
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 237–244
August 15, 2024 ©2024 Association for Computational Linguistics

Learned Transformer Position Embeddings
Have a Low-Dimensional Structure

Ulme Wennberg
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
ulme@kth.se

Gustav Eje Henter
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
ghe@kth.se

Abstract
Position embeddings have long been essen-
tial for sequence-order encoding in transformer
models, yet their structure is underexplored.
This study uses principal component analysis
(PCA) to quantitatively compare the dimension-
ality of absolute position and word embeddings
in BERT and ALBERT. We find that, unlike
word embeddings, position embeddings occupy
a low-dimensional subspace, typically utilizing
under 10% of the dimensions available. Addi-
tionally, the principal vectors are dominated by
a few low-frequency rotational components, a
structure arising independently across models.

1 Introduction

Transformers, as introduced by Vaswani et al.
(2017), have significantly advanced the field of
natural language processing, excelling in tasks like
machine translation (Lample et al., 2018), question
answering (Yamada et al., 2020), information ex-
traction (Wadden et al., 2019; Lin et al., 2020), and
text generation (Radford et al., 2018; Brown et al.,
2020). The ability to encode positional information
is vital in these models, since the transformer archi-
tecture otherwise does not take order into account.

Despite their widespread use, the structure of
absolute position embeddings in NLP models like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020), and ELEC-
TRA (Clark et al., 2020), as well as vision mod-
els like the vision transformer (Dosovitskiy et al.,
2021) and BEIT (Bao et al., 2022), remains under-
explored. Our research aims to address this gap.

This paper investigates the structure of learned
absolute position embeddings in greater detail than
before. Specifically, we apply principal compo-
nents analysis to the learned position embeddings
across 12 different transformer-based language
models. This yields several novel observations:

• Unlike word embeddings, position embed-
dings occupy a low-dimensional subspace.
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Figure 1: Variance explained by each individual princi-
pal component for position (PE, solid lines) and word
(WE, dashed) embeddings across four ALBERT models.
Each component explains less variance than the previous
one by definition. Unlike word embeddings, position
embeddings occupy a low-dimensional subspace.

• Variation within this subspace takes the shape
of mutually orthogonal periodic components
operating pairwise at different frequencies.

These trends are consistent across different models.
Our findings resemble mechanisms for mathemat-
ical processing recently observed in transformers
and suggest new ways in which sequence order can
be encoded and learned in transformer models.

2 Background

Transformer-based language models, such as those
by Vaswani et al. (2017), have dramatically
changed natural language processing by effectively
integrating information across long distances in
a sequence. Central to the functionality of these
models are position embeddings, which enable the
encoding of sequence order—an essential aspect in
otherwise order-agnostic transformer architectures.

Content embeddings zi in transformers are con-
structed as zi = eW (xi) + eP (i), where xi is the
token at position i, eW represents word embed-
dings, and eP (i) is the position embedding vector
of position i; EP will denote the matrix obtained
by stacking all row-vectors eP . This setup allows
the final representation of tokens in a sequence
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Table 1: Variance in principal components (PCs) of word and position embeddings for twelve different language
models. PCA of sinusoidal position embeddings (Vaswani et al., 2017) is also included for reference.

(a) Position embeddings

Model Tot. PCs Top 3 Top 5 Top 10 N50% (%)
Sinusoidal 128 0.28 0.37 0.52 10 7.8%
albert-base-v1 128 0.50 0.69 0.99 4 3.1%
albert-base-v2 128 0.44 0.67 1.00 4 3.1%
albert-large-v1 128 0.45 0.63 0.95 4 3.1%
albert-large-v2 128 0.40 0.61 0.96 4 3.1%
albert-xlarge-v1 128 0.34 0.51 0.88 5 3.9%
albert-xlarge-v2 128 0.31 0.49 0.89 6 4.7%
albert-xxlarge-v1 128 0.27 0.41 0.68 7 5.5%
albert-xxlarge-v2 128 0.29 0.44 0.72 6 4.7%
bert-base-uncased 512 0.25 0.38 0.62 8 1.6%
bert-base-cased 512 0.28 0.42 0.64 7 1.4%
bert-large-uncased 512 0.23 0.33 0.53 10 2.0%
bert-large-cased 512 0.27 0.41 0.65 7 1.4%

(b) Word embeddings

Model Tot. PCs Top 3 Top 5 Top 10 N50% (%)

albert-base-v1 128 0.07 0.11 0.19 37 28.9%
albert-base-v2 128 0.11 0.15 0.21 39 30.5%
albert-large-v1 128 0.08 0.12 0.20 34 26.6%
albert-large-v2 128 0.09 0.13 0.20 39 30.5%
albert-xlarge-v1 128 0.09 0.13 0.23 27 21.1%
albert-xlarge-v2 128 0.09 0.13 0.21 33 25.8%
albert-xxlarge-v1 128 0.08 0.11 0.18 39 30.5%
albert-xxlarge-v2 128 0.07 0.11 0.18 39 30.5%
bert-base-uncased 768 0.09 0.10 0.12 185 24.1%
bert-base-cased 768 0.05 0.07 0.10 164 21.4%
bert-large-uncased 1024 0.07 0.08 0.10 238 23.2%
bert-large-cased 1024 0.07 0.08 0.11 198 19.3%

to depend on token positions, which is crucial to
adequately model contextual effects in text.

While Vaswani et al. (2017) used a fixed, non-
learnable encoding scheme for position embed-
dings, subsequent work has aimed to enhance the
expressiveness and efficiency of position encod-
ing. BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) used learnable, data-driven posi-
tion embeddings to better capture positional depen-
dencies. ALBERT (Lan et al., 2020) refined this
approach by introducing factorized embedding pa-
rameterizations, reducing model size and complex-
ity while maintaining performance. Research has
shown that varying word embedding sizes based on
frequency can significantly improve computational
efficiency and performance (Grave et al., 2017;
Baevski and Auli, 2019; Dai et al., 2019), but vary-
ing sizes between word and position embeddings
has not been explored, with standard practice being
to use the same dimensionality for both.

Most work on position embeddings examines
their impact on model performance, not their in-
trinsic properties. Existing results show that self-
attention tends to localize in models using absolute
position embeddings (Clark et al., 2019; Htut et al.,
2019) and that these embeddings have translation-
equivariant structure (Wennberg and Henter, 2021).

3 Dimensionality Analysis of Embeddings

We now analyze the dimensionality of word and po-
sition embeddings in transformer-based language
models. A deeper dive into into the structure of
position embeddings is reserved for Sec. 4.

To understand the structural characteristics of po-
sition and word embeddings, we extracted both em-
bedding types from various pre-trained transformer
models, specifically twelve different versions of
ALBERT and BERT provided by Hugging Face

(Wolf et al., 2020). We then applied principal com-
ponent analysis (PCA) to these embeddings, ana-
lyzing each type separately. PCA computes a linear
transformation that decomposes high-dimensional
data into orthogonal vectors representing the pri-
mary axes of variation. Dimensionality reduction is
performed by keeping only the k leading principal
components (PCs).

Table 1 reports on the results of the PCA analysis.
Specifically, it shows how much of the total vari-
ance among embedding vectors of each same type
that can be explained by the top 3, 5, and 10 princi-
pal components, as well as how many components
are needed to explain at least 50% of the variation
between the vectors (denoted N50%). This allows
us to assess and compare the effective dimension-
ality between position and word embeddings.

From the tables, we see that position embed-
dings have a significantly lower-dimensional struc-
ture compared to word embeddings, suggesting
that positional information is encoded more com-
pactly. All ALBERT and BERT models consid-
ered have 50% of their variance in the first 1.4–
5.5% of the principal components or less, while
word embeddings require 19–30% of the PCs to
achieve the same result. Figure 1 graphs the vari-
ance explained by individual principal components
in detail for the ALBERT v2 models, finding that
position-embedding vectors lie almost perfectly on
a subspace of 10 to 20 dimensions, whereas word
embeddings use the entire 128-dimensional space.

4 Analyzing the Principal Components

Having established the low dimensionality of posi-
tion embeddings, we next explore what the uncov-
ered principal components represent and how they
contribute to the embedding structure.

First, we plot (in Figure 2) the leading principal
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Figure 2: Heatmaps visualizing the top 14 PCs of the position-embedding matrices EP of the ALBERT v2 models.
Best viewed in Adobe Acrobat to avoid blurry rendering. The full matrix with all PCs can be found in Figure 7.

0 100 200 300 400 500

0

100

200

300

400

500

(a) 1 component

0 100 200 300 400 500

0

100

200

300

400

500

(b) 2 components

0 100 200 300 400 500

0

100

200

300

400

500

(c) 6 components

0 100 200 300 400 500

0

100

200

300

400

500

(d) 10 components

0 100 200 300 400 500

0

100

200

300

400

500

(e) All components

Figure 3: Heatmaps visualizing the matrix P = EPE
T
P of position-embedding inner products in albert-base-v2,

when EP is approximated by its top k PCs. The greater the value of the inner product, the lighter the color.

components of a few models to visually interpret
the dominant patterns in the position embeddings.
This reveals intriguing patterns. In all cases, the
first ten components take the form of smooth, peri-
odic oscillations as a function of position, indica-
tive of simple harmonic structure. Although the
specific ordering and frequencies change between
models, components come in pairs that exhibit sim-
ilar periodic structure, like sine and cosine repre-
senting cyclical motion. For all models except the
largest, the highest components plotted appear flat
and uniform red (i.e., close to zero), reflecting the
limited dimensionality of the position embeddings.

Figure 5 in the appendix demonstrates, through
Fourier analysis, that the sequence of principal
component scores contains only a few dominant
frequencies, which accounts for their periodic ap-
pearance. The peak frequencies observed, such as
those representing 1, 5, 15, and 49 revolutions as i
runs through its full range from 0 to 511 in the case
of albert-base-v2, are relatively low. This finding
is distinct from the sinusoidal position embeddings
described by Vaswani et al. (2017), which utilize
512 sinusoids of equal magnitude. Unlike the prin-
cipal component scores, these sinusoids are not
mutually orthogonal and are designed with differ-
ent objectives for encoding position in a sequence.

By computing the matrix EPE
T
P , which contains

the inner products between all pairs of position em-
beddings, it has been found that learned position

embeddings tend to exhibit translation equivariance
(Wennberg and Henter, 2021). In contrast, classic
sinusoidal position embeddings display weak inner
products between off-diagonal elements, suggest-
ing an absence of such patterns (Wang and Chen,
2020). By repeating this inner-product experiment,
but approximating the position-embedding matrix
EP by its top k principal components, we can see
how translation-equivariant structure (where each
row of the matrix is a translation of the one above
it) is rapidly created using only a few principal com-
ponents for the albert-v2-base model in Figure 3.

Finally, as PCA is a dimensionality-reduction
technique, we can visualize all 512 albert-base-v2
position-embedding vectors in two dimensions by
means of a scatter plot of their two leading principal
components, as shown in Figure 4. We observe a
very clear rotational structure, where as the position
i goes from 0 to 511, the 2D representation of
eP (i) almost completes a full clockwise turn. Other
principal-component pairs show similar patterns,
but complete multiple rotations as i runs through
the full range of position indices.

Figure 4 exhibits two outliers from the circular
pattern, namely vectors 0 and 511 (the first and
last). This is likely due to how the model is trained:
position embeddings are only ever used after being
summed with a word embedding, and the the first
and the last sequence positions are always assigned
the specific tokens “CLS” and “SEP”, respectively.
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Figure 4: Scatter plot of albert-base-v2 position embed-
dings reduced to two dimensions using PCA. For clarity,
every 16th position is annotated.

This means that, unlike at all other positions, these
two vectors are largely arbitrary, e.g., adding any
vector v to eP (0) while subtracting the same vector
from eW (CLS) leads to the exact same z0.

5 Discussion and Implications

We have demonstrated that position embeddings
operate within a significantly lower-dimensional
space compared to word embeddings. This likely
reflects their role in encoding less complex, but
nonetheless essential structural information.

Opportunities for Transformer Models: In-
tuitively, our findings present an opportunity to
streamline embeddings and reduce computational
demands without compromising the model’s ability
to interpret linguistic contexts. For example, one
could utilize factorized embedding parametriza-
tions of different dimensionalities for position em-
beddings versus word embeddings, similar to how
ALBERT mentions the possibility to use different
embedding dimensionalities for different word to-
kens (Lan et al., 2020), although they opted not
to do so. To further refine model inductive biases
based on the patterns we observed, learned posi-
tion embeddings could be initialized or otherwise
incentivized to have rotational structure, e.g., being
parameterized by sines and cosines with a learnable
frequency. This would differ from the rotational
position embeddings (RoPE) of by Su et al. (2024),
whose rotational frequencies are not learnable.

We observed a consistently low-dimensional
structure of position embeddings among a wide
class of transformer models. This supports the
soundness of the heuristic approach for creating
position embeddings used in Longformer (Beltagy

et al., 2020) – where pre-trained RoBERTa posi-
tion embeddings were used as a starting point for
training a new model – and further suggests that
re-using learned position embeddings from older
models may be useful as a general strategy.

Insights into Embedding Ordered Sequences:
Transformers, particularly those like ALBERT
models which have undergone extensive training,
exhibit an intriguing pattern in their position em-
beddings. These models often utilize approxi-
mately 10 principal components—closely aligning
with 29 = 512, the typical maximum sequence
length. This choice of dimensionality suggests that
each dimension may function akin to a binary sys-
tem, with each principal component potentially im-
plementing a sine or cosine curve. Such a structure
effectively splits the data, allowing for a compact
yet robust representation of sequence positions.

This method of embedding sequences as concur-
rent rotations in low-dimensional spaces indicates
a standardized approach to processing sequential
data via embeddings. This geometric encoding
strategy is echoed in findings across several recent
studies. Nanda et al. (2023) noted that transformer
models trained on mathematical tasks often use a
“clock algorithm” in their latent spaces, enabling
modular arithmetic. Similarly, Zhong et al. (2023)
and Wennberg and Henter (2024) observed analo-
gous rotational patterns in numerical embeddings,
whether trained from scratch on mathematical tasks
or using language-modeling techniques.

These observations highlight the potential of us-
ing geometric transformations as a unified method
to encode sequential information across diverse
applications, like time-series analysis, where preci-
sion and optimized data representation are crucial.

6 Conclusions and Future Work

We have found that learned position embeddings in
a range of transformer language models differ from
the behavior of word embeddings, in that position
embeddings are confined to a low-dimensional lin-
ear subspace. We furthermore find evidence that
this subspace takes the form of a few orthogonal
rotational components at different frequencies.

Interesting future directions to explore include
studying position embeddings in other domains,
such as vision, and leveraging our findings to devise
more efficient transformer variants with improved
inductive biases for modeling sequence data.
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Limitations

This study examined a select number of transformer
models, using principal component analysis. PCA
only considers linear subspaces for dimensional-
ity reduction. Consequently, our analysis can only
be interpreted as an upper-bound estimate of the
intrinsic dimensionality of the manifold of which
position embeddings reside, and may overlook non-
linear relationships within the embeddings. In other
words, the actual dimensionality of the position-
embedding manifold may be lower than our esti-
mates, if it is nonlinear.

Our analysis is limited to a set of twelve differ-
ent transformer-based language models that use
learned absolute position embeddings. With our
focus on absolute position embeddings, we did
not study alternative position embeddings such as
RoPE (Su et al., 2024). Although including addi-
tional position-embedding schemes would indeed
be interesting, adapting our analysis methodology
to RoPE is not straightforward, since it implements
positional dependence differently, and in particular
not by summing word embeddings with explicit
postion embedding vectors eP (i). Additionally,
it should be said that even though many recent
language models utilize RoPE, models in other do-
mains such as computer vision (Dosovitskiy et al.,
2021; Bao et al., 2022) still use absolute position
embeddings like the ones analyzed in this paper.

Furthermore, our investigation is confined to the
input embeddings zi of the models we study. This
means that we cannot tell how the structure and
dimensionality of these vectors may change during
processing, as they pass through successive inter-
nal layers of the models and become increasingly
context-dependent.

Finally, our study does not specifically analyze
how the low-dimensional manifolds we uncovered
influence the transformer self-attention. Investi-
gating this might shed light on why these low-
dimensional manifolds emerge in the first place.

Ethics Statement

To the best of our knowledge, this paper, which
focuses on the analysis of learned position embed-
dings in transformer models, does not directly raise
any ethical concerns.
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A Appendix

For the interested reader, this appendix provides
supplementary visual data to complement the anal-
yses discussed in the main sections of the paper.

Figure 5 presents the summed frequency mag-
nitude spectrum of the sequence of the principal
component scores, based on the position embed-
dings from ALBERT base-v2, emphasizing domi-
nant frequencies with a normalized Nyquist limit
of 0.5 and a logarithmic magnitude scale.
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Figure 5: Frequency magnitude spectrum of principal
component scores from albert-base-v2. The plot dis-
plays the sum of Fourier magnitudes across all the prin-
cipal components, thus highlighting dominant frequen-
cies. Frequencies are normalized with 0.5 as the Nyquist
limit, and the plot uses a logarithmic y-axis.

Furthermore, Figure 6 depicts the frequency
magnitude spectrum for each of the top 10 prin-
cipal components in the sequence of the principal
component scores, highlighting the unique spectral
contributions of each principal component.
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Figure 6: Frequency magnitude spectrum for each of
the top 10 principal component scores from albert-base-
v2. The plot displays the Fourier magnitudes for each
principal component, thus highlighting their individual
contributions. Frequencies are normalized with 0.5 as
the Nyquist limit.

Figure 7 presents extended heatmaps represent-
ing the entirety of the principal component scores

analyzed for various ALBERT models. It is easily
noticeable that only the leftmost principal compo-
nents contribute meaningfully to the variability in
the data.
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(a) Heatmap of the principal component scores for albert-base-
v2, visualizing the matrix of all k = 128 principal compo-
nents.
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(b) Heatmap of the principal component scores for albert-
large-v2, visualizing the matrix of all k = 128 principal
components.
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(c) Heatmap of the principal component scores for albert-
xlarge-v2, visualizing the matrix of all k = 128 principal
components.
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(d) Heatmap of the principal component scores for albert-
xxlarge-v2, visualizing the matrix of all k = 128 principal
components.

Figure 7: Extended heatmaps representing the entirety
of the principal component scores analyzed for various
ALBERT models, highlighting the contribution of the
leftmost components to the variability in the data.
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