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Abstract

Most currently deployed large language models
(LLMs) undergo continuous training or addi-
tional finetuning. By contrast, most research
into LLMs’ internal mechanisms focuses on
models at one snapshot in time (the end of pre-
training), raising the question of whether their
results generalize to real-world settings. Ex-
isting studies of mechanisms over time focus
on encoder-only or toy models, which differ
significantly from most deployed models. In
this study, we track how model mechanisms,
operationalized as circuits, emerge and evolve
across 300 billion tokens of training in decoder-
only LLMs, in models ranging from 70 million
to 2.8 billion parameters. We find that task abil-
ities and the functional components that sup-
port them emerge consistently at similar token
counts across scale. Moreover, although such
components may be implemented by different
attention heads over time, the overarching al-
gorithm that they implement remains. Surpris-
ingly, both these algorithms and the types of
components involved therein tend to replicate
across model scale. Finally, we find that circuit
size correlates with model size and can fluctu-
ate considerably over time even when the same
algorithm is implemented. These results sug-
gest that circuit analyses conducted on small
models at the end of pre-training can provide
insights that still apply after additional training
and over model scale.

1 Introduction

As LLMs’ capabilities have grown, so has interest
in characterizing their mechanisms. Recent work
in mechanistic interpretability often seeks to do
so via circuits: computational subgraphs that ex-
plain task-solving mechanisms (Wang et al., 2023;
Hanna et al., 2023; Conmy et al., 2023). Circuits
can be found and verified using a variety of meth-
ods, (Conmy et al., 2023; Syed et al., 2023; Hanna
et al., 2024; Kramár et al., 2024; Ferrando and

Voita, 2024) with the aim of reverse-engineering
models’ task-solving algorithms.

Though much circuits research is motivated by
LLMs’ capabilities, the setting in which such re-
search is performed often differs from that of cur-
rently deployed models. Crucially, while most
LLM circuits work (Wang et al., 2023; Hanna et al.,
2023) studies models at the end of pre-training,
currently deployed models often undergo contin-
uous training or are fine-tuned for specific tasks
(Hu et al., 2021). Other subfields of interpretability
have studied model development during training
(Hu et al., 2023; Chang et al., 2023; Warstadt et al.,
2020; Chang and Bergen, 2022), but similar work
on LLM mechanisms is scarce. Existing mech-
anistic work over training has studied syntactic
attention structures and induction heads (Olsson
et al., 2022; Chen et al., 2024; Singh et al., 2024),
but has focused on small encoder or toy models.
Prakash et al. (2024) examines circuits in 7-billion-
parameter models post-finetuning, but the evolution
of circuits during pre-training remains unexplored.
This raises questions about whether circuit analyses
will generalize if the model in question is further
trained or fine-tuned.

We address this issue by exploring when and
how circuits and their components emerge during
training, and their consistency across training and
different model scales. We study circuits in mod-
els from the Pythia suite (Biderman et al., 2023b)
across 300 billion tokens, at scales from 70 million
to 2.8 billion parameters. We supplement this with
additional data from models ranging up to 12 bil-
lion parameters. Our results suggest remarkable
consistency in circuits and their attributes across
scale and training. Our contributions are as follows:

Performance acquisition and functional com-
ponent emergence are similar across scale: Task
ability acquisition rates tend to reach a maximum
at similar token counts across different model sizes.
Functional components like name mover heads,
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copy suppression heads, and successor heads also
emerge consistently at similar points across scales,
paralleling previous findings that induction heads
emerge at roughly 2B-5B tokens across models of
all scales (Olsson et al., 2022).

Circuit algorithms often remain stable despite
component-level fluctuations: Analysis of the cir-
cuit for indirect object indenetification (IOI; Wang
et al., 2023) across training and scale reveals that
even when individual components change, the over-
all algorithm remains consistent, indicating a level
of algorithmic stability. We also find that the algo-
rithm also tends to be similar for dramatically dif-
ferent model scales, suggesting that some currently-
identified circuits may generalize.

Taken as a whole, our results suggest that
circuit analysis generalizes well over both pre-
training and scale even in the face of component
and circuit size changes. Thus, circuits studied at
the end of training in smaller models can be infor-
mative for larger models, as well as models with
longer training runs. We hope to see this validated
for other circuits, especially more complex ones,
confirming our initial findings.

2 Methods

2.1 Circuits

A circuit (Olah et al., 2020; Elhage et al., 2021;
Wang et al., 2023) is the minimal computational
subgraph of a model that is faithful to its behavior
on a given task. At a high level, this means that
circuits describe the components of a model—e.g.,
attention heads or multi-layer perceptrons (MLPs)—
that the model uses to perform the task. A task,
within the circuits framework, is defined by inputs,
expected outputs, and a (continuous) metric that
measures model performance on the task. For ex-
ample, in the indirect object identification (IOI,
(Wang et al., 2023)) task, the LM receives inputs
like “When John and Mary went to the store, John
gave a drink to”, and is expected to output Mary,
rather than John. We measure the extent to which
the LM fulfills our expectations by measuring the
difference in logits assigned to Mary and John.

Circuits are useful objects of study because we
can verify that are faithful to LM behavior on the
given task. We say that a circuit is faithful if we
can corrupt all nodes and edges outside the circuit
without changing model behavior on the task. Con-
cretely, we test faithfulness by running the model
on normal input, while replacing the activations

corresponding to edges outside our circuit, with
activations from a corrupted input, which elicits
very different model behavior. In the above case,
our corrupted input could instead be “When John
and Mary went to the store, Mary gave a drink to”,
eliciting John over Mary. If the circuit still predicts
Mary, rather than John, it is faithful. As circuits are
often small, including less than 5% of model edges,
this faithfulness test corrupts most of the model,
thus guaranteeing that circuits capture a small set
of task-relevant model mechanisms. For more de-
tails on the circuits framework, see prior work and
surveys (Conmy et al., 2023; Hanna et al., 2024;
Ferrando et al., 2024).

Circuits have a number of advantages over other
interpretability frameworks. As computational sub-
graphs of the model that flow from its inputs to
its outputs, they provide complete explanations for
a model’s mechanisms. Moreover, their faithful-
ness, verified using a causal test, makes them more
reliable explanations. This is in contrast to prob-
ing, which only offers layer-level explanations, and
can be unfaithful, capturing features unused by the
model (Belinkov, 2022). Similarly, input attribu-
tions (Shrikumar et al., 2017) only address which
input tokens are used.

2.2 Circuit Finding
In order to find faithful circuits at scale over many
checkpoints, we use efficient, attribution-based cir-
cuit finding methods. Such methods score the
importance of all edges in a model’s graph in a
fixed number of forward and backward passes, in-
dependent of model size; though other patching-
based circuit-finding methods (Conmy et al., 2023)
are more accurate, they are too slow, requiring a
number of forward passes that grows with model
size. From the many existing attribution methods
(Nanda, 2023; Kramár et al., 2024), we select edge
attribution patching with integrated gradients (EAP-
IG; Hanna et al., 2024) due to its faithful circuit-
finding ability. Like its predecessor, edge attribu-
tion patching (Nanda, 2023), EAP-IG assigns each
edge an importance score using a gradient-based
approximation of the change in loss that would oc-
cur if that edge were corrupted, but EAP-IG yields
more faithful circuits with fewer edges.

After running EAP-IG to score each edge, we de-
fine our circuit by greedily searching for the edges
with the highest absolute score. We search for
the minimal circuit that achieves at least 80% of
the whole model’s performance on the task. We
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do this using binary search over circuit sizes; the
initial search space ranges from 1 edge to 5% of
the model’s edges. The high faithfulness threshold
we set gives us confidence that our circuits cap-
ture most model mechanisms used on the given
task. However, ensuring that a circuit is entirely
complete, containing all relevant model nodes and
edges, is challenging, and no definitive method of
verifying this has emerged.

2.3 Models

We study Biderman et al.’s (2023b) Pythia model
suite, a collection of open-source autoregressive
language models that includes intermediate train-
ing checkpoints. Though we could train our own
language models or use another model suite with
intermediate checkpoints (Sellam et al., 2022; Liu
et al., 2023; Groeneveld et al., 2024), Pythia is
unique in providing checkpoints for models at a
variety of scales and training configurations.1 Each
model in the Pythia suite has 154 checkpoints: 11
of these correspond to the model after 0, 1, 2, 4,
. . . , and 512 steps of training; the remaining 143
correspond to 1000, 2000, . . . , and 143,000 steps.
We find circuits at each of these checkpoints. As
Pythia uses a uniform batch size of 2.1 million to-
kens, these models are trained on far more tokens
(300 billion) than those in existing studies of model
internals over time. We study models of varying
sizes, from 70 million to 12 billion parameters.

2.4 Tasks

We analyze the mechanisms behind four different
tasks taken from the (mechanistic) interpretability
literature. We choose these tasks because they are
simple and feasible for even the smaller models
we study. Moreover, as existing work has already
studied them in other models, we have clues as to
how our models likely perform these tasks; to ver-
ify that our models use similar circuits we briefly
analyze our models’ indirect object identification
and greater-than circuits in Appendix A. The other
task are MLP-dominant and do not involve much
attention head activity; for these circuits, we verify
that this is still the case in Pythia models.

Indirect Object Identification The indirect ob-
ject identification (IOI; Wang et al., 2023) task
feeds models inputs such as “When John and Mary
went to the store, John gave a drink to”; models

1We exclude OLMo from our analysis due to missing
checkpoints at the time of writing.

should prefer Mary over John. Corrupted inputs,
like “When John and Mary went to the store, Mary
gave a drink to”, reverse model preferences. We
measure model behavior via the difference in logits
assigned to the two names (Mary and John). We
use a small dataset of 70 IOI examples created with
Wang et al.’s (2023) generator; larger datasets did
not provide significantly better results, and this size
fit into GPU memory more easily.

Gendered-Pronoun The Gendered-Pronoun task
(Vig et al., 2020; Mathwin et al., 2023) measures
the gender of the pronouns that models produce to
refer to a previously mentioned entity. Prior work
has shown “So Paul is such a good cook, isn’t”,
models prefer the continuation “he” to “she”; we
measure the degree to which this occurs via the
difference in the pronouns’ logits. In the corrupted
case, we replace the “Paul” with “Mary”. We craft
70 examples as in (Mathwin et al., 2023).

Greater-Than The Greater-Than task (Hanna
et al., 2023) measures a model’s ability to com-
plete inputs such as s =“The war lasted from the
year 1732 to the year 17” with a valid year (i.e.
a year > 32). Task performance is measured via
probability difference (prob diff); in this example,
the prob diff is

∑99
y=33 p(y|s)−

∑32
y=00 p(y|s). In

corrupted inputs, the last two digits of the start year
are replaced by “01”, pushing the model to out-
put early (invalid) years that decrease the prob diff.
We create 200 Greater-Than examples with Hanna
et al.’s (2023) generator.

Subject-Verb Agreement Subject-verb agree-
ment (SVA), widely studied within the NLP inter-
pretability literature (Linzen et al., 2016; Newman
et al., 2021; Lasri et al., 2022), tasks models with
predicting verb forms that match a sentence’s sub-
ject. Given input such as “The keys on the cabinet”,
models must predict “are” over “is”; a corrupted
input, “The key on the cabinet” pushes models to-
ward the opposite response. We measure model
performance using prob diff, taking the difference
of probability assigned to verbs that agree with
the subject, and those that do not. We use 200
synthetic SVA example sentences from (Newman
et al., 2021).

3 Circuit Formation

3.1 Behavioral Evaluation
We begin our analysis of LLMs’ task mechanisms
over time by analyzing LLM behavior on these
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Figure 1: Task behavior across models and time (higher indicates a better match with expected behavior). Across
tasks and scales, model abilities tend to develop at the same number of tokens.

tasks; without understanding their task behaviors,
we cannot understand their task mechanisms. We
test these by running each model (Section 2.3) on
each task (Section 2.4). Our results (Figure 1) dis-
play three trends across all tasks. First, all models
but the weakest (Pythia-70m) tend to arrive at the
same task performance at the end of training. This
is consistent with our choice of tasks: they are
simple, learnable even by small models, and scal-
ing does not significantly improve performance.
Second, once models begin learning a task, their
overall performance is generally non-decreasing,
though there are minor fluctuations; Pythia-2.8b’s
logit difference on Gendered Pronouns dips slightly
after it learns the task. In general, though, models
tend not to undergo significant unlearning. The
only marked downward trend (Pythia-70m at the
end of SVA) comes from a weak model.

Finally, for each task we examined, we observed
that there was a model size beyond which addi-
tional scale did not improve the rate of learning,
and sometimes even decreased it; task acquisition
appeared to approach an asymptote. We found this
surprising due to the existence of findings show-
ing the opposite trend for some tasks: (Kaplan
et al., 2020). On some tasks (Gendered Pronouns
and Greater-Than), all models above a certain size
(70M parameters for Gendered Pronouns and 160M
for Greater-Than) learn tasks at roughly the same
rate. On IOI, models from 410M to 2.8B param-
eters learn the task the fastest, but larger models

(6.9B and 12B) have learning curves more like
Pythia-160m. We obtain similar results on more
difficult tasks like SciQ (Welbl et al., 2017); for
these results, see Appendix D.

What drives this last trend, limiting how fast
even large models learn tasks? To understand this,
we must delve into the internal model components
that support these behaviors and trends.

3.2 Component Emergence

Prior work (Olsson et al., 2022; Chen et al., 2024;
Singh et al., 2024) has shown how a model’s abil-
ity to perform a specific task can hinge on the de-
velopment of certain components, i.e. the emer-
gence of attention heads or MLPs with specific,
task-beneficial behaviors. Prior work has also thor-
oughly characterized the components underlying
model abilities in two of our tasks, IOI and Greater-
Than, at the end of training. We thus ask: is it the
development of these components that causes the
task learning trends we saw before? We focus on
four main components, all of which are attention
heads, which we briefly describe here:

Induction Heads (Olsson et al., 2022) activate
on sequences of the form [A][B]. . . [A], attend-
ing to and upweighting [B]. This allow models to
recreate patterns in their input, and supports IOI
and Greater-Than.

Successor Heads (Gould et al., 2023) identify
sequential values in the input (e.g. “11” or “Thurs-
day”) and upweight their successor (e.g. “12” or
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Figure 2: The development of components relevant to IOI and Greater-Than, across models and time. Each line
indicates the strength of component behavior of the selected attention head from that model; higher values imply
stronger component behavior. For each model and component, we plot the head in the relevant circuit (either IOI or
Greater Than) that displays the component behavior the earliest.

“Friday”); this supports Greater-Than behavior.
Copy Suppression Heads (McDougall et al.,

2023) attend to previous words in the input, lower-
ing the output probability of repeated tokens that
are highly predicted in the residual stream input to
the head. In the original IOI circuit, copy suppres-
sion heads hurt performance, downweighting the
correct name. In contrast, we find (Appendix C)
that they contribute positively to the Pythia IOI cir-
cuit by downweighting the incorrect name; this is
possible because both names are already highly pre-
dicted in the input to these heads, and they respond
by downweighting the most repeated one.

Name-Mover Heads (Wang et al., 2023) per-
form the last step of the IOI task, by attending to
and copying the correct name. Unlike the other
heads described so far, this behavior is specific to
IOI-type tasks; their behavior across the entire data
distribution has not yet been characterized.

Because the importance of these components
to IOI and Greater-Than has been established in
other models, but not necessarily in those of the
Pythia suite, we must first confirm their importance
in these models. We do so by finding circuits for
each model at each checkpoint using EAP-IG, as
described in Section 2.2; we omit Pythia-6.9b and
12b from circuit finding for reasons of computa-
tional cost. We find that these component types
indeed appear within the circuits of Pythia models’
tasks circuits; see Appendix A and Appendix B for

details on our methods and findings.
For each component, prior work has developed

a metric to determine whether a model’s attention
head is acting like that component type; see Ap-
pendix C for details on these. Using these metrics,
we score each of our models’ heads at each check-
point, evaluating the degree to which it acts like
one of the four aforementioned heads. We then plot
the earliest arising heads of each type, per model.

Our results (Figure 2) indicate that many of the
hypothesized responsible components do emerge
the same time as model performance increases.
Most models’ induction heads emerge soon after
they have seen 2× 109 tokens, replicating the find-
ings in (Olsson et al., 2022); immediately after this,
Greater-Than behavior emerges. The successor
heads, also involved in Greater-Than, emerge in a
similar timeframe.

For IOI, the name-mover heads emerge at similar
timesteps (2 - 8× 109 tokens) across models, with
a very high strength, during or just before IOI be-
havior appears. Copy suppression heads emerge at
the same timescale, but at varying speeds, and with
varying strengths. Given that these heads are the
main contributors to model performance in each
task’s circuit, and they emerge as or just before
models’ task performance increases, we can be
reasonably sure that they are responsible for the
emergence of performance. This said, we note an
unusual trend: though model performance (Fig-
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Figure 3: The development over time of components relevant to IOI and Greater-Than in Pythia-160m. Each line
indicates the degree to which an attention head, denoted as (layer, head), exhibits a given function; higher values
imply stronger functional behavior. Heads often lose their current function; other heads then take their place.

ure 1) does not decrease over time, the functional
behavior of certain attention heads does. In the
following section, we explain how this occurs.

4 Algorithms in Post-Formation Circuits

We demonstrated in Section 3 that across a vari-
ety of tasks, models with differing sizes learn to
perform the given task after the same amount of
training; this appears to happen because each task
relies on a set of components which develop after
a similar count of training tokens across models.
However, in Figure 2, we observed that attention
heads that had a given function earlier in behavior
can lose their function later in training. This raises
questions: when the heads being used to solve a
task change, does the algorithm implemented by
the model change too? And how do these algo-
rithms generalize across model scale?

4.1 Model Behavior and Circuit Components
Post-Formation

To understand how model component behaviors
change over time, we now zoom in on the com-
ponents in one model, Pythia-160m, and study
them over the course of training; where we ear-
lier plotted only the top component (e.g. the top
successor head), of each model, we now plot the
top 5 of Pythia-160m’s heads that exhibit a given
functional behavior (or fewer, if fewer than 5 ex-
ist). By evaluating components and algorithms

over Pythia-160m’s 300B token training span, we
extend beyond previous work, which studies mod-
els trained on relatively few (≤ 50M) tokens (Chen
et al., 2024; Singh et al., 2024); in such work, com-
ponents and task behaviors appear constant after
component formation.

By contrast, our results (Figure 3) show that
over the longer training period of Pythia models,
the identity of components in each circuit is not
constant. For example, the name-mover head (4,6)
suddenly stops exhibiting this behavior at 3× 1010

tokens, having acquired it after 4×109 tokens. Sim-
ilarly, Pythia-160m’s main successor head (5,9)
loses its successor behavior towards the end of
training; however, (11,0) exhibits more successor
behavior at precisely that time. Such balancing may
lead to the model’s task performance remaining sta-
ble, as we observed in the prior section (Figure 1).

4.2 Circuit Algorithm Stability Over Training

This instability of functional components raises an
important question—when attention heads begin or
cease to participate in a circuit, does the underlying
algorithm change? To answer this, we examined
the IOI circuit, as it is the most thoroughly char-
acterized (Wang et al., 2023) circuit algorithm of
our set of tasks. Our investigation follows a three-
stage approach: first, we analyzed the IOI circuit
at the end of training, reverse-engineering its al-
gorithm; next, we developed a set of metrics to
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quantify whether the model was still performing
that algorithm; finally, we applied these metrics
across checkpoints, to determine if the algorithm
was stable over training.

The first stage of our analysis is to analyze the
IOI circuit at the end of training. Here, we present
only the results of our analysis, but see Appendix B
for details of this process, which follows the origi-
nal analysis (Wang et al., 2023). Figure 4A shows
the circuit that results from our analysis; it involves
three logical “steps,” each of which involves a dif-
ferent set of attention head types. Working back-
wards from the logit predictions, the direct contrib-
utors towards the logit difference are name-mover
heads and copy suppression heads. The former at-
tend to the indirect object in the prompt and copy
it to the last position; the latter attend to and down-
weight tokens that appear earlier in the input. In
the next step, the name-mover heads (but not the
copy-suppression heads) use on token and posi-
tional information output by the S-inhibition heads
to attend to the correct token. Finally, S-inhibition
heads rely on information from induction heads
and duplicate-token heads.

Next, we quantify the extent to which the cir-
cuit depends on each of these three steps, via path
patching (Goldowsky-Dill et al., 2023), a form of
ablation where activations are swapped with those

from counterfactual prompts (see Appendix B for
details). If a step is important, ablating the connec-
tion between the components involved in that step
(e.g. in step 2, between induction / duplicate-token
heads and S-inhibition heads) should have a large
direct effect, and cause a large drop in model per-
formance. For each step, our metric measures this
direct effect, divided by the sum of the direct ef-
fects of ablating each edge with the same endpoint.
Our metrics range from 0-100%; higher is better.

Finally, we compute each of these metrics for
each model from 160M to 2.8B parameters in size.2

We run them on each checkpoint post-circuit emer-
gence (that is, when all component types appear
in the circuit); for Pythia-160m, we test every
checkpoint, and for the larger models we space
out checkpoints to save compute, using approxi-
mately 1/3rd of the available checkpoints). We
find (Figure 4B-D) that the behavior measured by
these metrics is stable once the initial circuit has
formed. Notably, in no model or metric are there
dramatic shifts in algorithm corresponding to func-
tional component shifts within the circuit. More-
over, all scores are relatively high, generally above
50%; the core solvers of the algorithm, copy sup-
pression and name-mover heads, have scores above

2We omit Pythia-70m, as it does not learn the task; due to
computational constraints, we omit Pythia-6.9b/12b.
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70%. This suggests that analyses of circuits in fully
pre-trained models may generalize well to other
model states, rather than being contingent on the
particular checkpoint selected.

Generalization across model scales also seems
promising, as IOI circuit metrics from Pythia-160m
are also high in larger Pythia variants. However,
there is variation: while the name-mover, copy-
suppression, and S-inhibition heads are at work in
all models’ circuits, the Pythia-160m circuit does
not involve duplicate-token heads, while others do.
So small differences exist amid big-picture simi-
larity. Moreover, we stress that these algorithmic
similarities might not hold for more complex tasks,
for which a variety of algorithms could exist.

5 Discussion

Implications for Interpretability Research
While our findings are based on a limited set of cir-
cuits, they hold significant implications for mech-
anistic interpretability research. Our study was
motivated by the fact that most such research does
not study models that vary over time, like currently
deployed models. However, the stability of cir-
cuit algorithms over the course of pre-training sug-
gests that analyses performed on models at a given
point during training may provide valuable insights
into earlier and later phases of pre-training as well.
Moreover, the consistency in the emergence of crit-
ical components and the algorithmic structure of
these circuits across different model scales sug-
gests that studying smaller models can sometimes
provide insights applicable to larger models. This
dual stability across pre-training and scale could
reduce the computational cost of interpretability re-
search and allow for more efficient study of model
mechanisms. However, further research is needed
to confirm these trends across a broader range of
tasks and architectures.

Limitations and Future Work Our analysis was
limited to a narrow range of tasks feasible for small
models. This limits in turn the scope of the claims
that we can make. We believe it to be very possi-
ble that more complex tasks, not solvable by small
models, which permit a larger range of algorithmic
solutions, may show different trends from those
that we discuss here. Such work would be valu-
able, though computationally expensive due to the
model sizes required. Our analysis also studied
models only from one model family, Pythia. It
is thus not possible to tell if our results are lim-

ited to the specific model family we have chosen,
which shares both architecture and training setup
across model scale. Such work is in part ham-
pered by the lack of large-scale model suites such
as Pythia; future work could provide these suites to
enable this sort of analysis. Our work additionally
only studies circuits over the course of training; in
contrast, open-source models are more often fine-
tuned, which could lead to different changes in
mechanisms, though previous small-scale studies
suggest this is not the case (Prakash et al., 2024).
Finally, future work would do well to explore more
complex phenomena, such as the self-repair and
load-balancing mechanisms of LLMs, which en-
sure consistent task performance despite compo-
nent fluctuations.

6 Related Work

Behavioral Interpretability Over Time LLMs’
development over the course of pre-training has
been studied via behavioral interpretability, which
characterizes model behavior without making
claims about its implementation. Such analyses
have studied LLM learning curves and shown that
models of different sizes acquire capabilities in the
same sequence (Chang et al., 2023), examined how
LLMs learn linguistic information (Warstadt et al.,
2020; Chang and Bergen, 2022) and even predicted
LLM behavior later in training (Hu et al., 2023;
Biderman et al., 2023a).

Mechanistic Interpretability We build on pre-
vious work in mechanistic interpretability, which
aims to reverse engineer neural networks. Cir-
cuits are a paradigm of model analysis that has
emerged from this field, originating with vision
models (Olah et al., 2020) and continuing to trans-
former LMs (Meng et al., 2023; Wang et al., 2023;
Hanna et al., 2023). Increasingly, research has tried
to characterize the individual components at work
within circuits, especially attention heads (Olsson
et al., 2022; Chen et al., 2024; Singh et al., 2024;
Gould et al., 2023; McDougall et al., 2023) and
sparse features (Marks et al., 2024). Though mech-
anistic interpretability is a diverse field, it is tied
together by causal methods (Vig et al., 2020; Geiger
et al., 2021), which yield more faithful mechanistic
explanations.

297



References
Yonatan Belinkov. 2022. Probing classifiers: Promises,

shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Stella Biderman, USVSN Sai Prashanth, Lintang
Sutawika, Hailey Schoelkopf, Quentin Gregory An-
thony, Shivanshu Purohit, and Edward Raff. 2023a.
Emergent and predictable memorization in large lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023b. Pythia:
a suite for analyzing large language models across
training and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Tyler A. Chang and Benjamin K. Bergen. 2022. Word
acquisition in neural language models. Transactions
of the Association for Computational Linguistics,
10:1–16.

Tyler A. Chang, Zhuowen Tu, and Benjamin K. Bergen.
2023. Characterizing learning curves during lan-
guage model pre-training: Learning, forgetting, and
stability. Preprint, arXiv:2308.15419.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho,
Matthew L Leavitt, and Naomi Saphra. 2024. Sudden
drops in the loss: Syntax acquisition, phase transi-
tions, and simplicity bias in MLMs. In The Twelfth
International Conference on Learning Representa-
tions.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A

mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and
Marta R. Costa-jussà. 2024. A primer on the in-
ner workings of transformer-based language models.
Preprint, arXiv:2405.00208.

Javier Ferrando and Elena Voita. 2024. Information flow
routes: Automatically interpreting language models
at scale. Preprint, arXiv:2403.00824.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 34, pages 9574–9586.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing model behav-
ior with path patching. Preprint, arXiv:2304.05969.

Rhys Gould, Euan Ong, George Ogden, and Arthur
Conmy. 2023. Successor heads: Recurring, in-
terpretable attention heads in the wild. Preprint,
arXiv:2312.09230.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Du-
mas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar
Khot, William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew E.
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma
Strubell, Nishant Subramani, Mitchell Wortsman,
Pradeep Dasigi, Nathan Lambert, Kyle Richardson,
Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. 2024.
Olmo: Accelerating the science of language models.
Preprint, arXiv:2402.00838.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does GPT-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Michael Hanna, Sandro Pezzelle, and Yonatan Be-
linkov. 2024. Have faith in faithfulness: Going be-
yond circuit overlap when finding model mechanisms.
Preprint, arXiv:2403.17806.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Michael Y. Hu, Angelica Chen, Naomi Saphra, and
Kyunghyun Cho. 2023. Latent state models of train-
ing dynamics. Transactions on Machine Learning
Research.

298

https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://openreview.net/forum?id=Iq0DvhB4Kf
https://openreview.net/forum?id=Iq0DvhB4Kf
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://doi.org/10.1162/tacl_a_00444
https://doi.org/10.1162/tacl_a_00444
https://arxiv.org/abs/2308.15419
https://arxiv.org/abs/2308.15419
https://arxiv.org/abs/2308.15419
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=89ia77nZ8u
https://openreview.net/forum?id=89ia77nZ8u
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://papers.nips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://papers.nips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2312.09230
https://arxiv.org/abs/2312.09230
https://arxiv.org/abs/2402.00838
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=NE2xXWo0LF
https://openreview.net/forum?id=NE2xXWo0LF


Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

János Kramár, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. Atp*: An efficient and scalable method
for localizing llm behaviour to components. Preprint,
arXiv:2403.00745.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard
Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei
He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ran-
jan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo,
Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov,
Tim Baldwin, and Eric P. Xing. 2023. Llm360: To-
wards fully transparent open-source llms. Preprint,
arXiv:2312.06550.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan
Belinkov, David Bau, and Aaron Mueller. 2024.
Sparse feature circuits: Discovering and editing inter-
pretable causal graphs in language models. Preprint,
arXiv:2403.19647.

Chris Mathwin, Guillaume Corlouer, Esben Kran, Fazl
Barez, and Neel Nanda. 2023. Identifying a prelimi-
nary circuit for predicting gendered pronouns in gpt-2
small.

Callum McDougall, Arthur Conmy, Cody Rushing,
Thomas McGrath, and Neel Nanda. 2023. Copy
suppression: Comprehensively understanding an at-
tention head. Preprint, arXiv:2310.04625.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt. Preprint, arXiv:2202.05262.

Neel Nanda. 2023. Attribution Patching: Activation
Patching At Industrial Scale.

Benjamin Newman, Kai-Siang Ang, Julia Gong, and
John Hewitt. 2021. Refining targeted syntactic evalu-
ation of language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3710–3723, Online.
Association for Computational Linguistics.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020.
Zoom in: An introduction to circuits. Distill.
Https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay,
Yonatan Belinkov, and David Bau. 2024. Fine-tuning
enhances existing mechanisms: A case study on en-
tity tracking. In The Twelfth International Confer-
ence on Learning Representations.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason
Wei, Naomi Saphra, Alexander D’Amour, Tal Linzen,
Jasmijn Bastings, Iulia Raluca Turc, Jacob Eisenstein,
Dipanjan Das, and Ellie Pavlick. 2022. The multiB-
ERTs: BERT reproductions for robustness analysis.
In International Conference on Learning Representa-
tions.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 3145–3153. PMLR.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie
C. Y. Chan, and Andrew M. Saxe. 2024. What needs
to go right for an induction head? a mechanistic study
of in-context learning circuits and their formation.
Preprint, arXiv:2404.07129.

Aaquib Syed, Can Rager, and Arthur Conmy. 2023.
Attribution patching outperforms automated circuit
discovery. Preprint, arXiv:2310.10348.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. 2020.
Causal mediation analysis for interpreting neural nlp:
The case of gender bias. Preprint, arXiv:2004.12265.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

299

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://itch.io/jam/mechint/rate/1889871
https://itch.io/jam/mechint/rate/1889871
https://itch.io/jam/mechint/rate/1889871
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://doi.org/10.18653/v1/2021.naacl-main.290
https://doi.org/10.18653/v1/2021.naacl-main.290
https://doi.org/10.23915/distill.00024.001
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://openreview.net/forum?id=K0E_F0gFDgA
https://openreview.net/forum?id=K0E_F0gFDgA
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul


Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020. Learning which fea-
tures matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106, Copenhagen, Den-
mark. Association for Computational Linguistics.

A Analysis of Task Circuits

A.1 IOI Circuit & Algorithmic Criteria
To determine algorithmic consistency for the IOI
circuit, we apply path patching as described in Ap-
pendix B in addition to using the component scores
described in Appendix C. These are used to set
thresholds for classifying attention heads. Though
component score thresholds can be arbitrary, apply-
ing them consistently across all model checkpoints
allows us to see the degree of similarity involved
with model behavior.

Concretely, we use the following metrics and
thresholds:

Direct-effect heads We initially perform path-
patching on all model attention heads, measuring
their impact on the logit different after the final
layer of the model. We then classify attention
heads as name-mover heads (NMHs), negative
name-mover heads, and copy suppression heads
(CSHs) based on copy score (for NMHs) or CPSA
(for CSHs) of > 10%, which yielded a small set of
heads responsible for most of the direct effect. We
measure the ratio of the absolute direct effect on
logit difference for these heads vs. the total direct
effect of all heads (including several unclassified
heads) to obtain our first value.

Next, we conduct path-patching with NMHs as
the receivers. This yields a set of heads that we
then test for S2-inhibition (S2I) behavior, using
Wang et al.’s (2023) test for the effect of token sig-
nal vs. positional signal: does the ablation of these
positional signal heads A). reduce the logit differ-
ence through the NMHs, B). reduce NMH attention
(which determines what they copy) to the indirect
object token, and C). increase attention to the sub-
ject tokens? If a head meets all of these conditions,
we classify it as an S2I head, as it emits a signal
used by the NMHs to decide what to copy. The
total absolute effect of these heads on the NMHs is

then divided by the total absolute effect of all heads
on the NMHs, producing our second measurement.

Finally, we conduct path-patching with S2I
heads as receivers. Here, we apply a simpler test
since these heads can be quite diffuse throughout
the model: Do the heads involved have above-
average induction or duplicate-token scores? If so,
we classify them as induction heads or duplicate
token heads (confirming via manual examination
of attention patterns and behavior), and divide the
total absolute effect of these heads by the total abso-
lute effect of all heads on the S2I heads, producing
our third measurement.

These three metrics capture the extent to which
known and classifiable model components con-
tribute at each of the three primary levels of the
IOI circuit. If the degree to which unknown or un-
classified components contribute to any part of the
circuit, we will see the corresponding score drop.
As we see that in practice they tend to stay level,
we conclude that there is a high degree of stability
for this circuit.

B Other Circuit-Analysis Methods

Circuit analysis can be conducted via a number of
different methods; the method used to find the orig-
inal IOI circuit (and that we use to verify algorith-
mic consistency in this task) is Wang et al.’s (2023)
path-patching. Path patching is a specialized form
of activation patching, used to isolate and analyze
the influence of individual model components on
a given task. Starting with two datasets (identical
except for the key detail we want to base our circuit
on, such as the correct and incorrect names in the
IOI task), xorig and xaltered, where xaltered is a coun-
terfactual version of xorig, the technique involves a
sender attention head h and a set of receiver nodes
R ⊆ M within the model’s computational graph
M . Initially, activations are recorded from both
datasets. Subsequently, all attention heads except
h are locked to their activations from xorig, while
h is updated with its activation from xaltered. This
configuration allows for a forward pass on xorig,
capturing intermediate activations for nodes r ∈ R.
A final forward pass on xorig then patches R to
these stored values, facilitating the assessment of
h’s impact on the model’s output.

Path patching aims to gauge the significance of
the path h → r by comparing the model’s logit
differences across multiple pairs (xorig, xnew). By
averaging these differences over many pairs, the
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method effectively measures the impact of specific
paths on model performance, providing insights
into the contributions of individual components
to the overall task. The process is iterative, such
that a practitioner would start by observing which
nodes impact the logits directly, and then proceed-
ing backwards to see what nodes affect those first
direct-effect nodes, and so on.

C Component Metrics

In this paper, we follow the metrics from previous
literature in Wang et al. (2023) for name-mover
heads, McDougall et al. (2023) for copy suppres-
sion heads, (Olsson et al., 2022) for induction
heads, and (Gould et al., 2023) for successor heads.

Copy Score Following Wang et al. (2023), we
check if the Name Mover Heads copy over the
names across training time by using the same
metrics- copy score. To validate the Name Mover
Heads, we studied what values are written via the
head’s OV matrix. We take the state of the residual
stream after the first layer of MLP on the specific
name tokens. Then we multiply it with the OV ma-
trix of the given heads, multiplied with the unem-
bedding matrix and also the final layer norm. This
simulates what will happen if the head attended
perfectly to that token. We define copy score as the
proportion of samples that contain the input name
token in the top 5 logits.

CSPA Score McDougall et al. (2023) intro-
duced a novel approach named copy suppression-
preserving ablation (CSPA), designed to ablate all
behaviors of a specified attention head except for
those related to copy suppression. This method
involves two distinct types of ablation: OV abla-
tion and QK ablation. In the OV ablation process,
the output of an attention head at a destination to-
ken D is represented as a weighted sum of result
vectors from source tokens S, with the weights cor-
responding to the attention probabilities from D
to S (Elhage et al., 2021). These vectors are then
projected onto the unembedding vectors of their
respective source tokens S, retaining only their
negative components. Meanwhile, QK ablation in-
volves mean-ablating the result vectors from each
source token S, except for the top 5% of source
tokens that are most likely to be predicted at the
destination token D based on the logit lens. For
instance, in the phrase “All’s fair in love and war,”
if the destination token D is “and” and the token

“love” is a highly predicted follower of D and ap-
pears as a source token S, the result vector from
S is projected onto the unembedding vector for
“love,” and everything else is mean-ablated. This
demonstrates how the attention head in question
suppresses the prediction of “love.” To evaluate the
impact of the ablation, the token distribution output
by the model for a given prompt (π) is compared
with the distribution following an ablation (πAbl)
using KL divergence DKL(π||πAbl). By averag-
ing these values over the OpenWebText dataset,
DCSPA for CSPA and DMA for a mean ablation
baseline are obtained. The proportion of the effect
explained is then calculated as 1 − DCSPA

DMA
, with

KL divergence chosen because a value of 0 indi-
cates that the ablated and clean distributions are
identical, implying that 100% of the head’s effect
is explained by the preserved components.

Previous Token Score The Previous Token
Score measures how effectively each attention head
attends to the immediately preceding token. To
compute this, we use a diagonal extraction on the
attention pattern matrices, offset by one position.
This captures the attention weights directed to the
token that precedes each token in the sequence.
The scores are averaged over all batches and to-
kens, providing a mean score for each attention
head across all layers.

Duplicate Token Score The Duplicate Token
Score evaluates the propensity of each attention
head to focus on duplicate tokens within a sequence.
We achieve this by creating input sequences where
the original tokens are repeated consecutively. The
attention pattern matrices are then examined for
their focus on tokens that are exactly a sequence
length apart, indicating duplicate attention. The
scores are calculated by averaging the attention
weights along the specified diagonal, representing
the attention paid to duplicate tokens.

Induction Head Score Based on the prefix
matching score described by Olsson et al. (2022),
the Induction Head Score is designed to assess the
ability of attention heads to engage in induction,
where they predict the next token in a repeated se-
quence based on previously encountered patterns.
To measure this, we generate sequences where a
segment is repeated and compute the attention pat-
tern matrices. We extract the diagonals offset by
one less than the sequence length, capturing the
attention from the end of the first segment to the
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start of the repeated segment. The mean attention
scores along this diagonal provide the Induction
Head Scores, averaged over all batches and tokens.

Succession Score The succession score (Gould
et al., 2023) measures the degree to which an atten-
tion head performs succession, upweighting “2” in
response to “1”, or “May” given the input “April”.
As Gould et al.’s (2023) code is not publicly avail-
able, we re-implement their successor score as fol-
lows. We create a dataset of successor, consisting
of numbers (in digit and written form), days of the
week, and months. Then, we perform the follow-
ing procedure from (Gould et al., 2023). Letting
WE and WU denote the embedding and unembed-
ding matrices of the model under study, MLP0 de-
note the first (zero-indexed) MLP layer, and WOV

be the OV matrix of the head under study. Then
M = WUWOV MLP0(WE) is a square matrix
whose size is that of the model vocabulary; each
row thereof indicates, for the corresponding word
x in the vocabulary, the degree to which an out-
put word y is upweighted by the head under study,
when x is in the input. For each (x, y) pair in our
dataset (e.g. (3,4) or (Tuesday, Wednesday)) we
verify that M [x][y] > M [x][y′] for all y′ ̸= y in
our dataset; that is, we ensure that the correct an-
swer is more highly upweighted than any of the
other possible answers in our dataset. The succes-
sion score is the proportion of examples in which
that is the case.

D Additional Evidence for
Task-Dependent Learning Ceilings

In addition to evaluations we performed ourselves,
we also re-examined data collected during the
Pythia training runs (Biderman et al., 2023b) on the
SciQ (Welbl et al., 2017), PIQA (Bisk et al., 2019),
WinoGrande (Sakaguchi et al., 2019), and ARC
Easy (Clark et al., 2018) datasets. Each of these
consist of a wide range of questions with multiple-
choice answers, and accuracy was evaluated on the
basis of the top choice logit produced by the model.
We find that performance acquisition rates on these
tasks followed the same pattern we detected with
our simpler task datasets–that is, task learning rate
seemed to approach an asymptote as the models
increased in size. We describe the datasets below
and present the results in Figure 5.

SciQ The Science Questions (SciQ) dataset
(Welbl et al., 2017) consists of 13,679 crowd-
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(c) PIQA Accuracy
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(d) Winogrande Accuracy

Figure 5: Accuracy over training for four different
datasets. Step numbers each represent approximately
2M tokens, so Step 1000 would be 2B tokens. We see
that the rate of capability acquisition tends to approach
an asymptote as models become larger.
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sourced multiple choice science exam questions
ranging across physics, chemistry, biology, earth
science, astronomy, and computer science. The
questions cover a variety of complex reasoning
skills such as causal reasoning, multi-hop infer-
ence, and understanding paragraph descriptions.

PIQA The Physical Interaction Question An-
swering (PIQA) dataset (Bisk et al., 2019) contains
a total of 21k (across different subsets) multiple
choice questions probing reasoning about basic
physical commonsense knowledge. The questions
test intuitive understanding of concepts like mass,
volume, rigid objects, containment, stability, ori-
entation, and more through grounded scenarios.
Answering correctly requires applying physical rea-
soning.

ARC Easy The AI2 Reasoning Challenge (ARC)
dataset (Clark et al., 2018) is a collection of 7,787
multiple choice science exam questions compiled
from various grade-level sources, including a re-
search partner of AI2. The questions cover di-
verse science topics and are structured as text-only
prompts with 4 answer options. The ARC Easy
subset consists of 5,197 of the relatively easier rea-
soning questions.

Winogrande The WinoGrande dataset (Sak-
aguchi et al., 2019) was inspired by the original
Winograd Schema Challenge (WSC) and consists
of 44k problems generated through crowdsourcing
and systematic bias reduction algorithms. Most
of these are relatively easy for humans, but often
difficult for LLMs.

E Compute

Experiments were conducted over two months a
pod of 8 A40 GPUs, each with 50 GB of GPU
RAM. As an upper bound, our experiments would
require all of these GPUs to operate for a month to
run all of our experiments, but in practice we did
not require all GPUs running simultaneously. We
estimate that 0.25 utilization of this pod would be
required in practice to run these experiments.

F Licenses of Artifacts Used

The Pythia model suite is made available with
an Apache 2.0 license. Wang et al.’s (2023) IOI
dataset and Newman et al.’s (2021) SVA dataset
are released under an MIT license. The remaining
datasets (Greater-Than and Gendered-Pronouns)
are released without any license specified.
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