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Abstract

Common methods for mitigating spurious cor-
relations in natural language understanding
(NLU) usually operate in the output space, en-
couraging a main model to behave differently
from a bias model by down-weighing exam-
ples where the bias model is confident. While
improving out-of-distribution (OOD) perfor-
mance, it was recently observed that the in-
ternal representations of the presumably debi-
ased models are actually more, rather than less
biased. We propose SimReg, a new method
for debiasing internal model components via
similarity-based regularization, in representa-
tion space: We encourage the model to learn
representations that are either similar to an un-
biased model or different from a biased model.
We experiment with three NLU tasks and dif-
ferent kinds of biases. We find that SimReg
improves OOD performance, with little in-
distribution degradation. Moreover, the rep-
resentations learned by SimReg are less biased
than in other methods.1

1 Introduction

Recent studies (McCoy et al., 2019; Geirhos et al.,
2020, inter alia) show that in many cases neural
models tend to exploit spurious correlations (a.k.a
dataset biases, artifacts2) in datasets and learn short-
cut solutions rather than the intended function. For
example, in MNLI—a popular Natural Language
Understanding dataset—there is a high correlation
between negation words such as “not, don’t” and
the contradiction label (Gururangan et al., 2018).
Thus models trained on MNLI confidently predict
contradiction whenever there is a negation word in
the input without considering the whole meaning
of the sentence. As a result of relying on such short-
cuts, models fail to generalize and perform poorly
when tested on out-of-distribution data (OOD) in

1Our code is available at: github.com/simreg/SimReg
2We use these words interchangeably.

which such associative patterns are not present
(McCoy et al., 2019); these models are commonly
known as ‘biased’ models. Moreover, this behavior
limits their practical applicability in cases where
the real-world data distribution differs from the
training distribution.

Recent efforts to mitigate learning spurious cor-
relations (a.k.a debiasing methods) perform the
debiasing extrinsically, i.e., operating on the output
space of the model and dictating how its output
should look like. Typically, by downweigh the im-
portance of training samples that contain such cor-
relations, effectively performing data reweighting
(Schuster et al., 2019; Utama et al., 2020a; Sanh
et al., 2021; Cadene et al., 2019). One might ex-
pect that such an extrinsic debiasing would lead to
“suppressing the model from capturing non-robust
features” (Du et al., 2023). However, Mendelson
and Belinkov (2021) showed a counter-intuitive
trend: a higher accuracy of such models on OOD
challenge sets is correlated with a higher represen-
tation bias,3 i.e.,the more extrinsically de-biased a
model is, the stronger its intrinsic bias. Such su-
perficial debiasing is problematic as the bias may
reappear when the model is used in another setting
(Orgad et al., 2022), such as fine-tuned on more
data or transferred to other similar tasks.

Inspired by this finding, we investigate whether
debiasing the model intrinsically (i.e., operating
in the representation space) leads to better models
both extrinsically and intrinsically. To this end, we
develop SimReg, a new debiasing method based
on similarity-regularization. SimReg encourages a
model to learn unbiased internal representations by
either pushing the learned representations towards
a model with good (unbiased) representations, or
pushing it away from a model with biased repre-
sentations. Our approach is different from previous

3Representation bias is measured by how easy it is to
classify whether a given representation stems from a biased
sample or not.
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methods, in that we push the model to learn the
“good” behavior from other models, while other
approaches usually focus on learning to be differ-
ent from biased models (Utama et al., 2020a; Sanh
et al., 2021; Clark et al., 2019; Nam et al., 2020).

We evaluate our approach on three tasks—
natural language inference, fact checking, and para-
phrase identification—and multiple spurious cor-
relations attested in the literature: lexical over-
lap, partial inputs, and unknown biases from weak
models (see Section 2.1). We demonstrate that
our approach improves performance on out-of-
distribution (OOD) challenge sets, while incur-
ring little degradation in in-distribution (ID) perfor-
mance. Finally, we design an experiment to test the
bias remaining in the representations, and find that
SimReg models tend to have better performance
compared to other debiasing methods.

2 Related Work

A growing body of work has revealed that mod-
els tend to exploit spurious correlations found in
their training data (Geirhos et al., 2020). Spurious
correlations are correlations between certain fea-
tures of the input and certain labels, which are not
causal. Models tend to fail when tested on out-of-
distribution data, where said correlations do not
hold. We briefly mention several relevant cases
and refer to Du et al. (2023) for a recent overview
of shortcut learning and its mitigation in natural
language understanding.

2.1 Dataset bias

Partial-input bias. A common spurious correla-
tion in sentence-pair classification tasks, like natu-
ral language inference (NLI), is partial-input bias
– the association between words in one of the sen-
tences and certain labels. For example, negation
words are correlated with a ‘contradiction’ label
when present in the hypothesis in NLI datasets
(Gururangan et al., 2018; Poliak et al., 2018) and
with a ‘refutes’ label when present in the claim in
fact verification datasets (Schuster et al., 2019). A
common approach for revealing the presence of
such spurious correlations is to train a partial-input
baseline (Feng et al., 2019). When such a model
performs well despite having access only to a part
of the input, it indicates that that part has spurious
correlations.

Lexical overlap bias. Another common bias is
when certain labels are associated with lexical over-

lap between the two input sentences. McCoy et al.
(2019) found that high lexical-overlap between the
premise and hypothesis correlates with ‘entailment’
in NLI datasets. As a result, NLI models fail when
evaluated on HANS, a challenge set where that
correlation does not hold. Similarly, Zhang et al.
(2019) found that models trained on a paraphrase
identification dataset fail to predict ‘non-duplicate’
questions that have high lexical-overlap.

Unknown biases. Identifying the preceding bi-
ases assumes prior knowledge of the type of bias
existing in the dataset. A few studies have used
weak learners to identify biases in the dataset with-
out an prior assumption(Sanh et al., 2021; Utama
et al., 2020b). Utama et al. (2020b) proposes to
train a model on limited number of samples, the
hypothesis is that pre-trained models “operate as a
rapid surface learners”, and will learn the bias in the
beginning of the training (i.e., with small number
of samples). On the other hand, Sanh et al. (2021)
proposed to train a limited capacity models such as
Tiny-BERT, where the limited capacity tends the
learn and recover previously known biases in the
literature.

2.2 Debiasing methods

Spurious correlation mitigation can be performed
on different levels: Data-based mitigation, where
the data is augmented with samples that do not
align with the bias found in the dataset (Wang
and Culotta, 2021; Kaushik et al., 2020, inter alia).
Model/training-based mitigation, where the either
the model or the training procedure is modified. A
common strategy in this approach is to train a bias
model, which latches on the bias in the dataset, and
use its outputs to train the final, debiased, main
model. (He et al., 2019) and (Clark et al., 2019)
used variants of product-of-experts (PoE) to com-
bine the outputs of the biased and main model
during training to encourage the main model to
“ignore” biased samples. (Utama et al., 2020a) pro-
posed confidence regularization (ConfReg), where
they perform self-distillation with re-weighted
teacher outputs using bias-weighted scaling, i.e.,
they induce the model to be less confident on biased
samples. These methods can be viewed as data re-
weighting methods, similar to (Liu et al., 2021),
who proposed to up-weigh examples that are miss-
classified by the biased model, i.e., hard examples.
Similarly, Yaghoobzadeh et al. (2021) proposed
to perform additional fine-tuning on forgettable
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samples after training to increase the robustness
(FBOW/FHANS). All these methods work in the
output space (extrinsically), while we work in rep-
resentation space.

Most relevant to our work, Bahng et al. (2020)
debias vision models by learning representations
that are statistically independent from those of a
biased model, by minimizing a statistical indepen-
dence measure (HSIC) in a min-max optimization
objective. We propose a simpler objective function,
based on similarity regularization, which can easily
be trained by SGD. Additionally, while they focus
only on learning representations independent of a
biased model, we propose learning representations
that are either dissimilar from biased models or
similar to unbiased ones.

2.3 Knowledge Distillation
Our approach shares some similarity with
Knowledge-Distillation (KD) methods, which
transfer knowledge from a teacher model to a (typ-
ically smaller) student model. In our framework,
we utilize such transfer to improve the robustness
of a model. Aguilar et al. (2020) perform KD us-
ing internal representations, by minimizing the co-
sine similarity between the representations of the
two models. They compare the similarity of the
classification token (CLS) whereas we compare all
the tokens. Additionally we use second-order iso-
morphism methods, whereas they use first-order
methods.

To our best knowledge, second-order isomor-
phism methods were previously mainly used for
comparing representations and behaviors of mod-
els. Our work is one of the first to utilize them to
regularize models during training.

3 Methodology

The key idea of our approach is to guide the repre-
sentation learning of the model in a coarse-grained
manner. We achieve this by encouraging the model
to learn representations that are either similar to
those of an unbiased model or dissimilar from those
of a biased model. We design a three-stage proce-
dure (Figure 1):

1. We train a bias model, fb, on the original train-
ing set, D. This model is meant to capture
dataset biases, as explained in Section 3.1. In
the case of decreasing similarity, we use fb as
our target model, fg, and continue directly to
Stage 3.

2. In order to obtain an unbiased guidance model,
we filter the training set based on the predic-
tions of fb and train a target model fg on the
unbiased part of the training set, DU (Sec-
tion 3.2).

3. We train the main model on D while encour-
aging its representations to be (dis)similar to
those of fg (Section 3.3).

3.1 Training a biased model

To mitigate a specific bias (known-bias), we use a
bias-specific model, fb, which is designed to cap-
ture that intended bias. For example, to mitigate
lexical-overlap bias we use the model proposed in
Clark et al. (2019): an MLP whose input features
are the ratio of overlap between the two parts of the
input, and the average of the minimum cosine simi-
larity between the embeddings of each word from
the two sentences. To mitigate unknown-biases, we
follow Sanh et al. (2021) and use limited capacity
models, such as TinyBert (Turc et al., 2020) and
Bag-of-Words (BOW).

In the case of decreasing dissimilarity from a
biased model, we use this fb as the target model,
i.e., fg = fb, and proceed to Stage 3 (Section 3.3).
In the case of increasing similarity to an unbiased
model, we cannot use fb as we need an unbiased
model; the next section describes how to obtain it.

3.2 Obtaining an unbiased model

To obtain an unbiased guidance model fg, we run
fb on the training set, D, and exclude samples on
which fb is correct and confident. The remaining
samples comprise our unbiased dataset, DU :

DB = {xi|xi ∈ D ∧ fb(x) = yi

∧ c(fb(xi)) > ct}
(1)

DU = D \ DB (2)

where ct is a confidence threshold and c(·) is the
models’ confidence. Our unbiased model, fg, is
obtained by training a new model on DU .

Choosing the threshold ct is performed manually
by plotting the confidence of the bias model over
the training set. When there is a significant bias
signal in the dataset, we see a spike in the number
of biased samples. Figure 5 (Appendix A.4) shows
an example for claim-only bias in FEVER.

A natural question is the following: What is the
advantage of our framework if we already have
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Figure 1: Illustration of SimReg: (1) train a bias model fb; (2) use its predictions to filter the training set and train a
target model fg; (3) train a main model while guiding its representations to be similar to fg .

an unbiased model? We emphasize that the unbi-
ased model was trained on DU , a subset of D, and
argue that other samples in D could also be use-
ful. Indeed, we show experimentally that training a
model on the full training set while regularizing it
to be similar to the unbiased model leads to a better
ID–OOD tradeoff.

3.3 Training the main model
The final step is to train the main model, fm. We
propose two approaches. The first is to encourage
the model during training to learn different repre-
sentations than a biased model, by penalizing its
similarity to said biased model, fb (in this case,
fg = fb). Thus the model would learn different
decision boundaries than the biased model. The
second approach is to increase the similarity of
the learned representations to an unbiased model,
fg. Thus, our model will encode the data in an
unbiased manner and its predictions will be less
dependant on bias features.

In both cases, we need to compute the similar-
ity between the representations of the main model
and those of the target model, fg. Directly compar-
ing the representations of the models on a single
example is not possible, since each model might
learn a different latent space for representing the
data. Furthermore, the two models might have
different architectures and dimensionalities. For
instance, in some of our experiments we compare
BERT-base (768 dimensions) with TinyBERT (128

dimensions) or with an MLP of 70 dimensions. To
overcome these challenges, we use second-order
similarity measures, which operate at the batch
level (Section 3.3.1).

Formally, we add a similarity regularization
term to the batch training loss to promote the
similarity/dis-similarity. Given a batch B, we mini-
mize the following objective:

L =
∑

i∈B
LCE(fm(xi), yi) + λ · sim(Z,H) (3)

where LCE is the cross-entropy loss, λ is a trade-
off hyper-parameter, Z and H are respectively the
main and target model representations of the batch,
f(x) is the prediction of the model on input x,
and sim is a similarity measure. To increase the
similarity, we use λ < 0.

Since we wish the main model, fm, to resemble
or differ from fg only on biased samples, we apply
regularization only on the biased subset, DB: We
stochastically sample a batch either from DU and
optimize regular cross-entropy, or from DB mini-
mizing the objective in Eq. 3. Section 6.3 shows
that regularizing only DB results in better OOD
performance, supporting our intuition.

3.3.1 Models similarity
Different models may represent the same input dif-
ferently in their learned latent spaces. Directly com-
paring vectors from different models can be prob-
lematic. To address this, we employ second-order
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isomorphism methods. We assess the similarity of
the inputs relative to each other within each modal-
ity in a given training batch, then compare the sim-
ilarity matrices of the two modalities to gauge the
resemblance of the model encodings. Specifically,
we utilize a well-known similarity measure called
Centered Kernel Alignment (CKA; Kornblith et al.
2019) with a linear kernel.

4 Experimental Setup

We run our experiments in two settings: (a) Known-
bias settings, where we assume the type of bias ex-
isting in the dataset, and can construct targeted bi-
ased models; and (b) Unknown-bias settings, where
the specific type of bias is not presumed, requiring
a more general approach of mitigating unknown-
biases.

4.1 Datasets
4.1.1 Natural Language Inference
We train models on MNLI, a popular NLI dataset
consisting of ∼ 400k English examples in multiple
genres (Williams et al., 2018). Each example is a
pair of premise and hypothesis sentences, and the
task is to predict whether the hypothesis is entailed,
contradicted, or neutral w.r.t the premise. MNLI
contains several spurious correlations as discussed
in Section 2, such as lexical overlap and hypothesis-
only biases. We train on the MNLI training set and
report ID results on dev-matched.

As OOD test set, we use HANS (McCoy et al.,
2019) for evaluation against lexical overlap bias.
HANS is constructed using structured templates
that obey bias heuristics, e.g., the hypothesis over-
laps with premise, but with half of the examples
having non-entailment labels, as opposed to the
bias in MNLI. For hypothesis-only bias we use
MNLI-hard, a subset of MNLI’s dev-mismatched
set where a hypothesis-only model failed to classify
correctly (Gururangan et al., 2018).

4.1.2 Synthetic MNLI
As a sanity test, we introduce synthetic spurious
correlations to MNLI (Synthetic-MNLI), follow-
ing prior work (He et al., 2019; Sanh et al., 2021;
Dranker et al., 2021). We prepend the input with
a ‘label-token’ that correlates highly with the la-
bel. We used tokens <0>, <1>, and <2>, corre-
sponding to entailment, neutral, and contradiction.
Following (Dranker et al., 2021), we denote the
probability of injecting a token to the input as the
prevalence of the bias, and the probability of the

prepended token being correct as the strength of
the bias. Through all our experiments, we used
prevalence of 1.0 and strength of 0.95. The subsets
of examples containing bias token with wrong and
right correlations are denoted anti_bias and bias
subsets, respectively.

The goal of this setting is to demonstrate the
viability of the proposed approaches. Thus we
use an oracle unbiased model as fg for the case
of increasing similarity, i.e., a model trained on
regular MNLI (without synthetic bias). For the
bias model, fb, we train a model for a small enough
number of steps to capture the bias, judging by
the rapid drop of training loss; we found 1k steps
sufficient.

4.1.3 Fact Verification
Fact Extraction and VERification (FEVER)
(Thorne et al., 2018) is a dataset for fact verifi-
cation against textual sources. Given evidence and
claim sentences, the task is to predict the relation
between them: SUPPORTED, REFUTED, or NOT
ENOUGH INFO. We followed (Schuster et al.,
2019) and trained, evaluated on their processed
version of FEVER.

Similar to MNLI, the claim part of the input is
spuriously correlated with REFUTES label. We
use FEVER-Symmetric (Schuster et al., 2019) for
OOD evaluation against claim-only bias. The con-
struction of FEVER-Symmetric ensures that there
is no correlation between partial input and labels,
thus it enables us to evaluate the extent of debiasing
on this type of bias.

4.1.4 QQP
Quora Question Pairs (QQP) is a collection of
>400K question pairs from the Quora platform.
Given a pair of questions, the task is to predict
whether they are duplicate (paraphrase) or non-
duplicate. QQP is biased in that question pairs with
low lexical-overlap between them are correlated
with the non-duplicate label. We train on the QQP
training set and evaluate ID on the development
set.

Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019) is a dataset for para-
phrase identification that is built in a adversarial
manner to lexical-overlap bias. The authors scram-
ble the words of a sentence to generate samples
with high lexical-overlap that are not a paraphrase.
We use the QQP subset of PAWS as our OOD eval-
uation set for lexical-overlap bias.
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MNLI-Hypothesis MNLI-Lexical FEVER QQP

dev MNLI-HARD dev HANS dev Sym. dev PAWS

BERT 83.9 76.9± 0.2 84.2 63.6± 1.0 85.6 58.4± 1.7 91.0 33.3± 0.7
fg 79.1 78.5± 0.5 83.0 70.6± 0.8 66.8 61.8± 0.2 89.1 39.6± 0.1

PoE 82.0 79.5± 0.4 83.2 66.6± 3.6 78.0 63.0± 0.6 90.5 34.7± 0.3
ConfReg 84.3 78.4± 0.6 84.3 66.6± 3.9 85.2 61.0± 1.7 87.4 37.4± 1.8
FHANS - - 83.9 69.5± 0.9 - - - -

SimReg ↑ 84.4 79.2± 0.3 83.5 70.5± 1.9 80.9 61.6± 0.4 89.8 41.4± 1.2
SimReg ↓ 83.0 77.9± 0.5 84.0 68.5± 0.2 84.1 60.3± 1.1 90.8 39.0± 0.5

Table 1: Known-bias mitigation.

4.2 Models
We evaluate our approach using BERT (Devlin
et al., 2018) as both fg and the main model. We re-
peat some of the experiments using DeBERTa-V3
(He et al., 2023) to verify that our method is not
specific to BERT. For bias modeling, we used an
MLP with lexical features as input following Clark
et al. (2019) for lexical-bias modeling. For partial-
input bias modeling, we simply train BERT with
limited input (only on hypothesis / claim for MNLI
/ FEVER respectively). In unknown-bias modeling,
we use TinyBERT (Turc et al., 2020) for MNLI
and QQP, and BOW for FEVER, as our limited-
capacity model, following Sanh et al. (2021). For
full training details, see Appendix A.1.

5 Results

5.1 Synthetic bias
The results on Synthetic-MNLI are in Table 2. All
of the SimReg approaches resulted in an increase
compared to the baseline on the anti-biased subset,
where the synthetic token is mis-aligned with the
label. Increasing similarity (↑) performed better
than decreasing it (↓). The improvement comes
at a cost of a small decrease on the biased subset,
which is expected. Compared to an oracle model,
which was trained without the synthetic bias, the
regularized models perform worse, indicating that
they were not able to completely discard the bias.

5.2 Known bias
Tables 1 show the results on known bias cases.
All our SimReg models outperform the baseline
on the OOD test sets. Increasing similarity (↑)
seems to work better than decreasing similarity (↓),
consistent with synthetic-bias results. In partial-
input bias (MNLI-HARD and FEVER), SimReg

Model Biased Anti-biased

BERT-base 98.5± 0.1 41.8± 1.1
Oracle 83.8 82.1
SimReg ↑ 96.7± 0.1 61.0± 0.9
SimReg ↓ 97.0± 0.0 49.0± 2.4

Table 2: Results on Synthetic-MNLI.

performs almost as well as PoE on the challenge
sets, while PoE has a greater degradation on ID
dev sets. Turning to lexical-overlap bias (QQP and
MNLI-HANS), we see a similar pattern: SimReg
performs much better than the baseline on HANS
and PAWS (the OOD sets), with little or no degrada-
tion on the corresponding ID dev sets. In contrast,
PoE and ConfReg struggle. Generally, increasing
similarity works better than decreasing it.

A telling comparison is between SimReg and
the guidance model fg, which is a model that was
trained only on unbiased examples (Section 3.2).
In most of the cases, when we increase similarity
to this model (rows with ↑), we get models that
perform better or similar, on both ID and OOD sets.
These results support our hypothesis that increasing
similarity to an unbiased model can lead to better
representations than those of the unbiased model
itself by utilizing more data points.

5.3 Unknown bias

The results of unknown bias mitigation are in Ta-
ble 3. In this settings, we see similar patterns to
known-bias results: SimReg outperforms the base-
line and the competitive approaches on challenge
sets. Interestingly, in these scenarios, the improve-
ment of SimReg over fg is more prominent, both
in challenge datasets and in ID sets.
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MNLI FEVER QQP

dev HANS dev Symm. dev PAWS

BERT 84.2 63.5± 1.0 86.0 58.2± 0.6 91.1 33.3± 0.7
fg 77.4 64.1± 2.2 84.4 61.3± 1.0 82.9 48.7± 0.9

ConfReg 83.4 63.2± 2.1 86.0 60.0± 1.6 88.4 32.3± 0.4
POE 81.4 68.8± 2.0 82.3 61.1± 0.8 89.8 40.8± 0.1
FBOW 82.8 70.2± 1.2 84.0 59.5± 2.5 88.1 41.4± 5.2

SimReg↑ 81.9 71.4± 0.8 84.3 62.4± 0.6 84.4 50.6± 1.9

Table 3: Unknown-bias mitigation.

5.4 Results with Stronger Models

In this section we investigate whether our approach
improves the performance of stronger models than
BERT. While most work tends to compare with
BERT as the baseline, it is important to demon-
strate that a new debiasing method is effective also
when applied to stronger models.4 We experiment
with DeBERTa-V3 (He et al., 2023). As Table 4
shows, SimReg still leads to improvements above
the strong DeBERTa-V3. where we see similar
patterns to the main results, with SimReg↑ out-
performing other approaches. Note that we used
here the non-entailment subset of HANS to as our
OOD evaluation set in MNLI (Lexical-bias and
unknown-bias) to emphasize the improvement on
the bias-misaligned subset.

6 Analysis

6.1 Similarity Heat-map Analysis

To investigate whether our similarity-based regular-
ization achieves its goal, we compute the similarity
between every layer in the main model and every
layer in the (unbiased) guidance model, and like-
wise the similarity between layers of the baseline
model and layers of the guidance model. We expect
our similarity regularization to increase the simi-
larity of the main model to the guidance model,
compared to that of the baseline model.

Figure 2 (Upper) shows that, without similarity-
based regularization, the bottom layers of the base-
line and guidance model are already similar, but the
top layers are rather different. This is consistent
with findings on how fine-tuning affects mostly
the top layers (Mosbach et al., 2020; Merchant

4Bowman (2022) made such a claim about analyzing
stronger models; we believe it is similarly important to work
on robustifying stronger models.

et al., 2020), as both models started from a pre-
trained BERT. Figure 2 (Lower) shows that after
our similarity-based regularization, the top layers
of the main and guidance models become very sim-
ilar, as desired. Moreover, the regularization also
indirectly affects lower layers (bottom row of the
heatmap). We conclude that the similarity regular-
ization is successful and affects large parts of the
model even when applied only on a few layers.
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Figure 2: Similarity of an unbiased model, fg , to either
a baseline (Top) or a SimReg model (Bottom). Similar-
ity regularization makes top layers more similar to the
unbiased model, as desired.

6.2 Bias recovery

To examine whether representations debiasing does
indeed lead to better representations, we designed
an experiment to test the bias in the representations.
Retraining the classification layer allows us to test
to what extent a linear classifier recovers the bias

43



Hypothesis Lexical

ID HARD ID HANS-

baseline 89.9 85.2±0.1 89.9 56.7±2.2

ConfReg 90.0 86.3±0.2 90.3 61.8±1.9

SimReg ↑ 89.1 86.5±0.2 89.5 72.8±0.5

SimReg ↓ 89.4 85.8±0.3 89.8 63.7±1.5

(a) Known-bias (MNLI)

MNLI QQP

ID HANS- ID PAWS

baseline 89.9 56.7±2.2 89.9 55.7±5.6

ConfReg 90.1 54.5±2.0 88.8 61.1±2.0

SimReg ↑ 89.1 66.8±0.7 86.3 67.0±2.0

SimReg ↓ 89.4 61.5±0.2 89.2 54.8±1.7

(b) Unknown-bias

Table 4: DeBERTa V3 results for MNLI, QQP biases.

existing in the dataset from the representations. In
Table 5, we present the results of retraining the
classifier of the debiased models in unknown-bias
settings. In all approaches we see a drop in OOD
accuracy when retraining the classifier 5, consistent
with Mendelson and Belinkov (2021)’s observation
that debiased models still encode the bias in their
representations. However, in SimReg↑ we gener-
ally get the highest performance compared to other
methods. This indicates that the representations
produced by SimReg↑ have the weakest signal of
the spurious correlations. We repeated this experi-
ment on debiased models in known-bias settings in
App A.5, and found similar patterns.

MNLI FEVER

dev HANS- dev Sym

BERT 83.9 30.1 ±1.3 85.4 58.2 ±0.1

ConfReg 84.8 20.5 ±6.2 86.0 59.2 ±1.0

POE 83.0 33.7 ±1.6 83.4 59.1 ±1.5

FBOW 83.1 38.1 ±0.3 84.6 57.0 ±1.5

SimReg↑ 83.9 41.6 ±4.5 85.3 61.3 ±1.3

Table 5: Bias recovery: unknown-bias settings.
SimReg↑ shows weakest signal of bias when re-training
the classifier.

6.3 Ablations
In this section we perform ablations on SimReg↑
on MNLI datasets in unknown-bias settings (using
TinyBERT as fb). Table 6 shows the results of ab-
lating different parts of our method while keeping
the reset unchanged.

SimReg↑BOW refers to When using a bag-of-
words model as our limited capacity model fb,
SimReg obtains only slightly worse performance
(SimReg↑BOW row). However it also shows that

5Check Table 10 in the appendix for HANS- evaluation.

the results can depend on the biases that the weak
model fb discovers.

Using a pre-trained BERT as our guidance model
(-fg row) performs poorly. This highlights that the
model that is being used to increase similarity to is
an important factor in the process, and that indeed
the information is being distilled from fg into the
main model.

The last row shows that applying similarity reg-
ularization on the entire training set D performs
poorly. This result supports our intuition in regu-
larizing only the biased samples DU (Section 3.3).

ablation dev. HANS avg.

SimReg↑ 81.9 71.4
SimReg↑BOW 82.8 70.7
- fg 82.3 58.1
- Bias regularization 84.2 61.3

Table 6: Ablations on SimReg↑ method.

7 Conclusion

In this work, we have introduced SimReg, a new
debiasing approach that employs similarity-based
regularization at the representation level. We have
demonstrated the effectiveness of SimReg across
several NLU tasks, where it notably enhances per-
formance on OOD challenge sets with minimal
impact on ID sets.

Additionally, we evaluated the representations
of SimReg by testing the amount of bias recovered
from the debiased models and found that models
debiased using SimReg were least biased after re-
training their classifier on a dataset that contains
bias. Future work may investigate the effect of si-
multaneously learning from unbiased and biased
models. Another interesting direction is to extend
our approach to generation tasks, which would re-
quire different similarity measures. Moreover, it is
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worth testing the efficacy of SimReg on other types
of biases such as social biases.

Ethics Statement

Our work develops a new approach to mitigate
spurious correlations in NLU tasks. These are also
known as dataset biases, but are different from
social biases such as gender or racial bias. One
could use our approach to debias against social
biases. However, a malicious actor could use our
basic approach to increase such social bias, rather
than decrease it, by reversing the optimization.

Limitations

Similar to most debiasing methods, the success
of our method relies on the existing of enough
non-biased samples in the training set, which is
used to guide our learning process. Additionally, a
notable limitation is in the case of debiasing against
unknown-bias, where one might speculate that a
certain weak model captures the bias, however, it
could either miss the bias, or be more powerful and
capture additional non-biased samples. In this case,
an inspection to the predictions of the weak model
might help.
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A Appendix

A.1 Training details

We used pre-trained bert-base-uncased from Hug-
gingFace models (Wolf et al., 2020) for both the
main model training and the guidance model in
SimReg↑. Trained for 5 epochs with batch size
of 64, for better similarity estimation. For MNLI,
QQP we used learning rate of 5e−5 and 2e−5 for
FEVER, that warms up for 3k steps and decays lin-
early to 0. The reported results in the tables are the
mean and standard deviation of 3 different random
seeds. This is true also for competitive methods.

For computing the similarity, we use the mean
token representation per layer as the representation
of each layer, then we aggregate the similarities
of the layers by summing them. We applied the
similarity regularization on multiple layers. For
increasing similarity we used the last 3 layers from
fg and the main model, following insights from
Section A.2.

For decreasing similarity, fg had a different ar-
chitecture, we used a combination of layers that
ranged across the models. for example, in FEVER
claim bias we used first layer, middle layer and last
two layers from both fb and the main model.

As for the threshold ct, we used 0.8 for unknown-
bias experiments, for known bias we used 0.65 ex-
cept for FEVER claim-bias where we used 0.8.
With λ = 100 for SimReg↑ and λ = 10 for
SimReg↓.

A.2 Layers

In the main experiments, we regularized multiple
layers together, as described in Appendix A.1. Our
choice of layers is based on Figure 3, where we
performed SimReg↑ debiasing on Synthetic-MNLI
across layers. The results indicate that deeper lay-
ers have the most effect on the debiasing, thus in
our main experiments we choose layers 10-12 for
regularization in SimReg↑. In decreasing represen-
tation similarity, individual layers are not effective,
as opposed to regularizing multiple layers as in the
main experiments. Thus we chose to regularize in
a wide manner over multiple layers.

A.3 Synthetic Bias

In this section we present more detailed results for
synthetic-MNLI. In Table 7 we show wider range of
configuration for the case of increasing similarity.
Note that higher λ values for resulted in models

Figure 3: SimReg↑ on Synthetic-MNLI, regularizing
one layer at a time.
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Figure 4: SimReg↓ on Synthetic-MNLI, regularizing
one layer at a time.

with better performance on the anti-biased set. Bert-
base is BERT trained on Synthetic-MNLI, while
BERT (Oracle) is trained on MNLI. In Table 8 we
present the case of decreasing similarity. Where
we see that in this case, λ = 10 is a sweet spot,
between not changing much (λ = 1) and changing
to much to the level of collapse (λ = 100).

A.4 Threshold choosing
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Figure 5: Confidence distribution of a claim-only model
(fb) on FEVER; here ct = 0.8.

A.5 Bias recovery

In Table 9, we present an additional results of our
bias-recovery experiments. Where we re-train the
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Biased Anti-biased Unbiased

Bert 98.5± 0.1 41.8± 1.1 78.0± 0.4
Oracle 83.5± 0.3 82.0± 0.9 84.0± 0.3

λ = 1 97.3± 0.0 57.7± 0.1 83.3± 0.2
λ = 10 96.8± 0.1 60.2± 0.4 83.6± 0.3
λ = 100 96.7± 0.1 61.0± 0.9 83.2± 0.2

Table 7: SimReg↑: Synthetic-MNLI with prevalence=1
and strength=0.95.

Model Biased Anti-biased Unbiased

Bert-base 98.5± 0.1 41.8± 1.1 78.0± 0.4
fb 99.9 05.7 64.3

λ = 1 99.6± 0.1 12.2± 17.3 53.4± 25.6
λ = 10 96.8± 0.2 49.8± 2.3 72.4± 1.5
λ = 100 33.5± 1.6 32.3± 0.4 32.3± 1.7

Table 8: SimReg↓: Synthetic-MNLI with prevalence=1
and strength=0.95.

classification layer of the model on the dataset, to
test the amount of biased recovered when evaluat-
ing the re-trained classifier + model on the OOD
challenge sets. Note that on MNLI we evaluate
on the bias-misaligned subset of HANS (the non-
entailment subset). For results of the models on
these subsets before retraining, check Table 10.

We observe that SimReg↑ generally retains high
performance on challenge sets after re-training
their classifier on the whole dataset D (with the
spurious correlations).

A.6 HANS subsets
Table 10 contains the evaluation of debiasing meth-
ods on HANS subsets (non-entailment and entail-
ment).
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IID HANS -
BERT 83.9 ±0.1 30.1 ±1.3

ConfReg 84.5 ±0.1 7.0 ±2.7

POE 83.6 ±0.1 40.5 ±4.4

SimReg↑ 84.0 ±0.1 42.5 ±1.3

(a) MNLI Lexical-overlap bias

dev FEVER-Sym.
BERT 85.4 ±0.1 58.2 ±0.1

ConfReg 82.1 ±0.4 59.5 ±2.0

POE 79.2 ±0.1 61.1 ±1.9

SimReg↑ 83.2 ±0.3 60.7 ±0.2

(b) FEVER claim bias

dev MNLI-hard
BERT 83.9 ±0.1 76.9 ±0.2

ConfReg 84.5 ±0.2 77.4 ±0.1

POE 83.0 ±0.2 79.3 ±0.1

SimReg↑ 83.0 ±0.3 79.1 ±0.4

(c) MNLI hypothesis bias

dev PAWS
BERT 88.4 ±0.1 28.2 ±2.2

ConfReg 88.0 ±0.1 33.42 ±1.9

POE 90.0 ±0.1 34.1 ±0.1

SimReg↑ 90.6 ±0.1 42.1 ±1.4

(d) QQP lexical-overlap bias

Table 9: Bias recovery in known-bias settings.

dev ent. non-ent.

BERT 84.2 99.1± 0.1 28.1± 2.0
fg 83.0 86.0 55.4

PoE 83.2 77.7± 9.8 55.4± 7.2
ConfReg 84.3 72.3± 8.5 60.9± 6.6
FHANS 83.9 − −
SimReg ↑ 83.5 86.4± 2.3 54.6± 1.6
SimReg ↓ 84.0 92.1± 0.8 44.8± 1.3

(a) Known-bias debiasing.

dev ent. non-ent.

BERT 84.2 99.1± 0.1 28.1± 2.0
fg 77.4 53.0± 11 75.2± 7.4

PoE 81.4 81.1 56.4
ConfReg 83.4 90.0± 3.7 36.3± 3.7
FBOW 83.0 94.4± 1.5 45.9± 1.2

SimReg ↑ 81.9 78.0± 2.5 64.8± 1.1
SimReg ↓ 82.9 85.6± 4.2 41.4± 2.5

(b) Unknown-bias debiasing.

Table 10: HANS subsets
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