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Abstract
The recently introduced path-star task is a min-
imal toy task designed to exemplify limitations
to the abilities of language models (Bachmann
and Nagarajan, 2024). It involves a path-star
graph where multiple arms radiate from a single
starting node and each node is unique. Then,
given the start node and a specified target node
which ends one of the arms, the task is to
generate the arm containing that target node.
This is straightforward for a human but surpris-
ingly difficult for a language model, which they
found failed to predict above chance. They hy-
pothesized this is due to a deficiency in teacher-
forcing and next-token prediction paradigm.

In this extended abstract, we demonstrate that
the task is learnable using teacher-forcing in al-
ternative settings and that the issue is (partially)
due to representation. We analyze situations
when the models fail to solve the task which
leads us to introduce a regularization technique
where we pack each training batch with multi-
ple instances of the same graph but with differ-
ing target nodes to prevent overfitting. Initial
results indicate this helps in solving the task.

1 Introduction

Recently, language models (LMs) have become in-
creasingly capable of solving a variety of complex
tasks (Brown et al., 2020; Zoph et al., 2022; Bubeck
et al., 2023). This has led to increased interest in de-
termining why this is and the limits to these abilities
(Chen et al., 2024). Language models can do many
spectacular things, which makes it all the more
shocking when they fail on simple tasks. Recently,
Bachmann and Nagarajan (2024) introduced one
such seemingly simple task designed to showcase
pathological behaviour of causal (decoder-only) au-
toregressive (AR) LMs trained via teacher-forcing.
The task is simple by design and thus failure of
AR models is both surprising and informative. We
begin by describing the task in Sec. 1.1, before
analyzing why it is hard for LMs in Sec. 2.

1.1 The Path-star Task

We need to describe the path-star graph, G, i.e. the
data meant to be manipulated, the problem speci-
fication or question, Q, i.e. the prompt specifying
the desired manipulation, and their tokenization.

Let N be the set of unique nodes forming G. A
path-star graph contains one central starting node
s ∈ N and D radial arms each of length M (inclu-
sive of s), s.t. |N | = D(M − 1) + 1. s has degree
D, all final nodes which end an arm, F ⊂ N s.t.
|F | = D, have a single degree, and all others have
a degree of 2. See Fig. 1 for an example.

Given G, and a task specification, Q, containing
s and a target node t ∈ F , the task is to gener-
ate the unique arm, Rt, as a sequence of nodes
starting from s until t. i.e. Rt = sort({ r ∈
N | ∀f∈F dist(r, t) ≤ dist(r, f)}).1 Let L be the
set of possible leading nodes which are adjacent
to s i.e. L = { l ∈ N |dist(l, s) = 1}. The chal-
lenge of the task is predicting the correct leading
node lt ∈ L ∩ Rt from all other leading nodes.
By design, there is a uniform 1/D chance of this
given only G. Prediction over chance should be
possible by inferring the correct target arm and
thus lt given t in Q. Note, as all nodes are unique,
all non-leading nodes are deterministic given their
preceding neighbour (closer to s).

When generating the dataset, the nodes in a sin-
gle graph are uniformly sampled from a set of possi-
ble nodes, V , without replacement. G is tokenized
as a series of D(M − 1) edges where each edge
is internally ordered by distance to s and marked
by special token ‘|’ so that a given edge, (u, v),
is a three token sequence ‘u v |’. Q is tokenized
as a sequence of four tokens with special tokens
marking the beginning and end of Q as ‘/ s t =’.
Special beginning- and end-of-sequence tokens are
also used, making the final vocabulary size |V |+5.

1‘dist’ is graph distance. We abuse notation by treating Rt

as a set and G and Q as sequences after having been tokenized.
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Figure 1: An example path-star graph. D = 3, M = 4,
s is ‘4’, t is ‘7’ Rt is ‘4 8 2 7’, and lt is ‘8’. One possible
tokenization of [V, Q, Rt], where the arms (and not the
edges) are permuted is: ‘BOS 4 9 | 9 1 | 1 3 | 4 8 | 8 2 | 2
7 | 4 5 | 5 10 | 10 6 | / 4 7 = 4 8 2 7 EOS’.

1.2 Autoregressive models and training
A causal or decoder-only AR LM models the joint
probability of a T -length sequence, y, as a factor-
ized product of local probabilities, as in

p(y1, y2, . . . , yT | y0, ) =
∏

p(yj | y<j). (1)

Here, we model the path-star task as

p(r1, . . . , rM | [G, Q]) =
M∏

j=1

p(rj | [G, Q, r<j ]),

(2)
where x = [G, Q, r<j ] is the concatenation of the
tokenized graph and problem specification along
with the partial ground-truth sequence, r<j , form-
ing the given conditioning input to the model. Such
a model is trained by via maximum likelihood train-
ing, generally referred to as ‘teacher-forcing’ in the
context of language models, as the partial ground-
truth sequence is used to condition the model dur-
ing training instead of the model’s own predictions
as done during inference (Williams and Zipser,
1989). We minimize −∑

r∈Rt
log p( . |x). Thus

the loss is only over the target sequence Rt and not
on tokens in the prefix [G, Q]. This is because the
node ids forming G are random and Q necessarily
must be provided, thus both are not predictable and
can only be used to condition the model.

During inference, G and Q are provided. We
consider a non-traditional ‘teacher-forced’ infer-
ence procedure where, instead of generating the
arm autoregressively, it is conditioned on r<j . Thus
inference exactly matches the training procedure
and prevents any potential training-inference bias.

We focus on transformer models (Vaswani et al.,
2017), where the causal parameterization of AR
models is enforced via an attention mask which

prevents the token at any step j from depending
on any token at step > j. This causal restriction
applies across the entire input x. Positional embed-
dings make each token unique. To prevent learning
a trivial answer based on position, as a data prepro-
cessing step, the edges in G are shuffled, which
can be seen as a random permutation applied to
the edge order of tokenization of G.

1.3 Failure to learn: Clever Hans hypothesis
Bachmann and Nagarajan (2024) empirically
demonstrated three different LMs – finetuned
GPT2, a smaller GPT2 trained from scratch, and
a state-space model, Mamaba – all fail to predict
above 1/D chance, even in settings as small as
D = 2 and M = 5 (Radford et al.; Gu and
Dao, 2023). They hypothesized this was caused by
teacher-forcing. The idea being that there are two
possible modes of predictions which the model can
learn. The first is the desired mode which learns to
represent the entire path between s to t. This mode
is necessary for predicting lt. Whereas, the second
mode makes trivial predictions about the next node
in the arm given the previous node. This mode only
needs to lean superficial information about edge
structure but not graph structure and is, by design
of the task, sufficient for predicting all non-leading
nodes given the correct preceding node.

Bachmann and Nagarajan (2024) argued that
teacher forcing will result in learning the second
mode, referred to as the Clever Hans cheat (CHC).
This is because teacher-forcing conditions on the
correct ground-truth, which in this case is the cor-
rect preceding node in the arm. Also, when applied
to AR models, it is restricted to making a single
next-token prediction and hence precludes learn-
ing any long term planning. Then, once the CHC
is learnt, it will discourage learning the desired
mode necessary for predicting lt. Their intuition,
which admittedly is not proven, is that, sequence
modelling relies on the intermediate training steps
across the sequence to form a coherent represen-
tation of the overall sequence. In our case, that
would be a representation of the entire arm struc-
ture, however, here those intermediate steps do not
participate in learning such a structure but are rather
absorbed into learning the trivial CHC, resulting in
a loss of this intermediate training signal.

They presented empirical evidence for the CHC
hypothesis by considering the overall sequence ac-
curacy when provided with the correct preceding
predictions (i.e. teacher-forced generation). Here,
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all non-leading tokens are learnt with 100% accu-
racy and the leading token is only predicted at 1/D
chance, leading to an overall sequence accuracy of
1/D (See their Fig. 3 and our Fig. 3).

Interestingly, a trivial solution to the task exists
if the model can look-ahead M tokens to the end of
the arm as the model just needs to find and match
the correct target token. Once done, it can apply the
CHC in reverse order to determine the arm. This
led them to provide two additional supporting em-
pirical arguments as to why they believe the issue
stems from teacher-forcing. First, they modified
the task to require that the arm be generated in re-
verse order. This makes task trivial as the CHC can
just be applied in reverse order via supervision.

Second, they introduced a ‘teacher-less’ model
(Monea et al., 2023). This works by using M
masked tokens, m, to make make all M predic-
tions in independently of the ground-truths i.e.
x = [G, Q, m1, . . . , mM ]. This completely re-
moves teacher-forcing as it removes all dependen-
cies between target-tokens during prediction. Of
the 15 reported experiments, this method allows
the model to solve the task in 5 instances: for the
D = 2 experiment using the small GPT2, and for
D ∈ {2, 3, 4} (but not D = 5) when using large
GPT2. Thus this method did not work consistently.

Importantly, they establish that, 1), the failure
is not due to the amount of training data, 2), that
the failure is in-distribution, and 3), that it is not
due to any exposure bias or other differences be-
tween the training and inference procedures (Ben-
gio et al., 2015; Ranzato et al., 2016; Arora et al.,
2022). This allows them to disclude these alterna-
tive explanations and conclude that the CHC causes
the learning problem which is itself a consequence
of teacher-forcing and next-token prediction. This
leads to a discussion concerning possible funda-
mental limitations to the next-token prediction
paradigm, with the path-star task being offered
as a counter example to the paradigm being suf-
ficient to learn any task.

2 Methods and Results

We solely focus on the small LM setting under
the belief that such models should be able to learn
such a simple task and that the biases from the
pretrained data and any emergent abilities of LLMs
will just obfuscate the root problem. We implement
our models using Fairseq (Ott et al., 2019). Our
AR model have 6 layers and 200 dim. embeddings.

Each layer has a feed-forward dim. of 800 and 8
heads. We use Adam (Kingma and Ba, 2014) with
a learning rate of 0.0005, a dropout rate of 0.1
and a weight decay of 0.01. We train with 16-bit
precision and a batch size of 1024. Each model is
given a maximum of 100 epochs and stop training
if the validation loss drops below 0.001 (See Fig 2).
Note this is smaller than both GPT2 models used
by Bachmann and Nagarajan (2024) which used 36
and 12 layers with larger embeddings.

Following Bachmann and Nagarajan (2024),
|V | = 100 and M = 5. Each dataset for D ∈
{2, 3, 4, 5} is made up of 2,000,000 training and
20,000 test samples of randomly generated G, Q
pairs without any overlap. Unlike them, we ran-
domly permute G at every epoch instead of just
once in an attempt to prevent overfitting.

We present our work as an investigation over a se-
ries of hypotheses and corresponding experiments
to get at the heart of the path-star mystery. As such,
we report intermediate results and describe new
methodology as it becomes motivated. We try to
present results in order of our findings, however,
we need to give some post-hoc explanations for our
methodology in order for the reader to understand
the contents of Tables (1, 2, 3, 4). First, in our ini-
tial experimentation (using D = 2), we found that
the models would be able to solve the task seem-
ingly at random (under modified task conditions).
This motivated the use of running multiple trials
for each experiment under different random seeds.
For all listed experiments we consider the percent
of trials that correctly succeed in learning the task
across 11 trials. Second, we found it was necessary
to set attention dropout to zero, which makes sense
given the task requires routing node information
across positions. Third, we also found that we re-
quired learned positional embeddings instead of
sinusoidal embeddings. We suspect that the later
results in too strong of a positional bias when ran-
domly permuting the edges in G. As an aside, we
also found that for the decoder-only model, not
using any positional embeddings could also work.
This is because positional information will arise out
of the asymmetry induced by the causal masking.

2.1 A reproduction of empirical results
As the results of Bachmann and Nagarajan (2024)
are surprising, we independently verify them as
an initial step. Experiment (exp.) 1 of Table 1,
confirms that the task is not learnable under the
initial conditions. Exp. 2 confirms that reversing
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ID Perm. Q Tgt./Dir. C. D = 2 D = 3 D = 4 D = 5

1 Edge End Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
2 Edge End Rev. 0 100% 100% 100% 100%
3 Edge End lt-only 0 0% 0% 0% 0% 0% 0% 0% 0%
4 Arm End Fwd. 0 100% 36% 0% 9% 0% 9% 0%
5 Arm Start Fwd. 0 100% 100% 100% 100%
6 Edge Start Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
7 Arm End Fwd. 1 100% 91% 9% 91% 9% 36% 55%

Table 1: Percent of successful trials (n=11) using the AR (decoder-only) model. ‘ID’ is the experiment ID. ‘Perm.’
is the type of random permutation applied to G (Sec. 2.2.2). ‘Q’ is the relative position of Q to G when tokenizing
(Sec. 2.2.3). ‘Tgt./Dir.’ is the type of target we are trying to generate (Sec. 2.2.1). And ‘C.’ is the number of
contrastive samples used (Sec. 2.4). For each experiment in D ∈ {2, 3, 4, 5}, we report the percent of the 11 trials
which succeeded in learning the task to at least a threshold of 95% sequence accuracy (which meant 100% for the
AR models) in the first column. In the second column, we report the percent of unsuccessful trials where the valid
and training loss has not diverged i.e. 0% means all trials have overfit

the arm results in a trivial 100% success rate.

2.2 Simplifying the task
Having confirmed the results in the original task
setting, our method to investigate the issue will be
to simplify the task until it becomes consistently
solvable. We begin by considering the target-side.

2.2.1 Evidence against the CHC hypothesis
Under one interpretation of the CHC hypothesis,
lt is indecipherable due to the model being over-
whelmed by the CHC. As such, we should be able
to learn a simplified version of the task where we
only predict lt directly instead of the entire arm Rt.
Exp. 3 of Table 1, shows this produces the same
negative result as when predicting the entire arm.

The more charitable interpretation of the CHC
hypothesis is that the core issue concerns the fact
that the CHC removes necessary intermediate train-
ing signal for learning the task. Under this interpre-
tation, we have not disproved the core hypothesis,
but have shown that the entire CHC aspect is ir-
relevant to the underlying issue. That is, if lack
of intermediate supervision is the core issue, we
should just explicitly remove it from the task de-
scription and cut out the red-herring of the CHC.

However, we do not believe that lack of inter-
mediate supervision is the real issue and take this
result as a sign that something else is at play. To
solve this task, all the model needs to do is 1) de-
termine the final node, 2) trace back each arm from
the final node to its leading node, and 3) predict
that leading node. Importantly, this requires that
we can correctly represent the arms in the graph.
This motivates us to experiment with simplifying
the source-side of the task instead of the target-side.

2.2.2 Alternative hypothesis: representation
issues due to the permutation of G

Our first hypothesis as to what is preventing learn-
ing the solution is that it is a representation issue
due to randomly permuting the edges of G. This
will corrupt the arm structure with the model seem-
ingly unable to recover the structure. In particular,
when using a causal model, all information can
only be routed forward in ‘time’ and this may in-
duce difficulties when trying to recover and route
information across the arm structure. Not only does
permutation make routing information across the
arms harder, or even impossible, but the difficulty
in learning might also be due to the assumptions
we make when we decompose the joint probability
as in Eq. 1. Specifically, we are parameterizing
the model to a specific decomposition (Yang et al.,
2019; Liao et al., 2020). However, by permuting
the arms, we are forcing the model to learn an
exponential number of possible decompositions.
This may be a challenge, even when using an over-
parameterized model like a transformer and may
explain the difficulty of the task.

Thus we can simplify the task where we retain
the arm structure by only permuting the order of
the arms relative to each other (but not the internal
order of the edges). Refer to this change as Edge-
v.s. Arm-wise permutation. If this is solvable, then
we know that the issue lies in the corruption of the
arm information via permuting the edges. Exp. 4
of Table 1 shows this improves the results, with
D = 2 being consistently solved, but with a dimin-
ishing success-rate as D increases. These partial
improvements lead us to a related hypothesis.
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2.2.3 Alternative hypothesis: representation
issues due to the order of G and Q

If we can only route information into the future,
maybe our representation issue stems from that fact
that we have placed the problem specification after
the graph during tokenanization. That is, we have
placed the information needed to specify what to
do with the data after the actual data. This means
that the latent representation of G formed by the
LM can not depend on Q. Thus instead we form
our input as x = [Q, G, r<j ]. Refer to this as Q’s
position being either Start v.s End. Exp. 5 of Table
1 demonstrates that this consistently solves the task
when combined with permuting the arms only, but
goes back to being completely unsolved when com-
bined with permuting the edges (Exp. 6). While
this shows that the task is solvable, it is unsatisfy-
ing as we require stronger supervisory information
in this setting. This also begs the question as to
why placing Q after G is at times solvable, even if
we understand why it makes the task harder.

As the causal constraint of decoder-only models
potentially induces these issues, we are motivated
to change the model specification to see if abandon-
ing this constraint will solve the task.

2.3 Changing the model parameterization
2.3.1 Encoder-decoder model, or, alternative

hypothesis: it’s the causal constraint
Here we use encoder-decoder model with a 6-layer
encoder with a 3-layer decoder with tied embed-
dings. Removing the causal constraint on the
source-side encoding of [G, Q] makes the relative
position of Q to G irrelevant. If this model can
consistently solve the task, it will demonstrate that
the underlying issue is that the causal constraint
prevents the decoder-only model from recovering
the arm structure with edge-wise permutation.

Exp. 9 in Table 2 demonstrates that using a non-
causal encoder representation does not solve the
problem with edge-wise permutation. This moti-
vates us to revisit the ‘teacher-less’ methodology
as it has been shown to partially work and is an
alternative non-causal methodology.

2.3.2 Non-autoregressive models
Bachmann and Nagarajan (2024) reported that
‘teacher-less’ models where unable to solve the task
in the small LM setting. Here we attempt to im-
prove their results. We begin by modify their their
‘teacher-less’ model as it was designed to modify an
LM post-hoc, which is not applicable here (Monea

et al., 2023). Instead, note this is actually just a
kind of non-autoregressive model (NAR) (Gu et al.,
2018; Wang et al., 2018; Gu and Kong, 2021).

NAR models treat all targets as independent in
order to make multiple predictions in parallel in-
stead of sequentially. This is achieved by removing
the causal constraint i.e. attention mask. In the
case of (fully) NAR models, full independence is
assumed. However, this can lead a poor model as
it limits the ability to learn from dependencies in-
herent in the sequence (Lee et al., 2018; Qian et al.,
2021). This lead to the development of iterative
autoregressive models (IAR)2 which assume partial
dependencies, both during training and inference –
except in the first generation step (Lee et al., 2018;
Ghazvininejad et al., 2019). Importantly, IAR mod-
els assume no order-of-generation. This allows
for the model to potentially learn the reverse order
solution without supervision.

To train an IAR model, an order-permutation of
the sequence is sampled, along with a time-step,
j such that model conditions on the permuted or
‘unmasked’ ground-truths prior to step j. This is
equivalent to the MLM objective with a dynam-
ically sampled masking rate, where the the uni-
form masking is acting as the permutation (Devlin
et al., 2019; Lee et al., 2018; Ghazvininejad et al.,
2019). Thus use teacher-forcing, but it is just ap-
plied to a permuted sequence order. We use CMLM
(Ghazvininejad et al., 2019) for an encoder-decoder
IAR model and an encoder-only model using the
same hyper-parameters as the decoder-only model
(i.e same model but without causal masking).

We evaluated these models both in the NAR and
IAR generation setting using either 1 or M iterative
steps (results not reported). Both settings produced
the same results. That is, once, the model learnt
the solution, it could generate the entire arm in one
step just as well as over M steps. In principle, the
IAR models should be able to first generate t in the
last position, condition on it, and then just generate
the arm in reverse order via CHC – which should
be much easier than learning the true solution. This
did not happen. It should be disconcerting for
practitioners of IAR models that the trivial gen-
eration order does not seem to be found.

We demonstrate that small IAR models are ca-
pable of learning the task in Tables 3 and 4. Exp.
11 and 14 may indicate that IAR models are not as
performative on the task, however, this is not true

2Often called iterative NAR models, which is a misnomer.
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ID Perm. Dir. Ctra. D = 2 D = 3 D = 4 D = 5

8 Arm Fwd. 0 100% 100% 100% 100%
9 Edge Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
10 Arm Fwd. 1 100% 100% 100% 100%

Table 2: Results using the encoder-decoder AR model. Q pos. is ‘End’.

ID Perm. Train Dir. Ctra. D = 2 D = 3 D = 4 D = 5

11 Arm IAR Fwd. 0 100% 100% 82% 0% 82% 0%
12 Edge IAR Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
13 Arm IAR Fwd. 1 100% 100% 100% 100%

Table 3: Results using the CMLM (encoder-encoder) IAR model with IAR training (teacher-forcing).

once contrastive samples are used (Sec 2.4).

2.4 Contrastive samples

Our observations of the failures of the above mod-
els lead us to conclude that, in the instances where
the model failed to solve the task, the model would
overfit. See the top graph of Fig 2 with D = 2.
Here all trials end up successfully learning the task,
which can be seen when the validation accuracy
branches off from chance. However, the last exam-
ple nearly overfits. In the third graph, we see the
same experimental setting but with D = 4. Here
only a single trial succeeded and the rest main-
tained a stagnant validation accuracy at chance
while the training and validation losses diverge.

To prevent this, we experimented with standard
methods to combat overfitting such as lowering
learning rate, increasing batch size or L2 regular-
ization, etc. without success. This lead to devel-
oping an alternative method where we supplement
the training data with multiple instances of G but
with different target nodes, and hence, different Q
and target arms to be generated. This was achieved
via expanding each batch with one or more of these
contrastive samples per original G. These extra
instances should act as interference on any spu-
rious training signal. Note, apart from sampling,
these are treated as independent and are not part
of a contrastive loss. This can be viewed as extra
supervisory information applied at the batch-level.

Results of exp. 7, 13, and 16 show that this
prevents overfitting and leads to improved success
rate across models. The arm-wise decoder-only
exp. 7 shows improved rates at D ∈ {4, 5}. This
can be seen in the first and third plots in Fig 2 in
contrast to their corresponding second and forth
plots where we see the validation loss tracks the
training loss instead of diverging when provided

with contrastive samples. This lead to learning the
solutions in less epochs in the D = 2 case and lead
to 10/11 instead of 1/11 of the trials succeeding in
the D = 4 case.

3 Limitations and Future work

The major limitation to this extended abstract is
that the experiments with contrastive samples are
in progress. We included partial and preliminary
results of this method in order to show the future di-
rection of this work. Despite this, we have already
demonstrated a number of interesting findings: 1)
We independently reproduced the empirical results
of Bachmann and Nagarajan (2024). 2) We show
that the CHC is a red-herring, if the problem is due
to loss of intermediate training signal. 3) We show
that retaining the arm structure leads to improved
results and that combining this with a better order-
ing of Q and G makes the task solvable. We take
this as strong evidence that poor representation is a
key factor in why the task is difficult. 4) We show
that NAR/IAR models can successfully solve the
task in limited settings, and describe a surprising
failing to these models. Finally, 5), we show that
overfitting is a key issue and provide initial positive
results in tackling this.

We set out the hypothesis that trials where the
training and validation losses do not diverge will
succeed given sufficient training time. However,
that has yet to be shown. It is an open question if
contrastive samples will always lead to finding the
solution given sufficient time or if this scales with
D and M . More importantly, it is an open question
as to why the models prefer to overfit instead of
finding the correct solution. On lead we have is that
the task hinges on a single token which determines
the necessary latent representation of G, and this
seems to have large consequences on the behaviour
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Figure 2: Plots 1 and 3 visualize the training of the experiments of row/exp. 4 in Table 1 where D = 2 and D = 4
respectively. Plots 2 and 4 visualize the corresponding experiments in row/exp. 7 when constrictive exampled are
employed. Each plot shows the loss and sequence accuracy across all 11 trials of the given experiment for both
the training and validation partitions. When a trial succeeds in finding the desired solution, the sequence accuracy
spikes to 100% and the validation loss drops to near-zero. The loss is cutoff at 0.75 for visibility.
In plot 1, all trials succeed, however, when D is increased to 4, only 1/11 trials succeed as shown in plot 3. Here we
see that the training and validation losses diverge shortly after epoch 20, resulting in overfitting. In plot 4, the use of
contrastive samples prevents this divergence, leading to 10/11 trials succeeding, with the remaining trial not finding
the solution within the 100 epoch limit.
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ID Perm. Train Dir. Ctra. D = 2 D = 3 D = 4 D = 5

14 Arm IAR Fwd. 0 100% 82% 0% 36% 0% 9% 0%
15 Edge IAR Fwd. 0 36% 0% 0% 0% 0% 0% 0% 0%
16 Arm IAR Fwd. 1 100% 100% 100% 91% 9%

Table 4: Results using the encoder-only IAR model.

of the learning algorithm and the difficulty of learn-
ing a correct solution. This indicates that the issue
may stem from the sensitivity of the task to the
target token (Hahn et al., 2021; Chen et al., 2023;
Chakraborty et al., 2023; Bhattamishra et al., 2023;
Hahn and Rofin, 2024).

A large and important part of the scientific pro-
cess is testing hypotheses and putting forth counter
arguments. If, as we believe, the CHC hypothesis
is incorrect, then the broader discussion of Bach-
mann and Nagarajan (2024) concerning limitations
of next-token prediction is not be supported by their
findings. This is the main contribution of this work,
even if, we do not have a full solution or replace-
ment hypothesis. Even if the CHC hypothesis is
wrong, the path-star task is still a seemingly trivial
but deceptively difficult problem, making it worthy
of study. In addition to questioning the CHC hy-
pothesis, we make headway into the mystery of the
path-start task by demonstrating multiple simpli-
fications or alternatives of the task which make it
(more) solvable. Finally, we introduce a contrastive
method which has early indications of helping to
solve the task, however, open questions remain as
to why this method works and why it is necessary
in the first place.

3.1 Post-submission findings

Between submission and acceptance, new findings
have come to light, which we summarize here.

1) Constrastive samples are necessary but not
sufficient to solve the task consistently. We find
that, as each example is randomly sampled, there
will be |V |D(M−1)+1 × D possible graph-target
pairs to sample from. Thus it is easy to see why
the models would overfit as they can learn to make
many possible spurious correlations between any
unique node or combination of nodes in the source-
side and the targets. Contrastive samples will alle-
viate these spurious correlations by indicating that
the targets depend on a single token only. Above,
we wondered if contrastive samples will always
lead to finding the solution given sufficient time.
We found this is not true. However, we also con-

duct an analysis of the task using RASP (described
below), which lead to a counter-intuitive result that,
even though overfitting is an issue, we need to in-
crease the size of the models to solve the task.

2) The RASP programming language is a for-
mal computation model used to verify if a trans-
former is capable of solving a given symbolic (non-
numerical) task where the existence of a valid
RASP program proves there exists at least one
transformer which can (Weiss et al., 2021; Zhou
et al., 2024). We conduct a RASP analysis which
lead us to find to many new insights to the task.
We can formally prove, via the existence of RASP
programs, that the task is solvable via transform-
ers both using non-causal and causal models. Due
to the graph structure, we find that the simplest
RASP programs which solve the task with edge-
wise permutation require O(M) number of layers
in order to route information about leading nodes
to final nodes (or vise versa). We show a O(logM)
algorithm exists, but conjecture than no O(1) ex-
ists. This would mean that the task will not be
generalizable to higher values of M . However, the
problem is easily solvable with a O(1) algorithm
when using arm-wise permutation, which explains
why the task is solvable under the simpler condi-
tions demonstrated above. We also find that using a
causal decoder makes the task harder as it can only
route information into the future, which requires
different rules depending on if the connecting edge
is before or after a current edge when routing.

3) Given the RASP analysis we increased the
number of layers of each model. This lead to worse
in overfitting in all models, except the encoder-only
model, which then is able to consistently solve the
task. Both this model and the CMLM (enocder-
encoder) model employ the IAR training method.
The fact that it is just the encoder-only model which
works indicates that the reason why it works is not
due to the training method. It is an open mystery
why it is only this model which can consistently
solve the task.

Please look for an updated pre-print (available
soon) or contact arvie@cs.toronto.edu.
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A The Clever Hans Phenomenon

In Fig 3 we show how the CHC appears during
training. Here we see that the first token to fit
to 100% accuracy is the given start node, s. The
next token is the given target node, t. While this
might seem strange as it is generated at the end of
the sequence, this token is actually easily predica-
ble since the model can infer that the target token
should always be placed in the M th position. This
is because there is no requirement that predictions
be generalizable to different arm lengths and hence
the target token is always in the M th position. This
is explicitly done to maintain that the test data is
in-domain with the training data. Next we see that
all other non-leading nodes fit via the CHC. As no
trials succeeded in this experiment, the validation
accuracy of the leading token becomes stagnant at
chance, while the training accuracy improves.
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Figure 3: The appearance of the Clever Hans cheat over training. Data corresponds to row/exp. 1 of Table 1, where
D=3, M = 5.
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