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Abstract

Existing Question Answering (QA) systems
are limited in their ability to answer questions
from unseen domains or any out-of-domain dis-
tributions, making them less reliable for deploy-
ment in real scenarios. Importantly, all exist-
ing QA domain adaptation methods are either
based on generating synthetic data or pseudo-
labeling the target domain data. Domain adap-
tation methods relying on synthetic data and
pseudo-labeling suffer from either the need for
extensive computational resources or an addi-
tional overhead of carefully selecting the confi-
dence threshold to distinguish noisy examples
from the training dataset. In this paper, we pro-
pose unsupervised domain adaptation for an
unlabeled target domain by transferring the tar-
get representation close to the source domain
without using supervision from the target do-
main. To achieve this, we introduce the idea of
domain-invariant fine-tuning along with adver-
sarial label correction (DomainInv) to identify
target instances that are distant from the source
domain. This involves learning the domain
invariant feature encoder to minimize the dis-
tance between such target instances and source
instances class-wisely. This eliminates the pos-
sibility of learning features of the target domain
that are still close to the source support but are
ambiguous. The evaluation of our QA domain
adaptation method, namely DomainInv, on mul-
tiple target QA datasets reveals a performance
improvement over the strongest baseline.

1 Introduction

Over the past few years, machine learning models
have been widely deployed in production. How-
ever, making them work satisfactorily in production
requires a substantial amount of high-quality anno-
tated data, which is expensive and time-consuming.
Therefore, it is of utmost importance to build gen-
eralizable models that can perform well on unseen
datasets. However, due to the mechanism of do-
main shift or bias in the training dataset (Ben-David

et al., 2010, 2006), it is challenging to directly trans-
fer knowledge from the model trained on the source
domain to the unlabeled target domain. In this pa-
per, we studied this phenomenon specifically for
the case of extractive Question Answering (QA)
systems.

Extractive QA systems perform the task of identi-
fying the most relevant answer for a given question
within a context or paragraph. The answer is rep-
resented as a sub-span of the context, with start
and end positions predicted by the QA model. The
training data for QA essentially consists of triplets
specifying the question, answer, and context. The
input to the model is a question and context pre-
sented as running text separated by a separator. The
model is trained to predict the most relevant start
and end positions in the context (Seo et al., 2016;
Chen et al., 2017; Devlin et al., 2019; Kratzwald
et al., 2019).

These QA systems also face performance degra-
dation at test time, as questions and contexts can
vary widely in complexity. The same question
may be phrased in the simplest or most complex
ways, and the answer may involve reasoning or
follow a complex extraction pattern that is chal-
lenging to generalize with a limited annotated train-
ing dataset. Recent works (Fisch et al., 2019a;
Miller et al., 2020; Zeng et al.) have explored this
issue, proposing solutions such as using labeled tar-
get domain data or incorporating feedback during
training (Daumé III, 2007; Kratzwald et al., 2020;
Kamath et al., 2020). Others (Yue et al., 2022c,
2021) have employed synthetic or pseudo-labeled
data to train these systems and enhance their gener-
alization to out-of-domain distributions. However,
it is important to note that pseudo-labeled data is
prone to noise, and obtaining accurately labeled
data requires considerable human labeling effort.

In this paper, we focus on unsupervised do-
main adaptation (UDA), which does not require
labeled target domain data. There are numerous
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works towards achieving domain-invariant repre-
sentations, categorized into 1) optimizing the dis-
crepancy between domain representations (Yue
et al., 2022c, 2021), and 2) adversarial learning
(Lee et al., 2019b; Cao et al., 2020). However,
in general there exists different distance metrics
for minimizing domain discrepancy, for example
(Gretton et al., 2006) leverage maximum mean
discrepancy (MMD) as the distance measure be-
tween source and target domain distributions. Sim-
ilar to MMD, CMD (central moment discrepancy)
(Zellinger et al., 2017), Wasserstein distance (WD)
(Shen et al., 2018), sliced Wasserstein distance
(SWD) (Kolouri et al., 2019), multi-kernel MMD
(Long et al., 2015), joint MMD (Long et al., 2017)
are other alternative measures.

Inspired by generative adversarial networks
(GAN) (Goodfellow et al., 2014), adaptation meth-
ods based on adversarial learning have also shown
promising results (Ganin et al., 2017; Xie et al.,
2018; Pei et al., 2018; Saito et al., 2018; Lee et al.,
2019a). Adversarial learning methods propose the
idea of using the domain discriminator to distin-
guish whether the incoming sample is from the
source or target domain, while the feature gen-
erator tries to fool the discriminator by generat-
ing domain-invariant features. During the process
of creating domain-invariant representations, the
generator positions the target representation near
the source domain decision boundaries. However,
these representations are misaligned with respect
to the source classes, leading to a degradation in
performance (Lee et al., 2019a).

Some works rely on high-confidence pseudo-
labels (Yue et al., 2022c; Deng et al., 2019) for the
target domain. However, this method of generat-
ing synthetic data for the target domain imposes
an additional computational overhead. Moreover,
target pseudo-labeling can have adverse effects on
adaptation if it generates too many incorrect labels
above the confidence threshold. Some works pro-
pose minimizing the distance between tokens from
the target instances and those of the source support
contrastively (Yue et al., 2022c). However, in prac-
tical scenarios, the target domain can be completely
asymmetrical, necessitating the alignment of the
pre-trained source model with the target domain
before optimizing for domain-invariant represen-
tations. In this paper, we propose an adaptation
framework called DomainInv (illustrated in Figure
1), which can perform domain adaptation without
training an answer classifier with noisy pseudo-

labeled data. This eliminates the need to filter out
that noise before training on the target domain, as
opposed to the existing SOTA method in (Yue et al.,
2022c). Our approach involves learning domain-
invariant features through domain-invariant fine-
tuning along with adversarial label correction. This
is done to identify target instances that are far apart
from the source domain and optimize them to lie
near the source support, class wisely. Main Con-
tributions of this paper are as follows:

• We propose the unsupervised domain adapta-
tion framework called DomainInv for extrac-
tive QA. The framework can address the do-
main shift phenomenon without the need for
explicit training of an answer classifier with
pseudo-labeled data. The noise in pseudo-
labeled data, which is challenging to filter out,
deteriorates the performance of the answer
classifier and, consequently, hinders its ability
to generalize well to the target domain.

• We propose the idea of 1) Domain Invariant
Fine Tuning and 2) Adversarial Label Correc-
tion together, aiming to minimize the distance
between the source and target domain rep-
resentations class-wise (start and end) in an
iterative manner.

• We evaluated our framework on multiple QA
datasets as target domains without accessing
their answers during training. DomainInv out-
performs the strongest baseline for QA do-
main adaptation, which adapts the model by
explicitly training on pseudo-labeled target
domain.

2 Related Work

In the past few years, there has been an increas-
ing interest in learning generalized representa-
tions through various learning paradigms, namely,
unsupervised, multi-tasking, and transfer learn-
ing (Peters et al., 2018; McCann et al., 2018;
Chronopoulou et al., 2019; Phang et al., 2018;
Wang et al., 2018; Xu et al., 2019). Specifically,
recent studies have explored the generalization ca-
pability of reading comprehension systems (Golub
et al., 2017; Fisch et al., 2019b; Talmor and Berant,
2019; Yue et al., 2021, 2022c,b). Our interest in
this paper lies solely in unsupervised approaches
for domain adaptation, where target domain data is
unlabelled. The approaches used for unsupervised
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Figure 1: DomainInv: A Robust Framework for QA Domain Adaptation. It proposed to utilize domain invariant
fine-tuning followed by adversarial label correction to overcome the limitations associated with domain invariant
fine-tuning, demonstrating the noise free domain adaptation.

domain adaptation are broadly categorized into the
following main themes: 1) Contrastive Learning,
2) Self-Supervision, and 3) Adversarial Learning.

Contrastive Learning: Contrastive learning
methods (He et al., 2020; Caron et al., 2020; Chen
et al., 2020; Yue et al., 2022c, 2021) aim to learn a
feature encoder that generates similar features for
the same input (obtained from different augmen-
tations) and different features for any other input
and its augmentations. Specifically for QA, (Sun
et al., 2018; Du et al., 2017) have generated syn-
thetic QA samples through Question Generation
(QG). Leveraging these samples improves perfor-
mance in out-of-domain distribution (Yue et al.,
2021; Golub et al., 2017; Tang et al., 2017; Lee
et al., 2020; Tang et al., 2018; Shakeri et al., 2020;
Yue et al., 2022a; Zeng et al., 2022). Additionally,
contrastive learning has been applied to minimize
the discrepancy between the source and target do-
mains using Maximum Mean Discrepancy (MMD)
(Gretton et al., 2006). They learned to minimize
the distance for averaged token features (Yue et al.,
2022c) among answer and non-answer tokens in
source and target domains and maximize the dis-
tance between them.

Self-Supervision: There are many works in
computer vision that have explored the use of self-
supervision for unsupervised domain adaptation,
all aligned with the common objective of minimiz-
ing the discrepancy (distance) between domains
(Kang et al., 2019; Wang et al., 2021; Thota and
Leontidis, 2021). Although the objective is simi-
lar to that of contrastive learning, models learned
through contrastive learning have been shown to

perform better (Shen et al., 2022). Apart from the
MMD (Gretton et al., 2006) criterion used in (Yue
et al., 2022c), other metrics like central moment
discrepancy (CMD) used in (Zellinger et al., 2017)
directly match order-wise differences of central mo-
ments. Wasserstein distance, employed to measure
the distance between two probability distributions,
has been explored in (Shen et al., 2018; Kolouri
et al., 2019). The method in (Yu et al., 2020)
learns sentence representations for text matching
between asymmetrical domains. In our approach,
we consider the use of sliced Wasserstein distance
(Kolouri et al., 2019). Instead of minimizing the
distance between representations for domains, this
distance is applied to minimize the distribution
learned for the start and end tokens in QA domain
adaptation.

Adversarial Learning: The objective of adver-
sarial learning is also based on the idea of mini-
mizing domain discrepancy. The main concept of
domain adversarial learning is to learn domain-
invariant representations through an adversarial
loss between the feature generator and discrimi-
nator, similar to GANs (Goodfellow et al., 2014).
Some works that use domain adversarial learning
include (Ganin et al., 2017; Tzeng et al., 2017;
Bousmalis et al., 2017; Yang et al., 2020; Long
et al., 2018; Pei et al., 2018). Additionally, there
are methods (Yue et al., 2022c) that explored the
use of target data along with pseudo-labels to train
the target classifier. In contrast to this, we have ex-
plored the use of adversarial loss to identify and cor-
rect mistakes in labels during target-aware source
fine-tuning, aiming to learn domain-invariant rep-
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resentations for the target domain.

3 Setup
Problem setup for unsupervised domain adapta-
tion(UDA) consider the labeled source domain
Ds and unlabelled target domain Dt. The goal
is to maximize the performance on target do-
main by only training with labeled source domain
data and unlabelled target domain data as in (Cao
et al., 2020; Shakeri et al., 2020; Yue et al., 2021,
2022b,c).

Data: Specifically, for the case of QA do-
main adaptation we describe the labeled source
domain Ds data as samples consisting of triplets,
{c(i)s , q

(i)
s , a

(i)
s } ∈ Xs, consisting of context c(i)s ,

question q
(i)
s and answer a(i)s , where each triplet

is obtained from the training data Xs. Similarly,
the unlabelled target domain Dt data consists of
samples with pair {c(i)t , q

(i)
t } ∈ Xt consisting of

only context c(i)t and question q
(i)
t , obtained from

unlabelled training data Xt. Here, in our case of
QA domain adaptation the answer is the start and
end position in the context since we are working
with extractive QA systems.

Model: We approach the problem of QA do-
main adaptation as training the model function
f which predicts an answer a

(i)
t given the con-

text c
(i)
t and question q

(i)
t from Xt, denoted as

a
(i)
t = f (c

(i)
t , q

(i)
t ). This requires to optimize the

function f for maximum performance on target do-
main Dt, given Ds. Mathematically, this is denoted
as:

min
f

L(f ,Xt;Xs) (1)

where L is the loss function. We adopt the two
fold training scheme to maximize performance on
target domain namely, Domain Invariant Fine Tun-
ing and Adversarial Label Correction which will
be discussed in the following sections.

4 DomainInv Framework
4.1 Overview
The proposed DomainInv framework consists of
two main components: 1) Domain Invariant Fine
Tuning and 2) Adversarial Label Correction for
domain adaptation, as shown in Figure 1. We start
with a pre-trained QA model f , fine-tuned on the
source domain Ds as in (Cao et al., 2020), with an
additional batch norm layer. The answer classifier
C1 predicts the start and end indices in the context.
During domain invariant fine-tuning, we incorpo-
rate the use of the target domain Dt to augment

the style of pseudo-answer and non-answer tokens
to the source domain. This results in another an-
swer classifier C2, which possesses target domain
style information while still being trained on the
source domain. With the answer classifier C2, there
are instances in the target domain Dt for which
the answer differs from the one obtained using C1.
We identify these instances as those which are far
apart from the source domain, and the QA model
is least confident about them. During adversarial
correction, we minimize the distribution between
these two classifiers and update the BERT encoder
to generate features for the target domain closer to
the source domain. This ensures that the classifier
C2 predicts the answer as if it were operating on the
source domain, aligning the features for the target
domain with those of the source domain.

4.2 Domain Invariant Fine Tuning
In this section, we will explain in detail the process
we have followed for domain invariant fine-tuning.
Let the trained QA model on source domain is
denoted as f , it is a BERT model with L layers of
transformers (Vaswani et al., 2017). Specifically,
let C1 be an answer classifier, and θg be the encoder
parameters for this source-domain QA model.

During domain invariant fine-tuning (shown in
Figure 2), we propose to feed the style information
of the target domain Dt to the source domain QA
model at each layer l ∈ L, as illustrated in Figure
2. We keep the weights shared between the two
encoders to allow the target domain information
to be updated in the BERT encoder with the super-
vision of the source domain. Let ϕ(x, x′) be the
learnable domain shift vector between the source
instance x and the target domain instance x′, and
M(x, ϕ(x, x′)) be a learnable domain transforma-
tion layer, which is introduced at the top of each
transformer layer l ∈ L of model f . Cumulatively,
it transforms the parameters of the source domain
classifier C1 to the target-aware classifier C2 and
updates encoder parameters θg with the style of the
target domain.

Domain Transformation Layer: The domain
transformation layer M is expected to fuse the do-
main shift vector with the hidden states (which
were fine-tuned for the source domain) at each
layer of the transformer. The domain shift vec-
tor ϕ should solely capture the information that is
different from the source domain. This categorizes
the vector containing any extra information in the
target domain compared to the source domain, ir-
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Figure 2: Domain Invariant Fine Tuning with Domain
Transformation Layer

respective of its position in the context. This can
be achieved by taking the difference between the
average pooled vector of hidden states at each layer
obtained for the source and target domains. Let
H

(l)
s and H

(l)
t be the hidden states obtained at layer

l for the source domain and target domain, respec-
tively. Then, the domain shift vector at layer l
between two instances is given as:

ϕ(l)(H
(l)
t , H(l)

s ) = avg(WH
(l)
t )− avg(WH(l)

s )
(2)

where, W ∈ Rk×d are the linear transform pa-
rameters shared across layers. Then, the domain
transformation layer M is given as:

M(H(l)
s , ϕ(l)(H

(l)
t , H(l)

s )) = H(l)
s +

W Tϕ(l)(H
(l)
t , H(l)

s )
(3)

The expression W Tϕ(l)(H
(l)
t , H

(l)
s ) ∈ Rd is added

to all hidden states at layer l corresponding to the
source domain. This design of the domain shift vec-
tor follows the identity property, i.e., ϕ(x, x) = 0.
This allows us to plug in the domain transforma-
tion layer only at the time of training, while at
the time of inference for the target domain, it is,
ϕ(l)(H

(l)
t , H

(l)
t )) = 0. However, it is required to

carefully choose the value of k, which is a hyperpa-
rameter, because it assumes the domain shift infor-
mation lies in the k-dimensional subspace where
the difference between two domains can be mini-
mized to make them appear similar.

QA Domain Transformation: Specifically, for
the case of QA domain adaptation, we can’t apply
the domain shift across all the tokens uniformly, as
there are underlying differences between the con-
text, question, and answer tokens. Hence, it would
be wise to calculate ϕA, ϕC , and ϕQ for Answer,
Context, and Questions, respectively. Since we
only have context and questions in the target do-
main, the answer is the pseudo-answer obtained

from the classifier C1, where the weights of C1 are
frozen, and the BERT encoder parameters θg are
shared during fine-tuning. These will be updated
jointly along with classifier C2 (initialized with the
fine-tuned classifier C1), as shown in Figure 2. At
the end of domain transformation fine-tuning, we
obtain another target-aware classifier C2 and up-
dated encoder parameters θg which are the fine-
tuned parameters on the target-aware source do-
main with supervised cross-entropy loss Lce. Note
that here pseudo labels on target domain is not
directly involved in training answer classifier C2.

min
f

Lce(f ,Xs||Xt) (4)

where f consists of parameters θg and parameters
in classifier C2 and M. During training, we ran-
domly select samples from the target domain, en-
suring the batch size matches that of the source do-
main, and an additional constraint to include paral-
lel instances with the same question types (denoted
as Xs||Xt). We employ the dependency parser,
semantic role labeling, and named entity recogni-
tion (NER) to detect the question types, as done in
(Keklik, 2018).

4.3 Adversarial Label Correction
We have introduced adversarial label correction
based on the fact that during domain invariant fine-
tuning, we relied on the pseudo-labels obtained
from classifier C1. However, these labels are noisy
and prone to error accumulation, potentially lead-
ing to erroneous alignment of the source and target
domain. The domain shift information in the k-
dimensional subspace may be captured incorrectly,
resulting in similar performance degradation as ob-
served in the approaches (Yue et al., 2022c, 2021)
where pseudo-labels are used to train the answer
classifier. However, these methods (Yue et al.,
2022c, 2021) overlook the fact that domain adapta-
tion can result in target features lie far apart from
the source domain for similar semantics that are
ambiguous and hence error-prone. To mitigate this,
we propose the idea of reducing the inconsistency
between domains by generating target features near
the support of source classes. In our case, this
refers to the starting and ending indices for the
answer classifier for different question types.

In Equation 4, fine-tuning occurs with the target-
aware source domain, resulting in the answer clas-
sifier C2. This learns the distribution of start and
end classes given the style of the target domain Dt,
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but these can be error-prone, mainly due to two
reasons: 1) The target pseudo labels obtained from
C1 are erroneous, and 2) The target domain infor-
mation makes the classifier C2 difficult to learn the
correct distribution of start and end classes on the
source domain. Collectively, this happens when
the target instances are far apart from the source
domain and require explicit optimization for such
cases. Hence, we make use of the adversarial loss
to first identify the samples of the target domain
that are far apart from the support of the source
domain. We then update the parameters of answer
classifiers C1 and C2 with θg (obtained after domain
invariant fine-tuning) frozen to maximize the dis-
crepancy due to such instances. Specifically, we
update C1 first keeping C2 fixed and then C2 with
updated C1. Subsequently, we minimize the param-
eters of θg to generate target domain features near
the source domain for start and end classes. Math-
ematically, this has been written as the minmax
game of learning domain invariant representations:

min
θg

max
C1,C2

Llc(Xt) (5)

where Llc is the label correction loss optimized
for the target domain for maximum performance.
The discrepancy maximizing term has been math-
ematically formulated as the Sliced Wasserstein
Distance(SWD) between the representation as in
(Kolouri et al., 2019) learnt for start and end classes
by classifier C1 and C2 respectively. Let G denote
the BERT encoder with parameters θg, the loss is
written as:

min
C1 ,C2

Lce(f ,Xs||Xt)−
∑

k∈{s,e}
Lswd(Ck

1 (G(Xt)), Ck
2 (G(Xt)))

(6)

where Ck
1 (.), Ck

2 (.) for all k ∈ {s, e} denotes the
probability distribution obtained from classifier C1
and C2 for starting and ending indices s and e. This
loss updates both classifiers on target aware source
domain only for those instances where parallel tar-
get domain instances are inconsistent. Since both
C1 and C2 trained to predict the start and end indices
for the source domain, one with source domain fea-
tures only and another on source augmented with
target domain features. Hence, the classifier C2 can
predict the different start and end indices for those
instances where C1 is incorrect for target domain.
Hence we update the classifier C1 first and then
update C2 using updated C1. Adjusted answer clas-
sifiers results in updated domain discrepancy for

the non-confident target predictions and hence we
need to update the parameters θg so as to generate
the target domain features near to source support
class wisely. This has been achieved by minimizing
the loss function:

min
G

∑

k∈{s,e}
Lswd(Ck

1 (G(Xt)), Ck
2 (G(Xt))) (7)

Finally, at the end we use the Encoder G and answer
classifier C1 as the domain adapted QA model. End-
to-end training of DomainInv Framework is shown
in Algorithm 1 (in Appendix B).

5 Experiments
Datasets: We consider the source domain Ds as
SQuAD v1.1 (Rajpurkar et al., 2016) following
(Yue et al., 2022c, 2021; Shakeri et al., 2020; Cao
et al., 2020; Lee et al., 2020). SQuAD v1.1 is
a well known annotated QA dataset where para-
graphs (context) are from Wikipedia articles. Tar-
get Domains Dt are considered from MRQA Split
1 (Fisch et al., 2019b), namely, NaturalQuestions
(Kwiatkowski et al., 2019), HotpotQA (Yang et al.,
2018), SearchQA (Dunn et al., 2017), TriviaQA
(Joshi et al., 2017), NewsQA (Trischler et al.,
2016). The dataset details we have considered for
target domain is given in Appendix A.
Baselines: We trained our DomainInv Framework
on top of the fine-tuned QA model on source do-
main, adopted from BERT with an additional batch
normalization layer, as in (Cao et al., 2020). This
fine-tuned BERT model, trained on the source do-
main, acts as the naive baseline. However, to fur-
ther assess the robustness of our framework in
QA domain adaptation, we adopted the following
state-of-the-art (SOTA) baselines: 1) QADA (Yue
et al., 2022c): QA Domain Adaptation (QADA)
leverages hidden space augmentation for enriching
the training dataset and used attention-based con-
trastive learning for domain adaptation. 2) CAQA
(Yue et al., 2021): Contrastive Domain Adaption
for Question Answering (CAQA) combines ques-
tion generation and contrastive domain adaptation
to learn domain-invariant features, so that it can
capture both domains and thus transfer knowledge
to the target distribution 3) DAT (Tzeng et al., 2017;
Lee et al., 2019b): Domain Adversarial Training
(DAT) follows the known adversarial training and
uses the [CLS] token in BERT as a discriminator to
learn the generalized features from both source and
target domains after training with labeled source do-
main 4) CAQA* (Yue et al., 2021, 2022c): Instead
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

(1) Zero Shot Target Performance

BERT 43.34/60.42 39.06/53.7 39.17/56.14 16.19/25.03 49.70/59.09

(2) QA Domain Adaptation Target Performance

DAT (Lee et al., 2019b) 44.25/61.10 44.94/58.91 38.73/54.24 22.31/31.64 49.94/59.82
CASe (Cao et al., 2020) 47.16/63.88 46.53/60.19 43.43/59.67 26.07/35.16 54.74/63.61
CAQA (Yue et al., 2021) 46.37/61.57 48.55/62.60 40.55/55.90 36.05/42.94 55.17/63.23
CAQA* (Yue et al., 2021, 2022c) 48.52/64.76 47.37/60.52 44.26/60.83 32.05/41.07 54.30/62.98
QADA (Yue et al., 2022c) 50.80/65.75 52.13/65.00 45.64/61.84 40.47/48.76 56.92/65.86
DomainInv(Ours) 52.92/66.71 54.97/68.80 45.96/61.88 40.92/49.88 57.78/66.64

(3) Supervised Training Target Performance

BERT (10K Samples) 49.57/66.65 54.81/67.98 45.92/61.85 60.21/66.96 53.87/60.42
BERT (All Samples) 57.96/74.76 67.08/79.02 52.14/67.46 71.54/77.77 64.51/70.27

Table 1: QA Adaptation Performance on Target Domains

of question generation in CAQA, this baseline uses
the same process of generating pseudo labels and
self-supervised adaptation as in QADA. 5) CASe
(Cao et al., 2020): Conditional Adversarial Self-
Training (CASe) is an unsupervised domain adap-
tation method that iteratively performs self-training
on high-confidence pseudo-labels and incorporates
conditional adversarial learning.

Training, Evaluation and Implementation:
Following (Cao et al., 2020; Yue et al., 2022c), we
trained the naive baseline of the BERT model with
an additional batch norm layer after the encoder (in
PyTorch by Hugging Face, using the base-uncased
pretrained model with 12 layers and 768-dim hid-
den state). Specifically, we used a learning rate
of 3 · 10−5 and trained for 2 epochs with a batch
size of 12, optimized using the AdamW optimizer
with 10% linear warm-up on the source domain Ds.
Following (Lee et al., 2020; Shakeri et al., 2020;
Yue et al., 2021), we evaluated exact matches (EM)
and F1 score on the dev sets. The rest of the base-
lines are implemented according to the methods
described in their corresponding papers.

For the DomainInv Framework, we ran the do-
main invariant fine-tuning followed by adversarial
label correction and repeated this for 10 epochs
with the AdamW optimizer, learning rate of 10−5,
with 10% linear warm-up. During fine-tuning, we
generated the labels for the target domain using
the classifier C1, which is frozen during fine-tuning,
and sampled parallel samples of the target domain
with question types of source domain samples in a
given batch size of 12. During fine-tuning, there is

only one hyperparameter named k for the domain
transformation layer, which has been searched for
the best value in [64, 128, 256, 512, 768]. Eventu-
ally, the best value of 256 works for us in almost
all cases and is the one with the maximum perfor-
mance on the source domain Ds during fine-tuning.
After domain invariant fine-tuning, the obtained
classifiers C1, C2, and encoder G are trained with
adversarial label correction. We stopped the train-
ing in between if there is no decrease in the loss
described in equation 7 for the continuous 3 epochs
in a row.

5.1 Experimental Results

Table 1 presents the results for QA domain adap-
tation performance on various target domains, as
described in Section 5. We grouped our results
and analysis into three main categories, namely:
1) Zero short Target Performance: This reports
the results on the target domain with the BERT
fine-tuned model without any domain adaptation
on the target domain, serving as a lower bound for
domain adaptation approaches. 2) QA Domain
Adaptation Target Performance: This reports the
results due to various domain adaptation methods,
including DomainInv.. 3) Supervised Training
Target Performance: This reports the results fol-
lowing the supervised training of BERT on the tar-
get domain using randomly selected 10K samples,
along with all source domain samples, to estab-
lish the upper bound performance for QA domain
adaptation approaches. QA domain adaptation per-
formance (shown in Table 1) using the DomainInv
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

DomainInv(Ours) 52.92/66.71 54.97/68.80 45.96/61.88 40.92/49.88 57.78/66.64
w/o Adversarial Label Correction 51.60/64.07 53.91/65.21 45.88/61.86 39.81/46.98 56.98/65.32

Table 2: Ablation Study: QA Adaptation Performance on Target Domains by different components of DomainInv

Framework outperforms all the domain adaptation
baselines across all target domains and is well be-
yond the naive baseline. In fact, almost all the
domain adaptation baselines outperform the naive
baseline by a significant margin on all target do-
mains. However, BERT performs poorly (com-
pared to domain adaptation baselines) on some
target domains, namely, Natural Questions and
SearchQA, due to two main reasons: 1) BERT
does not understand the style of Natural Questions;
even if the Wikipedia article is the same, the real
user questions style is different from the one asked
in SQuAD v1.1. 2) BERT does not understand the
long form of contexts, which is usual in SearchQA,
and it learns to focus on the nearby tokens similar
to those in SQuAD v1.1.

However, the actual or more effective answer
is also present in the long context. Compared to
the worst QA adaptation baseline, DomainInv out-
performs BERT on these two domains on aver-
age by 2.64% in EM and the other domains by
1.2% in EM. This is the main reason we adopted
the domain style-based transformation layer and
the corresponding fine-tuning, which can make
BERT understand different contexts and questions.
The DomainInv Framework outperforms all base-
lines; on average, it outperforms the best baseline
by 2.59% and 2.17% in EM and F1, respectively.
Moreover, our framework outperforms supervised
training with 10K target data, additionally on Natu-
ral Questions and NewsQA, as compared to QADA
(best baseline), which outperforms the supervised
baseline of 10K target data only on HotpotQA and
TriviaQA. We reported all the results after averag-
ing the inference results from 10 rounds.

5.2 Ablation Studies
In Table 1, we compared the DomainInv frame-
work against the strongest baseline named QADA.
However, this comparison does not detail the im-
portance of each component of DomainInv, namely,
domain invariant fine-tuning and adversarial label
correction. The absence of these components can
cause a maximum drop of 5.17% compared to the
best baseline QADA, highlighting the advantage

of using DomainInv over other domain adaptation
approaches. However, the contribution of each
component towards performance gain is still un-
known. Hence, we studied the performance (men-
tioned in Table 2) of DomainInv after removing
the adversarial label correction component only,
since removing the domain-invariant fine tuning
as well results in the source-domain trained BERT
model, for which the zero-shot performance is al-
ready mentioned in Table 1. The performance drop
in Table 2 clearly depicts the advantage of adver-
sarial label correction. For target domains, namely
HotpotQA, Natural Questions, and NewsQA, the
performance of DomainInv w/o adversarial label
correction in terms of EM is still higher than that of
QADA. However, in SearchQA, it goes below the
performance of QADA. This indicates the impor-
tant insight into the functioning of adversarial label
correction. For long contexts like in SearchQA,
where matching the answer exactly requires signif-
icant correction, and in Natural Questions, where
the question style has changed but the context is
still the same (i.e., Wikipedia articles), requiring
only minor correction in labels. This proves the
effectiveness of the label correction component in
the DomainInv framework.

6 Conclusion

In this paper, we proposed a novel QA domain
adaptation framework called DomainInv. It is an
unsupervised algorithm that does not require the
use of labeled target domain data, nor does it de-
pend on synthetic data or pseudo-labeled target
domain. DomainInv comprises two key compo-
nents: 1) Domain Invariant Fine Tuning, which
fine-tunes the QA model using the target style on
the source domain, and 2) Adversarial Label Cor-
rection, which identifies target distributions that are
far apart from the source domain and optimizes the
feature generator to bring them closer to the source
support class wisely. Evaluation of DomainInv
showed that it outperforms all baselines, achiev-
ing superior performance and establishing a new
benchmark.
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Limitations

In this section, we highlights certain limitations
of DomainInv that were not covered in the paper.
In the domain invariant fine-tuning, we introduced
a new layer called the domain adaptation layer,
which computes the difference between the aver-
age pooled representations of the source and tar-
get domains. However, this design assumes equal
importance for all tokens in both domains at each
layer, overlooking the influence of the self-attention
mechanism on token distribution. To rectify this,
future work should explore incorporating attention-
weighted representations before calculating the dif-
ference. Additionally, in the adversarial label cor-
rection, we proposed adjusting the feature encoder
solely based on the target domain, neglecting the
potential benefits of jointly aligning both source
and target domains. Further research could explore
these aspects for improvement.
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A Benchmark Datasets

The dataset details we have considered for target
domain is given as follows:

• NaturalQuestions: A real world QA dataset
with questions that are actual user questions,
and contexts as Wikipedia articles, which may
or may not contain the answers (Kwiatkowski
et al., 2019)

• HotpotQA: A reasoning based QA dataset
with multi hop questions and supporting facts
(Yang et al., 2018)

• SearchQA: QA dataset where context built
by crawling through Google Search. However,
this is based on existing QA pairs for which
the context is extended. More details in (Dunn
et al., 2017)

• TriviaQA: A reasoning based QA dataset con-
taining evidences for questions asked (Joshi
et al., 2017)

• NewsQA: QA dataset with news as contexts
and questions with answers not from simple
matching and entailment. (Trischler et al.,
2016)

B Algorithm

We presented the end-to-end DomainInv algorithm
as follows:

Algorithm 1 DomainInv Training for UDA
Require: Labeled Source {Xs,Ys}; unlabelled Target {Xt},

hyperparameter k, fine tuned QA model with encoder G
and Classifier C1 and classifier C2 initialized with C1.
Step 1: Update G, C2 on Source Domain (with tar-
get style augmentation) using Domain Invariant Fine-
Tuning as in Equation 4

while G, C1, C2 still converging do
Step 2: Update C1, C2 on target aware source set to
maximize the sliced Wasserstein distance (SWD) on
target instances as in Equation 6
Step 3: Update G to minimize the SWD as calculated
earlier according to Equation 7

end while
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