEXT TEMPLATE

NP-Agent Verb NP-Loc PP-Theme
NP-Theme VerbPass PP-Agent
NP-Theme VerbPass PP-Loc PP-Agent
NP-Theme VerbPass PP-Loc
NP-Loc VerbPass PP-Agent
NP-Loc VerbPass PP-Theme PP-Agent
NP-Loc VerbPass PP-Theme

ANSWER SET
NP-Agent Verb NP-Theme PP-Loc CORRECT
NP-Agent *VerbPass NP-Theme PP-Loc AGENTACT
NP-Agent Verb NP-Theme *NP-Loc ALT1
NP-Agent Verb *PP-Theme PP-Loc ALT2
NP-Agent Verb *[NP-Theme PP-Loc] NOEMB
NP-Agent Verb NP-Theme *PP-Loc LEXPREP
*NP-Theme Verb NP-Agent PP-Loc SSM1
*NP-Loc Verb NP-Agent PP-Theme SSM2
*NP-Theme Verb NP-Loc PP-Agent AASSM

Figure 1: Structure of two BLM problems, in terms of chunks in sentences and sequence structure.

the correct answer fits within the sequence defined
by these rules. The incorrect options are built by
corrupting some of the underlying generating rules
of the input sentence sequence. Solving the prob-
lem requires identifying the entities (the chunks),
their relevant attributes (their morphological or se-
mantic properties) and their connecting operators.

We use two BLM datasets: (i) BLM-AgrF – sub-
ject verb agreement in French (An et al., 2023),
and (ii) BLM-s/lE – the spray-load verb alterna-
tions in English2 (Samo et al., 2023). The structure
of these datasets – in terms of the sentence chunks
and sequence structure – is shown in Figure 1.

Datasets statistics Table 1 shows the datasets
statistics. Each set is split 90:10 into train:test sub-
sets, and then we randomly sample 2000 instances
as train data. 20% of the train data is used for de-
velopment. Types I, II, III correspond to different
amounts of lexical variation within an instance.

Subj.-verb agr. Verb alternations
ALT-ATL ATL-ALT

Type I 2000:252 2000:375 2000:375
Type II 2000:4866 2000:1500 2000:1500
Type III 2000:4869 2000:1500 2000:1500

Table 1: Train:Test statistics for the two BLM problems.

To solve a BLM instance, the system processes
the input sentence sequence and outputs a sentence
representation that will be compared to the repre-
sentation of the sentences in the answer set. The
candidate answer closest to the generated sentence
representation will be considered the correct one.

2Agent-Location-Theme (ALT) – Agent-Theme-Location
(ATL)

We run the experiments on the BLMs for agree-
ment and on the verb alternation BLMs. While the
information necessary to solve the agreement task
is more structural, solving the verb alternation task
requires not only structural information on chunks,
but also semantic information, as syntactically sim-
ilar chunks play different roles in a sentence.

5 Experiments

We present a progression of experiments.

1. Using the dataset of sentences with known
chunk structure, we test whether a sparse vari-
ational encoder-decoder system can distill in-
formation about the chunk structure of a sen-
tence from its embedding.

2. We analyze the sparse model, and trace the
information from the latent layer back to the
sentence embedding to understand where in
the sentence embeddings these differences are
encoded.

3. We combine the sparsified variational encoder-
decoder with another VAE-like layer to solve
the BLM tasks, and test whether the latent
layer sentence encodings maintain informa-
tion useful for the tasks.

All experiments use Electra (Clark et al., 2019)3.
We use as sentence representations the embedding
of the [CLS] token, reshaped as a two dimensional
array with shape 32x24.

3Electra pretrained model: google/electra-base-
discriminator
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The experiments are analyzed through the out-
put of the system, in terms of average F1 score
over three runs. For the investigations of the sen-
tence embeddings, we also analyze the compressed
vectors on the latent layer, to determine whether
chunk patterns are encoded in these vectors. If
these vectors cluster by the chunk pattern of the
corresponding sentences it will indicate that sen-
tence chunk patterns were indeed detected and are
encoded differently in the latent layer.

5.1 Sparsification

Nastase and Merlo (2024) have shown that sentence
embeddings contain information about the chunk
structure and their properties using an encoder-
decoder architecture that compresses the relevant
information into a small latent layer. They build
on Nastase and Merlo (2023) who show that re-
shaping a sentence embedding from the commonly
used one-dimensional array to a two-dimensional
representation allows grammatical information to
become more readily accessible.

We adopt the system of (Nastase and Merlo,
2024), with the same architecture (including num-
ber of CNN channels and kernel size), and sparsify
it, to determine whether specific information can
be localized in sentence embeddings. The encoder
of the system consists of a CNN layer followed by
a FFNN, that compresses the information into a
latent layer, as illustrated in Figure 2.

input convolution
(40 channels)

CNN FFNN

linearized 
output 
of CNN

latent

Encoder architecture

Figure 2: Details of the encoder architecture

The CNN layer in the encoder detects a different
pattern in the sentence representation on each of its
40 channels. The linear layer compresses the lin-
earized output of the CNN into a very small latent
layer (length 5). A vector is sampled from this, and
then decoded into a sentence representation using
a decoder which is a mirror of the encoder.

An instance consists of an input sentence s, and
7 output sentences, only one of which has the same

chunk structure as the input and is considered the
correct one (section 4.1). The aim is to guide
the system to capture information about the chunk
structure of the sentences in the latent layer, by
using a max-margin loss function that assigns a
higher score to the correct option relative to the
others. Formally, if es is the embedding of the in-
put sentence s, ês is the embedding output by the
decoder, ec is the embedding of the correct option
and ei, i = 1, 6 are the embeddings of the other
options, and mm is the maxmargin function, then:

loss(s) = mm(ês, ec, {ei|i = 1, 6}) +KL(zs||N (0, 1))

mm(ês, ec, ei) =

max(0, 1− score(ês, ec) +
∑6

i=1 score(ês, ei)/6)

We want to sparsify this network in a targeted
way: we enforce that each output unit from the
CNN layer will contribute to only one unit in the
latent layer. Figure 3 illustrates the process.

1

2

3

n

A

B

X

1

2

3

n

A

B

X

linearized  
output
of CNN

latent 
latent 

linearized  
output
of CNN

FFNN sparsification

Figure 3: Separating linguistic signals by masking the
one-layer FFNN

To enforce this behaviour, we use an approach
inspired from sparsification (Savarese et al., 2020)
and subnetworking (Lepori et al., 2023). Instead
of considering the output of the CNN as the input
layer of a linear network, we make each CNN out-
put unit the input of a separate linear network, con-
nected to the latent layer. We apply a mask m to the
weights W of this network, and compute a masked
weight matrix Wm = W × softmax(M/τ),
where τ is a temperature parameter used to push
the softmax function towards a one-hot vector.

We use a kernel 15x154 and equal stride (15x15)
to have a very clear separation of the information
flow from the sentence embedding to the latent

4We adopt the size of the kernel from previous work.
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layer. This will ensure our sparsification desidera-
tum, and the learned network will have a particular
configuration: if NCNN is the set of output nodes
from the CNN, and NL are the nodes on the latent
layer, then the sets of CNN output nodes connected
to each of the latent units are disjunct:

∀nl ∈ NL, S
l
CNN = {nc ∈ NCNN |Wm(nl, nc) > 0}

and if i ̸= j then Si
CNN ∩ Sj

CNN = ∅

Sparsification results Despite the fact that this
type of sparsification is very harsh, and channels
the information from the sentence embedding into
very few paths on the way to the latent layer, the
results in terms of average F1-score/standard devi-
ation over three runs without 0.997 (0.0035) and
with sparsification 0.977 (0.0095) are close. While
this difference is rather small, we notice a big-
ger difference in the latent layer. Figure 5 shows
the TSNE projections of the latent layers. As
can be seen, while the full network shows a very
clear and crisp separation of latents that encode
different chunk patterns – with a 0.9928/0.0101
F1 macro-average/standard deviation – when spar-
sifying the information is slightly less crisp in
the 2D TSNE projection, but still high F1 macro-
average/standard deviation (0.9886/0.0038)

5.2 Localizing linguistic information in
sentence embeddings

We approach the isolation of linguistic information
with the following intuition: on each channel, the
CNN discovers different patterns in various regions
of the sentences. Some combination of these pat-
terns – i.e. some combinations of signals from the
CNN output – encode specific properties of the
sentences. These signals eventually reach the la-
tent layer. Previous experiments have shown that
this latent layer contains information about chunks
and their properties. Working backwards from the
latent layer to the sentence embedding – through
the CNN output layer, the different channels and
sentence embedding regions – helps us trace back
where the biggest changes are when the input sen-
tences have different properties.

To verify whether specific linguistic informa-
tion, like different number of chunks, or different
chunk properties, is encoded in different regions of
the sentence embeddings, we analyse the distribu-
tion of values in each network node in the encoder,
namely the CNN output nodes NCNN and the la-
tent nodes NL.

Figure 4: TSNE projection of the latent layer for
encoder-decoder with full network connections.

Figure 5: TSNE projection of the latent layer for sparsi-
fied encoder-decoder.

We denote Sp the set of input sentences that
share the same chunk pattern p (for instance, p =
"NP-s VP-s"). We pass their sentence embeddings
through the learned encoder, and gather the values
in each CNN output node:
V p
CNN = {V p

CNN (nc)|nc ∈ NCNN}
V p
CNN (nc) = {valnc(s)|s ∈ Sp}

and valnc(s) is the value in the CNN output node
nc when the input is the embedding of sentence s.

To check for differences in how sentence with
different patterns are encoded, we will look at sets
of sentences Sp1 and Sp2 where p1 and p2 are pat-
terns that differ minimally. We consider three such
minimal differences:

length one pattern has an extra (or one less) chunk
than the other but are otherwise identical (np-s
vp-s vs. np-s pp1-s vp-s),

grammatical number the two patterns have the
same number of chunks, but one (and only
one) chunk has a different grammatical num-
ber than the other (np-s pp1-s vp-s vs. np-s
pp1-p vp-s),
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subject-verb number alternation the two pat-
terns are identical except in the grammatical
number of the subject and verb (np-s pp1-s
vp-s vs. np-p pp1-s vp-p).

To compare how chunk information is encoded
in sentences that have different patterns p1 and
p2, we compare the sets of values in each CNN
output node nc: V p1

CNN (nc) and V p2
CNN (nc) . If

these value distributions are very different, this is
an indication that the area of a sentence embedding
where the signal to nc is coming from is involved
in encoding the type of information that is different
between p1 and p2.

We perform this analysis in two steps: (i) a fil-
tering step that eliminates from the analysis the
CNN output nodes that do not encode differences
in behaviour between patterns, and (ii) a quantifi-
cation of the differences in the values in the node
for different patterns.

The filtering step is performed using a
two-sample Kolmogorov-Smirnov test (Hodges,
1958),5 which provides information whether two
samples come from the same distribution. As we
are interested in the CNN output nodes where the
value distributions are different when the inputs are
sentences with different patterns, we will filter out
from the analysis the nodes nc where the sets of
values V p

CNN (nc) come from the same distribution
for all patterns p represented in the data.

For the remaining CNN output nodes, we
project the value distributions onto the same set
of bins, and then quantify the difference using
cosine distance. Specifically, we determine the
range of values for V p

CNN for all patterns p –
minVCNN

,maxVCNN
, and split it into 100 bins.

For each CNN output node nc and pattern p we
make a value distribution vector vpnc from the
node’s set of values V p

CNN (nc), w.r.t. the 100 bins.
We then compute a score for every pair of mini-

mally different patterns p1, p2 for each node nc as
the cosine distance:
scorenc(p1, p2) = 1− cos(vp1nc , v

p2
nc)

This score quantifies how different a region of
the sentence embedding is when encoding sen-
tences with different chunk patterns.

Localization results A first clue that informa-
tion related to chunk patterns in a sentence is lo-
calized is the fact that the filtering step using the
two-sample Kolmogorov-Smirnov test leads to the

5We use the ks_2samp test in the scipy Python package

removal of 83 CNN output nodes out of the 240
(34%).

For the remaining nodes where differences in
value distributions between different sentence pat-
terns exist, we compute the cosine distance be-
tween pairs of minimally different patterns with
respect to grammatical number, length and subject-
verb number alternations. Figure 6 shows the
differences in value distributions in each CNN
output nodes from each channel – channels are
reprezented on the y-axis, and the 5 latent units on
the x-axis in different colours. A stronger colour
indicates a stronger effect. More detailed plots are
included in Figure 9 in the appendix.

These plots indicate that there
are few channel-sentence region
combinations that encode differ-
ences in chunk structure in the
input sentences. While in the
figure the sentence areas are il-
lustrated with equal sizes, the re-
gions are presented transposed
for space considerations, and
they have the shapes shown in the adjacent fig-
ure. The chunks and the chunk information seems
to be encoded in the bottom part of the sentence
embedding, and much of it in the bottom 2x24 area.

5.3 BLM tasks

To further test whether task specific information
is robust to sparsification, we use the two-level
variational encoder-decoder depicted in Figure 8.

An instance for a BLM task consists of a tuple,
comprising a sequence of sentences S = {si|i =
1, 7} as input, and an answer set with one correct
answer ac, and several incorrect answers aerr. The
sentence level of the 2-level encoder-decoder com-
presses the sentence embeddings of each of the
sentences in the input sequence into a small latent
vector. The sampled latent representations are then
used as the representations of the sentences in the
input sequence. This sequence representation is
passed as input to the BLM-level encoder-decoder,
it is compressed into a new latent layer, and the
sampled vector is then decoded into a sentence rep-
resentation that best matches the representation of
the correct answer.

BLM task results We evaluate the performance
of the sparsified 2-level VAE on the BLM tasks.
Only the first level of the VAE, the one process-
ing individual sentences, is sparsified as described
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Figure 6: Average cosine distance between value distributions in each CNN output node (i.e. each node correspond-
ing to the application of the kernel from each channel on the sentence embeddings, according to the kernel size and
stride) for sets of sentences with minimally different patters: (left) patterns differ in only one grammatical number
attribute for one chunk, (middle) patterns differ only in length, (right) patterns differ only in the number of the
subject and verb. Each panel corresponds to one region of the sentence embedding the size of the kernel. The y-axis
represents the channels of the CNN. The x-axis represents the latent units in different colours (the stronger the color,
the higher the value, max = 1), and the pairs of compared patterns represented as adjacent rectangles.

Figure 7: Results in term of average F1 scores over 3 runs, for the BLM agreement (1) and verb alternations
ALT-ATL (2) and ATL-ALT (3)

Figure 8: A two-level variational encoder-decoder: the
top level compresses the sentence embeddings into a
latent layer, and the bottom level uses the compressed
sentence representations to solve the BLM tasks.

in section 5.1. Figure 7 shows the performance
of three system variations: (i) a one-level VAE
that processes the input sequence of sentences and
produces a sentence representation, (ii) the two-
level VAE described in more detail in (Nastase and
Merlo, 2024), (iii) the sparsified version of the sen-
tence level VAE in the two-level VAE. As in the
previous experiments, sparsification does not cause
harsh drops in performance for either of the two
BLM tasks. The reason for this is the same rea-
son we chose this particular data for experiments:
solving the task relies on the system having infor-
mation about the chunks in the sentence, and their
properties. As long as that type of information is

preserved, the tasks can be solved successfully.
We note two main changes however. In the agree-

ment task, the sparsified system registers a drop
in performance when trained on maximally lexi-
cally different data (type III). The two-level system
without sparsification also registers such a drop
in comparison with the baseline one-level encoder
decoder. Both these effects may be due to the am-
biguous supervision signal at the sentence level of
the system: while using type I and type II data with
little lexical variation, it is easier for the system
to focus on structural differences between the cor-
rect and incorrect output options. When using type
III data with much lexical variation, it is not clear
for the system what is the relevant dimension of
difference between the output options.

In the verb alternation task, previous results on
predicting the Agent-Theme-Location or the Agent-
Location-Theme alternation produced very similar
results. This is not the case here, but understanding
why this happens requires additional analysis.

6 Conclusions

Our aim was to understand how information is en-
coded in sentence embedding, given that previous
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work has shown that various types of linguistic
information is encoded in a model’s layers and pa-
rameters. We investigated this question using a
dataset of sentences with specific chunk structure,
and two multiple-choice problems that require in-
formation about sentence chunks and their prop-
erties to be solved successfully. We have shown
that using a sparsified encoder-decoder system, the
sentence representations can be compressed into a
latent layer that encodes chunk structure properties.
We then traced back the signal from the latent layer
to the sentence embedding, to detect which areas
of the sentence embeddings change the most when
comparing sentences with different chunk patterns.
This analysis shows that such information is cap-
tured by a small number of channel-sentence area
combinations. Further experiments with the two
multiple-choice tasks have confirmed that chunk
information and their grammatical properties (for
the agreement BLM) and chunk information and
their semantic role properties (for the verb alterna-
tion BLM) are captured by the sparsified sentence
compression level. We envision further analyses to
see where the differences between chunk patterns
that have different semantic roles are encoded, and
get closer to decoding the sentence embeddings.

7 Limitations

We have explored sentence embeddings using an
artificially constructed dataset with simple chunk
structure. To check how this kind of information
is localized, we started from a previously devel-
oped system that showed high performance in dis-
tinguishing the patterns of interest. We have not
changed the system’s parameters (such as the ker-
nel size of the CNNs), and have not performed
additional parameter search to narrow down the
locations to smaller regions. We plan to address
sentence complexity issues and parameters for nar-
rower localization of information in future work.
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Figure 9: Differences between value distributions in each CNN output node (i.e. each node corresponding to
the application of the kernel from each channel on the sentence embeddings, according to the kernel size and
stride) for sets of sentences with minimally different patters: (top) patterns differ in only one grammatical number
attribute for one chunk, (bottom) patterns differ only in length. Each panel corresponds to one region of the sentence
embedding the size of the kernel. The y-axis represents the channels of the CNN. The x-axis represents the latent
units in different colours (the stronger the color, the higher the value, max = 1), and the pairs of compared patterns
represented as adjacent rectangles. The difference between the patterns is written below the x-axis.214


