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Abstract

Existing approaches to few-shot learning in
NLP rely on large language models (LLMs)
and/or fine-tuning of these to generalise on out-
of-distribution data. In this work, we propose
a novel few-shot learning approach based on
soft-label prototypes (SLPs) designed to col-
lectively capture the distribution of different
classes across the input domain space. We fo-
cus on learning previously unseen NLP tasks
from very few examples (4, 8, 16) per class and
experimentally demonstrate that our approach
achieves superior performance on the majority
of tested tasks in this data-lean setting while
being highly parameter efficient. We also show
that our few-shot adaptation method can be in-
tegrated into more generalised learning settings,
primarily meta-learning, to yield superior per-
formance against strong baselines.

1 Introduction

Humans have a remarkable ability to adapt knowl-
edge gained in one domain and apply it in another
setting, and to identify or disambiguate objects af-
ter observing only a handful of examples (Lake
et al., 2015). This has inspired research in few-shot
learning that aims to build models that can learn a
new task using only a small number of examples
per class. Early few-shot learning in NLP relied on
interventions at the data level, such as dataset aug-
mentation (Clark et al., 2018) or generation of ad-
versarial examples from few-shot datasets (Miyato
et al., 2016), while more recent approaches (van der
Heijden et al., 2021; Langedijk et al., 2022) utilise
meta-learning (Finn et al., 2017; Snell et al., 2017)
to optimise model parameters such that models
adapt quickly to new tasks using past experience
(Dou et al., 2019; Holla et al., 2020; van der Heij-
den et al., 2021). The advent of large language mod-
els (LLMs) has led to a plethora of further meth-
ods, including fine-tuning on different target tasks
(Sun et al., 2020; Zhou and Srikumar, 2022), cre-

ating prompt-enhanced few-shot datasets for train-
ing (Gao et al., 2020; Schick and Schütze, 2020;
Lester et al., 2021) as well as parameter-efficient
fine-tuning methods for very large language mod-
els, with parameters running into billions (Hu et al.,
2022; Dettmers et al., 2023).

In this paper, we propose a simple and effective
approach to few-shot learning based on soft-label
prototypes (SLPs) that capture the distribution of
different classes across the input domain space, in-
spired by previous work on generating compact
representations of input training data (Sucholutsky
et al., 2021). Our contributions are summarised
as follows: 1) We develop a novel neural frame-
work for few-shot learning via soft-label prototypes
that has a very small computational and memory
footprint, and achieves state-of-the-art results in
limited-resource settings. Our approach (DeepSLP)
does not rely on (expensive) LLM parameter up-
dates or auxiliary training data. 2) We focus on
few-shot learning of new, unseen NLP tasks using
as little as 4 examples per class, and demonstrate
that we outperform strong baselines on the majority
of test tasks. 3) We demonstrate that our approach
can also be effectively adapted (MetaSLP) in high-
resource settings when auxiliary training data is
available for few-shot learning, and performs com-
petitively when compared against strong baselines.
4) We release our code and data to facilitate further
research in the field.1

2 Related work

Early few-shot learning approaches in NLP include
data augmentation and semi-supervised learning;
e.g., augmentation with adversarial examples (Miy-
ato et al., 2016), interpolation of training data into
a learnable higher dimensional embedding space
(Chen et al., 2020), and consistency training to

1https://github.com/avyavkumar/
meta-learned-lines
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make models more resistant to noise (Xie et al.,
2019). Recent research efforts on large-scale pre-
training of language models (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020; Touvron
et al., 2023; BigScience Workshop, 2023; OpenAI,
2024) reduce the amount of data required for their
subsequent fine-tuning or utilisation in a given task.
Instruction tuning and in-context learning (Brown
et al., 2020; Gao et al., 2020; Sanh et al., 2021; Liu
et al., 2021; Min et al., 2022; Sun et al., 2024; Zhou
et al., 2024) show that natural language instructions
or prompts can enhance a model’s few-shot learn-
ing abilities by leveraging the language (instruc-
tion) understanding abilities of the given pretrained
LLM (Zhao et al., 2021; Liu et al., 2022). To fine-
tune extremely large language models (with bil-
lions of parameters) efficiently, a host of parameter-
efficient fine-tuning techniques have also been de-
veloped (Hu et al., 2022; Dettmers et al., 2023),
which leverage pre-trained LLMs and produce su-
perior results on tasks such as question answering,
reasoning, text summarisation, coding, etc. (Kotit-
sas et al., 2024; Jiaramaneepinit et al., 2024; Yang
et al., 2024; Ding et al., 2023).

However, the search space over LLMs, prompt
templates and few-shot learning is so great that
there is yet to be an established standard. Differ-
ent models require different styles of (few-shot)
prompting, and certain prompt templates may work
better with specific LLMs and datasets rather than
universally across the board (e.g., Davis et al.
(2024)). Furthermore, evaluating robustness of
state-of-the-art / generative LLMs on new, unseen
tasks (OOD generalisation) presents a significant
challenge due to their vast and unknown training
data, resulting in artificially inflated performance
as a result of data leakage (Yang et al., 2023).

Previous work has also tackled few-shot learning
within the meta-learning paradigm of “learning to
learn” (Schmidhuber, 1987; Bengio et al., 1990;
Thrun and Pratt, 1998), utilising methods that are
trained to adapt quickly (in a few gradient steps) to
new tasks and from a small number of examples,
using past experience. Meta-learning has emerged
as a promising technique for a range of tasks (Finn
et al., 2017; Koch et al., 2015; Ravi and Larochelle,
2017), including NLP such as natural language
inference, text classification, etc. (Obamuyide and
Vlachos, 2019a,b; Holla et al., 2020; Bansal et al.,
2020b; Nooralahzadeh et al., 2020; Wang et al.,
2020; Langedijk et al., 2022; Mueller et al., 2023).

In a similar spirit to parameter-efficient fine-

tuning (Hu et al., 2022; Dettmers et al., 2023),
our work shifts away from the aforementioned
paradigms that suffer from lack of standardisation
(LLM few-shot prompting) and increased computa-
tional complexity for fine-tuning (e.g., fine-tuning
extremely large language models such as GPT
(OpenAI, 2024). We present a novel, parameter-
efficient few-shot learning framework (DeepSLP)
based on soft-label prototypes (SLPs), which we
show to be effective on a range of tasks in lim-
ited and high-resource settings, while having a
substantially smaller computational and memory
footprint. While DeepSLP does not rely on LLM
fine-tuning or auxiliary training data, we present
a variant (MetaSLP) that can be used for few-shot
learning via auxiliary data and fine-tuned encoders.

We target few-shot learning of new, unseen tasks
(i.e., tasks and classes not previously trained on)
(a) in limited-resource settings, without access to
auxiliary training data, and with frozen model pa-
rameters, and (b) in high-resource settings, with
access to auxiliary training data, which are used
to update model parameters. For the latter, our
work is similar to Bansal et al. (2020a). The au-
thors target few-shot learning of unseen tasks via
meta-learning, utilising auxiliary training data.

3 Approach: few-shot learning with
Soft-Label Prototypes (SLPs)

A soft label is defined as a vector Y representing
a data point’s simultaneous membership to several
classes (Sucholutsky and Schonlau, 2021), essen-
tially denoting a point’s partial association to dif-
ferent classes. Using this definition, a soft-label
prototype (SLP) is defined as (X⃗, Y ), where X⃗ is
a point in input space (e.g., an input feature vector)
and Y is its corresponding soft label. The under-
lying idea in Sucholutsky and Schonlau (2021)’s
work is that a small set of soft-label prototypes can
be used to accurately represent a training set. We
build on this idea and reframe SLPs for the task of
few-shot learning of new, unseen tasks where very
small amounts of data are available per class.

3.1 Generating soft-label prototypes

Soft-label prototypes assign soft labels to every
point in the input domain; therefore, a soft-label
prototype at point X⃗ represents the class distri-
bution (determined from the training data) at X⃗ .
The fundamental idea behind a “soft-label” is that,
unlike hard labels, which are one-hot encoded la-
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Figure 1: Learning soft-label prototypes using two train-
able linear layers (yellow): example for a 3-class proto-
type. Dotted lines indicate backpropagation.

bels, soft-labels contain a distribution of proba-
bilistic label values at a particular point in a high-
dimensional embedding space.

The process of generating soft-label prototypes
from training data can be split into a two step pro-
cess (Sucholutsky et al., 2021): (1) finding lines
that connect the class centroids in the training data,
where each line connects some of the centroids,
and every centroid belongs to one line; and (2) us-
ing linear constraints to derive soft-label prototypes
capturing the class distribution at the ends of each
line. The two steps are presented in detail below.

3.1.1 Finding lines connecting all centroids
Here we seek to find classes that lie on the same
manifold. First, we compute the centroid of each
class in the input training data. Then, we find and fit
class centroids on the minimum number of lines us-
ing recursive regression (Sucholutsky et al., 2021).
This method clusters centroids hierarchically to
group similar (interval) centroids together, and fits
a regression line on the centroids. The similarity of
centroids within a single cluster is judged by how
well all the centroids fit on a regression line. If
the Euclidean distance of a particular centroid is
beyond a pre-defined tolerance threshold ϵ from a
line, it is removed from that cluster and assigned
to another one. We use this method for all our ex-
periments, as we experimentally find (on our dev
data) that it performs well on high-dimensional data
spread across many classes such as the ones we test
here. In Appendix A.1, Figure 3a, we present an
example set of lines connecting all centroids.

3.1.2 Learning soft-label prototypes
Once we find the lines, we use the endpoints of
each line as the location of soft-label prototypes.
Therefore, for l lines fitted on n centroids we have
2l prototypes. Then, we need to find the class dis-
tribution at each end point / soft-label prototype.

We develop and experiment with two different ap-
proaches to finding the class distributions, one
based on constraint optimisation (constraintSLP),
and another based on gradient descent (DeepSLP).

Learning via linear constraints (constraintSLP)
One way in which we can approach this is via
constraint optimisation and, specifically, an opti-
misation problem that consists of two main sets
of constraints (Sucholutsky et al., 2021): (i) the
target class at each centroid has the maximum in-
fluence amongst all classes at certain points along
the line (endpoint of the line and midpoints be-
tween classes); and (ii) the difference between the
influence of the target class and the sum of the
influences of all other classes along the line is max-
imised. In order to make this approach powerful
enough for large, high-dimensional NLP data, we
require an optimiser that scales on such complex
data. To this end, we use the MOSEK solver for
linear programming (MOSEK ApS, 2019) in the
CVXPY library (Diamond and Boyd, 2016) to per-
form the required computations to generate the
soft-label prototype class distributions. The output
of this is then a set of soft-label prototypes which
“sit” at the ends of each line (i.e., X⃗) as shown in
Appendix A.1, Figure 3b.

Learning via gradient descent (DeepSLP)
Rather than use linear constraints to generate soft-
label prototypes, we develop a novel gradient-based
approach to generate soft labels as a function of an
input x by minimising training loss on a few-shot
dataset. After generating lines connecting all class
centroids (Section 3.1.1), we set two soft-label pro-
totypes at the ends of the lines. Each soft-label
prototype pi is denoted by gi(f(x)) where g is a
neural network parameterised by θi and f(x) is
a point in the input space. The neural network
consists of a fixed BERT (Devlin et al., 2019) en-
coder2 given by f(x), and a trainable linear layer
which returns the soft-label probability distribution
at any point x given by gi(x). Figure 1 presents a
visual representation of our model. Compared to
constraintSLP where we find soft-label probability
distributions via linear constraint optimisation, we
now parameterise our soft-label probability distri-
bution with a neural network.

2We use BERT as our encoder given its comparatively
higher computational efficiency, and do not include LLMs
such as Llama and the GPT family as they have already been
pre-trained on our test tasks (found here) and hence suffer
from data contamination.
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Algorithm 1: DeepSLP

1 λ← set of lines connecting all centroids
2 fθl is the network parameterised by θl for

the left-end prototype on a line
3 fθr is the network parameterised by θr for

the right-end prototype on a line
4 J ← loss function
5 D ← training data
6 Require λ ̸= ∅
7 for i ∈ λ do
8 for epoch 1.....N do
9 pil ← location of left prototype

10 pir ← location of right prototype
11 for x ∈ minibatch(D) do
12 d1 ← ||pil − x||
13 d2 ← ||pir − x||
14 pred.append

(
fθil (x)

d1
+

fθir (x)

d2

)

15 end
16 d_loss← J (pred,D)

17 loss1 ← d2
d1+d2

∗ d_loss
18 loss2 ← d1

d1+d2
∗ d_loss

19 θil ← θil − η∇θil loss1
20 θir ← θir − η∇θir loss2
21 end
22 end

Crucially, the encoder parameters are frozen as
we need our input data points to have an unchanged
location in the input space – changing their position
might result in class centroids that were previously
lying on a straight line to no longer lie on the line.
The model is optimised using both soft-label pro-
totypes along a line (see Algorithm 1 below and
Section 3.2, Equation 1). Specifically, a higher dis-
tance between a data point x and a prototype leads
to a correspondingly smaller effect of the prototype
on the final classification; therefore, we want to
penalise the prototype that is closer to x more if
there is an incorrect classification. Each prototype
is therefore assigned a fraction of the total loss that
is proportional to the other prototype’s Euclidean
distance from x. This way, the closer prototype’s
weights are corrected more in case of a misclas-
sification. The complete algorithm can be seen
in Algorithm 1, while an example optimisation is
presented in Figure 2.

We use cross entropy loss which gives a measure
of the difference between the true and predicted
labels. We initialise the weights of g1(x) and g2(x)

Figure 2: Training soft-label prototypes in DeepSLP.
Class centroids are represented with large circles that
lie on a line (Red, Green, Blue), while training set
examples are represented with smaller circles of the
same colour. Dotted lines represent the backpropagation
error, of which the bolded ones represent a larger error
per soft-label prototype. Predictions for x are based on
the prototypes at each end of the line.

using a uniform Xavier initialisation (Glorot and
Bengio, 2010) and use warmup steps to adjust the
learning rate. Epochs vary based on the number
of classes in the classifier head (between 15 and
25; see datasets used in Section 4): preliminary
experiments on the development data show that
more epochs are needed when a higher number of
classes lie along a line.

3.2 Classification with soft-label prototypes
Given M soft-label prototypes representing the
input distribution of N classes, we define S =
(X⃗1, Y1), ..., (X⃗M , YM ) to be our set of prototypes,
where X⃗i is the location of the ith prototype in the
input feature space and Yi is a matrix of dimen-
sion [N × 1] denoting the soft labels. Given a test
datapoint x⃗, we calculate the Euclidean distances
D = (X⃗i, x⃗)i=1,2...M from each prototype to x⃗.
We then sort S in ascending order of distances us-
ing D, weigh the probability distribution of the ith

nearest prototype inversely by its distance to x⃗, and
select the line containing the closest prototype to
get Y ∗ (Sucholutsky et al., 2021):

Y ∗ =
k∑

i=1

Yi

d(X⃗i, x⃗)
(1)

As we consider the two nearest neighbours / pro-
totypes, we set k to 2. x⃗ is then assigned the class
CSLP (x⃗) = argmax

j
Y ∗
j where Y ∗

j is the jth el-

ement of Y ∗. In other words, we sum over the
k-nearest soft-label prototypes (i.e., vectors) to x⃗,
and weigh each prototype inversely proportional
to its distance from x⃗. x⃗ is then assigned the class
with the largest value in the resulting vector (see
Appendix A.1 for a toy classification example).
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3.3 Meta-training DeepSLP (MetaSLP)

We further test the suitability of soft-labels in high-
resource settings, tuning our text encoder using aux-
iliary training data. This is similar to the work of
(Bansal et al., 2020a) that develop a meta-learning
approach for few-shot learning of new, unseen tasks
while utilising auxiliary training data. We employ
a similar approach for rapid generalisation by util-
ising first-order meta-learning algorithms (which
we describe in detail in Appendix A.2). Our model
architecture is similar to DeepSLP – it comprises a
BERT encoder with two linear layers on top. We
train only the last v layers of our encoder to reduce
computational overhead, where v is a hyperparam-
eter (See Appendix A.6). We denote the encoder
by fθ(x), and each soft-label prototype at the end
of a line by g1 and g2, parameterised by θ1 and θ2
respectively. The difference between DeepSLP and
MetaSLP is that MetaSLP is trained using meta-
learning (using auxiliary data described in Section
4), and the encoder fθ(x) in MetaSLP is fine-tuned
(as opposed to being fixed in DeepSLP), following
previous work (Bansal et al., 2020a).

Inner-loop training We optimise the soft-label
prototypes in the same manner as DeepSLP; i.e.,
we use Algorithmn 1 to few-shot train the linear lay-
ers g1(x) and g2(x) parameterised by θ1 and θ2 re-
spectively. However, meta-learning requires a large
set of diverse and balanced meta-learning tasks for
effective learning (Holla et al., 2020). To amelio-
rate this, we split the auxiliary datasets (Section
4) used for meta-learning into multiple pairwise
tasks to meta-train MetaSLP (Bansal et al., 2020a).
This means that, during training, we now consider
a large number of two-class problems, as opposed
to a small number of multi-class problems where
the number of classes n ≥ 2. Such a setting also
enables fine-tuning of our encoder fθ(x). In gen-
eral, allowing the physical location of encodings to
change (in this case via meta-learning’s inner-loop
training process), may result in centroids originally
connected by a line to no longer be connected by
that line (i.e., in the next inner-loop optimisation
step). However, if we only meta-train on tasks that
focus on two classes at a time, this can trivially
ensure that the same line is utilised each time. Our
inner-loop optimisation process is given in Algo-
rithm 3 in Appendix A.4.

Outer-loop training We perform meta-learning
using the updated parameters in the inner-loop

training process. We experiment with both Reptile
(Nichol et al., 2018) and FOMAML (Finn et al.,
2017) as our meta-learning algorithms. Reptile can
be considered a simpler variant to MAML-based
meta-learning algorithms. We present our outer-
loop process in Algorithm 4, Appendix A.4.

Meta-testing We construct lines for the test sets
using the trained MetaSLP model, and fine-tune
them on the few-shot adaptation training data for
each test task. We then use these lines for classifi-
cation as described in Section 3.2.

4 Experimental settings and datasets

Experimental settings We experiment with two
settings in terms of amounts of available data. The
first is a limited-resource setting where we only
train / fine-tune our models in a few-shot manner
on small amounts of training data (i.e., in the ab-
sence of auxiliary training data). The other setting
is a high-resource setting where we assume that
auxiliary training data is available for additional
training / fine-tuning.

Datasets We tackle few-shot learning of pre-
viously unseen tasks (i.e., not seen during
training/fine-tuning), and so our work is similar
to Bansal et al. (2020a). For our high-resource set-
ting, we train and test our models on the same data
as Bansal et al. (2020a) to ensure direct comparabil-
ity. For our limited-resource setting, we test in the
same way but do not utilise any auxiliary training
data; i.e., we only utilise few-shot fine-tuning data
for unseen tasks (i.e., only using a very small set
of training/fine-tuning examples for the test tasks).

High-resource setting auxiliary training data
Similar to Bansal et al. (2020a), we use GLUE
(Wang et al., 2018) to train our models in the high-
resource setting. This dataset consists of a range of
natural language tasks such as entailment, classi-
fication and textual similarity, which are used for
model training and evaluation. We use only the
training split for meta-learning. Similar to Bansal
et al. (2020a), the MNLI (Williams et al., 2018)
and SNLI (Bowman et al., 2015) entailment tasks,
which are three-label classification problems, are
split in a pairwise manner such that they are in-
cluded as multiple two-label datasets during train-
ing. Following Bansal et al. (2020a), we also
train for detecting the sentiment contained within
phrases of a sentence by using the phrase-level an-
notations in SST2 (Wang et al., 2018). We utilise
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the same validation sets – labelled Amazon review
data from music, toys and videos for sentiment clas-
sification (Blitzer et al., 2007). We provide dataset
and training details in Appendix A.5.

Evaluation data We use the same test datasets
and evaluation setting as Bansal et al. (2020a) for
both the high-resource and low-resource settings.
These cover a variety of text classification tasks: (a)
Entity typing – the CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003) and MIT-Restaurant (Liu
et al., 2013) datasets; (b) Review rating classifi-
cation – review ratings from Amazon Reviews
(Blitzer et al., 2007) with a three-way classifica-
tion; (c) Text classification – scraped social media
data from crowdflower comprising sentiment and
emotion classification in a range of domains, as
well as political bias detection; and (d) Natural
language inference in the scientific domain – the
SciTail dataset (Khot et al., 2018). We use the
same data splits, which are publicly available. Dur-
ing evaluation, Bansal et al. (2020a) fine-tune their
models using a small few-shot (support) training
set per test task (using a k-shot setting of 4, 8, 16
examples per class), and then evaluate performance
on each task’s dedicated, unseen test set. As model
performance can be affected by the k examples
chosen for training/fine-tuning, for each task and
for every k, they sample 10 few-shot training sets
and report the mean and standard deviation, which
we also adopt in our experiments.

5 Baselines

Our aim is to determine how well our models –
DeepSLP and MetaSLP – perform in the low and
high-resource setting respectively, compared to
strong baselines when given the same few-shot
adaptation sets. Our focus is on (a) evaluating in an
extreme few-shot learning scenario where no auxil-
iary data is available (using DeepSLP), and (b) eval-
uating in a high-resource setting when additional
(auxiliary) training data is available (MetaSLP).
We use BERT (Devlin et al., 2019) as our text en-
coder throughout to facilitate model comparisons.
We report DeepSLP and MetaSLPREPTILE (i.e., us-
ing Reptile as our meta-learning algorithm) in our
main table of results (given their effectiveness), and
present additional baselines as well as hyperparam-
eters and training details in Appendix A.6.

We use BERT (Devlin et al., 2019) as our en-
coder as it is a text encoder that allows us to get
passage-level encodings, it is computationally light-

weight compared to decoder-based LLMs such as
Llama (Touvron et al., 2023) and GPT (OpenAI,
2024) (and we can carry out full fine-tuning) and,
crucially, it does not suffer from data contamina-
tion as, in contrast to the more recent LLMs, it has
not been pre-trained on our test data3.

5.1 Low-resource setting baselines

BERTfine-tuned We use BERTfine-tuned reported in
Bansal et al. (2020a), which is fine-tuned (all lay-
ers) on the few-shot training set of each test task.

LORABERT LORA (Hu et al., 2022) decomposes
a fine-tuned weight matrix to two low-rank matri-
ces, which – when multiplied and added to the orig-
inal weights – reproduce the fine-tuned weights.
This is advantageous as, instead of fine-tuning all
parameters, we fine-tune these two matrices with a
low computational cost, as they are much smaller
individually compared to fully fine-tuned weights.

constraintSLP We use constraintSLP as a base-
line to evaluate the effectiveness of soft-label pro-
totypes that are based on linear constraints.

5.2 High-resource setting baselines

Reptile We train a meta-learning Reptile (Nichol
et al., 2018) model on our auxiliary data and use
it as another baseline. This allows us to directly
assess the added advantage of utilising SLPs in
MetaSLPREPTILE.

Prototypical Networks We use ProtoNet (Snell
et al., 2017) as another baseline for both the high
and low-resource settings. ProtoNets use Euclidean
distance as a measure of similarity between points
and clusters, which is similar to DeepSLP and
MetaSLP that assign test points to the closest line.

LEOPARD Bansal et al. (2020a) present LEOP-
ARD, a meta-learning algorithm that achieves the
best performance across most test tasks for entity
typing, ratings classification and text classification,
and which we also use.

We do not include HSMLMT (Bansal et al.,
2020b) as a baseline as it is pretrained on semi-
supervised meta-training tasks in addition to su-
pervised learning and therefore it is not directly
comparable.

3https://github.com/iesl/leopard/tree/master/
data/json
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Category (Classes) Shot LORABERT BERTfine-tuned* DeepSLP LEOPARD* Reptile MetaSLPREPTILE

Political Bias (2) 4 52.75 ± 4.33 54.57 ± 5.02 53.251 ± 4.042 60.49 ± 6.66 58.82 ± 4.31 60.96 ± 6.13
8 53.66 ± 4.25 56.15 ± 3.75 58.209 ± 5.198 61.74 ± 6.73 59.43 ± 3.79 63.65 ± 4.57
16 59.21 ± 2.27 60.96 ± 4.25 61.479 ± 2.974 65.08 ± 2.14 62.21 ± 0.72 66.05 ± 1.57

Emotion (13) 4 7.56 ± 2.93 09.20 ± 3.22 9.076 ± 1.108 11.71 ± 2.16 11.65 ± 3.21 11.94 ± 1.95
8 9.02 ± 2.36 08.21 ± 2.12 8.041 ± 2.797 12.90 ± 1.63 10.56 ± 2.85 13.42 ± 1.46
16 10.29 ± 1.67 13.43 ± 2.51 10.919 ± 1.615 13.38 ± 2.20 11.62 ± 3.11 14.03 ± 2.35

Sentiment Books (2) 4 51.27 ± 2.75 54.81 ± 3.75 58.67 ± 4.753 82.54 ± 1.33 76.95 ± 1.03 83.22 ± 0.95
8 58.16 ± 3.3 53.54 ± 5.17 64.78 ± 2.615 83.03 ± 1.28 77.49 ± 1.08 83.8 ± 0.8
16 59.16 ± 2.59 65.56 ± 4.12 67.453 ± 3.085 83.33 ± 0.79 77.88 ± 0.56 83.8 ± 1.59

Rating DVD (3) 4 31.65 ± 4.91 32.22 ± 08.72 39.566 ± 5.086 49.76 ± 9.80 45.91 ± 9.85 45.2 ± 8.91
8 37.69 ± 3.16 36.35 ± 12.50 38.788 ± 4.449 53.28 ± 4.66 47.23 ± 9.22 58.38 ± 2.9
16 38.63 ± 5.52 42.79 ± 10.18 40.53 ± 4.375 53.52 ± 4.77 48.49 ± 8.88 57.41 ± 4.71

Rating Electronics (3) 4 31.66 ± 2.94 39.27 ± 10.15 39.977 ± 5.959 51.71 ± 7.20 44.47 ± 8.25 45.34 ± 7.22
8 38.72 ± 5.95 28.74 ± 08.22 41.926 ± 3.985 54.78 ± 6.48 49.1 ± 6.81 55.10 ± 5.12
16 39.15 ± 6.6 45.48 ± 06.13 44.917 ± 3.164 58.69 ± 2.41 50.68 ± 6.8 59.47 ± 2.29

Rating Kitchen (3) 4 36.63 ± 4.68 34.76 ± 11.20 39.624 ± 6.787 50.21 ± 09.63 45.38 ± 10.96 45.20 ± 8.78
8 39.69 ± 6.22 34.49 ± 08.72 41.081 ± 6.777 53.72 ± 10.31 46.71 ± 9.84 54.53 ± 9.9
16 38.17 ± 7.14 47.94 ± 08.28 45.801 ± 4.562 57.00 ± 08.69 52.87 ± 9.52 58.94 ± 7.58

Political Audience (2) 4 49.75 ± 1.03 51.02 ± 1.72 51.741 ± 2.827 52.60 ± 3.51 52.45 ± 4.26 54.1 ± 3.66
8 54.05 ± 2.54 52.80 ± 2.72 54.506 ± 3.274 54.31 ± 3.95 52.87 ± 4.31 56.01 ± 3.65
16 55.39 ± 3.66 58.45 ± 4.98 56.956 ± 3.045 57.71 ± 3.52 55.6 ± 1.85 58.57 ± 2.04

Sentiment Kitchen (2) 4 53.02 ± 1.54 56.93 ± 7.10 60.76 ± 4.426 78.35 ± 18.36 69.81 ± 14.58 81.96 ± 3.73
8 55.54 ± 3.47 57.13 ± 6.60 65.733 ± 3.198 84.88 ± 1.12 75.76 ± 1.13 83.33 ± 1.99
16 58.59 ± 4.83 68.88 ± 3.39 69.18 ± 2.589 85.27 ± 1.31 76.41 ± 0.66 84.33 ± 1.81

Disaster (2) 4 56.02 ± 6.35 55.73 ± 10.29 54.252 ± 9.843 51.45 ± 4.25 49.76 ± 4.73 55.03 ± 8.73
8 57.46 ± 6.9 56.31 ± 09.57 61.3 ± 7.961 55.96 ± 3.58 52.17 ± 5.17 57.77 ± 6.40
16 65.79 ± 2.03 64.52 ± 08.93 69.28 ± 2.358 61.32 ± 2.83 55.37 ± 4.53 65.18 ± 4.41

Airline (3) 4 24.36 ± 5.42 42.76 ± 13.50 50.987 ± 4.936 54.95 ± 11.81 57.11 ± 14.16 57.39 ± 7.83
8 52.31 ± 7.89 38.00 ± 17.06 55.209 ± 6.049 61.44 ± 03.90 64.37 ± 3.49 65.67 ± 4.82
16 54.1 ± 8.57 58.01 ± 08.23 60.247 ± 4.577 62.15 ± 05.56 66.31 ± 2.55 69.48 ± 2.06

Rating Books (3) 4 34.69 ± 2.12 39.42 ± 07.22 42.116 ± 4.725 54.92 ± 6.18 56.57 ± 8.17 55.79 ± 5.61
8 39.36 ± 6.33 39.55 ± 10.01 42.156 ± 4.608 59.16 ± 4.13 57.33 ± 7.63 65.74 ± 5.58
16 41.23 ± 5.32 43.08 ± 11.78 46.513 ± 3.036 61.02 ± 4.19 63.26 ± 3.59 67.87 ± 3.45

Political Message (9) 4 12.16 ± 1.46 15.64 ± 2.73 14.421 ± 1.095 15.69 ± 1.57 14.58 ± 1.78 18.84 ± 1.82
8 15.71 ± 2.04 13.38 ± 1.74 16.919 ± 1.756 18.02 ± 2.32 15.13 ± 2.16 20.09 ± 2.71
16 15.53 ± 2.55 20.67 ± 3.89 18.319 ± 1.74 18.07 ± 2.41 16.38 ± 2.15 23.22 ± 1.17

Sentiment DVD (2) 4 50.77 ± 0.78 54.98 ± 3.96 55.003 ± 2.936 80.32 ± 1.02 72.03 ± 11.61 80.97 ± 1.21
8 52.24 ± 1.54 55.63 ± 4.34 57.527 ± 3.562 80.85 ± 1.23 75.79 ± 1.62 81.85 ± 1.79
16 52.6 ± 2.09 58.69 ± 6.08 60.76 ± 2.944 81.25 ± 1.41 76.69 ± 0.8 83.48 ± 1.01

Scitail (2) 4 43.36 ± 4.74 58.53 ± 09.74 54.101 ± 3.759 69.50 ± 9.56 59.13 ± 10.58 53.48 ± 5.59
8 54.29 ± 5.25 57.93 ± 10.70 56.341 ± 5.786 75.00 ± 2.42 62.63 ± 10.85 60.79 ± 4.6
16 52.68 ± 3.0 65.66 ± 06.82 59.692 ± 4.227 77.03 ± 1.82 68.03 ± 1.57 61.67 ± 3.61

Restaurant (8) 4 10.56 ± 1.36 49.37 ± 4.28 47.634 ± 5.237 49.84 ± 3.31 13.37 ± 2.25 27.00 ± 2.61
8 20.92 ± 2.4 49.38 ± 7.76 55.912 ± 4.494 62.99 ± 3.28 16.83 ± 3.42 35.66 ± 2.39
16 29.37 ± 4.05 69.24 ± 3.68 61.716 ± 2.208 70.44 ± 2.89 16.0 ± 3.44 37.20 ± 2.68

CoNLL (4) 4 21.48 ± 2.71 50.44 ± 08.57 52.724 ± 5.84 54.16 ± 6.32 31.31 ± 5.32 40.79 ± 3.40
8 29.84 ± 3.28 50.06 ± 11.30 60.374 ± 3.731 67.38 ± 4.33 33.17 ± 5.1 41.25 ± 5.21
16 37.18 ± 3.32 74.47 ± 03.10 67.496 ± 4.551 76.37 ± 3.08 34.04 ± 3.59 45.96 ± 4.75

Table 1: Classification performance (accuracy) of our methods (DeepSLP and MetaSLP) and baselines. * refers to
the baselines as reported in Bansal et al. (2020a). The best performing models for each setting (without and with
auxiliary data) are highlighted in gray and green respectively. Double lines group similar tasks together: the first set
contains intent classification tasks, the second focuses on natural language inference, and the last contains entity
typing tasks.
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6 Results and Discussion

Due to space restrictions, we present and discuss
our best models in Table 1. All other baselines and
results are discussed in Appendix A.7.

Low-resource setting In the low-resource set-
ting with no auxiliary data (left side of Table
1), DeepSLP outperforms all baselines, including
BERTfine-tuned in 31/48 tasks and LORABERT in
45/48 tasks, achieving a new state-of-the-art result.
Our results demonstrate the usefulness of soft-label
prototypes and their superiority over strong base-
lines (i.e., LLM fine-tuning and LORA / low-rank
adaptation) in the low-resource setting.

Unlike BERTfine-tuned, DeepSLP and LORABERT
do not fine-tune the encoder. Specifically, we only
need to fine-tune 1500−10K parameters (based on
the number of classes) for each line with two soft-
label prototypes for DeepSLP, compared to 50K −
100K parameters for LORABERT with rank = 2,
and > 108 parameters for BERTfine-tuned. We also
note that DeepSLP is lightweight and does not re-
quire a GPU. LORABERT mostly achieves accura-
cies within 90% of BERTfine-tuned, in line with pre-
vious work (Hu et al., 2022; Dettmers et al., 2023)
(even outperforming BERTfine-tuned in 15/48 tasks),
except for entity-typing tasks where LORABERT
struggles to generalise and achieves substantially
lower performance compared to BERTfine-tuned.

On the other hand, constraintSLP, a simpler vari-
ant of DeepSLP (see Appendix A.7, Table 5 for
results) is one of the lower performing baselines,
together with ProtoNet. We find that constraintSLP
exhibits a substantial weakness (see further details
in Theorem A.2, Appendix A.3): given Euclidean
distance, constraintSLP does not always select the
nearest class centroid to a test point. This violates
our inductive bias that points located closest to
a class centroid are assigned to that class. If we
consider the case where N = 2, constraintSLP es-
sentially acts as a 1-NN with soft labels trivially
at [1, 0] and [0, 1], with class centroids acting as
the nearest neighbour. However, when general-
ising beyond this setting, the model’s stability is
affected. constraintSLP optimises soft labels using
the geometric properties of a line and does not con-
sider each (training) data point individually – the
soft labels produced by SLP are constants. Deep-
SLP, on the other hand, learns from training data
and produces soft labels as a function of the input;
therefore, it has the ability to output soft labels
based on the location of an input (test) point (with

the location of the prototypes being fixed).

High-resource setting MetaSLPREPTILE has the
highest performance overall in text classification
and entailment tasks (Tasks 1-14), with the best ac-
curacy in 33/42 tasks/settings. LEOPARD, on the
other hand, achieves the highest score in only 8/42.
Interestingly, we find that all models in the high-
resource setting have lower performance for Dis-
aster compared to the models in the low-resource
setting. We surmise this to be due to the auxiliary
data and the fact that the meta-training distribution
differs substantially from the test distribution.

For entity typing tasks (CoNLL and Restau-
rant), LEOPARD outperforms all models, with
MetaSLPREPTILE and Reptile performing compar-
atively poorly, even outperformed by the low-
resource methods (DeepSLP and BERTfine-tuned). It
should be noted that there seems to be little benefit
of meta-learning with auxiliary data when tackling
entity typing tasks, even for LEOPARD, as the dif-
ference between LEOPARD and BERTfine-tuned is
not substantial. We surmise this to be due to the
fact that the meta-training distribution (i.e., GLUE
tasks) is different from the test distribution for en-
tity typing tasks which degrades performance for
the test tasks. Note that we do not meta-train the
entire model (only top 4 layers for Reptile and
MetaSLPREPTILE), unlike LEOPARD.

Overall, MetaSLPREPTILE outperforms all mod-
els and baselines, including Reptile in 42/48
tasks and LEOPARD in 34/48 tasks. Specifically,
MetaSLPREPTILE consistently outperforms Reptile,
demonstrating the effectiveness of our approach
over its meta-learning variant (i.e., Reptile) that
does not use SLPs. In Appendix A.8 we present
detailed analyses of DeepSLP and show that it
displays several desirable properties of ensemble
methods which drive its performance, in addition
to it being a computationally efficient approach that
only utilises a small number of parameters.

7 Conclusion and future work

We presented a novel few-shot learning paradigm
that is based on soft-label prototypes capturing
the simultaneous membership of data points over
several classes, and demonstrated its effectiveness
in low and high-resource settings. We evaluated
our approach on 48 different tasks / settings and
showed that it outperforms a range of strong base-
lines. In the future, we plan to use meta-learning
algorithms such as PACMAML (Ding et al., 2021)
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and Bayesian MAML (Kim et al., 2018) that relax
assumptions with respect to train–test set distribu-
tions and thus alleviate this current limitation in
our work.

8 Ethics

To the best of our knowledge, there are no ethical
concerns involved in this research. We conduct our
work using publicly available English datasets and
tasks, and models pre-trained on English text. Our
results may not generalise to other languages. To
facilitate further research in the field, we release
our source code and models.
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A Appendix

A.1 Deriving soft-label prototypes using
constraintSLP

Finding lines connecting all centroids
In Figure 3a, we present an example set of lines
connecting all class centroids. For further details
on recursive regression, we refer the reader to Su-
cholutsky et al. (2021).

Deriving soft-label prototypes by optimising for
linear constraints
Example soft-label prototypes which are “set” at
the ends of each line are shown in Figure 3b.

Classification with constraintSLP: A toy
example
Figure 4 presents an example classification with
soft-label prototypes. Given the class centroids
for blue, green and yellow are located at (0, 0),
(1.5, 0) and (3, 0) respectively, two soft-label pro-
totypes are defined by a line connecting yellow and
blue, and are thus located at (3, 0) and (0, 0) re-
spectively. The soft labels in Figure 4a contain
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a Computing lines b Generating soft-label prototypes c The decision landscape

Figure 3: Generating and classifying data with soft-label prototypes.

a b

Figure 4: Classification example with constraintSLP
(figure from Sucholutsky and Schonlau (2021)).

the per-class probability distribution derived by
the constraintSLP method; for example, p(x =
blue) = 0.6 and p(x = green) = 0.4 for the
left prototype, and p(x = green) = 0.4 and
p(x = yellow) = 0.6 for the right prototype.
When a new test instance x located at (1.5, 0.8)
is presented, we make predictions as follows: we
find the nearest line to x and consider its distance
from the two prototypes at the ends of the line and
multiply the class distribution of each prototype by
the inverse distance as per Eq. 1.

Since x is equidistant from both prototypes,
the distance between the x and each prototype
is 1.5. Therefore, the values for blue and yel-
low (given both soft-label prototypes) become
soft_label(x = blue) = 0.6

1.5 + 0
1.5 = 0.4 and

soft_label(x = yellow) = 0
1.5 + 0.6

1.5 = 0.4 re-
spectively. In contrast, for green, which is directly
informed by both prototypes (i.e., no zero values
in the numerator), the probability distribution be-
comes soft_label(x = green) = 0.4

1.5 + 0.4
1.5 =

0.53. Therefore x is classified as green. This deci-
sion boundary can be seen in Figure 4b.

A.2 Meta-learning

For encoder-based models, meta-learning has
emerged as a viable methodology for few-shot
learning. In the meta-learning paradigm, the train-
ing and test sets, referred to as Dmeta-train and
Dmeta-test, are split into episodes. Each episode
encompasses a task T i and consists of a support
set D(i)

support and a query set D(i)
query. Meta-

learning algorithms initially fit the model on the
support set of the episode (inner-loop optimisation)
and then achieve generalisation across episodes by
optimising performance on the query sets of the
episodes (outer-loop optimisation). For evaluation,
the model is first fine-tuned on the support set and
then evaluated on the query set for each task T i
∈ Dmeta-test. We describe the process algorithmi-
cally in Algorithm 2 and describe the MetaUpdate
process for different algorithms subsequently.

Algorithm 2: Meta-learning

1 α, β ← learning rates
2 Sample batch of tasks {Ti} ∼ p(T )
3 Initialise θ′i ← θ
4 for Ti ∼ p(T ) do
5 Partition Ti into Ds

i and Dq
i

6 θ′i ← θ − α∇θLsDi
(fθ) for k steps

7 end
8 θ ←MetaUpdate(θi, D

q
i , β)

Model Agnostic Meta-Learning MAML (Finn
et al., 2017) is an optimisation-based meta-
learning approach which incorporates generalis-
ability across tasks in its cost function. The task
loss LqTi is computed on the query examples in
each episode, using this task-specific model. The
initial model parameters θ are then updated so as
to minimize the sum of the losses of all tasks in a
batch, leading to improved generalisation across
tasks. The MetaUpdate step is thus defined as
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θ ← θ − β ∇θ

∑

Ti∼p(T )

LqDi
(fθ′i)

Note that the MetaUpdate expression calculates
the gradients of each θi with respect to θ, thus
necessitating the computation of second-order gra-
dients. To ease computation, we use a first-order
approximation of MAML (FOMAML) wherein the
gradients of each θi are calculated with respect to
θi and reduce the MetaUpdate term to

θ ← θ − β ∇θi

∑

Ti∼p(T )

LqDi
(fθ′i)

LEOPARD Bansal et al. (2020a) employ meta-
learning for diverse NLP tasks in an approach in-
spired from MAML which integrates a text encoder
model with a meta-learned parameter generator to
tailor task-specific initialisations for the classifica-
tion head. Their inner-loop update learns the pa-
rameter generator for the task, adapts task-specific
model parameters and the MetaUpdate step adapts
model parameters as done in MAML. They show
that their method, LEOPARD, outperforms multi-
task trained models as well as a range of other
meta-learning methods.

Reptile This meta-learning algorithm, intro-
duced by Nichol et al. (2018), is computationally
simple compared to MAML and LEOPARD - the
MetaUpdate step simply moves the model parame-
ters towards inner-loop fine-tuned model parame-
ters, thus assuming the form:

θ ← θ + β
1

|{Ti}|
∑

Ti∼p(T )

(θi − θ)

Despite it’s simplicity, it reports strong perfor-
mance on a variety of few-shot learning tasks (Dou
et al., 2019).

Prototypical Networks Unlike optimisation-
driven meta-learning methods, Prototypical Net-
works (Snell et al., 2017) is a metric-based meta-
learning method that uses an embedding function
fθ to encode training support samples and compute
a high-dimensional vector µc that is the arithmetic
mean of the training data points of class c. It then
uses a distance function d to compute the similarity
between a query instance x and the mean vector of

each class to get the class distribution as:

p(y = c|x) = softmax(−d(fθ(x), µc))

=
exp(−d(fθ(x), µc))∑

c′∈C exp(−d(fθ(x), µ′
c))

Model optimisation is done using the loss function
J(θ) = −log(p(y = c∗|x, θ)).

A.3 Analysis of soft-labels derived from linear
constraints: constraintSLP

Theorem A.1. The soft-label value of each class
within a single soft-label prototype generated using
constraintSLP is inversely proportional to its dis-
tance from the soft-label prototype along the line
connecting all classes captured by it.

Proof of Theorem A.1 (Informal) Consider a
line l connecting three class centroids (while we
focus on a three class system, the conclusions gen-
eralise to n > 3 classes too). The class centroids
are represented by A, B and C. The soft-label proto-
types at ends A and C contain the values [a1, a2, a3]
and [c1, c2, c3] respectively. Consider a support ex-
ample x ∈ A at a distance da and db from A and
C respectively. Directly using the constraints in
Algorithm 4 of Sucholutsky et al. (2021), we state
that the influence of A (i.e., the distance-weighted
sum of the soft-labels at x) should be more than
the sum of the influence of the other two classes.
Thus, we need to maximise:

a1
da

+
c1
db

>

(
a2
da

+
c2
db

)
+

(
a3
da

+
c3
db

)
(2)

As we move x further towards A, da → 0 and
the influence of [a1/d1, a2/d2, a3/d3] increases
thus

∑i=3
i=2 ci/db <<<

∑i=3
i=2 ai/da. Therefore

we have the approximation:
a1
da

>
a2
da

+
a3
da

=⇒ a1 > a2 + a3 (3)

If we take a support example x ∈ C, by symmetry
as x is moved towards C, db → 0, we can also
write:

c3
db

>
c2
db

+
c1
db

=⇒ c3 > c2 + c1 (4)

Furthermore, consider a point x in the middle of l
equidistant from A and C (by a distance d) – such a
point will always be classified as x ∈ B. Thus, the
influence of B should be higher than both A and C.
Thus we have:
a2
d

+
c2
d

>
a1
d

+
c1
d

&
a2
d

+
c2
d

>
a3
d

+
c3
d

=⇒ a2 + c2 > a1 + c1 & a2 + c2 > a3 + c3
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From Equation 3 and Equation 4 we can replace a1
and c3 and get:

a2 + c2 > a2 + a3 + c1 =⇒ c2 > c1

a2 + c2 > a3 + c2 + c1 =⇒ a2 > a3

Therefore, we have:

a1 > a2 > a3 & c3 > c2 > c1

This is an intuitive result as the soft-label value of
each class decreases as the distance of the class
centroid increases from the prototype location –
the class nearest to the prototype has the highest
soft-label value and the class furthest away has the
lowest soft-label value.

Recall that
∑3

i=1 ai = 1 and
∑3

i=1 ci = 1 and
ai, ci ≥ 0 ∀i = {1, 2, 3} otherwise the optimisa-
tion problem becomes unbounded. Therefore, the
ranges of values for [a1, a2, a3] and [c1, c2, c3] are:

a3 ∈ [0, a2), a2 ∈ (a3, a1), a1 ∈ (a2, 1]

c3 ∈ (c2, 1], c2 ∈ (c1, c3), c1 ∈ [0, c2)

Using Algorithm 4 in Sucholutsky et al. (2021), we
see that there are multiple constraints for a1 and
a2 which require them to be maximised, but there
are none for a3. Thus, to maximise Equation 3, a3
adjusts to the minimum value it can get:

a3 = min(0, a2) = ϵ ≃ 0

By symmetry, we can also conclude that:

c1 = min(0, c2) = ϵ ≃ 0

These approximations are also generalisable to
multiple classes connected by a line, for example, if
a line connects only two centroids, the soft-labels
at each end are derived as [0, 1] and [1, 0] - the
same as a “hard" label. These findings are sub-
stantiated experimentally in Table 2 where we ex-
amine the soft-labels generated by DeepSLP and
constraintSLP using a few-shot training support
set of the task airline with 8 examples per class –
the constraintSLP soft label corresponding to the
furthest class from the prototype location drops to
almost zero compared to other soft label values. On
the other hand, DeepSLP prevents overfitting on
the nearest classes and produces a more generalised
distribution of soft-labels. This is a trend generally
observed in other tasks and classes as well. We
further use this theorem to prove the main theorem
given by Theorem A.2.
Theorem A.2. The constant soft-labels in con-
straintSLP do not always select the closest class
centroid to a test point.

# constraintSLP DeepSLP(x)
1 5.6422e− 01 9.7887e− 01

4.3577e− 01 2.0995e− 02
9.7973e− 16 1.3500e− 04

2 5.3090e− 13 2.5240e− 02
4.3212e− 01 9.7475e− 01
5.6787e− 01 1.0000e− 05

Table 2: Soft labels derived using constraintSLP and
DeepSLP. # denotes the index of the soft-label proto-
type lying on the line. Soft labels are constant for con-
straintSLP, however, they are a function of input point
x for DeepSLP, thus allowing more flexibility.

Figure 5: Schematic diagram for ascertaining θ with
class centroids A = (−10, 0), B = (5, 0) and C =
(15, 0).

Proof of Theorem A.2 (Informal) Furthermore,
consider a line b perpendicular to l – it intersects l
between A and B. We select θ such that ϕ = π/2.
We denote the complete setup diagrammatically in
Figure 5.

Consider the distance weighted influences at x
for class A. We have the influence as a1sinθ

e +
c1cosθ

e = a1sinθ
e as c1 ≃ 0. Similarly, for class B,

we have the weighted influence as a2sinθ
e + c2cosθ

e .
To calculate values of θ where the weighted influ-
ence of B is more than the weighted influence of A,
we get:

a2sinθ

e
+

c2cosθ

e
>

a1sinθ

e
=⇒ a2sinθ + c2cosθ > a1sinθ

=⇒ c2cosθ − (a1 − a2)sinθ > 0

=⇒ c2cosθ − (a1 − a2)sinθ√
c22 + (a1 − a2)2

> 0

=⇒ cos(θ + α) > 0

where α = tan−1
(
a1−a2

c2

)
. Since cos(θ+α) > 0

229



a Denoting the decision boundaries calculated with con-
straintSLP. Green represents points classified as class A, pink
represents the points classified as class B, and brown repre-
sents the points classified as C.

b Zooming in at point x. We can see that it is classified as B.

Figure 6: The soft-labels of the linear constraint sys-
tem at A and C using constraintSLP are calculated as
[0.5963, 0.4036, 0.0001] and [0.0001, 0.4495, 0.5504].
We also get θ = 66.84◦. Using these soft-labels, we
calculate the decision boundaries for points in this area.
We use θ to calculate the coordinates of x. Zooming
in, we can visually inspect that x is classified to class
B. For x, the Euclidean distance of x from A and B is
9.847 and 14.338 respectively. From the figure, we can
see that constraintSLP classifies x as B even though the
Euclidean distance of x from A is shorter.

we have (θ + α) ∈ (−π/2, π/2) and since θ > 0,
thus for θ ∈ [0, π/2− α), the weighted influence
of B is more than the weighted influence of A.

However, it is worth observing the result for θ
derived above can contain points closer to A (using
Euclidean distance) which are actually classified
as B. We can easily demonstrate this with a counter
example explained in Figure 6.

Therefore, for points closer to A compared to
B using an Euclidean measure, constraintSLP can
still return a higher value for the influence at B
compared to A. This adversely affects performance
in classifiers where we rely on selection of the
closest class centroid for classification – such as

Algorithm 3: Inner-loop training of
MetaSLP
1 Ti ← meta-training task
2 L ← line connecting both centroids of a

task
3 α← inner-loop learning rate
4 S ← inner-loop optimisation steps
5 Initialise g1x(x) and g2(x) randomly
6 while s < S do
7 Sample support examples Xs for Ti
8 Calculate locations of each soft-label

prototype in L
9 Use Equation 1 to classify x ∈ Xs

10 Calculate ∇LTi(fθ(x), g1(x), g2(x))
11 Scale∇ϕLTi(g1(x)) and

∇ωLTi(g2(x)) by the distances from
the soft-label prototypes

12 θ′i ← θ − α∇θLTi(fθ(x))
13 θ′1i ← θ1 − α∇ϕLTi(g1(x))
14 θ′2i ← θ2 − α∇ωLTi(g2(x))
15 end

1-NN, Prototypical Networks, and constraintSLP
– and we believe this is the reason behind the poor
performance of constraintSLP for cases where the
total classes is greater than two.

A.4 Training algorithms for MetaSLP

Inner-loop training Our inner-loop training al-
gorithm for MetaSLP is presented in Algorithm 3.
The inner-loop encoder optimisation can be under-
stood as updating the parameters of the encoder to
“push” different classes away from each other and
“pull” points belonging to the same class together;
i.e., increase inter-class distance and decrease intra-
class distance which leads to well-defined clusters
per class. We present this process in Figure 7.

Outer-loop training Our outer-loop training al-
gorithm is presented in Algorithm 4.

A.5 Meta-training details

GLUE (Wang et al., 2018) tasks and their details
are provided in Table 3. These tasks include MNLI
(Williams et al., 2018), SST2 (Socher et al., 2013),
CoLA (Warstadt et al., 2018), MRPC (Dolan and
Brockett, 2005), QQP (Wang et al., 2017), QNLI
(Wang et al., 2018), RTE (Giampiccolo et al., 2008)
and SNLI (Bowman et al., 2015). We employ
the same tasks as Bansal et al. (2020a) to ensure
direct comparability. Note that the datasets and
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Step 1 Step 2 Step n

Figure 7: Inner-loop training – note that inter-class embeddings are pushed further away, and intra-class embeddings
are pushed closer together across n steps. The endpoints of the line mark the location of the soft-label prototypes.

Algorithm 4: Outer-loop training of
MetaSLP
1 T ← batch of meta-training tasks, |T | = n
2 M← batch of distinct inner-loop

optimised models parameterised by θi,
|M| = n

3 β ← outer-loop learning rate
4 for Ti, Mi ∈ T , M do
5 if FOMAML then
6 Sample query examples Xq for Ti,

Xs ∩Xq = Φ
7 Use Equation 1 to classify x ∈ Xq

8 Calculate
∇θ′i
LTi(fθ′i(x), gϕ′

i
(x), hω′

i
(x))

9 Update∇θLTi(fθ(x))+ =
∇θ′i
LTi(fθ′i(x), gϕ′

i
(x), hω′

i
(x))

10 end
11 if Reptile then
12 Update∇θLTi(fθ(x))+ = θ − θi
13 end
14 end
15 Update θ ← θ − β

n

∑n
i=1∇θLTi(fθ(x))

classes in GLUE are completely different from the
datasets used for evaluating the model - thus the
final model fine-tunes on unseen few-shot data and
learns classes it has previously not encountered.

To train our model to detect the sentiment con-
tained within phrases of a sentence by using the an-
notations for phrases within sentences for SST2, we
append a separator token and the annotated phrase
for each sentence at the end of the sentence in the
form “[CLS] <sentence_1> [SEP] <sentence_2>
[SEP]" and obtain the passage level embedding for
training.

Dataset Labels Training
Size

Validation
Size

Test
Size

CoLA 2 8551 1042 -
MRPC 2 3669 409 -
QNLI 2 104744 5464 -
QQP 2 363847 40431 -
RTE 2 2491 278 -
SNLI 3 549368 9843 -
SST-2 2 67350 873 -
MNLI 3 392703 19649 -

Table 3: Details of GLUE tasks used for meta-training.

A.6 Hyperparameters

Generating lines The hyperparameters used to
generate lines are: (a) ϵ, which is a control factor
used to denote the maximum tolerance between a
centroid and the line assigned to it using Euclidean
distance—we use a tolerance value of 1e− 1; and
(b) l, which denotes the maximum number of lines
used to connect all centroids. We experiment with
a range of values (l ∈ {0.25n, 0.5n, 0.75n, n− 1},
where n is the number of centroids), but find l =
⌈n/2⌉ to give the best accuracy on the validation
data with the minimum number of lines required.4

DeepSLP For DeepSLP, we find that more
epochs are needed to train models with a higher
number of soft labels (i.e., a higher number of
classes in the output of the classifier head) - essen-
tially, 3 classes fitted on a line need more epochs
compared to 2 classes fitted on a line. We use
AdamW (Loshchilov and Hutter, 2017a) as our op-
timiser and perform hyperparameter tuning on the
validation set. We only need a few epochs (5 to
10) to generalise well depending on the training
task. We fix a random seed, train our models and
evaluate performance on the test tasks. We repeat

4The right choice of hyperparameters is key as the op-
timisation process fails when it is not possible to connect n
centroids with l lines.
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Parameter Search Space MetaSLPREPTILE MetaSLPFOMAML Reptile
Tunable layers (v) [1, 2, 3, 4] 4 4 4

K-shot [8, 16, 32] 16 16 16

Batch size [8, 16, 32] 16 16 16

Steps [3, 5, 7] 5 5 5

αf [5e− 3, 1e− 3, 1e− 4] 5e− 3 Learnable 1e− 3

αg, αh [5e− 3, 1e− 3, 1e− 4, 1e− 2] 5e− 3 Learnable 1e− 3

Nesterov [True, False] True True True

Momentum [0.5, 0.7, 0.9] 0.9 0.9 True

βinitial [1e− 5, 2e− 5, 5e− 5] 5e− 5 2e− 5 1e− 5

βfinal [1e− 5, 2e− 5, 5e− 6] 2e− 5 2e− 5 1e− 5

Task sampling [square root, uniform] square root square root square root

Table 4: Meta-training hyperparameters.

this process across three different seeds and report
the mean and standard deviation. Hyperparameters
for all baselines in this setting can be found online
in our code repository5.

Meta-training For inner-loop optimisation, we
use SGD as an optimiser with Nesterov and a mo-
mentum factor. We use a cosine annealing learning
rate scheduler (Loshchilov and Hutter, 2017b) on
our outer-loop learning rate to decay the learning
rate from a starting rate to an end rate without
restarts across one epoch for MetaSLPREPTILE. We
use AdamW (Loshchilov and Hutter, 2017a) as our
outer-loop optimiser with AMSGrad (Reddi et al.,
2018). We employ early stopping and stop train-
ing if our model does not improve it’s validation
set accuracy over 100 batches. We use learnable
inner-loop learning rates for MetaSLPFOMAML per
parameter group for better optimisation as indi-
cated by previous literature (Antoniou et al., 2019).
All meta-training hyperparameters can be found in
Appendix A.6, Table 4.

Meta-testing Similar to inner-loop optimisation
at meta-training, we use SGD with Nesterov and
the same optimiser hyperparameters. However, we
decay the learning rate using a cosine scheduler
across all fine-tuning epochs to prevent overfitting
on the few-shot (support) training set per task for
MetaSLPREPTILE.

A.7 Results

The complete set of results of all models and base-
lines can be seen in Table 5 for the low-resource
setting and DeepSLP, and Table 6 for the high-
resource setting and MetaSLP.

5<anon-url>

DeepSLP Our results (Table 5) demonstrate
that DeepSLPBERT outperforms BERTfine-tuned in
31/48 tasks, constraintSLPBERT in 43/48 tasks
and LORABERT in 45/48 tasks, demonstrating
the usefulness of soft-label prototypes and su-
periority over the “standard” LLM fine-tuning
paradigm, as well as the simpler constraintSLP
variant. constraintSLPBERT, on the other hand,
fares worse than BERTfine-tuned and LORA, out-
performing the former in only 19/48 tasks and
the latter in 25/48 tasks, while exhibiting high
standard deviations which can be explained by
Theorem A.2, as constraintSLP can behave errat-
ically and not select the closest point to the class
centroid. Overall, DeepSLP is the best perform-
ing method, demonstrating the highest accuracy
in 31/48 tasks, while being on-par with the sec-
ond best model (BERTfine-tuned) on the remaining
tasks (15/48 tasks). Fine-tuned BERT is, overall,
the next best model with 13/48 tasks while con-
straintSLP achieves the best performance amongst
all methods in only 1/48 tasks. ProtoNet’s com-
paratively lower performance can be explained by
the fact that meta-learning approaches tend to re-
quire a large number of diverse and structured meta-
training tasks for effective learning — thus not
making them readily suited for (extreme) few-shot
learning settings.

MetaSLP In Table 6, MetaSLPREPTILE outper-
forms all baselines achieving the highest per-
formance in 33/48 tasks. LEOPARD is the
next best model with the highest performance
in 11/48 tasks. Interestingly, MetaSLPFOMAML
does not fare as well as MetaSLPREPTILE and
achieves the highest performance in only 1/48
tasks while outperforms LEOPARD in only 6/48
tasks. MetaSLPFOMAML nevertheless outperforms
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MetaSLPREPTILE and Reptile in natural language
inference tasks – demonstrating the usefulness of
learnable inner-loop learning rates across multiple
task distributions while meta-training.

A.8 Ensemble properties of DeepSLP
In this study, we compare and contrast DeepSLP to
ensembles and draw similarities between the two,
shedding further light into the effectiveness of our
approach. Each prediction decision by DeepSLP is
the result of two soft-label prototypes – those that
lie on each end of the line nearest to a test point x.
An analogy can then be drawn between the proto-
types used at prediction time and those individual
(albeit independent) models that are utilised by an
ensemble when producing the final classification.

While DeepSLP prototypes are not independent
but are rather trained jointly (and share the same
encoder), in what follows, we demonstrate that they
display several properties of ensemble methods,
while being computationally efficient and utilising
a small number of parameters. For the analyses
below, we consider the tasks Airline and Disaster
using an 8-shot setting and evaluate on the test data
for each. However, we find the below properties to
generalise across all tasks.

A.8.1 Individual vs joint prediction
In a similar way as an ensemble exhibits superior
performance to the individual models it utilises,
we seek to assess whether the joint utilisation of
prototypes at prediction time is indeed more effec-
tive than utilising each prototype individually. To
evaluate this, we measure the probability distribu-
tion of each setting on the test data using negative
log-likelihood:

NLL(f(x), y) ≜ −log(f (y)(x))
Following Abe et al. (2022), for a strictly convex
function such as NLL, we use Jensen’s inequality:

NLL(F(x), y) ≤ E[NLL(f(x), y)]

where F (x) is the ensemble and f(x) are the con-
stituent models. The idea is that the probability
distribution of the ensemble fits the target distribu-
tion more closely than the corresponding expected
probability distributions of its constituent models.
For joint soft-label prototypes parameterised by g1
and g2 and located at p1 and p2, we have:

NLL

(
softmax

(
g1(f(x))

||f(x)− p1||
) +

g2(f(x))

||f(x)− p2||

)
, y

)

= −
∑

log

(
softmax

(
gy1 (f(x))

||f(x)− p1||
) +

gy2 (f(x))

||f(x)− p2||

))
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Figure 8: NLL(F(x), y) vs. E[NLL(f(x), y)] for Dis-
aster (top) and Airline (bottom). The ith subscript refers
to the ith soft-label prototype.

For the individual soft-label prototypes, weigh-
ing the outputs by distance does not change the final
softmax probability distribution; therefore, we can
define E[NLL(f(x), y)] as their average:

−1

2

∑
log(softmax(gy1 (f(x)) + log(softmax(gy2 (f(x))

We plot the negative log likelihoods for Airline
and Disaster on the test set after fine-tuning each
model on ten subsets of few-shot training data (as
explained before in Section 4) in Figure 8 to assess
whether DeepSLP exhibits this property of ensem-
ble methods. We find that NLL(F(x), y) is much
lower than E[NLL(f(x), y)], which confirms that
the joint utilisation of prototypes results in better
predictions than if they were to be used individually.
Our experiments confirm that this is a general trend
we observe across tasks. In the following sections,
we investigate the reasons behind the high values
observed for E[NLL(f(x), y)], and compare the
jointly trained prototypes against a strong baseline,
the fine-tuned BERT baseline.

A.8.2 Jointly utilised soft-label prototypes
improve diversity

Diversity in ensemble classifications refers to the
difference in the probability distribution on out-of-
distribution (ood) data for classifications between
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Category (Classes) Shot LORABERT ProtoNet constraintSLPBERT BERTfine-tuned* DeepSLPBERT

Political Bias (2) 4 52.75 ± 4.33 51.15 ± 2.454 53.447 ± 3.281 54.57 ± 5.02 53.251 ± 4.042
8 53.66 ± 4.25 56.568 ± 4.228 55.824 ± 3.725 56.15 ± 3.75 58.209 ± 5.198
16 59.21 ± 2.27 59.183 ± 4.706 58.277 ± 4.128 60.96 ± 4.25 61.479 ± 2.974

Emotion (13) 4 7.56 ± 2.93 8.953 ± 2.052 8.662 ± 6.213 09.20 ± 3.22 9.076 ± 1.108
8 9.02 ± 2.36 10.857 ± 3.436 8.16 ± 3.266 08.21 ± 2.12 8.041 ± 2.797
16 10.29 ± 1.67 11.479 ± 2.96 8.115 ± 3.66 13.43 ± 2.51 10.919 ± 1.615

Sentiment Books (2) 4 51.27 ± 2.75 55.53 ± 4.097 59.89 ± 5.385 54.81 ± 3.75 58.67 ± 4.753
8 58.16 ± 3.3 58.97 ± 4.909 64.34 ± 2.565 53.54 ± 5.17 64.78 ± 2.615
16 59.16 ± 2.59 65.5 ± 7.026 66.36 ± 2.183 65.56 ± 4.12 67.453 ± 3.085

Rating DVD (3) 4 31.65 ± 4.91 37.665 ± 7.184 32.298 ± 16.263 32.22 ± 08.72 39.566 ± 5.086
8 37.69 ± 3.16 37.008 ± 5.118 32.644 ± 16.016 36.35 ± 12.50 38.788 ± 4.449
16 38.63 ± 5.52 39.123 ± 6.004 35.587 ± 17.445 42.79 ± 10.18 40.53 ± 4.375

Rating Electronics (3) 4 31.66 ± 2.94 33.696 ± 5.55 35.188 ± 16.211 39.27 ± 10.15 39.977 ± 5.959
8 38.72 ± 5.95 37.297 ± 5.938 29.624 ± 12.876 28.74 ± 08.22 41.926 ± 3.985
16 39.15 ± 6.6 43.825 ± 5.946 29.836 ± 12.753 45.48 ± 06.13 44.917 ± 3.164

Rating Kitchen (3) 4 36.63 ± 4.68 35.914 ± 6.678 28.253 ± 15.907 34.76 ± 11.20 39.624 ± 6.787
8 39.69 ± 6.22 38.46 ± 11.124 24.397 ± 11.961 34.49 ± 08.72 41.081 ± 6.777
16 38.17 ± 7.14 46.546 ± 8.394 31.926 ± 18.29 47.94 ± 08.28 45.801 ± 4.562

Political Audience (2) 4 49.75 ± 1.03 50.976 ± 1.84 51.305 ± 2.68 51.02 ± 1.72 51.741 ± 2.827
8 54.05 ± 2.54 52.022 ± 3.964 53.104 ± 3.669 52.80 ± 2.72 54.506 ± 3.274
16 55.39 ± 3.66 54.024 ± 3.071 53.888 ± 3.305 58.45 ± 4.98 56.956 ± 3.045

Sentiment Kitchen (2) 4 53.02 ± 1.54 55.24 ± 3.427 61.96 ± 4.594 56.93 ± 7.10 60.76 ± 4.426
8 55.54 ± 3.47 62.28 ± 5.103 64.83 ± 3.983 57.13 ± 6.60 65.733 ± 3.198
16 58.59 ± 4.83 66.9 ± 5.441 68.21 ± 3.298 68.88 ± 3.39 69.18 ± 2.589

Disaster (2) 4 56.02 ± 6.35 51.474 ± 8.848 52.77 ± 10.803 55.73 ± 10.29 54.252 ± 9.843
8 57.46 ± 6.9 60.661 ± 4.991 56.888 ± 11.139 56.31 ± 09.57 61.3 ± 7.961
16 65.79 ± 2.03 63.893 ± 6.62 65.907 ± 3.691 64.52 ± 08.93 69.28 ± 2.358

Airline (3) 4 24.36 ± 5.42 44.167 ± 10.752 36.243 ± 22.607 42.76 ± 13.50 50.987 ± 4.936
8 52.31 ± 7.89 50.148 ± 13.429 44.972 ± 22.584 38.00 ± 17.06 55.209 ± 6.049
16 54.1 ± 8.57 54.8 ± 10.49 29.238 ± 17.494 58.01 ± 08.23 60.247 ± 4.577

Rating Books (3) 4 34.69 ± 2.12 37.715 ± 5.801 25.562 ± 15.207 39.42 ± 07.22 42.116 ± 4.725
8 39.36 ± 6.33 38.518 ± 5.327 34.026 ± 14.123 39.55 ± 10.01 42.156 ± 4.608
16 41.23 ± 5.32 44.694 ± 7.797 32.509 ± 16.132 43.08 ± 11.78 46.513 ± 3.036

Political Message (9) 4 12.16 ± 1.46 13.888 ± 2.076 12.438 ± 1.799 15.64 ± 2.73 14.421 ± 1.095
8 15.71 ± 2.04 16.155 ± 2.316 15.08 ± 2.925 13.38 ± 1.74 16.919 ± 1.756
16 15.53 ± 2.55 18.324 ± 2.011 13.121 ± 3.294 20.67 ± 3.89 18.319 ± 1.74

Sentiment DVD (2) 4 50.77 ± 0.78 51.06 ± 3.302 56.06 ± 2.408 54.98 ± 3.96 55.003 ± 2.936
8 52.24 ± 1.54 55.19 ± 3.298 56.98 ± 3.299 55.63 ± 4.34 57.527 ± 3.562
16 52.6 ± 2.09 59.45 ± 3.84 58.95 ± 2.813 58.69 ± 6.08 60.76 ± 2.944

Scitail (2) 4 43.36 ± 4.74 50.227 ± 5.69 52.296 ± 4.366 58.53 ± 09.74 54.101 ± 3.759
8 54.29 ± 5.25 54.196 ± 6.678 55.964 ± 5.705 57.93 ± 10.70 56.341 ± 5.786
16 52.68 ± 3.0 57.744 ± 5.696 59.675 ± 4.033 65.66 ± 06.82 59.692 ± 4.227

Restaurant (8) 4 10.56 ± 1.36 18.161 ± 2.822 24.932 ± 17.102 49.37 ± 4.28 47.634 ± 5.237
8 20.92 ± 2.4 32.146 ± 5.785 29.787 ± 9.573 49.38 ± 7.76 55.912 ± 4.494
16 29.37 ± 4.05 40.435 ± 3.348 29.154 ± 13.537 69.24 ± 3.68 61.716 ± 2.208

CoNLL (4) 4 21.48 ± 2.71 35.438 ± 7.324 27.02 ± 7.346 50.44 ± 08.57 52.724 ± 5.84
8 29.84 ± 3.28 44.259 ± 4.886 31.296 ± 17.487 50.06 ± 11.30 60.374 ± 3.731
16 37.18 ± 3.32 52.116 ± 5.354 22.923 ± 7.933 74.47 ± 03.10 67.496 ± 4.551

Table 5: Classification performance (accuracy) of our methods (constraintSLP and DeepSLP) and baselines in the
low-resource setting. Entries in grey indicate the best model out of all; * refers to the baseline as reported in Bansal
et al. (2020a). Subscripts for constraintSLP and DeepSLP refer to the (non-fine-tuned) encoder used. Each set of
results is separated by a double line. The first set of results contains intent classification tasks, the second set has a
natural language inference task and the last set contains entity typing tasks.
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Category (Classes) Shot ProtoNet LEOPARD* Reptile MetaSLPREPTILE MetaSLPFOMAML

Political Bias (2) 4 56.33 ± 4.37 60.49 ± 6.66 58.82 ± 4.31 60.96 ± 6.13 55.06 ± 5.9
8 58.87 ± 3.79 61.74 ± 6.73 59.43 ± 3.79 63.65 ± 4.57 58.97 ± 5.5
16 57.01 ± 4.44 65.08 ± 2.14 62.21 ± 0.72 66.05 ± 1.57 63.63 ± 4.74

Emotion (13) 4 09.18 ± 3.14 11.71 ± 2.16 11.65 ± 3.21 11.94 ± 1.95 11.03 ± 2.98
8 11.18 ± 2.95 12.90 ± 1.63 10.56 ± 2.85 13.42 ± 1.46 12.38 ± 2.69
16 12.32 ± 3.73 13.38 ± 2.20 11.62 ± 3.11 14.03 ± 2.35 12.32 ± 1.76

Sentiment Books (2) 4 73.15 ± 5.85 82.54 ± 1.33 76.95 ± 1.03 83.22 ± 0.95 74.51 ± 5.25
8 75.46 ± 6.87 83.03 ± 1.28 77.49 ± 1.08 83.8 ± 0.8 79.25 ± 1.97
16 77.26 ± 3.27 83.33 ± 0.79 77.88 ± 0.56 83.8 ± 1.59 78.41 ± 1.08

Rating DVD (3) 4 47.73 ± 6.20 49.76 ± 9.80 45.91 ± 9.85 45.2 ± 8.91 39.64 ± 5.17
8 47.11 ± 4.00 53.28 ± 4.66 47.23 ± 9.22 58.38 ± 2.9 52.35 ± 5.27
16 48.39 ± 3.74 53.52 ± 4.77 48.49 ± 8.88 57.41 ± 4.71 60.4 ± 3.71

Rating Electronics (3) 4 37.40 ± 3.72 51.71 ± 7.20 44.47 ± 8.25 45.34 ± 7.22 39.53 ± 5.76
8 43.64 ± 7.31 54.78 ± 6.48 49.1 ± 6.81 55.10 ± 5.12 47.83 ± 5.94
16 44.83 ± 5.96 58.69 ± 2.41 50.68 ± 6.8 59.47 ± 2.29 56.53 ± 4.36

Rating Kitchen (3) 4 44.72 ± 9.13 50.21 ± 09.63 45.38 ± 10.96 45.20 ± 8.78 39.11 ± 7.16
8 46.03 ± 8.57 53.72 ± 10.31 46.71 ± 9.84 54.53 ± 9.9 50.19 ± 8.36
16 49.85 ± 9.31 57.00 ± 08.69 52.87 ± 9.52 58.94 ± 7.58 57.63 ± 8.37

Political Audience (2) 4 51.47 ± 3.68 52.60 ± 3.51 52.45 ± 4.26 54.1 ± 3.66 52.03 ± 2.73
8 51.83 ± 3.77 54.31 ± 3.95 52.87 ± 4.31 56.01 ± 3.65 52.06 ± 2.27
16 53.53 ± 3.25 57.71 ± 3.52 55.6 ± 1.85 58.57 ± 2.04 54.33 ± 3.14

Sentiment Kitchen (2) 4 62.71 ± 9.53 78.35 ± 18.36 69.81 ± 14.58 81.96 ± 3.73 72.73 ± 7.97
8 70.19 ± 6.42 84.88 ± 1.12 75.76 ± 1.13 83.33 ± 1.99 76.86 ± 4.46
16 71.83 ± 5.94 85.27 ± 1.31 76.41 ± 0.66 84.33 ± 1.81 80.78 ± 4.38

Disaster (2) 4 50.87 ± 1.12 51.45 ± 4.25 49.76 ± 4.73 55.03 ± 8.73 52.62 ± 2.71
8 51.30 ± 2.30 55.96 ± 3.58 52.17 ± 5.17 57.77 ± 6.40 55.04 ± 5.79
16 52.76 ± 2.92 61.32 ± 2.83 55.37 ± 4.53 65.18 ± 4.41 62.27 ± 4.42

Airline (3) 4 40.27 ± 8.19 54.95 ± 11.81 57.11 ± 14.16 57.39 ± 7.83 51.62 ± 10.53
8 51.16 ± 7.60 61.44 ± 03.90 64.37 ± 3.49 65.67 ± 4.82 57.47 ± 9.37
16 48.73 ± 6.79 62.15 ± 05.56 66.31 ± 2.55 69.48 ± 2.06 65.02 ± 5.16

Rating Books (3) 4 48.44 ± 7.43 54.92 ± 6.18 56.57 ± 8.17 55.79 ± 5.61 54.4 ± 5.83
8 52.13 ± 4.79 59.16 ± 4.13 57.33 ± 7.63 65.74 ± 5.58 57.17 ± 6.77
16 57.28 ± 4.57 61.02 ± 4.19 63.26 ± 3.59 67.87 ± 3.45 66.66 ± 3.93

Political Message (9) 4 14.22 ± 1.25 15.69 ± 1.57 14.58 ± 1.78 18.84 ± 1.82 14.96 ± 1.94
8 15.67 ± 1.96 18.02 ± 2.32 15.13 ± 2.16 20.09 ± 2.71 16.09 ± 2.6
16 16.49 ± 1.96 18.07 ± 2.41 16.38 ± 2.15 23.22 ± 1.17 16.62 ± 2.19

Sentiment DVD (2) 4 74.38 ± 2.44 80.32 ± 1.02 72.03 ± 11.61 80.97 ± 1.21 73.08 ± 7.56
8 75.19 ± 2.56 80.85 ± 1.23 75.79 ± 1.62 81.85 ± 1.79 76.55 ± 2.9
16 75.26 ± 1.07 81.25 ± 1.41 76.69 ± 0.8 83.48 ± 1.01 78.19 ± 1.32

Scitail (2) 4 76.27 ± 4.26 69.50 ± 9.56 59.13 ± 10.58 53.48 ± 5.59 61.55 ± 9.11
8 78.27 ± 0.98 75.00 ± 2.42 62.63 ± 10.85 60.79 ± 4.6 68.03 ± 4.54
16 78.59 ± 0.48 77.03 ± 1.82 68.03 ± 1.57 61.67 ± 3.61 68.5 ± 3.7

Restaurant (8) 4 17.36 ± 2.75 49.84 ± 3.31 13.37 ± 2.25 27.00 ± 2.61 20.31 ± 2.97
8 18.70 ± 2.38 62.99 ± 3.28 16.83 ± 3.42 35.66 ± 2.39 27.74 ± 2.29
16 16.41 ± 1.87 70.44 ± 2.89 16.0 ± 3.44 37.20 ± 2.68 28.57 ± 2.41

CoNLL (4) 4 32.23 ± 5.10 54.16 ± 6.32 31.31 ± 5.32 40.79 ± 3.40 36.07 ± 3.25
8 34.49 ± 5.15 67.38 ± 4.33 33.17 ± 5.1 41.25 ± 5.21 40.5 ± 2.16
16 33.75 ± 6.05 76.37 ± 3.08 34.04 ± 3.59 45.96 ± 4.75 43.67 ± 6.92

Table 6: Classification performance (accuracy) of MetaSLP and baselines in the high-resource setting. Entries in
green indicate the best model out of all; * refers to the baseline as reported in Bansal et al. (2020a). Each set of
results is separated by a double line. The first set of results contains intent classification tasks, the second set has a
natural language inference task and the last set contains entity typing tasks.
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Figure 9: Ensemble uncertainty contrasted against the
uncertainty of fine-tuned BERT, where we observe that
DeepSLP’s uncertainty F (x) (given by yellow) is driven
by ensemble diversity, given by JSD(F (x)) in blue.

individual models and the ensemble. We use this
definition to ascertain the diversity of classifica-
tions provided by the jointly utilised soft-label pro-
totypes. Diversity is a desirable property as ensem-
ble predictions are generally more robust due to
diversity between the predictions of their individ-
ual members (Lee et al., 2015).

Existing work (Ashukha et al., 2020; Lakshmi-
narayanan et al., 2017) defines ensemble uncer-
tainty as the sum of ensemble diversity and the
expected average model uncertainty on ood data.
Based on Abe et al. (2022), it is calculated as:

H([y|F (x)] =
−1
C

∑
p(yi|F (x))log(p(yi|F (x)))

If we use the Jenson-Shannon divergence as a di-
versity measure for an ensemble given by

JSDp(f)[y|f(x)] =
1

M

∑
KL[y|f(x)||y|F (x)]

where KL is the average KL divergence between
the output distribution of each soft-label prototype
and the jointly utilised soft-label prototypes, from
Abe et al. (2022), this expression reduces to:

H([y|F (x)] =
ens. diversity

JSDp(f)[y|f(x)] +
avg. model uncert.

Ep(f)[H[y|f(x)]]
We contrast ensemble uncertainty and single

model uncertainty using the fine-tuned BERT
model for the task airline in Figure 9, but note
that similar trends are observed across all tasks.
We note that the uncertainty of jointly utilised soft-
label prototypes is generally higher than that of
the fine-tuned BERT model. As the average model
uncertainty of individual soft-label prototypes is
negligibly low, the uncertainty in the joint case
is driven mainly by the diversity of the ensemble.

This is in line with previous work which attributes
an increase in uncertainty in ensembles due to di-
versity (Lakshminarayanan et al., 2017; Dietterich,
2000; Wilson and Izmailov, 2020). Though not
strictly an ensemble, our approach exhibits similar
properties (higher uncertainty driven by model di-
versity), as well as a general reduction in standard
deviation compared to fine-tuned BERT.

The above provide evidence that our approach as
a whole exhibits desirable properties of ensembles
which drive a higher performance but which do not
lead to higher training time nor compute.

236


