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Introduction

The 9th Workshop on Representation Learning for NLP, organized by SIGREP, aims to continue the
success of the first eight workshops in the series. The RepL4NLP workshop was introduced as a syn-
thesis of several years of independent *CL workshops focusing on vector space models of meaning,
compositionality, and the application of deep neural networks and spectral methods to NLP. With the
widespread adoption of neural network architectures (and especially Transformer models), representa-
tion learning has become a central concept in NLP research. RepL4NLP provides a forum for discussing
recent advances on these topics, ranging from the development of new representations for various ta-
sks and applications to the analysis of existing representations, e.g., with respect to generalization and
robustness.
In most NLP applications, the goal is to understand, interpret, and generate human language text, extract
linguistic information from raw text or to transform linguistic observations into an alternative form, e.g.,
from speech to text or from one language to another. Traditional statistical models relied heavily on
discrete categories that are parameterized individually (e.g., each word or n-gram in a language model
gets its own parameter); Representation learning—whether using spectral methods, probabilistic models,
or deep neural networks—offers an alternative: by learning continuous, multidimensional representations
of discrete objects (e.g., words, tags, labels, phrases, sentences), models can find representations that
enable them to solve tasks more effectively. As learning representations has now been adopted as the
de-facto approach to building models in NLP, their widespread use raises important questions towards
further understanding them.
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Ondřej Bojar, Charles University Prague
Bridger Bridger, Holistic Intelligence for Global Good
Necva Bölücü, CSIRO
Muthu Kumar Chandrasekaran, Accenture
Anni Chen
Danlu Chen
Lin Chen, Facebook
Yue Chen, Microsoft and Indiana University
Catherine Chen, University of California Berkeley
Minhao Cheng, Pennsylvania State University
Heeyoul Choi, Handong Global University
Manuel Rafael Ciosici, USC/ISI
Wenliang Dai, NVIDIA
Christopher Davis, University of Cambridge
Vladimir Eidelman, FiscalNote, Inc.
Maha Elbayad, FAIR
Sergey Feldman, Allen Institute for Artificial Intelligence and Data Cowboys
Matthias Gallé, Cohere
Félix Gaschi, University of Lorraine
Shahriar Golchin, University of Arizona
Ashim Gupta
Gustavo Hernandez Abrego, Google
Julia Hockenmaier, University of Illinois, Urbana Champaign, University of Illinois, Urbana Cham-
paign and University of Illinois, Urbana Champaign
Valentin Hofmann, Allen Institute for Artificial Intelligence
Dae Yon Hwang, Amazon AGI
Katharina Hämmerl, CIS, LMU Munich
Etsuko Ishii, The Hong Kong University of Science and Technology
Hamish Ivison, University of Washington
Fran Jelenić
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Learning Contextualized Box Embeddings with Prototypical Networks

Kohei Oda Kiyoaki Shirai Natthawut Kertkeidkachorn
Japan Advanced Institute of Science and Technology

{s2420017,kshirai,natt}@jaist.ac.jp

Abstract

This paper proposes ProtoBox, a novel method
to learn contextualized box embeddings. Un-
like an ordinary word embedding, which repre-
sents a word as a single vector, a box embed-
ding represents the meaning of a word as a box
in a high-dimensional space: that is suitable
for representing semantic relations between
words. In addition, our method aims to ob-
tain a “contextualized” box embedding, which
is an abstract representation of a word in a
specific context. ProtoBox is based on Pro-
totypical Networks, which is a robust method
for classification problems, especially focus-
ing on learning the hypernym–hyponym rela-
tion between senses. ProtoBox is evaluated
on three tasks: Word Sense Disambiguation
(WSD), New Sense Classification (NSC), and
Hypernym Identification (HI). Experimental re-
sults show that ProtoBox outperforms baselines
for the HI task and is comparable for the WSD
and NSC tasks.1

1 Introduction

Word embedding is an abstract representation of
a word, usually as a vector in a high dimensional
space. Nowadays, word embeddings are widely
used in models based on deep learning. Word em-
bedding can represent the meaning not only of a
word itself (Mikolov et al., 2013) but also of a word
in a context. For example, BERT (Devlin et al.,
2019) is often used to obtain vector representations
of words in a given sentence. In this paper, we
call such word embeddings “contextualized word
embeddings.” In addition, box embedding (Das-
gupta et al., 2020) is a kind of word embedding,
which represents a word not with a point but with
an area in vector space. While an ordinary word
embedding is primary used to measure the simi-
larity between two words, box embeddings can be
used to capture other semantic relations between

1Our code is available at: https://github.com/iehok/
ProtoBox.

Figure 1: Example of contextualized box embedding
and its application to New Sense Classification and Hy-
pernym Identification.

words such as that between a hypernym and a hy-
ponym. However, past studies of box embeddings
did not well consider the context of the word, that
is, the box embedding was not contextualized.

Contextualized word embeddings can be re-
garded as “sense embeddings,” since a word may
have two or more senses and convey one of those
possible senses in a specific context. Word Sense
Disambiguation (WSD) (Navigli, 2009) is a task
that aims to identify the meaning of a word in a
context. Most previous work on WSD has focused
only on the senses in a predefined inventory and
has ignored new (not predefined) senses. How-
ever, senses of words change day by day and new
senses are constantly created (Yu and Xu, 2023).
It is preferable that a WSD system can handle a
new sense by classifying a word even if it is being
used in a new sense, and, if possible, explaining
the meaning of the new sense.

In this paper, we propose ProtoBox, a method to
produce a contextualized box embedding of a word
in a given context. In general, box embeddings can
represent hypernym–hyponym relations between

1
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words, as illustrated in Figure 1 (a). If a box of
word wa subsumes the box of another word wb,
wa can be regarded as a hypernym of wb. Such
relations between words can be represented as tax-
onomy (Figure 1 (b)). Our ProtoBox can produce
contextualized box embeddings. For example, a
box embedding of x in the sentence “The x hopped
across the grass.” can be obtained as shown in Fig-
ure 1 (a). Contextualized box embeddings enables
us to judge that x has a new sense when the box
embedding of x does not overlap any other box em-
beddings of fine-grained senses such as “cat” and
“dog”. In addition, “animal” can be identified as
a hypernym of x, since the box embedding of x
is subsumed by that of “animal”. Identification of
a hypernym can provide a rough explanation of a
new sense, i.e., x is a kind of an animal. Further-
more, ProtoBox can expand the existing taxonomy
by adding a new node x to the structure as shown
in Figure 1 (b).

We evaluate ProtoBox with three tasks: WSD,
New Sense Classification (NSC), and Hypernym
Identification (HI). Three datasets of different do-
mains, one is large and two are small, are used to
thoroughly evaluate our proposed method. Exper-
imental results show that ProtoBox is better than
or comparable to the baselines for WSD and NSC,
and always outperforms the baselines for HI.

The contributions of this paper are summarized
as follows:

• We propose ProtoBox, a new method to learn
contextualized box embeddings based on Pro-
totypical Networks (Snell et al., 2017).

• We propose a method to construct an mini-
batch to learn hypernym–hyponym relations
between senses in the contextualized box em-
beddings.

• We empirically evaluate the effectiveness of
ProtoBox for three down-streaming tasks:
WSD, NSC, and HI.

2 Related Work

2.1 WSD

Many recent WSD methods use glosses (sense
definitions) and lexical relations (e.g., hypernym–
hyponym relations) to improve their performance
(Huang et al., 2019; Kumar et al., 2019; Bevilacqua
et al., 2020; Bevilacqua and Navigli, 2020; Blevins
and Zettlemoyer, 2020; Scarlini et al., 2020; Barba

et al., 2021). However, the accuracy of WSD for
infrequent senses tended to be lower than that for
the whole of the test data (Maru et al., 2022).

To address this problem, Chen et al. (2021) pro-
posed MetricWSD, a method to learn contextu-
alized embeddings using Prototypical Networks
(Snell et al., 2017). Prototypical Networks is a
meta learning method that works better on imbal-
anced data. MetricWSD achieved a state-of-the-art
WSD performance without additional lexical infor-
mation such as glosses or lexical relations.

Generationary (Bevilacqua et al., 2020) is an-
other approach for WSD. First, a definition of
a sense for a given word is generated by BART
(Lewis et al., 2020). Then, the similarity score
between the generated definition and each defini-
tion of the target word in WordNet (Miller, 1995)
is calculated by Sentence-BERT (Reimers and
Gurevych, 2019) and the most similar sense cho-
sen to be the predicted sense. Generationary aims
not only to improve the performance at WSD but
also explain a new sense. This paper also tries to
explain the meaning of a new sense using trained
contextualized box embeddings. Instead of gener-
ating a definition of a new sense, a hypernym of a
new sense is identified as a coarse meaning of it.

2.2 Taxonomy Expansion

Taxonomy Expansion is the task to infer a hyper-
nym of a new concept (Bordea et al., 2016). It has
been actively studied. Recent methods improved
the performance by using graph neural networks
(Shen et al., 2020) and learning the shortest path
between a target concept and the root concept (Yu
et al., 2020). Some methods (Aly et al., 2019; Ma
et al., 2021) used Hyperbolic space (Nickel and
Kiela, 2017) learn hypernym–hyponym relations.
This paper also presents a method of Taxonomy
Expansion, but a hypernym of a new concept is
guessed by contextualized box embeddings.

2.3 Contextualized Box Embeddings

There have been a few studies that have applied
contextualized box embeddings to some tasks. The
Entity Typing task is a multi-label classification
problem to predict appropriate types such as “event”
and “person”, for a target in a context (Choi et al.,
2018). Onoe et al. (2021) represented target entities
by contextualized box embeddings, and also repre-
sented types of entity by dedicated box embeddings.
The model was trained so that the contextualized

2



box embedding of the target entity was enclosed
by the box embeddings of its type of entity.

Jiang et al. (2023) proposed a method for Taxon-
omy Expansion by learning the box embeddings of
concepts. The box embeddings of entities in the ex-
isting taxonomy were derived from their definition
sentences. The model, which converts a sentence
to a contextualized box embedding was trained by
hypernym–hyponym pairs in the taxonomy so that
the box embedding of a hypernym enclosed that of
a hyponym. Although the above studies presented
methods to learn contextualized box embeddings,
we adapt another approach. Specifically, our frame-
work follows that of Prototypical Networks, which
can work well for imbalanced training data. We
expect that our method can learn appropriate box
embeddings for infrequent senses.

3 Proposed Method

This section describes the details of ProtoBox, our
proposed method to train contextualized box em-
beddings. We first explain box embeddings, as
background, in subsection 3.1, then explain Proto-
Box in the succeeding subsections.

3.1 Box Embeddings
Single vectors represent items as points, while box
embeddings represent items as boxes. Box embed-
dings can naturally represent asymmetric relations
like hypernym–hyponym relations by the overlap
of two boxes. In this work, a box embedding b
is constructed from two vectors c, the center of
the box, and o, an offset from c. c is the center
of a box and o is the offset from c. Note that the
dimensions of c and o are equal. The area of the
ith dimension of the box embedding is defined as
the range [ci − oi, ci + oi].

Given two boxes bi and bj , the probability that
bi encloses bj can be defined as

P (bj |bi) =
Vol(bi ∩ bj)

Vol(bi)
, (1)

where bi ∩ bj is the are of the overlap of bi and
bj , and Vol(b) is the function that calculates the
volume of b.

The hard definition of the probability in Equation
(1) often leads a serious problem for training box
embeddings. When two boxes have no overlap,
P (bj |bi) is zero, causing the training to halt due to
the vanishing of the gradient. Therefore, in general,
a soft definition is often used. Following previous

work (Onoe et al., 2021; Jiang et al., 2023), we use
Gumbel Box (Dasgupta et al., 2020), one of the box
embeddings that calculates the above probability
with a soft definition. Specifically, the probability
that bi encloses bj is calculated with the Gumbel
distribution.

3.2 MetricWSD

Since ProtoBox is an extension of MetricWSD
(Chen et al., 2021), we first briefly introduce the
latter. The left side of Figure 2 shows an overview
of MetricWSD. It is a model for WSD, based on
Prototypical Networks. The training data is a col-
lection of sentences including a target word (e.g.,
‘dog’) labeled with its gold sense (e.g., dog.1). It
is divided into two sets: a support set and a query
set. Each sentence in the support set is converted
to a contextualized word embedding (or sense em-
bedding) by a model fθ. In MetricWSD, BERT
(Devlin et al., 2019) is used as fθ. The prototype
vector of each sense (e.g., dog.1, dog.2) is defined
as the average of the contextualized word embed-
dings of that sense. Next, the sentences in the
query set are converted to contextualized word em-
beddings by the same model fθ, and then the loss
is calculated by the distances between the query
vector and the prototype vectors. Finally, the pa-
rameters of the model, θ, are updated so that the
loss becomes minimized. At the inference, a test
sentence is converted to an embedding by fθ, and
then the similarities between it and the prototype
sense vectors are calculated, and the most similar
sense is chosen.

3.3 Learning Contextualized Box Embeddings

The right side in Figure 2 shows an overview of
ProtoBox. In our method, MetricWSD is modified
in three ways. First, instead of a single vector,
a sentence is converted to a box embedding by
the model. Following previous work (Onoe et al.,
2021), we add a Fully Connected Layer (FCL) after
BERT. For a sentence x where the zth word is the
target word, its contextualized box embedding is
obtained as follows:

b = fθ(x, z) = FCL(BERT(x)[z]). (2)

The input of FCL is BERT(x)[z], the contextual-
ized word embedding of the zth word when x is
entered to BERT. The output of FCL forms the box
embedding b, which is equally divided into two
vectors c and o by b = [c,o].

3



Figure 2: Overview of MetricWSD and ProtoBox (ours).

Second, the episodes are constructed differently.
In Prototypical Networks, a mini-batch used to
train a model is called an “episode.” On the one
hand, an episode is a set of instances with differ-
ent senses of the same target word in MetricWSD.
On the other hand, an episode is a set of instances
with different senses of multiple target words (e.g.
dog.1, animal.1, and tree.1) in ProtoBox. The de-
tails of the construction of an episode will be ex-
plained in subsection 3.4.

Third, the loss is calculated between a query
representation (contextualized box embedding)
bq and each prototype representation (sense box
embedding) bp. Given a query set EQ =
{x1, x2, ..., xNQ

}, box embedding of each sample
xi is computed by

bq
i = fθ(xi, z). (3)

Let us suppose C = {s1, s2, ..., sNC
} is the set of

the senses (of different words) in the entire support
set and EPj = {xj1, xj2, ..., xjNP

} is the support
set of the jth sense sj . The prototype representa-
tion of sj , b

p
j , is defined as the mean of the box

embeddings of the samples in the support set:

bp
j =

1

NP

NP∑

i=1

fθ(xji, z). (4)

In the above two equations, z stands for the position
of the target word in the sentence.

Following Onoe et al. (2021), we use the binary
cross-entropy loss between the prototype sense sj
in the support set and the sample xi in the query
set:

l(bp
j ,b

q
i ) =− δ·logP (bp

j |b
q
i )

− (1− δ)·log (1− P (bp
j |b

q
i )).

(5)

Here, δ is 1 if the prototype sense sj is equal to the
sense of xi or sj is a hypernym of xi, otherwise 0.
Finally, the total loss L is defined as follows:

L =
1

NQNC

NQ∑

i=1

NC∑

j=1

1

2
(l(bp

j ,b
q
i ) + l(bq

i ,b
p
j )).

Intuitively, the model fθ is trained so that contex-
tualized box embeddings of the same sense overlap
each other and a contextualized box embedding of
a hypernym encloses that of a hyponym.

3.4 Episode Construction
The training data of ProtoBox is a collection of
“sense instances.” A sense instance is an example
sentence including a certain sense of a target word.
To train the model, the training data is divided into
episodes. Note that each episode is a pair of sup-
port and query sets, (ES , EQ). The following sets
are made: (1) W , a set of small number of ran-
domly chosen target words, (2) PS , a set of senses
of the target words inW , and (3) PH, a set of direct
hypernym senses of the senses inPS . Then, several
senses in PS and PH are chosen as the prototype
senses, thus the support set is formed by sense in-
stances of those prototype senses. The query set
is made up of the sense instances of the senses in
PS that are mutually exclusive with the support
set. We limit the number of the target words in
each episode to NW , the maximum number of the
prototype senses to NC , the maximum number of
sentences for each prototype sense to NP (the max-
imum number of sentences in the entire support
set is NC ×NP ), and the maximum number of the
sentences in the query set to NQ.

Algorithm 1 shows how the episodes are con-
structed. First, NW words are randomly chosen

4



Algorithm 1 Construction of Episodes

1: Dtrain: the training data
2: V: all words in the training data
3: E ← ∅
4: while V ≠ ∅ do
5: W ← RANDOM(V, NW )
6: V ← V \W
7: PS ←

⋃
w∈W SENSEOFWORD(w)

8: PH ←
⋃

s∈S DIRECTHYPERNYMS(s)
9: if |PS |+ |PH| > NC then

10: /* ensure |PS |+ |PH| = NC */
11: PH ← RANDOM(PH, NC − |PS |)
12: ES ← ∅; EQ ← ∅
13: /* Dtrain

s : sense instances of s in Dtrain */
14: for s ∈ PS do
15: ẼS ← RANDOM(Dtrain

s , NP )
16: ES ← ES ∪ ẼS
17: EQ ← EQ ∪ (Dtrain

s \ ẼS)
18: for s ∈ PH do
19: ES ← ES ∪ RANDOM(Dtrain

s , NP )

20: EQ ← RANDOM(EQ, NQ)
21: E ← E ∪ {(ES , EQ)}
22: return E

(line 5). Second, all senses of the randomly cho-
sen target words are kept as PS (line 7), and all
direct hypernym of those senses are kept as PH
(line 8). The senses in PS and PH are used as the
prototype senses. More precisely, all the senses in
PS are kept as prototype senses, while the rest are
randomly chosen from PH so that the total num-
ber of prototype senses becomes NC (lines 9–11).
Then, the randomly chosen NP instances for each
prototype sense are kept as the support set ES (lines
15–16, 19), while the NQ instances of the senses in
PS , which were not selected in the support set, are
chosen as the query set EQ (lines 17, 20). Note that
the function RANDOM(S, n) randomly chooses n
samples at most from the set S; all samples are
chosen when |S| < n. The above procedure is
repeated until all words in the training data have
been used to make episodes.

Since instances of hypernym senses as well as
all the senses of a target word are included in the
support set, ProtoBox can consider not only the
sense discrimination, as does MetricWSD, but also
the hypernym–hyponym relations in the training of
the model that produces contextualized box embed-
dings.

4 Applications of ProtoBox

This section describes how ProtoBox is applied
to three tasks: Word Sense Disambiguation, New
Sense Classification, and Hypernym Identification.

4.1 Word Sense Disambiguation

Task Definition The goal of Word Sense Disam-
biguation (WSD) is to select the most appropriate
sense of the target word w in a given context x
from a predefined inventory Sw of senses.

Method First, we get the contextualized box em-
bedding bq of w in x. Second, we create the sense
embedding bp

i for each sense si in Sw from the
training data. Finally, we calculate the similarity
score between bp

i and bq using Equation (6), which
measures by how much two box embeddings over-
lap, then the most similar sense is chosen to be the
predicted sense.

sim(bp
i ,b

q) = 2× P (bp
i |bq)P (bq|bp

i )

P (bp
i |bq) + P (bq|bp

i )
(6)

4.2 New Sense Classification

Task Definition The goal of New Sense Classifi-
cation (NSC) is to classify the target word w in a
given context x, whether it has a new sense or not.
In this study, new senses are defined as senses that
do not appear in the training data.

Method First, we get bq and bp
i in the same

way that WSD does. For all senses si in Sw, if
sim(bp

i ,b
q) is smaller than a threshold αsi , w in x

is predicted to be a new sense, otherwise not.
Then αsi is determined for each sense using the

training and development data. Let Ddev
si be a set of

sense instances of si in the development data. The
threshold is set to be

αsi =
1

|Ddev
si |

|Ddev
si

|∑

j=1

sim(bp
i ,b

q
j), (7)

where bp
i is the box embedding of the prototype

sense si and bq
j is the box embedding of the jth

instance in Ddev
si . That is, αsi is determined as the

average similarity between the sense instance of si
in the development data and the prototype sense si
in the training data. When there is no sense instance
of si in the development data, the threshold is set
to the average of αsi for all senses.
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4.3 Hypernym Identification
Task Definition Hypernym Identification (HI) is
the task of predicting a hypernym of a new sense.
Specifically, for a given new sense of a target word
w in a context x, we choose and rank the top ten
senses that are most likely to be a hypernym of it.

Method First, we get the contextualized box em-
bedding bq of w in x and the box embeddings of
the prototype senses bp

i as in the WSD task. Then,
the setH of candidates of hypernym senses is cre-
ated:

H = {si | P (bp
i |bq) > β}, (8)

where β is a pre-defined threshold. Next, we
choose the sense where the difference of the vol-
ume of bp

i and bq is the smallest as the best hyper-
nym sense u.

u = arg min
si∈H
|Vol(bp

i )−Vol(bq)| (9)

The motivation to consider the difference of the
volumes is that when the volume of the box embed-
ding is large, the sense may be an abstract concept
and not likely to be a direct hypernym of an input
new sense. Finally, all other senses are ranked by
their similarity with u (using Equation (6)) and the
top nine senses are chosen to make the final ranked
list of the hypernyms.

5 Experiments

5.1 Dataset
Following the WSD framework proposed by Ra-
ganato et al. (2017), we use SemCor 3.0 (Miller
et al., 1994) as the training data, SemEval-2007
(Pradhan et al., 2007) as the development data, and
Senseval-2 (Edmonds and Cotton, 2001), Senseval-
3 (Snyder and Palmer, 2004), SemEval-2013 (Nav-
igli et al., 2013), SemEval-2015 (Moro and Navigli,
2015) as the test data. All datasets are corpora anno-
tated with sense labels defined by WordNet (Miller,
1995).

In this work, the only the senses of nouns in the
datasets are used. In WordNet, senses of nouns con-
nected by hypernym–hyponym relations form a Di-
rected Acyclic Graph of which the root is the synset
“entity.n.01”. We create three datasets: Dliving_thing,
Dartifact, and Dentity. These datasets consist of in-
stances of hyponyms of “living_thing.n.01”, “arti-
fact.n.01”, and “entity.n.01” in WordNet, respec-
tively. Here, Dentity is a large dataset that includes
all nouns, whileDliving_thing andDartifact are smaller
ones including a restricted number of nouns.

Training data The statistics of the training data
Dtrain are presented in Table 1. The sizes of
Dtrain

living_thing and Dtrain
artifact are almost the same, while

Dtrain
entity is much larger than they are.

Dtrain
living_thing Dtrain

artifact Dtrain
entity

#senses 1,713 1,939 12,760
#words 1,809 1,994 11,029
#instances 15,838 8,708 84,962

Table 1: The statistics of the training data.

Development and test data The development
and the test data for the WSD task are constructed
from instances including a target word that has
multiple senses and its gold sense appears in the
training data. Statistics are shown in Table 2. It is
found that a considerable number of test instances
have infrequent senses.

Dliving_thing Dartifact Dentity
ALL ≤ 10 ALL ≤ 10 ALL ≤ 10

dev 13 5 9 5 125 54
test 190 66 78 40 2,514 992

Table 2: The number of instances in development and
test data for WSD task. “ALL” means all instances.
“≤ 10” means instances of a sense that appears in the
training data less than or equal to 10 times.

The development and the test data for the NSC
task are constructed from instances including a
target word that appear in the training data. The in-
stances are labeled as “new sense” if its gold sense
does not appear in the training data, otherwise as
“not new sense”. The statistics are shown in Table
3.

Dliving_thing Dartifact Dentity
new not new not new not

dev 0 23 0 18 7 144
test 20 500 12 221 295 3,379

Table 3: The number of instances in development and
test data for NSC task. “new” and “not” mean new sense
and not new sense, respectively.

The development and the test data for the HI task
are constructed from instances whose gold senses
do not appear in the training data. The statistics
are shown in Table 4. The gold hypernym is deter-
mined by WordNet.
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Dliving_thing Dartifact Dentity

dev 2 2 11
test 107 32 658

Table 4: The number of instances in development and
test data for HI task.

5.2 Settings
Baselines We prepare two baselines: vanilla
BERT (BERT-NN) and MetricWSD (Chen et al.,
2021). These models output a contextualized em-
bedding (single vector) r for a given sense instance.
In BERT-NN, the embedding of a prototype sense
are obtained by the average of the vectors of sense
instances derived from the pre-trained BERT. The
similarity between two vectors ri and rj is defined
as the dot product sim(ri, rj) = ri · rj .

The baselines perform WSD and NSC in the
same way as our method, except that the similarity
between two instances is measured by two single
vectors. In HI, the baseline chooses the ten most
similar senses to make up a ranked list of hypernym
senses.

Parameters For all models in BERT-NN, Met-
ricWSD, and ProtoBox, we use bert-base-uncased
as the BERT model. We set the number of dimen-
sions of the output layer of FCL to 256 (i.e. the
size of c and o is 128), NW is 32, NC is 128, NP

is 5, and NQ is 64. As for the hyperparameters for
the fine-tuning of BERT, the learning rate is set to
1e-5. The number of epochs is optimized, that is, it
is varied from 1 to 200 and the best value is chosen
using the development data.

5.3 Results and Analysis
Word Sense Disambiguation Table 5 shows the
accuracy on the WSD task. As can be seen from
the column “ALL”, our ProtoBox outperformed the
two baselines for Dliving_thing, but was comparable
for Dartifact and Dentity. We guess that the poor per-
formance on Dentity was caused by the scale, that
is, our method failed to obtain appropriate contex-
tualized box embeddings when it was applied to
many sense instances. The reason why ProtoBox
was worse than MetricWSD on Dartifact may not be
a scale issue, but the semantic domain of the tar-
get noun, since the sizes of Dliving_thing and Dartifact
were almost the same.

A similar tendency for the disambiguation of in-
frequent senses can be seen in the column “≤ 10”.
Surprisingly, BERT-NN achieved the best accuracy

on Dentity, although the pretrained BERT model
was just applied without fine-tuning. MetricWSD
and ProtoBox still suffered from the data sparse-
ness when they were applied to the large dataset.

New Sense Classification The results on the New
Sense Classification task are shown in Table 6.
Comparing the F1-score, ProtoBox was compa-
rable to MetricWSD onDliving_thing andDentity, and
significantly worse on Dartifact. The poor perfor-
mance for NSC for the senses of artifacts was co-
incident with the results of the WSD task, where
ProtoBox was worse than MetricWSD on Dartifact.
The F1-score of BERT-NN on Dliving_thing was no-
table as it was better than that of MetricWSD and
ProtoBox. ProtoBox is designed to learn hypernym–
hyponym relations between senses, but such knowl-
edge may not be indispensable for New Sense Clas-
sification. This might be the reason why ProtoBox
could not outperform MetricWSD.

Hypernym Identification Following previous
work on Taxonomy Expansion (Shen et al., 2020;
Yu et al., 2020; Jiang et al., 2023), we evaluate the
baselines and ProtoBox in term of three metrics: ac-
curacy (ACC), Mean Reciprocal Rank (MRR), Wu-
Palmer similarity (W&P) (Wu and Palmer, 1994).
Accuracy measures the agreement ratio between
the gold hypernym and the highest ranked hyper-
nym, while Wu–Palmer similarity measures how
closely these two hypernyms are located in Word-
Net. The parameter β described in subsection 4.3
is set to 0.5, 0.7, or 0.9.2

The results on the HI task are shown in Table 7.
ProtoBox outperformed the baselines in all three
evaluation metrics on the three datasets. In particu-
lar, the difference between ProtoBox and the base-
lines was significant onDliving_thing. The many gold
hypernyms in the test data ofDliving_thing were “per-
son.n.01”, which were correctly predicted by Pro-
toBox. On the other hand, on Dartifact and Dentity,
the differences in terms of ACC and MRR between
ProtoBox and the baselines were small. However,
a significant difference of W&P was confirmed,
indicating that ProtoBox could predict hypernyms
closer to the correct ones. Finally, the performance
of ProtoBox was sensitive to the parameter β, es-
pecially in terms of ACC and MRR. Investigating
how to optimize β would be the important future
work.

2β was not optimized due to the insufficiency of the devel-
opment data.
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Model
Dliving_thing Dartifact Dentity

ALL ≤ 10 ALL ≤ 10 ALL ≤ 10

BERT-NN .816 .727 .744 .775 .579 .602
MetricWSD .821 .773 .872 .925 .711 .588
ProtoBox (ours) .884 .788 .859 .875 .707 .584

Table 5: Accuracy of WSD task. “ALL” indicates the results for all senses, and “≤ 10” for infrequent senses.

Model
Dliving_thing Dartifact Dentity

A P R F A P R F A P R F
BERT-NN .744 .099 .700 .174 .682 .069 .417 .119 .656 .119 .515 .194
MetricWSD .712 .055 .400 .096 .674 .119 .833 .208 .633 .138 .678 .229
ProtoBox (ours) .704 .053 .400 .094 .618 .086 .667 .152 .628 .132 .651 .219

Table 6: Results of New Sense Classification task. A, P, R, and F mean accuracy, precision, recall, and F1 score,
respectively.

Model β
Dliving_thing Dartifact Dentity

ACC MRR W&P ACC MRR W&P ACC MRR W&P
BERT-NN – .150 .259 .754 .094 .150 .567 .068 .113 .460
MetricWSD – .103 .219 .767 .062 .170 .505 .073 .124 .494

ProtoBox (ours)
0.5 .439 .502 .855 .125 .179 .628 .061 .084 .539
0.7 .533 .570 .876 .156 .175 .644 .081 .113 .558
0.9 .579 .604 .877 .062 .076 .621 .100 .126 .565

Table 7: Results of Hypernym Identification task.

5.4 Optimization of Number of Dimensions
We analyzed how the performance of WSD was
influenced by the number of the dimensions of
the box embeddings c and o. In this experiment,
the number of dimensions of the box embeddings
was set to {32, 64, 128, 192, 256}. Table 8 shows
the accuracy of WSD on the development data of
Dentity. It was found that the best performance for
both “ALL” and “≤ 10” was obtained when the
number of dimensions was set to 128. Therefore,
as described in subsection 5.2, the number of di-
mensions was set to 256 (128 + 128). For NSC
and HI tasks, we did not optimize this since the
development data was small, but set it to be the
same number as for the WSD task.

Dimension ALL ≤ 10

32 .744 .593
64 .784 .630

128 .792 .685
192 .752 .630
256 .736 .574

Table 8: Accuracy of WSD task on the development
data for different number of dimensions of c and o.

6 Conclusion

This paper proposed ProtoBox, an expansion of
MetricWSD to learn contextualized box embed-
dings. The representations of words in a context
were changed from single vectors in MetricWSD to
box embeddings in our ProtoBox, since box embed-
dings are suitable to represent semantic relations
between senses such as the hypernym–hyponym
relation. Additionally, we proposed a method to
construct episodes to train the model to produce the
contextualized box embeddings. We evaluated Pro-
toBox on three tasks: Word Sense Disambiguation
(WSD), New Sense Classification (NSC), and Hy-
pernym Identification (HI). ProtoBox outperformed
the baselines in terms of all evaluation metrics in
the HI task. This was reasonable, since ProtoBox
was designed to take the hypernym–hyponym rela-
tion into account when training the contextualized
box embeddings. In addition, ProtoBox achieved a
performance comparable with the baselines for the
other sense related tasks, WSD and NSC.

In the future, the scalability of ProtoBox should
be improved. As reported in subsection 5.3, the
performance of ProtoBox was degraded when the
number of sense instances was large. A more ef-
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ficient and precise method to learn contextualized
box embeddings should be investigated. In addi-
tion, the definition of the prototype representation
(the box embedding of a sense) can be reconsid-
ered. Currently, the prototype representation is an
average of box embeddings of the elements in the
support set. However, it can be a box that includes
all the elements in the support set. It is worth to
explore better ways to obtain the prototype repre-
sentation.

Limitations

In the experiments, ProtoBox was only applied
to nouns. Additional experiments are required to
investigate how ProtoBox can work well for other
parts of speech, such as verbs.

The parameter β in the HI task was not opti-
mized due to the insufficiency of the development
data. It is worth investigating how to find an appro-
priate threshold in the future.

We did not compare ProtoBox with other meth-
ods of contextualized box embeddings such as
Onoe et al. (2021) and Jiang et al. (2023) in the
experiments, since the target tasks were not com-
pletely the same as the three tasks in this paper.
However, empirical comparison is necessary to
clarify the contribution of our method.

Ethics Statement

Since ProtoBox was developed using the estab-
lished datasets for WSD that have been widely
used in the community and contain no private in-
formation, there is no concern for data and privacy.
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A Visualization of Box Embeddings

To verify whether ProtoBox could learn appro-
priate relations between senses, we visualize box
embeddings of several prototype senses. Figure
3 represents box embeddings of animal.n.01 and
dog.n.01 trained by ProtoBox from Dtrain

living_thing.
The horizontal axis represents the dimensions of
the boxes, while the vertical axis represents the
intervals of each dimension [ci − oi, ci + oi]. It
is found that the box of animal.n.01 almost en-
closes that of dog.n.01, indicating that animal.n.01
is a hypernym of dog.n.01. This is also sup-
ported by the fact that P (animal.n.01 | dog.n.01)
= 0.999. Therefore, the model learned the
hypernym–hyponym relation between animal.n.01
and dog.n.01. Next, let us consider cat.n.01
and dog.n.01, for which there is no hypernym–
hyponym relation in WordNet. Looking at Figure
4 and the two probabilities P (cat.n.01 | dog.n.01)
= 0.146 and P (dog.n.01 | cat.n.01) = 0.089, the
two boxes seem to not overlap very much. Even
though cat.n.01 and dog.n.01 are conceptually sim-
ilar, ProtoBox can learn that there is no hypernym–
hyponym relation between them.

Figure 5 shows box embeddings of building.n.01
and house.n.01 trained by ProtoBox from Dtrain

artifact,
and Figure 6 shows box embeddings of hotel.n.01
and house.n.01. The box embeddings of those
senses are also adequate. That is, the box of build-
ing.n.01 almost encloses that of house.n.01, and the
boxes of hotel.n.01 and house.n.01 do not overlap
very much.
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Figure 3: Box embeddings of animal.n.01 and dog.n.01 trained from Dtrain
living_thing. P (animal.n.01 | dog.n.01) = 0.999,

P (dog.n.01 | animal.n.01) = 3.12e-9.

Figure 4: Box embeddings of cat.n.01 and dog.n.01 trained from Dtrain
living_thing. P (cat.n.01 | dog.n.01) = 0.146,

P (dog.n.01 | cat.n.01) = 0.089.

Figure 5: Box embeddings of building.n.01 and house.n.01 trained from Dtrain
artifact. P (building.n.01 | house.n.01) = 0.766,

P (house.n.01 | building.n.01) = 2.97e-4.

Figure 6: Box embeddings of hotel.n.01 and house.n.01 trained from Dtrain
artifact. P (hotel.n.01 | house.n.01) = 0.011,

P (house.n.01 | hotel.n.01) = 0.013.
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Abstract

Existing Question Answering (QA) systems
are limited in their ability to answer questions
from unseen domains or any out-of-domain dis-
tributions, making them less reliable for deploy-
ment in real scenarios. Importantly, all exist-
ing QA domain adaptation methods are either
based on generating synthetic data or pseudo-
labeling the target domain data. Domain adap-
tation methods relying on synthetic data and
pseudo-labeling suffer from either the need for
extensive computational resources or an addi-
tional overhead of carefully selecting the confi-
dence threshold to distinguish noisy examples
from the training dataset. In this paper, we pro-
pose unsupervised domain adaptation for an
unlabeled target domain by transferring the tar-
get representation close to the source domain
without using supervision from the target do-
main. To achieve this, we introduce the idea of
domain-invariant fine-tuning along with adver-
sarial label correction (DomainInv) to identify
target instances that are distant from the source
domain. This involves learning the domain
invariant feature encoder to minimize the dis-
tance between such target instances and source
instances class-wisely. This eliminates the pos-
sibility of learning features of the target domain
that are still close to the source support but are
ambiguous. The evaluation of our QA domain
adaptation method, namely DomainInv, on mul-
tiple target QA datasets reveals a performance
improvement over the strongest baseline.

1 Introduction

Over the past few years, machine learning models
have been widely deployed in production. How-
ever, making them work satisfactorily in production
requires a substantial amount of high-quality anno-
tated data, which is expensive and time-consuming.
Therefore, it is of utmost importance to build gen-
eralizable models that can perform well on unseen
datasets. However, due to the mechanism of do-
main shift or bias in the training dataset (Ben-David

et al., 2010, 2006), it is challenging to directly trans-
fer knowledge from the model trained on the source
domain to the unlabeled target domain. In this pa-
per, we studied this phenomenon specifically for
the case of extractive Question Answering (QA)
systems.

Extractive QA systems perform the task of identi-
fying the most relevant answer for a given question
within a context or paragraph. The answer is rep-
resented as a sub-span of the context, with start
and end positions predicted by the QA model. The
training data for QA essentially consists of triplets
specifying the question, answer, and context. The
input to the model is a question and context pre-
sented as running text separated by a separator. The
model is trained to predict the most relevant start
and end positions in the context (Seo et al., 2016;
Chen et al., 2017; Devlin et al., 2019; Kratzwald
et al., 2019).

These QA systems also face performance degra-
dation at test time, as questions and contexts can
vary widely in complexity. The same question
may be phrased in the simplest or most complex
ways, and the answer may involve reasoning or
follow a complex extraction pattern that is chal-
lenging to generalize with a limited annotated train-
ing dataset. Recent works (Fisch et al., 2019a;
Miller et al., 2020; Zeng et al.) have explored this
issue, proposing solutions such as using labeled tar-
get domain data or incorporating feedback during
training (Daumé III, 2007; Kratzwald et al., 2020;
Kamath et al., 2020). Others (Yue et al., 2022c,
2021) have employed synthetic or pseudo-labeled
data to train these systems and enhance their gener-
alization to out-of-domain distributions. However,
it is important to note that pseudo-labeled data is
prone to noise, and obtaining accurately labeled
data requires considerable human labeling effort.

In this paper, we focus on unsupervised do-
main adaptation (UDA), which does not require
labeled target domain data. There are numerous
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works towards achieving domain-invariant repre-
sentations, categorized into 1) optimizing the dis-
crepancy between domain representations (Yue
et al., 2022c, 2021), and 2) adversarial learning
(Lee et al., 2019b; Cao et al., 2020). However,
in general there exists different distance metrics
for minimizing domain discrepancy, for example
(Gretton et al., 2006) leverage maximum mean
discrepancy (MMD) as the distance measure be-
tween source and target domain distributions. Sim-
ilar to MMD, CMD (central moment discrepancy)
(Zellinger et al., 2017), Wasserstein distance (WD)
(Shen et al., 2018), sliced Wasserstein distance
(SWD) (Kolouri et al., 2019), multi-kernel MMD
(Long et al., 2015), joint MMD (Long et al., 2017)
are other alternative measures.

Inspired by generative adversarial networks
(GAN) (Goodfellow et al., 2014), adaptation meth-
ods based on adversarial learning have also shown
promising results (Ganin et al., 2017; Xie et al.,
2018; Pei et al., 2018; Saito et al., 2018; Lee et al.,
2019a). Adversarial learning methods propose the
idea of using the domain discriminator to distin-
guish whether the incoming sample is from the
source or target domain, while the feature gen-
erator tries to fool the discriminator by generat-
ing domain-invariant features. During the process
of creating domain-invariant representations, the
generator positions the target representation near
the source domain decision boundaries. However,
these representations are misaligned with respect
to the source classes, leading to a degradation in
performance (Lee et al., 2019a).

Some works rely on high-confidence pseudo-
labels (Yue et al., 2022c; Deng et al., 2019) for the
target domain. However, this method of generat-
ing synthetic data for the target domain imposes
an additional computational overhead. Moreover,
target pseudo-labeling can have adverse effects on
adaptation if it generates too many incorrect labels
above the confidence threshold. Some works pro-
pose minimizing the distance between tokens from
the target instances and those of the source support
contrastively (Yue et al., 2022c). However, in prac-
tical scenarios, the target domain can be completely
asymmetrical, necessitating the alignment of the
pre-trained source model with the target domain
before optimizing for domain-invariant represen-
tations. In this paper, we propose an adaptation
framework called DomainInv (illustrated in Figure
1), which can perform domain adaptation without
training an answer classifier with noisy pseudo-

labeled data. This eliminates the need to filter out
that noise before training on the target domain, as
opposed to the existing SOTA method in (Yue et al.,
2022c). Our approach involves learning domain-
invariant features through domain-invariant fine-
tuning along with adversarial label correction. This
is done to identify target instances that are far apart
from the source domain and optimize them to lie
near the source support, class wisely. Main Con-
tributions of this paper are as follows:

• We propose the unsupervised domain adapta-
tion framework called DomainInv for extrac-
tive QA. The framework can address the do-
main shift phenomenon without the need for
explicit training of an answer classifier with
pseudo-labeled data. The noise in pseudo-
labeled data, which is challenging to filter out,
deteriorates the performance of the answer
classifier and, consequently, hinders its ability
to generalize well to the target domain.

• We propose the idea of 1) Domain Invariant
Fine Tuning and 2) Adversarial Label Correc-
tion together, aiming to minimize the distance
between the source and target domain rep-
resentations class-wise (start and end) in an
iterative manner.

• We evaluated our framework on multiple QA
datasets as target domains without accessing
their answers during training. DomainInv out-
performs the strongest baseline for QA do-
main adaptation, which adapts the model by
explicitly training on pseudo-labeled target
domain.

2 Related Work

In the past few years, there has been an increas-
ing interest in learning generalized representa-
tions through various learning paradigms, namely,
unsupervised, multi-tasking, and transfer learn-
ing (Peters et al., 2018; McCann et al., 2018;
Chronopoulou et al., 2019; Phang et al., 2018;
Wang et al., 2018; Xu et al., 2019). Specifically,
recent studies have explored the generalization ca-
pability of reading comprehension systems (Golub
et al., 2017; Fisch et al., 2019b; Talmor and Berant,
2019; Yue et al., 2021, 2022c,b). Our interest in
this paper lies solely in unsupervised approaches
for domain adaptation, where target domain data is
unlabelled. The approaches used for unsupervised
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Figure 1: DomainInv: A Robust Framework for QA Domain Adaptation. It proposed to utilize domain invariant
fine-tuning followed by adversarial label correction to overcome the limitations associated with domain invariant
fine-tuning, demonstrating the noise free domain adaptation.

domain adaptation are broadly categorized into the
following main themes: 1) Contrastive Learning,
2) Self-Supervision, and 3) Adversarial Learning.

Contrastive Learning: Contrastive learning
methods (He et al., 2020; Caron et al., 2020; Chen
et al., 2020; Yue et al., 2022c, 2021) aim to learn a
feature encoder that generates similar features for
the same input (obtained from different augmen-
tations) and different features for any other input
and its augmentations. Specifically for QA, (Sun
et al., 2018; Du et al., 2017) have generated syn-
thetic QA samples through Question Generation
(QG). Leveraging these samples improves perfor-
mance in out-of-domain distribution (Yue et al.,
2021; Golub et al., 2017; Tang et al., 2017; Lee
et al., 2020; Tang et al., 2018; Shakeri et al., 2020;
Yue et al., 2022a; Zeng et al., 2022). Additionally,
contrastive learning has been applied to minimize
the discrepancy between the source and target do-
mains using Maximum Mean Discrepancy (MMD)
(Gretton et al., 2006). They learned to minimize
the distance for averaged token features (Yue et al.,
2022c) among answer and non-answer tokens in
source and target domains and maximize the dis-
tance between them.

Self-Supervision: There are many works in
computer vision that have explored the use of self-
supervision for unsupervised domain adaptation,
all aligned with the common objective of minimiz-
ing the discrepancy (distance) between domains
(Kang et al., 2019; Wang et al., 2021; Thota and
Leontidis, 2021). Although the objective is simi-
lar to that of contrastive learning, models learned
through contrastive learning have been shown to

perform better (Shen et al., 2022). Apart from the
MMD (Gretton et al., 2006) criterion used in (Yue
et al., 2022c), other metrics like central moment
discrepancy (CMD) used in (Zellinger et al., 2017)
directly match order-wise differences of central mo-
ments. Wasserstein distance, employed to measure
the distance between two probability distributions,
has been explored in (Shen et al., 2018; Kolouri
et al., 2019). The method in (Yu et al., 2020)
learns sentence representations for text matching
between asymmetrical domains. In our approach,
we consider the use of sliced Wasserstein distance
(Kolouri et al., 2019). Instead of minimizing the
distance between representations for domains, this
distance is applied to minimize the distribution
learned for the start and end tokens in QA domain
adaptation.

Adversarial Learning: The objective of adver-
sarial learning is also based on the idea of mini-
mizing domain discrepancy. The main concept of
domain adversarial learning is to learn domain-
invariant representations through an adversarial
loss between the feature generator and discrimi-
nator, similar to GANs (Goodfellow et al., 2014).
Some works that use domain adversarial learning
include (Ganin et al., 2017; Tzeng et al., 2017;
Bousmalis et al., 2017; Yang et al., 2020; Long
et al., 2018; Pei et al., 2018). Additionally, there
are methods (Yue et al., 2022c) that explored the
use of target data along with pseudo-labels to train
the target classifier. In contrast to this, we have ex-
plored the use of adversarial loss to identify and cor-
rect mistakes in labels during target-aware source
fine-tuning, aiming to learn domain-invariant rep-
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resentations for the target domain.

3 Setup
Problem setup for unsupervised domain adapta-
tion(UDA) consider the labeled source domain
Ds and unlabelled target domain Dt. The goal
is to maximize the performance on target do-
main by only training with labeled source domain
data and unlabelled target domain data as in (Cao
et al., 2020; Shakeri et al., 2020; Yue et al., 2021,
2022b,c).

Data: Specifically, for the case of QA do-
main adaptation we describe the labeled source
domain Ds data as samples consisting of triplets,
{c(i)s , q

(i)
s , a

(i)
s } ∈ Xs, consisting of context c(i)s ,

question q
(i)
s and answer a(i)s , where each triplet

is obtained from the training data Xs. Similarly,
the unlabelled target domain Dt data consists of
samples with pair {c(i)t , q

(i)
t } ∈ Xt consisting of

only context c(i)t and question q
(i)
t , obtained from

unlabelled training data Xt. Here, in our case of
QA domain adaptation the answer is the start and
end position in the context since we are working
with extractive QA systems.

Model: We approach the problem of QA do-
main adaptation as training the model function
f which predicts an answer a

(i)
t given the con-

text c
(i)
t and question q

(i)
t from Xt, denoted as

a
(i)
t = f (c

(i)
t , q

(i)
t ). This requires to optimize the

function f for maximum performance on target do-
mainDt, givenDs. Mathematically, this is denoted
as:

min
f
L(f ,Xt;Xs) (1)

where L is the loss function. We adopt the two
fold training scheme to maximize performance on
target domain namely, Domain Invariant Fine Tun-
ing and Adversarial Label Correction which will
be discussed in the following sections.

4 DomainInv Framework
4.1 Overview
The proposed DomainInv framework consists of
two main components: 1) Domain Invariant Fine
Tuning and 2) Adversarial Label Correction for
domain adaptation, as shown in Figure 1. We start
with a pre-trained QA model f , fine-tuned on the
source domain Ds as in (Cao et al., 2020), with an
additional batch norm layer. The answer classifier
C1 predicts the start and end indices in the context.
During domain invariant fine-tuning, we incorpo-
rate the use of the target domain Dt to augment

the style of pseudo-answer and non-answer tokens
to the source domain. This results in another an-
swer classifier C2, which possesses target domain
style information while still being trained on the
source domain. With the answer classifier C2, there
are instances in the target domain Dt for which
the answer differs from the one obtained using C1.
We identify these instances as those which are far
apart from the source domain, and the QA model
is least confident about them. During adversarial
correction, we minimize the distribution between
these two classifiers and update the BERT encoder
to generate features for the target domain closer to
the source domain. This ensures that the classifier
C2 predicts the answer as if it were operating on the
source domain, aligning the features for the target
domain with those of the source domain.

4.2 Domain Invariant Fine Tuning
In this section, we will explain in detail the process
we have followed for domain invariant fine-tuning.
Let the trained QA model on source domain is
denoted as f , it is a BERT model with L layers of
transformers (Vaswani et al., 2017). Specifically,
let C1 be an answer classifier, and θg be the encoder
parameters for this source-domain QA model.

During domain invariant fine-tuning (shown in
Figure 2), we propose to feed the style information
of the target domain Dt to the source domain QA
model at each layer l ∈ L, as illustrated in Figure
2. We keep the weights shared between the two
encoders to allow the target domain information
to be updated in the BERT encoder with the super-
vision of the source domain. Let ϕ(x, x′) be the
learnable domain shift vector between the source
instance x and the target domain instance x′, and
M(x, ϕ(x, x′)) be a learnable domain transforma-
tion layer, which is introduced at the top of each
transformer layer l ∈ L of model f . Cumulatively,
it transforms the parameters of the source domain
classifier C1 to the target-aware classifier C2 and
updates encoder parameters θg with the style of the
target domain.

Domain Transformation Layer: The domain
transformation layerM is expected to fuse the do-
main shift vector with the hidden states (which
were fine-tuned for the source domain) at each
layer of the transformer. The domain shift vec-
tor ϕ should solely capture the information that is
different from the source domain. This categorizes
the vector containing any extra information in the
target domain compared to the source domain, ir-
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Transformation Layer

respective of its position in the context. This can
be achieved by taking the difference between the
average pooled vector of hidden states at each layer
obtained for the source and target domains. Let
H

(l)
s and H

(l)
t be the hidden states obtained at layer

l for the source domain and target domain, respec-
tively. Then, the domain shift vector at layer l
between two instances is given as:

ϕ(l)(H
(l)
t , H(l)

s ) = avg(WH
(l)
t )− avg(WH(l)

s )
(2)

where, W ∈ Rk×d are the linear transform pa-
rameters shared across layers. Then, the domain
transformation layerM is given as:

M(H(l)
s , ϕ(l)(H

(l)
t , H(l)

s )) = H(l)
s +

W Tϕ(l)(H
(l)
t , H(l)

s )
(3)

The expression W Tϕ(l)(H
(l)
t , H

(l)
s ) ∈ Rd is added

to all hidden states at layer l corresponding to the
source domain. This design of the domain shift vec-
tor follows the identity property, i.e., ϕ(x, x) = 0.
This allows us to plug in the domain transforma-
tion layer only at the time of training, while at
the time of inference for the target domain, it is,
ϕ(l)(H

(l)
t , H

(l)
t )) = 0. However, it is required to

carefully choose the value of k, which is a hyperpa-
rameter, because it assumes the domain shift infor-
mation lies in the k-dimensional subspace where
the difference between two domains can be mini-
mized to make them appear similar.

QA Domain Transformation: Specifically, for
the case of QA domain adaptation, we can’t apply
the domain shift across all the tokens uniformly, as
there are underlying differences between the con-
text, question, and answer tokens. Hence, it would
be wise to calculate ϕA, ϕC , and ϕQ for Answer,
Context, and Questions, respectively. Since we
only have context and questions in the target do-
main, the answer is the pseudo-answer obtained

from the classifier C1, where the weights of C1 are
frozen, and the BERT encoder parameters θg are
shared during fine-tuning. These will be updated
jointly along with classifier C2 (initialized with the
fine-tuned classifier C1), as shown in Figure 2. At
the end of domain transformation fine-tuning, we
obtain another target-aware classifier C2 and up-
dated encoder parameters θg which are the fine-
tuned parameters on the target-aware source do-
main with supervised cross-entropy loss Lce. Note
that here pseudo labels on target domain is not
directly involved in training answer classifier C2.

min
f
Lce(f ,Xs||Xt) (4)

where f consists of parameters θg and parameters
in classifier C2 and M. During training, we ran-
domly select samples from the target domain, en-
suring the batch size matches that of the source do-
main, and an additional constraint to include paral-
lel instances with the same question types (denoted
as Xs||Xt). We employ the dependency parser,
semantic role labeling, and named entity recogni-
tion (NER) to detect the question types, as done in
(Keklik, 2018).

4.3 Adversarial Label Correction
We have introduced adversarial label correction
based on the fact that during domain invariant fine-
tuning, we relied on the pseudo-labels obtained
from classifier C1. However, these labels are noisy
and prone to error accumulation, potentially lead-
ing to erroneous alignment of the source and target
domain. The domain shift information in the k-
dimensional subspace may be captured incorrectly,
resulting in similar performance degradation as ob-
served in the approaches (Yue et al., 2022c, 2021)
where pseudo-labels are used to train the answer
classifier. However, these methods (Yue et al.,
2022c, 2021) overlook the fact that domain adapta-
tion can result in target features lie far apart from
the source domain for similar semantics that are
ambiguous and hence error-prone. To mitigate this,
we propose the idea of reducing the inconsistency
between domains by generating target features near
the support of source classes. In our case, this
refers to the starting and ending indices for the
answer classifier for different question types.

In Equation 4, fine-tuning occurs with the target-
aware source domain, resulting in the answer clas-
sifier C2. This learns the distribution of start and
end classes given the style of the target domain Dt,
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but these can be error-prone, mainly due to two
reasons: 1) The target pseudo labels obtained from
C1 are erroneous, and 2) The target domain infor-
mation makes the classifier C2 difficult to learn the
correct distribution of start and end classes on the
source domain. Collectively, this happens when
the target instances are far apart from the source
domain and require explicit optimization for such
cases. Hence, we make use of the adversarial loss
to first identify the samples of the target domain
that are far apart from the support of the source
domain. We then update the parameters of answer
classifiers C1 and C2 with θg (obtained after domain
invariant fine-tuning) frozen to maximize the dis-
crepancy due to such instances. Specifically, we
update C1 first keeping C2 fixed and then C2 with
updated C1. Subsequently, we minimize the param-
eters of θg to generate target domain features near
the source domain for start and end classes. Math-
ematically, this has been written as the minmax
game of learning domain invariant representations:

min
θg

max
C1,C2

Llc(Xt) (5)

where Llc is the label correction loss optimized
for the target domain for maximum performance.
The discrepancy maximizing term has been math-
ematically formulated as the Sliced Wasserstein
Distance(SWD) between the representation as in
(Kolouri et al., 2019) learnt for start and end classes
by classifier C1 and C2 respectively. Let G denote
the BERT encoder with parameters θg, the loss is
written as:

min
C1 ,C2

Lce(f ,Xs||Xt)−
∑

k∈{s,e}
Lswd(Ck1 (G(Xt)), Ck2 (G(Xt)))

(6)

where Ck1 (.), Ck2 (.) for all k ∈ {s, e} denotes the
probability distribution obtained from classifier C1
and C2 for starting and ending indices s and e. This
loss updates both classifiers on target aware source
domain only for those instances where parallel tar-
get domain instances are inconsistent. Since both
C1 and C2 trained to predict the start and end indices
for the source domain, one with source domain fea-
tures only and another on source augmented with
target domain features. Hence, the classifier C2 can
predict the different start and end indices for those
instances where C1 is incorrect for target domain.
Hence we update the classifier C1 first and then
update C2 using updated C1. Adjusted answer clas-
sifiers results in updated domain discrepancy for

the non-confident target predictions and hence we
need to update the parameters θg so as to generate
the target domain features near to source support
class wisely. This has been achieved by minimizing
the loss function:

min
G

∑

k∈{s,e}
Lswd(Ck1 (G(Xt)), Ck2 (G(Xt))) (7)

Finally, at the end we use the Encoder G and answer
classifier C1 as the domain adapted QA model. End-
to-end training of DomainInv Framework is shown
in Algorithm 1 (in Appendix B).

5 Experiments
Datasets: We consider the source domain Ds as
SQuAD v1.1 (Rajpurkar et al., 2016) following
(Yue et al., 2022c, 2021; Shakeri et al., 2020; Cao
et al., 2020; Lee et al., 2020). SQuAD v1.1 is
a well known annotated QA dataset where para-
graphs (context) are from Wikipedia articles. Tar-
get Domains Dt are considered from MRQA Split
1 (Fisch et al., 2019b), namely, NaturalQuestions
(Kwiatkowski et al., 2019), HotpotQA (Yang et al.,
2018), SearchQA (Dunn et al., 2017), TriviaQA
(Joshi et al., 2017), NewsQA (Trischler et al.,
2016). The dataset details we have considered for
target domain is given in Appendix A.
Baselines: We trained our DomainInv Framework
on top of the fine-tuned QA model on source do-
main, adopted from BERT with an additional batch
normalization layer, as in (Cao et al., 2020). This
fine-tuned BERT model, trained on the source do-
main, acts as the naive baseline. However, to fur-
ther assess the robustness of our framework in
QA domain adaptation, we adopted the following
state-of-the-art (SOTA) baselines: 1) QADA (Yue
et al., 2022c): QA Domain Adaptation (QADA)
leverages hidden space augmentation for enriching
the training dataset and used attention-based con-
trastive learning for domain adaptation. 2) CAQA
(Yue et al., 2021): Contrastive Domain Adaption
for Question Answering (CAQA) combines ques-
tion generation and contrastive domain adaptation
to learn domain-invariant features, so that it can
capture both domains and thus transfer knowledge
to the target distribution 3) DAT (Tzeng et al., 2017;
Lee et al., 2019b): Domain Adversarial Training
(DAT) follows the known adversarial training and
uses the [CLS] token in BERT as a discriminator to
learn the generalized features from both source and
target domains after training with labeled source do-
main 4) CAQA* (Yue et al., 2021, 2022c): Instead
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

(1) Zero Shot Target Performance

BERT 43.34/60.42 39.06/53.7 39.17/56.14 16.19/25.03 49.70/59.09

(2) QA Domain Adaptation Target Performance

DAT (Lee et al., 2019b) 44.25/61.10 44.94/58.91 38.73/54.24 22.31/31.64 49.94/59.82
CASe (Cao et al., 2020) 47.16/63.88 46.53/60.19 43.43/59.67 26.07/35.16 54.74/63.61
CAQA (Yue et al., 2021) 46.37/61.57 48.55/62.60 40.55/55.90 36.05/42.94 55.17/63.23
CAQA* (Yue et al., 2021, 2022c) 48.52/64.76 47.37/60.52 44.26/60.83 32.05/41.07 54.30/62.98
QADA (Yue et al., 2022c) 50.80/65.75 52.13/65.00 45.64/61.84 40.47/48.76 56.92/65.86
DomainInv(Ours) 52.92/66.71 54.97/68.80 45.96/61.88 40.92/49.88 57.78/66.64

(3) Supervised Training Target Performance

BERT (10K Samples) 49.57/66.65 54.81/67.98 45.92/61.85 60.21/66.96 53.87/60.42
BERT (All Samples) 57.96/74.76 67.08/79.02 52.14/67.46 71.54/77.77 64.51/70.27

Table 1: QA Adaptation Performance on Target Domains

of question generation in CAQA, this baseline uses
the same process of generating pseudo labels and
self-supervised adaptation as in QADA. 5) CASe
(Cao et al., 2020): Conditional Adversarial Self-
Training (CASe) is an unsupervised domain adap-
tation method that iteratively performs self-training
on high-confidence pseudo-labels and incorporates
conditional adversarial learning.

Training, Evaluation and Implementation:
Following (Cao et al., 2020; Yue et al., 2022c), we
trained the naive baseline of the BERT model with
an additional batch norm layer after the encoder (in
PyTorch by Hugging Face, using the base-uncased
pretrained model with 12 layers and 768-dim hid-
den state). Specifically, we used a learning rate
of 3 · 10−5 and trained for 2 epochs with a batch
size of 12, optimized using the AdamW optimizer
with 10% linear warm-up on the source domainDs.
Following (Lee et al., 2020; Shakeri et al., 2020;
Yue et al., 2021), we evaluated exact matches (EM)
and F1 score on the dev sets. The rest of the base-
lines are implemented according to the methods
described in their corresponding papers.

For the DomainInv Framework, we ran the do-
main invariant fine-tuning followed by adversarial
label correction and repeated this for 10 epochs
with the AdamW optimizer, learning rate of 10−5,
with 10% linear warm-up. During fine-tuning, we
generated the labels for the target domain using
the classifier C1, which is frozen during fine-tuning,
and sampled parallel samples of the target domain
with question types of source domain samples in a
given batch size of 12. During fine-tuning, there is

only one hyperparameter named k for the domain
transformation layer, which has been searched for
the best value in [64, 128, 256, 512, 768]. Eventu-
ally, the best value of 256 works for us in almost
all cases and is the one with the maximum perfor-
mance on the source domain Ds during fine-tuning.
After domain invariant fine-tuning, the obtained
classifiers C1, C2, and encoder G are trained with
adversarial label correction. We stopped the train-
ing in between if there is no decrease in the loss
described in equation 7 for the continuous 3 epochs
in a row.

5.1 Experimental Results

Table 1 presents the results for QA domain adap-
tation performance on various target domains, as
described in Section 5. We grouped our results
and analysis into three main categories, namely:
1) Zero short Target Performance: This reports
the results on the target domain with the BERT
fine-tuned model without any domain adaptation
on the target domain, serving as a lower bound for
domain adaptation approaches. 2) QA Domain
Adaptation Target Performance: This reports the
results due to various domain adaptation methods,
including DomainInv.. 3) Supervised Training
Target Performance: This reports the results fol-
lowing the supervised training of BERT on the tar-
get domain using randomly selected 10K samples,
along with all source domain samples, to estab-
lish the upper bound performance for QA domain
adaptation approaches. QA domain adaptation per-
formance (shown in Table 1) using the DomainInv
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

DomainInv(Ours) 52.92/66.71 54.97/68.80 45.96/61.88 40.92/49.88 57.78/66.64
w/o Adversarial Label Correction 51.60/64.07 53.91/65.21 45.88/61.86 39.81/46.98 56.98/65.32

Table 2: Ablation Study: QA Adaptation Performance on Target Domains by different components of DomainInv

Framework outperforms all the domain adaptation
baselines across all target domains and is well be-
yond the naive baseline. In fact, almost all the
domain adaptation baselines outperform the naive
baseline by a significant margin on all target do-
mains. However, BERT performs poorly (com-
pared to domain adaptation baselines) on some
target domains, namely, Natural Questions and
SearchQA, due to two main reasons: 1) BERT
does not understand the style of Natural Questions;
even if the Wikipedia article is the same, the real
user questions style is different from the one asked
in SQuAD v1.1. 2) BERT does not understand the
long form of contexts, which is usual in SearchQA,
and it learns to focus on the nearby tokens similar
to those in SQuAD v1.1.

However, the actual or more effective answer
is also present in the long context. Compared to
the worst QA adaptation baseline, DomainInv out-
performs BERT on these two domains on aver-
age by 2.64% in EM and the other domains by
1.2% in EM. This is the main reason we adopted
the domain style-based transformation layer and
the corresponding fine-tuning, which can make
BERT understand different contexts and questions.
The DomainInv Framework outperforms all base-
lines; on average, it outperforms the best baseline
by 2.59% and 2.17% in EM and F1, respectively.
Moreover, our framework outperforms supervised
training with 10K target data, additionally on Natu-
ral Questions and NewsQA, as compared to QADA
(best baseline), which outperforms the supervised
baseline of 10K target data only on HotpotQA and
TriviaQA. We reported all the results after averag-
ing the inference results from 10 rounds.

5.2 Ablation Studies
In Table 1, we compared the DomainInv frame-
work against the strongest baseline named QADA.
However, this comparison does not detail the im-
portance of each component of DomainInv, namely,
domain invariant fine-tuning and adversarial label
correction. The absence of these components can
cause a maximum drop of 5.17% compared to the
best baseline QADA, highlighting the advantage

of using DomainInv over other domain adaptation
approaches. However, the contribution of each
component towards performance gain is still un-
known. Hence, we studied the performance (men-
tioned in Table 2) of DomainInv after removing
the adversarial label correction component only,
since removing the domain-invariant fine tuning
as well results in the source-domain trained BERT
model, for which the zero-shot performance is al-
ready mentioned in Table 1. The performance drop
in Table 2 clearly depicts the advantage of adver-
sarial label correction. For target domains, namely
HotpotQA, Natural Questions, and NewsQA, the
performance of DomainInv w/o adversarial label
correction in terms of EM is still higher than that of
QADA. However, in SearchQA, it goes below the
performance of QADA. This indicates the impor-
tant insight into the functioning of adversarial label
correction. For long contexts like in SearchQA,
where matching the answer exactly requires signif-
icant correction, and in Natural Questions, where
the question style has changed but the context is
still the same (i.e., Wikipedia articles), requiring
only minor correction in labels. This proves the
effectiveness of the label correction component in
the DomainInv framework.

6 Conclusion

In this paper, we proposed a novel QA domain
adaptation framework called DomainInv. It is an
unsupervised algorithm that does not require the
use of labeled target domain data, nor does it de-
pend on synthetic data or pseudo-labeled target
domain. DomainInv comprises two key compo-
nents: 1) Domain Invariant Fine Tuning, which
fine-tunes the QA model using the target style on
the source domain, and 2) Adversarial Label Cor-
rection, which identifies target distributions that are
far apart from the source domain and optimizes the
feature generator to bring them closer to the source
support class wisely. Evaluation of DomainInv
showed that it outperforms all baselines, achiev-
ing superior performance and establishing a new
benchmark.
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Limitations

In this section, we highlights certain limitations
of DomainInv that were not covered in the paper.
In the domain invariant fine-tuning, we introduced
a new layer called the domain adaptation layer,
which computes the difference between the aver-
age pooled representations of the source and tar-
get domains. However, this design assumes equal
importance for all tokens in both domains at each
layer, overlooking the influence of the self-attention
mechanism on token distribution. To rectify this,
future work should explore incorporating attention-
weighted representations before calculating the dif-
ference. Additionally, in the adversarial label cor-
rection, we proposed adjusting the feature encoder
solely based on the target domain, neglecting the
potential benefits of jointly aligning both source
and target domains. Further research could explore
these aspects for improvement.
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A Benchmark Datasets

The dataset details we have considered for target
domain is given as follows:

• NaturalQuestions: A real world QA dataset
with questions that are actual user questions,
and contexts as Wikipedia articles, which may
or may not contain the answers (Kwiatkowski
et al., 2019)

• HotpotQA: A reasoning based QA dataset
with multi hop questions and supporting facts
(Yang et al., 2018)

• SearchQA: QA dataset where context built
by crawling through Google Search. However,
this is based on existing QA pairs for which
the context is extended. More details in (Dunn
et al., 2017)

• TriviaQA: A reasoning based QA dataset con-
taining evidences for questions asked (Joshi
et al., 2017)

• NewsQA: QA dataset with news as contexts
and questions with answers not from simple
matching and entailment. (Trischler et al.,
2016)

B Algorithm

We presented the end-to-end DomainInv algorithm
as follows:

Algorithm 1 DomainInv Training for UDA
Require: Labeled Source {Xs,Ys}; unlabelled Target {Xt},

hyperparameter k, fine tuned QA model with encoder G
and Classifier C1 and classifier C2 initialized with C1.
Step 1: Update G, C2 on Source Domain (with tar-
get style augmentation) using Domain Invariant Fine-
Tuning as in Equation 4

while G, C1, C2 still converging do
Step 2: Update C1, C2 on target aware source set to
maximize the sliced Wasserstein distance (SWD) on
target instances as in Equation 6
Step 3: Update G to minimize the SWD as calculated
earlier according to Equation 7

end while
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Abstract

Domain adaptation presents significant chal-
lenges for out-of-domain text ranking, espe-
cially when supervised data is limited. In this
paper, we present ReadQG1 (Relevance-Aware
Diverse Query Generation), a method to gen-
erate informative synthetic queries to facilitate
the adaptation process of text ranking models.
Unlike previous approaches focusing solely on
relevant query generation, our ReadQG gener-
ates diverse queries with continuous relevance
scores. Specifically, we propose leveraging
soft-prompt tuning and diverse generation ob-
jectives to control query generation according
to the given relevance. Our experiments show
that integrating negative queries into the learn-
ing process enhances the effectiveness of text
ranking models in out-of-domain information
retrieval (IR) benchmarks. Furthermore, we
measure the quality of query generation, high-
lighting the underlying beneficial characteris-
tics of negative queries. Our empirical results
and analysis also shed light on potential direc-
tions for more advanced data augmentation in
IR. The data and code have been released.

1 Introduction

Many domain-specific tasks lack supervised data,
posing challenges for many neuarl approaches. Re-
cently, Thakur et al. (2021) introduce an out-of-
domain (OOD) information retrieval (IR) bench-
mark across diverse scenarios and domains. Their
findings indicate that many neural text ranking
models demonstrate limited effectiveness in such
contexts. These tasks primarily struggle with adap-
tation (Gururangan et al., 2020), highlighting the
issues of insufficient task- and domain-specific la-
beled data.

To address this, one line of research propose
utilizing synthetic training data for adapting text

*Work partially done as an research assistnat at Academia
Sinica.

1https://github.com/DylanJoo/readqg

Document 
(Title) animals environment general health health general 
weight philosophy ethics. (Text) Being vegetarian helps 
the environment … Modern farming is …

Relevance-aware Queries
1.0  why do you think meat is bad for a planet earth
0.9  what is the philosophy of vegetarian
…
0.7  what is a vegetarian diet?
0.6  what is deforestation in asian countries
….
0.1  what is an asian diet
0.0  what is the difference between food and a burger

Figure 1: An example of generatie negative query from
document inputs by ReadQG.

ranking models (Ma et al., 2021; Bonifacio et al.,
2022; Wang et al., 2022). These approachees em-
ploy generative models to first learn document-to-
query mapping from rich-resource datasets such as
MSMARCO (Bajaj et al., 2018). Subsequently, a
document and its generated query can be treated
as a relevant pair for fine-tuning text ranking
models. Recently, these methods have been fur-
ther refined with instruction-tuned large langu-
gage models (LLMs) (Brown et al., 2020a; Chung
et al., 2022). Such LLM-driven query generation
can produce more informative query through in-
context (Jeronymo et al., 2023) or few-shot learn-
ing (Dai et al., 2023).

Compared to these works, in this study, we intro-
duce Relevance-aware Diverse Query Generation
(ReadQG), aiming to generate more informaive
synthetic queries with lightweight generative mod-
els. Specifically, we generate both positive and
(hard) negative queries from the same document,
as illustrated in Figure 1. Our hypothesis is that a
set of diverse relevance-aware queries can enhance
relevancy representation of texts in unseen domains.
To achieve this, we develop the instruction prompt
and relevance prompt embeddings. The instruction
prompt directs LLMs to generate query, while rel-
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evance prompt captures and conrols the relevance
dynamic between docuemnt and multiple queries.
Moreover, we develop two strategies to diversify
our generated queries: self-contrastive loss and se-
quence calibration loss (Zhao et al., 2023). These
strategies prevent ReadQG from degeneration (i.e.,
falling back to naive relevant query generation).

Finally, to exploit positive and negative queries
genereted by ReadQG, we integrate the query-
based objectives into the training process of text
ranking models. Our experiments demonstrates
that models fine-tuned on our synthetic data out-
perform the original model in terms of passage
re-ranking efftiveness on the BEIR benchmark. In
addition, we define and propose two metrics to mea-
sure the quality of generated queries. We observe
that the query exhibiting both diversity and rele-
vancy provide useful signals for passage re-ranking
models to learn, emphasizing the importance of
hard negative query.

To sum up, we propose a domain adaptation
pipeline with ReadQG, tailored for out-of-domain
text ranking. Our empirical results show that hard
negative queries could provide useful signals. Fur-
ther, the domain adaptation pipeline is built with
lightweight generators and text ranking models,
achieving improved effectiveness but more effi-
cient in terms of inference time and computational
costs. More details can be found in our results
(Section 6.1) and our analysis (Section 6.2).

2 Backgrounds

Data augmentation in IR. Numerous IR studies
have pioneered in the area of data augmentation
for domain adaptation. For instance, QGen (Ma
et al., 2021) used synthetic query with documents
to facilitate the adaptation of bi-encoder as domain-
adaptive dense retrieval. This can also be combined
with negative mining techniques (Xiong et al.,
2020), leading to enhanced effectiveness (Wang
et al., 2022). Recent data augmentation techniques
in IR have further been improved by the advance-
ments in instruction-tuned large language models
(LLMs) (Brown et al., 2020b; Chung et al., 2022).
InPars (Bonifacio et al., 2022) showed that specific
in-context prompting can enhance the quality of
generated queries. Moreover, Promptagator (Dai
et al., 2023) introduces few-shot in-context learning
to bridge the gap between in-domain and out-of-
domain data. Typically, all these methods center
aorund augmenting synthetic queries derived from

unseen document and utilizing them as additional
training data.

Query Generation. Since the documents in out-
of-domain corpus are usually available, we in this
work focus on the query generation instead of
document generation (Gao et al., 2022). Partic-
ularly, Nogueira et al. (2019) first explored the
role of query generation in IR. Oguz et al. (2022)
also showcased that increasing the number of syn-
thetic queries enhances domain adaptation capabil-
ity, while Lin et al. (2023) further validated diverse
queries can bridge the gap between zero-shot and
supervised setups. Question generation can also
plays a cruicial role in improving robustness of
question answering (QA) systems (Bartolo et al.,
2021; Lee et al., 2020) and has broader impacts
in various NLP applications such as summariza-
tion (Lyu et al., 2021) or building retrieval-intensive
QA datasets (Min et al., 2020).

Diverse and controllable text generation. We
further extend the concept of query generation to
controllable text generation in NLP area. Similar
to our goal, Cho et al. (2019) propose capturing
the one-to-many relationship between texts, such
as dcument-to-summaries. However, due to the
discrete nature of text generation, controlling se-
quence diversity is challenging and often required
specialized learning settings (Bowman et al., 2016)
or model adjustments (See et al., 2017). Text de-
coding strategies also significantly influence the
results (Holtzman et al., 2020). Many ongoing
research focus on designing constraints and objec-
tives, such as unlikelihood (Welleck et al., 2020)
or additional constrative-like learning signals (Liu
et al., 2022; Zhao et al., 2023). We hypothesize
recent LLMs could transform the notion of con-
tinuous relevance and present them with divese
queries, thereby improve the domain adaptation of
out-of-domain text ranking.

3 Methodologies

In this work, we utilize synthesized out-of-domain
training queries to tackle the domain-mismatch is-
sues. We will first provide an overview of our
domain adaptation pipeline in Section 3.1; it is also
illustrated in Figure 2. Following this are the details
of the two main stages in ths pipeline, including out-
of-domain data augmentation and domain-adaptive
fine-tuning.
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ExampleDomain-adaptive Fine-tuning (Section 3.3)Data Augmentation (Section 3.2)
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Figure 2: The domain adaptation pipeline for out-of-domain text ranking. The first block is for data augmentation
(ReadQG, Section 3.2), and the second block is domain adpative fine-tuning (Section 3.3) with our augmented
dataset. The last block is an example pairs we used for training text ranking models.
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Figure 3: The relevance-aware diverse query generation.

3.1 Overview

As illustrated in the first block of Figure 2, we
introduce a novel data augmentation approach,
Relevance-aware diverse Query Generation
(ReadQG). We generate multiple synthetic queries
for each documents in the targeted unseen2

domains. These queries enables us to construct
high-quality docuemnt-centric training pairs
(See example in the last block in Fig. 2). By
leveraging these training data, we can efficienctly
transform general text re-ranking models into
domain-adaptive ones as shown in second block of
the figure.

3.2 ReadQG: Relevance-aware Diverse Query
Generation

Unlike common studies with relevant query gener-
ation, we generate a set of relevance-aware queries
Q = [q(r1), q(r2), ..., q(rn)] for each unseen docu-
ment d ∈ D as illustrated in the Figure 2. Specif-
ically, we aim to generate the positive (relevant)
query and the hard negative queries.3 To achieve
this, we develop a controllable query generator with
diversity text generation objectives.

2Here, we regard MSMARCO as the source domain; thus,
the retrieval tasks in BEIR are considered as unseen domains.

3The term hard negative query refers to less-relevant
queries, as oppose to the random (negative) query.

3.2.1 Controllable Query Generation
Here we propose to parameterize such document-
to-queries generation process via soft prompt-
tuning (Lester et al., 2021). Our focus is specif-
ically on learning such process of relevance dy-
namic from a rich-resource domain (i.e., MS-
MARCO) with relatively smaller models instead
of directly prompting LLMs. Thus, we leave the
attempts of in-context prompting with larger causal
LLMs as our future works. Here, we propose to
parameterize such a document-to-queries genera-
tion process via soft prompt-tuning (Lester et al.,
2021). Our focus is specifically on learning the
process of relevance dynamic from a rich-resource
domain (i.e., MSMARCO) with relatively smaller
models instead of directly prompting LLMs. Thus,
we leave the attempts of in-context prompting with
larger causal LLMs as our future work.

Soft prompt-tuning with relevance. As de-
picted in Figure 3, we employ soft embedding
prompts to control the relevance-aware query gen-
eration process. These prompts act as the com-
posite input for documents and relevance scores.
Simply put, the generator G is expected to gen-
erate a query conditioned on the given docuemnt
d and also the specified relevance r. To achieve,
we include two learnable embedding prompts: an
instruction prompt Pinst and the relevance prompt
Prel(r). Thus, we can formulate the relevance-
aware query generation as:

q̂(r) ← G
(
Pinst; Prel(r); d

)
; ∀r ∈ [0, 1], (1)

where the relevance r is a re-scaled continuous
variable score ranging from 0 to 1 (See Section 4
for more details). It is worth noting that we only
consider the prompts as trainable parameters, en-
couraging to leverage the inherent capabiltiy of
instruction-tuned language models.
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Prompt initialization. To inherit the merits of
language model pretraining, we initialize Pinst

with natural-language instructions.4 While the rele-
vance prompt Prel(r) is a function of a continuous
relevance score r:



r 1− r
...

...
r 1− r


×

[
P+
rel ← E(true ...)

P−
rel ← E(false ...)

]
.

This is basically a linear combination of P+
rel and

P−
rel with respect to relevance. In addition, we

initiliaize them with embeddings of “true” and
“false” tokens before fine-tuning.

Encoder-decoder architecture. As our compos-
ite input and expected output are highly correlated
syntactically, we choose the encoder-decoder archi-
tecture, Flan-T5 (Chung et al., 2022) as our back-
bone model. Formally, the inner flow of hidden
states during training is as follow

H(r)
enc =Genc

(
Pinst; Prel(r); d

)
;

H
(r)
dec =Gdec

(
qt|q<t;H

(r)
enc),

where Henc and Hdec indicate the hidden states
of encoder outputs and decoder outputs respec-
tively. To optimize the parameterized embedding
prompts P, we adopt the standard training recipe
of teacher-forcing and maximum likelihood estima-
tion (MLE):

Lmle = − logP
(
(H

(r)
dec)

TW
)
, (2)

where W is the projection layer of LM head.

3.2.2 Learning to Diverse Generation
As negative relevance of document-to-queries is
intricate, we impose two objectives to encourage
sequence generation diversity.

In-batch self-contrastive loss. By treating the
generator’s encoder Genc as an independant (docu-
ment) encoder, we can leverage the similar softmax
objectives with mini-batch like DPR (Karpukhin
et al., 2020). We define the hidden states of en-
coder output H(r)

enc itself as positive and the others
in mini-batch as random negatives. Thus, the self-
contrastive loss of document di with relevance rj

4Among a few preliminary zero-shot tests, we cherry-
picked a better one: “Generate a question for
this passage with the labels:” as initialization.

is as follow

Lsc =
exp

(
ϕ(H

(rj),i
enc , H

(rj),i
enc )/τ

)

∑
i′∈B,j′∈2m exp

(
ϕ(H

(rj),i
enc , H

(rj′ ),i′
enc )/τ

) ,

(3)

where ϕ(x, y) represents the cosine similarity
scores between x and y after average pooling, and
τ is the temperature. 2m refers to the indices of
collected relevance-query samples: {(rj , q(rj))}2mj
for each document, consisting of m positive queries
and m negative ones.5 Intuitively, the semantic dis-
tance between arbitrary relevance-aware document
representations Henc would propogate gradient to
the relevant prompts. Therefore, this loss will guide
encoder Genc to comprehend differently across dif-
ferent documents and relevance simultaneously.

Calibrated sequence likelihood. Since negative
queries could be infinite, the models will tend
to generate random trivial queries or non-scene
texts (Welleck et al., 2020; Holtzman et al., 2020).
Thus, we specifically control the sequence likeli-
hoods of positive and negative query generation
to avoid such degeneration. Inspired by sequence
calibration (Zhao et al., 2023), which leverages
multiple references to calibrate the sequence like-
lihood, we treat the relevance-contradicted query
as a reference to calibrate the likelihood of the
relevance-entailed query, as illustrated in Figure 3.

Specifically, for each composite input of docu-
ment and relevance, we regard the likelihood of
relevance-entailed query generation as logPfw =
logP (q(r)|d, r), indicating the “forward” gener-
ation. On the contrary, we calculate the “re-
verse” likelihood by substituting the decoder input
with the contradicted one, denoted as logPrev =
logP (q(r

′)|d, r). This implies the likelihood of
generating relevance-contradicted queries. Both
the adjustments can be done efficiently within the
batch; we simply swap the decoder inputs between
the forward one and the reverse one as demon-
strated in Figure 3. The calibration loss for each
relevance-aware query generation is as follows:

5As we fix the number of sampled queries per document
d, we here ignore the docuemnt dependency and replace the
notations of rji, mi by rj , m for brevity.
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Lcal =
∑

(r,r′)

max
(
0, ϵ− logPfw + logPrev

)
;

(q̂(r), q̂(r
′)) ∈

(
[R+

d ;R
−
d ], [R

−
d ;R

+
d ]
)
,

(4)

where ϵ is a fixed margin that provides tolerances
when forward-reverse gap is large enough. R+

d and
R−

d are the available postive and negative query
samples and their corresponding relevance scores
(Section 4). In particular, the intuition behind this
loss is to increase the discrepancy between positive
and negative query generation along with the given
relevance distribution.

3.3 Domain-adaptative Passage Re-ranking

Afterward, as depicted in the second block in Fig-
ure 2, we can generate diverse relevance-aware
queries q̂(r) via ReadQG by feeding the document
with different relevance scores. We then use these
queries to construct special synthetic training pairs,
each comprising a document d, a positive query
q̂, and a negative one q̂−.6 These examples, es-
pecially the query-query pair, serve as additional
domain-adaptive learning signals for downstream
text ranking models.

Cross-encoder for relevance classification. We
choose cross-encoder architecture and passage re-
ranking task as the experimental testbed. And
we use binary cross-entropy (BCE) loss for train-
ing cross-encoders, similar to the point-wise
ranking (Nogueira and Cho, 2020), In addition,
we adopt the common in-batch negative sam-
pling (Karpukhin et al., 2020) to obtain a random
negative document d− and formuate the loss Lbce
as:

1

2|DB|

DB∑

d

− logPF (q̂, d) + logPF (q̂, d
−), (5)

where d− is sampled from documents other than
the d (i.e., the positive one) within the same mini-
batch DB; we choose the one with the highest pre-
dicted relevance as the negative document sample.
Note that this is not a hard negative mining start-
egy (Xiong et al., 2020); it is only for avoiding
underlying overfiting caused by imbalanced labels.

6We treat q̂(r=0) as the hard negative query and leave the
exploration of other interpolated ones as our future work.

Query01
Doc07  6.5
….
Doc24  0.1
Doc42  -1.2
…

Query02
Doc20  7.9
….
Doc07  0.8
Doc30  -0.1
…

Query03
Doc11  8.4
….
Doc17  0.2
Doc07  -2.0
…

Doc07
Pos: [(Query01, 6.5), (Query07, 0.8), …]
Neg: [(Query03, -2.0), …, (QueryX, -4.6)]

Doc07
Pos: [(Query01, 1.0), (Query07, 0.3)]
Neg: [(Query03, 0.2), (QueryX, 0.0)]

Aggregate

Rescale

Figure 4: Construct semi-supervised document-centric
pairs with MSMARCO and pseudo relevance scores.
Once the documents are sorted, we aggregate queries
for each document and rescale the relevance scores as
document-centric pairs.

Dual learning with query-based objectives. In
addition, we include query-based learning with
synthetic positive and negative query pairs. The
purpose is to enhance domain-specific knowledge
through learning from query-query similarity. We
hypothesize that the hard negative query could pro-
vide a misunderstanding comprehension of the doc-
ument, offering another view of negative relevance,
and thereby steering the ranking model to familiar-
ize itself with unseen domains. Here, we adopt the
margin ranking loss with query-query similarity as
follows:

Lmr =

DB∑

d

max
(
0, F (q̂, q̂−)− F (q̂, d)

)
. (6)

The intuition is that the relevance of the hard neg-
ative query should not be greater than the query-
document relevance, providing extra gradient for
relevance classification. Finally, we fine-tune
domain-adaptive cross-encoders in a few-shot man-
ner with the two objectives in Eq.(5) and Eq. (6).

4 Semi-supervised MSMARCO
Document-centric Pairs

To fine-tune ReadQG, we collect training pairs for
query generation using the MSMARCO passage
ranking dataset (Bajaj et al., 2018). We utilize
this dataset, along with the pseudo-relevance of
BM25 hard negatives7, which are predicted by the
off-the-shelf ranking model, MiniLM.8 This cross-

7https://huggingface.co/
datasets/sentence-transformers/
msmarco-hard-negatives

8https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2
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encoder is fine-tuned on MS MARCO triplets. The
procedure is illustrated in Figure 4.

Query-centric to document-wise aggregation.
First, we sort the (query-centric) rank list by
pseudo-relevance, as shown at the top of Figure 4.
We also define the relevance boundary of positive
and negative as 0 since MiniLM was fine-tuned
with a regression-like objective. Next, we aggre-
gate queries in a document-wise manner. For exam-
ple, “Doc07” in Figure 4 appears in three ranking
lists. We then re-sort the pseudo-relevance across
these three lists and categorize them as positive
or negative with the boundary of 0, resulting in
semi-supervised document-to-queries pairs.

Re-scaling and sampling. In addition, for each
pair, we rescale the relevance scores of the aggre-
gated query set using MinMaxScaler.9 The pur-
pose of this step is to align the scores with the
relevance prompt function in Eq. (1). Finally, for
each document, we collect positive queries with
the top-m highest relevance scores into R+

d . Con-
versely, queries with the bottom-m lowest scores
are considered negative query samples. Documents
with fewer than 2m queries are discarded, resulting
in approximately 4.7M document-centric training
pairs for ReadQG.

5 Experimental Setups

We will first report the setup of the two stages in
the proposed pipeline: data augmnetation using
ReadQG (Section 3.2), and domain adaptive pas-
sage re-ranking (Section 3.3) fine-tuned on the syn-
thetic training data.

5.1 Training and Inference Setups
Stage I: Data augmentation. Our ReadQG is ini-
tialized with Flan-T5 base checkpoint.10 with only
a few tunable parameters of embedding prompts
(Section 3.2). We set the length of instruction and
relevance prompt as 10 and 5, respectively, en-
suring the lightweight training and inference over-
head. The generator is then fine-tuned on the semi-
supervised training pairs (See Section 4 for details)
for 20K steps with a constant learning rate 1e-2.
The maximum sequence length of input (document)
and target (query) are 128 and 16. We use batch
size of 32, comprising 4 documents and m = 4, for
each positive and negative query samples.

9https://scikit-learn.org
10https://huggingface.co/google/

flan-t5-base

During inference, to control the generation of
positive and hard negative query, we specify the
relevance scores as r = 1 and r = 0, respectively.
We then construct the composite input for posi-
tive and negative query generation as described in
Eq. (1). The maximum sequence length of input
and output are 384 and 64 with top-k (k = 10)
decoding strategies (Fan et al., 2018). We also ana-
lyze greedy and beam search decoding strategy in
Section 6.2.

Stage II: Domain-adaptative passage re-ranking
Once we have the synthetic training pairs, we use
them to fine-tune domain-adaptive passage ranking
models. We initialize the models with MiniLM
pre-trained on MSMARCO passage ranking, the
same model used for pseudo-relevance labels in
Section 4. Then, we fine-tune the model with batch
size 8 for 2 epoch11 with learning rate 7e-6. An
epoch of training steps is defined as the corpus
size divided by batch size, as we only generate
one query pair per document. We set the maxi-
mum length as 384. Other training hyperparam-
eters follow the default setups of SentenceBERT
cross-encoder.12

5.2 Evaluation Setups

BEIR benchmark. We experiment on BEIR
and select several tasks with corpus size is less
than 100K for evaluation, including NFCorpus
(NFC, 3.6K), FiQA (FQA, 57.6K), ArguAna (ARG,
8.7K), SCIDOCS (SCD, 25.7K), and SciFact (SCF,
5.2K). For brevity, we will use these abbreviations
henceforth. We first validate the domain adaptation
capability by out-of-domain text ranking effective-
ness nDCG@10, the official metric in BEIR. We
used the fixed candidates from BM25 top-100 re-
trieved results and foucsed on the re-ranking effec-
tiveness for simpler comparison.

Performance metrics. We also investigate the
unique charateristic of generated queries directly
from an IR perspective. Specifically, by using the
off-the-shelf bi-encoders and cross-encoders, we
can analyze the useful properties of synthetic query.
We introduce the following:

1. Diversity. We regard the generated queries Q
from an unseen document as different texts.

11We found there is no improvement after the second.
12https://github.com/UKPLab/

sentence-transformers
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Objectives Params (M) nDCG@10

# Retrieval + Re-ranking (synthetic data) (q̂, d) (q̂, d, q̂−) Gen./Rank NFC FQA ARG SCD SCF Avg.

BM25 - - - 32.5 23.6 41.4 15.8 66.5 36.0
(0) BM25 + MiniLM-MS - / 0.2M 35.0 34.7 41.7 16.6 68.8 39.4
(1) BM25 + MiniLM-MS (InPars-v2 data) ✓ ✗ 6B / 0.2M 35.4 35.2 42.3 16.6 69.8 39.8
(2) BM25 + MiniLM-MS (ReadQG) ✓ ✗ 220M / 0.2M 35.4 34.0 42.8 15.7 71.4 39.8
(3) BM25 + MiniLM-MS (ReadQG) ✓ ✓ 220M / 0.2M 35.5 34.4 49.6 16.7 71.6 41.6

Table 1: The Out-of-domain text re-ranking effectivenss (nDCG@10) with top-100 candidates retrieved using
BM25. The third and forth columns indicate learning objectives of Eq. (3) and Eq. (6).

Thus, we first encode nQ queries with off-the-
shelf bi-encoders13 E∗. Then, we compute the
average pairwise angular distance (Cer et al.,
2018) across n query embeddings as follow:

2

n2
Q − nQ

nQ∑

i=1

∑

j=i+1

Ω (E∗(qi), E∗(qj)) ,

where we set nQ = 11 and indicate relevance
scores r ∈ {0, 0.1, ..., 1.0}. Ω(u, v) indicates
the angular distance between vectors u and v.

2. Relevancy. In addition, we feed the document
with our generated positive and negative query
into another effective cross-encoder model.
We use monoT5-3B-InPars-v2 (Jeronymo
et al., 2023) as we assume the predicted scores
of the larger model can accurately reflect the
true relevance between query and document.
These metrics include

rel+ =F ∗(q̂(r=1), d);

rel− =F ∗(q̂(r=0), d);

∆rel =rel+ − rel−.

Note that all metrics will first be calculated per doc-
ument and then take the average across documents
in our later results.

6 Empirical Results

In this section, we first validate the text ranking
effectiveness using the synthetic data constructed
by ReadQG. Then, we explore the query gener-
ation effectiveness via the aforementioned three
performance metrics.

6.1 Main Results
Out-of-domain text ranking. Table 1 shows that
the domain-adaptive text ranking models fine-tuned
with an additional negative query from ReadQG

13We use GTE encoder (Li et al., 2023) as it has been pre-
trained on scientific corpora.

# Div. (rel+/rel−/∆rel) nDCG@10

(a) Lmle .218 (.970/.859/.111) .707
(b) + Lsc .154 (.957/.938/.019) .709
(c) + Lcal .269 (.967/.732/.235) .706
(d) + Lsc + Lcal .219 (.973/.935/.037) .716

Table 2: Quality of generated query with different diver-
sity learning objectives. We use SCIFACT as example.
The reported metrics are diversity (Div.) and relevancy
and nDCG@10.

(condition #(3)) increase the average nDCG@10 by
approximately two points compared to the initial
zero-shot one (i.e., #(0)). This indicates the pos-
itive query together with the hard negative query
can transfer useful signals during learning. More-
over, condition #(3) outperforms our baseline #(2),
the condition used only positive queries. This im-
plies the role of negative relevance in Eq. (6) can
guide models to accurately estimate the relevancy
of queries and documents.

We also compare with the generated query from
InPars-v2 (Jeronymo et al., 2023) by fine-tuning the
synthetic pairs with identical settings. Note that we
here exclude negative documents in the released
data14 for a fair comparison. We also align the
amounts of training pairs by random sampling. By
comparing conditions #(1) and #(2), we observe the
positive queries generated by ReadQG can perform
on par with InPars-v2’s15 with a smaller genera-
tor (i.e., 220M parameters), demonstrating an effi-
cient alternative to transfer knowledge from rich-
resource MSMARCO dataset (Bajaj et al., 2018).

Generation Quality. To better understand gener-
ated queries, we compare the variants of our pro-
posed learning objectives in Section 3.2, as shown
in different rows in Table 2. We fixed all the set-
tings of query generation, including prompt length

14https://huggingface.co/datasets/
inpars/generated-data

15For a fair comparison, we shuffle the generated queries
and sample the same size as ours. And we only used the
positive query-document pairs.
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|Prel| Div. (rel+/rel−/∆rel) nDCG@10

1 .204 (.972/.916/.056) 70.4
5 .219 (.973/.935/.037) 71.6
10 .192 (.986/.944/.042) 70.4

Table 3: The impacts of different length of relevance soft
prompts. We use the SCIFACT dataset as an example.

Decode NFC FQA ARG SCD SCF Avg.

Beams= 1 35.6 33.8 50.1 16.6 71.6 41.5
Beams= 3 35.5 33.5 52.8 16.6 71.7 42.0
Top-k(10) 35.5 34.4 49.6 16.7 71.6 41.6

Table 4: The impacts of different sequence decoding
strategy. The reported scores are nDCG@10.

as 5 and greedy decoding. We observe there is
no single metric solely related to the ranking ef-
fectiveness. However, one interesting finding is
that the condition #(d) (i.e., MLE + two diverse
generation losses) and condition #(a) (MLE only )
have similar diversity, but their relevance scores of
negative queries (i.e., rel−) differ; condition #(d)
has .935 but #(a) is .859. This highlights the unique
characteristic of harder negative query – high di-
versity but also high relevance (Div. ↑; rel− ↑)
– with the same document. This also shows that
calibration loss with self-contrastive loss can com-
plement each other and produce better relevance-
aware diver queries. The high diversity sometimes
hurts text ranking effectiveness such as condition
#(c), meaning that the negative query is too trivial
(i.e., random negative query).

6.2 ReadQG Analysis

Length of relevance prompt. In Table 3, we in-
vestigate different lengths of soft relevance prompts
as many studies have claimed the impact of prompt
length is significant (Li and Liang, 2021; Lester
et al., 2021). We train generators with fixed learn-
ing objectives and inference with the same greedy
decoding. Comparing the first two rows (lengths
of 1 and 5), we observe the improvement is at-
tributed to the better expression capability with
longer prompts, enabling to parameterize more non-
linearity of query-document relevance. However,
further increasing prompt length may not signifi-
cantly increase the diversity of generated queries
and result in lower diversity (Div. ↓). Moreover,
the retrieval effectiveness would be limited when
the prompt length is too long even though the rele-
vance of the negative query is higher (rel− ↑). This

finding aligns with our observation in Table 1 that
the informative hard negative query is meaningful
when exhibits both high diversity and relevance.

Decoding strategies. Table 4 demonstrates the
different decoding strategies. Intuitively, we con-
sider beam search as the most effective option for
negative query generation. However, the top-k
sampling is the better strategy considering the ef-
ficiency. It can balance diversity and efficiency.
However, since we only test the hard negative with
relevance score r = 0, it required more investiga-
tion for interpolated query and the corresponding
learning design of text ranking. We hypothesize
the diverse generated queries can similarly benefit
the dense retrieval models like Lin et al. (2023),
which we leave it as our future work.

7 Conclusion

In this study, we present relevance-aware diverse
queries generation and validate several setups for
constructing more informative queries. The gen-
eration of negative query can benefit from appro-
priate soft-prompt tuning and diverse generation
constraints, resulting in a more effective learning
process of text ranking models. Thus, we con-
sider the negative query generation as a potential
research direction. There are several other avenues
for future work, including (1) scaling up ReadQG
or prompting larger LLMs for negative queries; (2)
mining hard negative documents with hard negative
query; (3) fine-tuning bi-encoders dense retrieval
with an additional negative query; (4) exploreing
more complicated learning tehcniques (Ren et al.,
2021; Li et al., 2021) that can fully exploit inter-
polated negative queries. Regarding the domain
adaptation, we suspect the query distribution will
be another important factor, as seen in promptaga-
tor (Dai et al., 2023) boost the performance with
few in-domain data. More empirical evaluation on
other benchmarks like Massive Textual Evaluation
Benchmark (mteb) can also provide deeper insights
of the usefulness of hard negative queries.
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Abstract

Common methods for mitigating spurious cor-
relations in natural language understanding
(NLU) usually operate in the output space, en-
couraging a main model to behave differently
from a bias model by down-weighing exam-
ples where the bias model is confident. While
improving out-of-distribution (OOD) perfor-
mance, it was recently observed that the in-
ternal representations of the presumably debi-
ased models are actually more, rather than less
biased. We propose SimReg, a new method
for debiasing internal model components via
similarity-based regularization, in representa-
tion space: We encourage the model to learn
representations that are either similar to an un-
biased model or different from a biased model.
We experiment with three NLU tasks and dif-
ferent kinds of biases. We find that SimReg
improves OOD performance, with little in-
distribution degradation. Moreover, the rep-
resentations learned by SimReg are less biased
than in other methods.1

1 Introduction

Recent studies (McCoy et al., 2019; Geirhos et al.,
2020, inter alia) show that in many cases neural
models tend to exploit spurious correlations (a.k.a
dataset biases, artifacts2) in datasets and learn short-
cut solutions rather than the intended function. For
example, in MNLI—a popular Natural Language
Understanding dataset—there is a high correlation
between negation words such as “not, don’t” and
the contradiction label (Gururangan et al., 2018).
Thus models trained on MNLI confidently predict
contradiction whenever there is a negation word in
the input without considering the whole meaning
of the sentence. As a result of relying on such short-
cuts, models fail to generalize and perform poorly
when tested on out-of-distribution data (OOD) in

1Our code is available at: github.com/simreg/SimReg
2We use these words interchangeably.

which such associative patterns are not present
(McCoy et al., 2019); these models are commonly
known as ‘biased’ models. Moreover, this behavior
limits their practical applicability in cases where
the real-world data distribution differs from the
training distribution.

Recent efforts to mitigate learning spurious cor-
relations (a.k.a debiasing methods) perform the
debiasing extrinsically, i.e., operating on the output
space of the model and dictating how its output
should look like. Typically, by downweigh the im-
portance of training samples that contain such cor-
relations, effectively performing data reweighting
(Schuster et al., 2019; Utama et al., 2020a; Sanh
et al., 2021; Cadene et al., 2019). One might ex-
pect that such an extrinsic debiasing would lead to
“suppressing the model from capturing non-robust
features” (Du et al., 2023). However, Mendelson
and Belinkov (2021) showed a counter-intuitive
trend: a higher accuracy of such models on OOD
challenge sets is correlated with a higher represen-
tation bias,3 i.e.,the more extrinsically de-biased a
model is, the stronger its intrinsic bias. Such su-
perficial debiasing is problematic as the bias may
reappear when the model is used in another setting
(Orgad et al., 2022), such as fine-tuned on more
data or transferred to other similar tasks.

Inspired by this finding, we investigate whether
debiasing the model intrinsically (i.e., operating
in the representation space) leads to better models
both extrinsically and intrinsically. To this end, we
develop SimReg, a new debiasing method based
on similarity-regularization. SimReg encourages a
model to learn unbiased internal representations by
either pushing the learned representations towards
a model with good (unbiased) representations, or
pushing it away from a model with biased repre-
sentations. Our approach is different from previous

3Representation bias is measured by how easy it is to
classify whether a given representation stems from a biased
sample or not.
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methods, in that we push the model to learn the
“good” behavior from other models, while other
approaches usually focus on learning to be differ-
ent from biased models (Utama et al., 2020a; Sanh
et al., 2021; Clark et al., 2019; Nam et al., 2020).

We evaluate our approach on three tasks—
natural language inference, fact checking, and para-
phrase identification—and multiple spurious cor-
relations attested in the literature: lexical over-
lap, partial inputs, and unknown biases from weak
models (see Section 2.1). We demonstrate that
our approach improves performance on out-of-
distribution (OOD) challenge sets, while incur-
ring little degradation in in-distribution (ID) perfor-
mance. Finally, we design an experiment to test the
bias remaining in the representations, and find that
SimReg models tend to have better performance
compared to other debiasing methods.

2 Related Work

A growing body of work has revealed that mod-
els tend to exploit spurious correlations found in
their training data (Geirhos et al., 2020). Spurious
correlations are correlations between certain fea-
tures of the input and certain labels, which are not
causal. Models tend to fail when tested on out-of-
distribution data, where said correlations do not
hold. We briefly mention several relevant cases
and refer to Du et al. (2023) for a recent overview
of shortcut learning and its mitigation in natural
language understanding.

2.1 Dataset bias

Partial-input bias. A common spurious correla-
tion in sentence-pair classification tasks, like natu-
ral language inference (NLI), is partial-input bias
– the association between words in one of the sen-
tences and certain labels. For example, negation
words are correlated with a ‘contradiction’ label
when present in the hypothesis in NLI datasets
(Gururangan et al., 2018; Poliak et al., 2018) and
with a ‘refutes’ label when present in the claim in
fact verification datasets (Schuster et al., 2019). A
common approach for revealing the presence of
such spurious correlations is to train a partial-input
baseline (Feng et al., 2019). When such a model
performs well despite having access only to a part
of the input, it indicates that that part has spurious
correlations.

Lexical overlap bias. Another common bias is
when certain labels are associated with lexical over-

lap between the two input sentences. McCoy et al.
(2019) found that high lexical-overlap between the
premise and hypothesis correlates with ‘entailment’
in NLI datasets. As a result, NLI models fail when
evaluated on HANS, a challenge set where that
correlation does not hold. Similarly, Zhang et al.
(2019) found that models trained on a paraphrase
identification dataset fail to predict ‘non-duplicate’
questions that have high lexical-overlap.

Unknown biases. Identifying the preceding bi-
ases assumes prior knowledge of the type of bias
existing in the dataset. A few studies have used
weak learners to identify biases in the dataset with-
out an prior assumption(Sanh et al., 2021; Utama
et al., 2020b). Utama et al. (2020b) proposes to
train a model on limited number of samples, the
hypothesis is that pre-trained models “operate as a
rapid surface learners”, and will learn the bias in the
beginning of the training (i.e., with small number
of samples). On the other hand, Sanh et al. (2021)
proposed to train a limited capacity models such as
Tiny-BERT, where the limited capacity tends the
learn and recover previously known biases in the
literature.

2.2 Debiasing methods

Spurious correlation mitigation can be performed
on different levels: Data-based mitigation, where
the data is augmented with samples that do not
align with the bias found in the dataset (Wang
and Culotta, 2021; Kaushik et al., 2020, inter alia).
Model/training-based mitigation, where the either
the model or the training procedure is modified. A
common strategy in this approach is to train a bias
model, which latches on the bias in the dataset, and
use its outputs to train the final, debiased, main
model. (He et al., 2019) and (Clark et al., 2019)
used variants of product-of-experts (PoE) to com-
bine the outputs of the biased and main model
during training to encourage the main model to
“ignore” biased samples. (Utama et al., 2020a) pro-
posed confidence regularization (ConfReg), where
they perform self-distillation with re-weighted
teacher outputs using bias-weighted scaling, i.e.,
they induce the model to be less confident on biased
samples. These methods can be viewed as data re-
weighting methods, similar to (Liu et al., 2021),
who proposed to up-weigh examples that are miss-
classified by the biased model, i.e., hard examples.
Similarly, Yaghoobzadeh et al. (2021) proposed
to perform additional fine-tuning on forgettable
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samples after training to increase the robustness
(FBOW/FHANS). All these methods work in the
output space (extrinsically), while we work in rep-
resentation space.

Most relevant to our work, Bahng et al. (2020)
debias vision models by learning representations
that are statistically independent from those of a
biased model, by minimizing a statistical indepen-
dence measure (HSIC) in a min-max optimization
objective. We propose a simpler objective function,
based on similarity regularization, which can easily
be trained by SGD. Additionally, while they focus
only on learning representations independent of a
biased model, we propose learning representations
that are either dissimilar from biased models or
similar to unbiased ones.

2.3 Knowledge Distillation
Our approach shares some similarity with
Knowledge-Distillation (KD) methods, which
transfer knowledge from a teacher model to a (typ-
ically smaller) student model. In our framework,
we utilize such transfer to improve the robustness
of a model. Aguilar et al. (2020) perform KD us-
ing internal representations, by minimizing the co-
sine similarity between the representations of the
two models. They compare the similarity of the
classification token (CLS) whereas we compare all
the tokens. Additionally we use second-order iso-
morphism methods, whereas they use first-order
methods.

To our best knowledge, second-order isomor-
phism methods were previously mainly used for
comparing representations and behaviors of mod-
els. Our work is one of the first to utilize them to
regularize models during training.

3 Methodology

The key idea of our approach is to guide the repre-
sentation learning of the model in a coarse-grained
manner. We achieve this by encouraging the model
to learn representations that are either similar to
those of an unbiased model or dissimilar from those
of a biased model. We design a three-stage proce-
dure (Figure 1):

1. We train a bias model, fb, on the original train-
ing set, D. This model is meant to capture
dataset biases, as explained in Section 3.1. In
the case of decreasing similarity, we use fb as
our target model, fg, and continue directly to
Stage 3.

2. In order to obtain an unbiased guidance model,
we filter the training set based on the predic-
tions of fb and train a target model fg on the
unbiased part of the training set, DU (Sec-
tion 3.2).

3. We train the main model on D while encour-
aging its representations to be (dis)similar to
those of fg (Section 3.3).

3.1 Training a biased model

To mitigate a specific bias (known-bias), we use a
bias-specific model, fb, which is designed to cap-
ture that intended bias. For example, to mitigate
lexical-overlap bias we use the model proposed in
Clark et al. (2019): an MLP whose input features
are the ratio of overlap between the two parts of the
input, and the average of the minimum cosine simi-
larity between the embeddings of each word from
the two sentences. To mitigate unknown-biases, we
follow Sanh et al. (2021) and use limited capacity
models, such as TinyBert (Turc et al., 2020) and
Bag-of-Words (BOW).

In the case of decreasing dissimilarity from a
biased model, we use this fb as the target model,
i.e., fg = fb, and proceed to Stage 3 (Section 3.3).
In the case of increasing similarity to an unbiased
model, we cannot use fb as we need an unbiased
model; the next section describes how to obtain it.

3.2 Obtaining an unbiased model

To obtain an unbiased guidance model fg, we run
fb on the training set, D, and exclude samples on
which fb is correct and confident. The remaining
samples comprise our unbiased dataset, DU :

DB = {xi|xi ∈ D ∧ fb(x) = yi

∧ c(fb(xi)) > ct}
(1)

DU = D \ DB (2)

where ct is a confidence threshold and c(·) is the
models’ confidence. Our unbiased model, fg, is
obtained by training a new model on DU .

Choosing the threshold ct is performed manually
by plotting the confidence of the bias model over
the training set. When there is a significant bias
signal in the dataset, we see a spike in the number
of biased samples. Figure 5 (Appendix A.4) shows
an example for claim-only bias in FEVER.

A natural question is the following: What is the
advantage of our framework if we already have
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Figure 1: Illustration of SimReg: (1) train a bias model fb; (2) use its predictions to filter the training set and train a
target model fg; (3) train a main model while guiding its representations to be similar to fg .

an unbiased model? We emphasize that the unbi-
ased model was trained on DU , a subset of D, and
argue that other samples in D could also be use-
ful. Indeed, we show experimentally that training a
model on the full training set while regularizing it
to be similar to the unbiased model leads to a better
ID–OOD tradeoff.

3.3 Training the main model
The final step is to train the main model, fm. We
propose two approaches. The first is to encourage
the model during training to learn different repre-
sentations than a biased model, by penalizing its
similarity to said biased model, fb (in this case,
fg = fb). Thus the model would learn different
decision boundaries than the biased model. The
second approach is to increase the similarity of
the learned representations to an unbiased model,
fg. Thus, our model will encode the data in an
unbiased manner and its predictions will be less
dependant on bias features.

In both cases, we need to compute the similar-
ity between the representations of the main model
and those of the target model, fg. Directly compar-
ing the representations of the models on a single
example is not possible, since each model might
learn a different latent space for representing the
data. Furthermore, the two models might have
different architectures and dimensionalities. For
instance, in some of our experiments we compare
BERT-base (768 dimensions) with TinyBERT (128

dimensions) or with an MLP of 70 dimensions. To
overcome these challenges, we use second-order
similarity measures, which operate at the batch
level (Section 3.3.1).

Formally, we add a similarity regularization
term to the batch training loss to promote the
similarity/dis-similarity. Given a batch B, we mini-
mize the following objective:

L =
∑

i∈B
LCE(fm(xi), yi) + λ · sim(Z,H) (3)

where LCE is the cross-entropy loss, λ is a trade-
off hyper-parameter, Z and H are respectively the
main and target model representations of the batch,
f(x) is the prediction of the model on input x,
and sim is a similarity measure. To increase the
similarity, we use λ < 0.

Since we wish the main model, fm, to resemble
or differ from fg only on biased samples, we apply
regularization only on the biased subset, DB: We
stochastically sample a batch either from DU and
optimize regular cross-entropy, or from DB mini-
mizing the objective in Eq. 3. Section 6.3 shows
that regularizing only DB results in better OOD
performance, supporting our intuition.

3.3.1 Models similarity
Different models may represent the same input dif-
ferently in their learned latent spaces. Directly com-
paring vectors from different models can be prob-
lematic. To address this, we employ second-order
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isomorphism methods. We assess the similarity of
the inputs relative to each other within each modal-
ity in a given training batch, then compare the sim-
ilarity matrices of the two modalities to gauge the
resemblance of the model encodings. Specifically,
we utilize a well-known similarity measure called
Centered Kernel Alignment (CKA; Kornblith et al.
2019) with a linear kernel.

4 Experimental Setup

We run our experiments in two settings: (a) Known-
bias settings, where we assume the type of bias ex-
isting in the dataset, and can construct targeted bi-
ased models; and (b) Unknown-bias settings, where
the specific type of bias is not presumed, requiring
a more general approach of mitigating unknown-
biases.

4.1 Datasets
4.1.1 Natural Language Inference
We train models on MNLI, a popular NLI dataset
consisting of∼ 400k English examples in multiple
genres (Williams et al., 2018). Each example is a
pair of premise and hypothesis sentences, and the
task is to predict whether the hypothesis is entailed,
contradicted, or neutral w.r.t the premise. MNLI
contains several spurious correlations as discussed
in Section 2, such as lexical overlap and hypothesis-
only biases. We train on the MNLI training set and
report ID results on dev-matched.

As OOD test set, we use HANS (McCoy et al.,
2019) for evaluation against lexical overlap bias.
HANS is constructed using structured templates
that obey bias heuristics, e.g., the hypothesis over-
laps with premise, but with half of the examples
having non-entailment labels, as opposed to the
bias in MNLI. For hypothesis-only bias we use
MNLI-hard, a subset of MNLI’s dev-mismatched
set where a hypothesis-only model failed to classify
correctly (Gururangan et al., 2018).

4.1.2 Synthetic MNLI
As a sanity test, we introduce synthetic spurious
correlations to MNLI (Synthetic-MNLI), follow-
ing prior work (He et al., 2019; Sanh et al., 2021;
Dranker et al., 2021). We prepend the input with
a ‘label-token’ that correlates highly with the la-
bel. We used tokens <0>, <1>, and <2>, corre-
sponding to entailment, neutral, and contradiction.
Following (Dranker et al., 2021), we denote the
probability of injecting a token to the input as the
prevalence of the bias, and the probability of the

prepended token being correct as the strength of
the bias. Through all our experiments, we used
prevalence of 1.0 and strength of 0.95. The subsets
of examples containing bias token with wrong and
right correlations are denoted anti_bias and bias
subsets, respectively.

The goal of this setting is to demonstrate the
viability of the proposed approaches. Thus we
use an oracle unbiased model as fg for the case
of increasing similarity, i.e., a model trained on
regular MNLI (without synthetic bias). For the
bias model, fb, we train a model for a small enough
number of steps to capture the bias, judging by
the rapid drop of training loss; we found 1k steps
sufficient.

4.1.3 Fact Verification
Fact Extraction and VERification (FEVER)
(Thorne et al., 2018) is a dataset for fact verifi-
cation against textual sources. Given evidence and
claim sentences, the task is to predict the relation
between them: SUPPORTED, REFUTED, or NOT
ENOUGH INFO. We followed (Schuster et al.,
2019) and trained, evaluated on their processed
version of FEVER.

Similar to MNLI, the claim part of the input is
spuriously correlated with REFUTES label. We
use FEVER-Symmetric (Schuster et al., 2019) for
OOD evaluation against claim-only bias. The con-
struction of FEVER-Symmetric ensures that there
is no correlation between partial input and labels,
thus it enables us to evaluate the extent of debiasing
on this type of bias.

4.1.4 QQP
Quora Question Pairs (QQP) is a collection of
>400K question pairs from the Quora platform.
Given a pair of questions, the task is to predict
whether they are duplicate (paraphrase) or non-
duplicate. QQP is biased in that question pairs with
low lexical-overlap between them are correlated
with the non-duplicate label. We train on the QQP
training set and evaluate ID on the development
set.

Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019) is a dataset for para-
phrase identification that is built in a adversarial
manner to lexical-overlap bias. The authors scram-
ble the words of a sentence to generate samples
with high lexical-overlap that are not a paraphrase.
We use the QQP subset of PAWS as our OOD eval-
uation set for lexical-overlap bias.
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MNLI-Hypothesis MNLI-Lexical FEVER QQP

dev MNLI-HARD dev HANS dev Sym. dev PAWS

BERT 83.9 76.9± 0.2 84.2 63.6± 1.0 85.6 58.4± 1.7 91.0 33.3± 0.7
fg 79.1 78.5± 0.5 83.0 70.6± 0.8 66.8 61.8± 0.2 89.1 39.6± 0.1

PoE 82.0 79.5± 0.4 83.2 66.6± 3.6 78.0 63.0± 0.6 90.5 34.7± 0.3
ConfReg 84.3 78.4± 0.6 84.3 66.6± 3.9 85.2 61.0± 1.7 87.4 37.4± 1.8
FHANS - - 83.9 69.5± 0.9 - - - -

SimReg ↑ 84.4 79.2± 0.3 83.5 70.5± 1.9 80.9 61.6± 0.4 89.8 41.4± 1.2
SimReg ↓ 83.0 77.9± 0.5 84.0 68.5± 0.2 84.1 60.3± 1.1 90.8 39.0± 0.5

Table 1: Known-bias mitigation.

4.2 Models
We evaluate our approach using BERT (Devlin
et al., 2018) as both fg and the main model. We re-
peat some of the experiments using DeBERTa-V3
(He et al., 2023) to verify that our method is not
specific to BERT. For bias modeling, we used an
MLP with lexical features as input following Clark
et al. (2019) for lexical-bias modeling. For partial-
input bias modeling, we simply train BERT with
limited input (only on hypothesis / claim for MNLI
/ FEVER respectively). In unknown-bias modeling,
we use TinyBERT (Turc et al., 2020) for MNLI
and QQP, and BOW for FEVER, as our limited-
capacity model, following Sanh et al. (2021). For
full training details, see Appendix A.1.

5 Results

5.1 Synthetic bias
The results on Synthetic-MNLI are in Table 2. All
of the SimReg approaches resulted in an increase
compared to the baseline on the anti-biased subset,
where the synthetic token is mis-aligned with the
label. Increasing similarity (↑) performed better
than decreasing it (↓). The improvement comes
at a cost of a small decrease on the biased subset,
which is expected. Compared to an oracle model,
which was trained without the synthetic bias, the
regularized models perform worse, indicating that
they were not able to completely discard the bias.

5.2 Known bias
Tables 1 show the results on known bias cases.
All our SimReg models outperform the baseline
on the OOD test sets. Increasing similarity (↑)
seems to work better than decreasing similarity (↓),
consistent with synthetic-bias results. In partial-
input bias (MNLI-HARD and FEVER), SimReg

Model Biased Anti-biased

BERT-base 98.5± 0.1 41.8± 1.1
Oracle 83.8 82.1
SimReg ↑ 96.7± 0.1 61.0± 0.9
SimReg ↓ 97.0± 0.0 49.0± 2.4

Table 2: Results on Synthetic-MNLI.

performs almost as well as PoE on the challenge
sets, while PoE has a greater degradation on ID
dev sets. Turning to lexical-overlap bias (QQP and
MNLI-HANS), we see a similar pattern: SimReg
performs much better than the baseline on HANS
and PAWS (the OOD sets), with little or no degrada-
tion on the corresponding ID dev sets. In contrast,
PoE and ConfReg struggle. Generally, increasing
similarity works better than decreasing it.

A telling comparison is between SimReg and
the guidance model fg, which is a model that was
trained only on unbiased examples (Section 3.2).
In most of the cases, when we increase similarity
to this model (rows with ↑), we get models that
perform better or similar, on both ID and OOD sets.
These results support our hypothesis that increasing
similarity to an unbiased model can lead to better
representations than those of the unbiased model
itself by utilizing more data points.

5.3 Unknown bias

The results of unknown bias mitigation are in Ta-
ble 3. In this settings, we see similar patterns to
known-bias results: SimReg outperforms the base-
line and the competitive approaches on challenge
sets. Interestingly, in these scenarios, the improve-
ment of SimReg over fg is more prominent, both
in challenge datasets and in ID sets.
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MNLI FEVER QQP

dev HANS dev Symm. dev PAWS

BERT 84.2 63.5± 1.0 86.0 58.2± 0.6 91.1 33.3± 0.7
fg 77.4 64.1± 2.2 84.4 61.3± 1.0 82.9 48.7± 0.9

ConfReg 83.4 63.2± 2.1 86.0 60.0± 1.6 88.4 32.3± 0.4
POE 81.4 68.8± 2.0 82.3 61.1± 0.8 89.8 40.8± 0.1
FBOW 82.8 70.2± 1.2 84.0 59.5± 2.5 88.1 41.4± 5.2

SimReg↑ 81.9 71.4± 0.8 84.3 62.4± 0.6 84.4 50.6± 1.9

Table 3: Unknown-bias mitigation.

5.4 Results with Stronger Models

In this section we investigate whether our approach
improves the performance of stronger models than
BERT. While most work tends to compare with
BERT as the baseline, it is important to demon-
strate that a new debiasing method is effective also
when applied to stronger models.4 We experiment
with DeBERTa-V3 (He et al., 2023). As Table 4
shows, SimReg still leads to improvements above
the strong DeBERTa-V3. where we see similar
patterns to the main results, with SimReg↑ out-
performing other approaches. Note that we used
here the non-entailment subset of HANS to as our
OOD evaluation set in MNLI (Lexical-bias and
unknown-bias) to emphasize the improvement on
the bias-misaligned subset.

6 Analysis

6.1 Similarity Heat-map Analysis

To investigate whether our similarity-based regular-
ization achieves its goal, we compute the similarity
between every layer in the main model and every
layer in the (unbiased) guidance model, and like-
wise the similarity between layers of the baseline
model and layers of the guidance model. We expect
our similarity regularization to increase the simi-
larity of the main model to the guidance model,
compared to that of the baseline model.

Figure 2 (Upper) shows that, without similarity-
based regularization, the bottom layers of the base-
line and guidance model are already similar, but the
top layers are rather different. This is consistent
with findings on how fine-tuning affects mostly
the top layers (Mosbach et al., 2020; Merchant

4Bowman (2022) made such a claim about analyzing
stronger models; we believe it is similarly important to work
on robustifying stronger models.

et al., 2020), as both models started from a pre-
trained BERT. Figure 2 (Lower) shows that after
our similarity-based regularization, the top layers
of the main and guidance models become very sim-
ilar, as desired. Moreover, the regularization also
indirectly affects lower layers (bottom row of the
heatmap). We conclude that the similarity regular-
ization is successful and affects large parts of the
model even when applied only on a few layers.
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Figure 2: Similarity of an unbiased model, fg , to either
a baseline (Top) or a SimReg model (Bottom). Similar-
ity regularization makes top layers more similar to the
unbiased model, as desired.

6.2 Bias recovery

To examine whether representations debiasing does
indeed lead to better representations, we designed
an experiment to test the bias in the representations.
Retraining the classification layer allows us to test
to what extent a linear classifier recovers the bias

43



Hypothesis Lexical

ID HARD ID HANS-

baseline 89.9 85.2±0.1 89.9 56.7±2.2

ConfReg 90.0 86.3±0.2 90.3 61.8±1.9

SimReg ↑ 89.1 86.5±0.2 89.5 72.8±0.5

SimReg ↓ 89.4 85.8±0.3 89.8 63.7±1.5

(a) Known-bias (MNLI)

MNLI QQP

ID HANS- ID PAWS

baseline 89.9 56.7±2.2 89.9 55.7±5.6

ConfReg 90.1 54.5±2.0 88.8 61.1±2.0

SimReg ↑ 89.1 66.8±0.7 86.3 67.0±2.0

SimReg ↓ 89.4 61.5±0.2 89.2 54.8±1.7

(b) Unknown-bias

Table 4: DeBERTa V3 results for MNLI, QQP biases.

existing in the dataset from the representations. In
Table 5, we present the results of retraining the
classifier of the debiased models in unknown-bias
settings. In all approaches we see a drop in OOD
accuracy when retraining the classifier 5, consistent
with Mendelson and Belinkov (2021)’s observation
that debiased models still encode the bias in their
representations. However, in SimReg↑ we gener-
ally get the highest performance compared to other
methods. This indicates that the representations
produced by SimReg↑ have the weakest signal of
the spurious correlations. We repeated this experi-
ment on debiased models in known-bias settings in
App A.5, and found similar patterns.

MNLI FEVER

dev HANS- dev Sym

BERT 83.9 30.1 ±1.3 85.4 58.2 ±0.1

ConfReg 84.8 20.5 ±6.2 86.0 59.2 ±1.0

POE 83.0 33.7 ±1.6 83.4 59.1 ±1.5

FBOW 83.1 38.1 ±0.3 84.6 57.0 ±1.5

SimReg↑ 83.9 41.6 ±4.5 85.3 61.3 ±1.3

Table 5: Bias recovery: unknown-bias settings.
SimReg↑ shows weakest signal of bias when re-training
the classifier.

6.3 Ablations
In this section we perform ablations on SimReg↑
on MNLI datasets in unknown-bias settings (using
TinyBERT as fb). Table 6 shows the results of ab-
lating different parts of our method while keeping
the reset unchanged.

SimReg↑BOW refers to When using a bag-of-
words model as our limited capacity model fb,
SimReg obtains only slightly worse performance
(SimReg↑BOW row). However it also shows that

5Check Table 10 in the appendix for HANS- evaluation.

the results can depend on the biases that the weak
model fb discovers.

Using a pre-trained BERT as our guidance model
(-fg row) performs poorly. This highlights that the
model that is being used to increase similarity to is
an important factor in the process, and that indeed
the information is being distilled from fg into the
main model.

The last row shows that applying similarity reg-
ularization on the entire training set D performs
poorly. This result supports our intuition in regu-
larizing only the biased samples DU (Section 3.3).

ablation dev. HANS avg.

SimReg↑ 81.9 71.4
SimReg↑BOW 82.8 70.7
- fg 82.3 58.1
- Bias regularization 84.2 61.3

Table 6: Ablations on SimReg↑ method.

7 Conclusion

In this work, we have introduced SimReg, a new
debiasing approach that employs similarity-based
regularization at the representation level. We have
demonstrated the effectiveness of SimReg across
several NLU tasks, where it notably enhances per-
formance on OOD challenge sets with minimal
impact on ID sets.

Additionally, we evaluated the representations
of SimReg by testing the amount of bias recovered
from the debiased models and found that models
debiased using SimReg were least biased after re-
training their classifier on a dataset that contains
bias. Future work may investigate the effect of si-
multaneously learning from unbiased and biased
models. Another interesting direction is to extend
our approach to generation tasks, which would re-
quire different similarity measures. Moreover, it is
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worth testing the efficacy of SimReg on other types
of biases such as social biases.

Ethics Statement

Our work develops a new approach to mitigate
spurious correlations in NLU tasks. These are also
known as dataset biases, but are different from
social biases such as gender or racial bias. One
could use our approach to debias against social
biases. However, a malicious actor could use our
basic approach to increase such social bias, rather
than decrease it, by reversing the optimization.

Limitations

Similar to most debiasing methods, the success
of our method relies on the existing of enough
non-biased samples in the training set, which is
used to guide our learning process. Additionally, a
notable limitation is in the case of debiasing against
unknown-bias, where one might speculate that a
certain weak model captures the bias, however, it
could either miss the bias, or be more powerful and
capture additional non-biased samples. In this case,
an inspection to the predictions of the weak model
might help.
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A Appendix

A.1 Training details

We used pre-trained bert-base-uncased from Hug-
gingFace models (Wolf et al., 2020) for both the
main model training and the guidance model in
SimReg↑. Trained for 5 epochs with batch size
of 64, for better similarity estimation. For MNLI,
QQP we used learning rate of 5e−5 and 2e−5 for
FEVER, that warms up for 3k steps and decays lin-
early to 0. The reported results in the tables are the
mean and standard deviation of 3 different random
seeds. This is true also for competitive methods.

For computing the similarity, we use the mean
token representation per layer as the representation
of each layer, then we aggregate the similarities
of the layers by summing them. We applied the
similarity regularization on multiple layers. For
increasing similarity we used the last 3 layers from
fg and the main model, following insights from
Section A.2.

For decreasing similarity, fg had a different ar-
chitecture, we used a combination of layers that
ranged across the models. for example, in FEVER
claim bias we used first layer, middle layer and last
two layers from both fb and the main model.

As for the threshold ct, we used 0.8 for unknown-
bias experiments, for known bias we used 0.65 ex-
cept for FEVER claim-bias where we used 0.8.
With λ = 100 for SimReg↑ and λ = 10 for
SimReg↓.

A.2 Layers

In the main experiments, we regularized multiple
layers together, as described in Appendix A.1. Our
choice of layers is based on Figure 3, where we
performed SimReg↑ debiasing on Synthetic-MNLI
across layers. The results indicate that deeper lay-
ers have the most effect on the debiasing, thus in
our main experiments we choose layers 10-12 for
regularization in SimReg↑. In decreasing represen-
tation similarity, individual layers are not effective,
as opposed to regularizing multiple layers as in the
main experiments. Thus we chose to regularize in
a wide manner over multiple layers.

A.3 Synthetic Bias

In this section we present more detailed results for
synthetic-MNLI. In Table 7 we show wider range of
configuration for the case of increasing similarity.
Note that higher λ values for resulted in models

Figure 3: SimReg↑ on Synthetic-MNLI, regularizing
one layer at a time.
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Figure 4: SimReg↓ on Synthetic-MNLI, regularizing
one layer at a time.

with better performance on the anti-biased set. Bert-
base is BERT trained on Synthetic-MNLI, while
BERT (Oracle) is trained on MNLI. In Table 8 we
present the case of decreasing similarity. Where
we see that in this case, λ = 10 is a sweet spot,
between not changing much (λ = 1) and changing
to much to the level of collapse (λ = 100).

A.4 Threshold choosing
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Figure 5: Confidence distribution of a claim-only model
(fb) on FEVER; here ct = 0.8.

A.5 Bias recovery

In Table 9, we present an additional results of our
bias-recovery experiments. Where we re-train the
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Biased Anti-biased Unbiased

Bert 98.5± 0.1 41.8± 1.1 78.0± 0.4
Oracle 83.5± 0.3 82.0± 0.9 84.0± 0.3

λ = 1 97.3± 0.0 57.7± 0.1 83.3± 0.2
λ = 10 96.8± 0.1 60.2± 0.4 83.6± 0.3
λ = 100 96.7± 0.1 61.0± 0.9 83.2± 0.2

Table 7: SimReg↑: Synthetic-MNLI with prevalence=1
and strength=0.95.

Model Biased Anti-biased Unbiased

Bert-base 98.5± 0.1 41.8± 1.1 78.0± 0.4
fb 99.9 05.7 64.3

λ = 1 99.6± 0.1 12.2± 17.3 53.4± 25.6
λ = 10 96.8± 0.2 49.8± 2.3 72.4± 1.5
λ = 100 33.5± 1.6 32.3± 0.4 32.3± 1.7

Table 8: SimReg↓: Synthetic-MNLI with prevalence=1
and strength=0.95.

classification layer of the model on the dataset, to
test the amount of biased recovered when evaluat-
ing the re-trained classifier + model on the OOD
challenge sets. Note that on MNLI we evaluate
on the bias-misaligned subset of HANS (the non-
entailment subset). For results of the models on
these subsets before retraining, check Table 10.

We observe that SimReg↑ generally retains high
performance on challenge sets after re-training
their classifier on the whole dataset D (with the
spurious correlations).

A.6 HANS subsets
Table 10 contains the evaluation of debiasing meth-
ods on HANS subsets (non-entailment and entail-
ment).
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IID HANS -
BERT 83.9 ±0.1 30.1 ±1.3
ConfReg 84.5 ±0.1 7.0 ±2.7
POE 83.6 ±0.1 40.5 ±4.4
SimReg↑ 84.0 ±0.1 42.5 ±1.3

(a) MNLI Lexical-overlap bias

dev FEVER-Sym.
BERT 85.4 ±0.1 58.2 ±0.1
ConfReg 82.1 ±0.4 59.5 ±2.0
POE 79.2 ±0.1 61.1 ±1.9

SimReg↑ 83.2 ±0.3 60.7 ±0.2
(b) FEVER claim bias

dev MNLI-hard
BERT 83.9 ±0.1 76.9 ±0.2
ConfReg 84.5 ±0.2 77.4 ±0.1
POE 83.0 ±0.2 79.3 ±0.1

SimReg↑ 83.0 ±0.3 79.1 ±0.4
(c) MNLI hypothesis bias

dev PAWS
BERT 88.4 ±0.1 28.2 ±2.2
ConfReg 88.0 ±0.1 33.42 ±1.9
POE 90.0 ±0.1 34.1 ±0.1
SimReg↑ 90.6 ±0.1 42.1 ±1.4

(d) QQP lexical-overlap bias

Table 9: Bias recovery in known-bias settings.

dev ent. non-ent.

BERT 84.2 99.1± 0.1 28.1± 2.0
fg 83.0 86.0 55.4

PoE 83.2 77.7± 9.8 55.4± 7.2
ConfReg 84.3 72.3± 8.5 60.9± 6.6
FHANS 83.9 − −
SimReg ↑ 83.5 86.4± 2.3 54.6± 1.6
SimReg ↓ 84.0 92.1± 0.8 44.8± 1.3

(a) Known-bias debiasing.

dev ent. non-ent.

BERT 84.2 99.1± 0.1 28.1± 2.0
fg 77.4 53.0± 11 75.2± 7.4

PoE 81.4 81.1 56.4
ConfReg 83.4 90.0± 3.7 36.3± 3.7
FBOW 83.0 94.4± 1.5 45.9± 1.2

SimReg ↑ 81.9 78.0± 2.5 64.8± 1.1
SimReg ↓ 82.9 85.6± 4.2 41.4± 2.5

(b) Unknown-bias debiasing.

Table 10: HANS subsets
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Abstract

We introduce a simple yet effective Prior
Knowledge-Guided ADVersarial Training
(PKG-ADV) algorithm to improve adversar-
ial training for natural language understanding.
Our method simply utilizes task-specific label
distribution to guide the training process. By
prioritizing the use of prior knowledge of la-
bels, we aim to generate more informative ad-
versarial perturbations. We apply our model to
several challenging temporal reasoning tasks.
Our method enables a more reliable and con-
trollable data training process than relying on
randomized adversarial perturbation. Albeit
simple, our method achieved significant im-
provements in these tasks. To facilitate further
research, we will release the code and models.

1 Introduction

Class imbalance, a classification setting where one
or multiple classes (minority classes) are consid-
erably less frequent than others (majority classes),
is a common yet challenging problem in natural
language processing (NLP) (Henning et al., 2023).
The uneven distribution of target categories often
leads to lower performance for minority classes.
Despite that, NLP research often overlooks the im-
portance of incorporating methods for addressing
it, and finding effective solutions remains an open
research challenge (Henning et al., 2023). While
deep learning models have been successful in vari-
ous NLP tasks, they are sensitive to changes in the
input data distribution.

We explore the use of adversarial training tech-
niques to enhance model performance on such sce-
narios. More specifically, our proposed approach
incorporates the knowledge of task-specific label
distribution into the adversarial training process.
Typically, the perturbation direction is chosen to
mislead the model to flip the current model predic-
tion away from the correct label. However, this
strategy might not be optimal because it does not

make use of the knowledge of task-specific label
distribution during the training process. We hypoth-
esize that such information might indicate which
category a model is more likely to misclassify as
another category. We focus on temporal reasoning
tasks. These tasks are essential for NLP, for timing
events, for estimating their duration, frequencies,
ordering, etc. Due to the nature of the task, classes
are highly imbalanced, as shown in Figure 1 and
Table 2. Even the performance of recent large lan-
guage models (LLMs), such as ChatGPT, is still
underperformed by a large margin by simpler and
smaller models such as BERT and RoBERTa (Yuan
et al., 2023; Chan et al., 2024), indicating the in-
herent challenge of temporal reasoning tasks. For
instance, on the TB-Dense dataset (Cassidy et al.,
2014), due to the high label imbalance, the model
might misclassify the samples with the true label
“VAGUE” as “BEFORE” or "AFTER", as these
labels occur more often in the dataset, as shown in
Figure 1. Our model, PKG-ADV , can intentionally
attack those vulnerable categories and learn how to
better distinguish each label class, improving the
model performance.

Our experimental results show that, despite its
simplicity, our proposed model outperforms stan-
dard fine-tuning and a strong adversarial training
method on several challenging temporal reason-
ing tasks. Moreover, our model can outperform
ChatGPT-based models with a large gap. Our find-
ings contribute to the understanding and improve-
ment of adversarial training in NLP and can help
enhance model performance in scenarios with im-
balanced classes, such as temporal reasoning tasks.

2 Adversarial Training for NLP

Standard training objectives seek to learn a func-
tion (a classifier) f(x; θ) : x → C, parametrized
by θ, where C is the class label set. Given
a training dataset D of input-output pairs (x, y)
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(a) Label Distribution (Train Set)

(b) RoBERTa with Standard Fine-Tuning

(c) RoBERTa with PKG-ADV Fine-Tuning

Figure 1: a) Label distribution from the TB-Dense
(Cassidy et al., 2014) training dataset. b) Confusion
matrix obtained after training on the RoBERTa_BASE
model. c) Confusion matrix obtained after training on
the RoBERTa_BASE model with the PKG-ADV algo-
rithm. X-axis and Y-axis represent the predicted and
gold labels, respectively.

and the loss function l(., .) (e.g., cross entropy),
f(x; θ) is trained to minimize the empirical risk:

minθ E(x,y)∼D[l(f(x; θ), y)]. While this is effec-
tive in training a classifier, it usually suffers from
overfitting and poor generalization to unseen cases.
Recently, adversarial training has been proven ef-
fective in several tasks in nlp (Zhu et al., 2019;
Jiang et al., 2019; Pereira et al., 2020). The stan-
dard approach is to add the adversarial perturbation
to the embeddings. The input is augmented with a
small perturbation that maximizes the adversarial
loss:

min
θ

E(x,y)∼D[max
δ

l(f(x+ δ; θ), y)],

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
More recent approaches have explored adding the
perturbation to other layers of the model (Pereira
et al., 2021). Although these adversarial train-
ing algorithms substantially enhance model per-
formance and generalization, such methods adopt
non-targeted attacks, where the model prediction
is not driven towards a specific incorrect label, i.e.,
such attacks lack a specific target. This might not
be optimal, since many natural language process-
ing (NLP) tasks are naturally imbalanced, as some
labels occur much more frequently than others. In
Figure 1, we illustrate this typical label imbalance
scenario with the MATRES dataset (Ning et al.,
2018a). Thus, there are consistently classes where
the trained classifier may exhibit a higher error
rate. This information can highlight the models’
weaknesses. Our goal is to incorporate this prior
knowledge to enhance model performance.

3 Prior Knowledge Guided Adversarial
Training

In our work, we propose to enhance the ALICE
(Pereira et al., 2020) algorithm. ALICE is an ad-
versarial training algorithm that combines the two
approaches to estimate the perturbation δ: one that
uses the label y (Zhu et al., 2019) and another that
uses the model prediction f(x; θ), i.e., a "virtual"
label (Miyato et al., 2018; Jiang et al., 2019). The
first goal is to improve the robustness of our target
label by preventing an increase in error for unper-
turbed inputs. The second goal is to enforce model
smoothness, ensuring the model’s output does not
change significantly when a small perturbation is
injected to the input. The formula of ALICE is
shown below:
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Algorithm 1 PKG-ADV : We explore incorporat-
ing the knowledge of task-specific label distribution
into the adversarial training process. The two lines
in blue color are the only changes from ALICE.
Input: T : the total number of iterations, X =
{(x1, y1), . . . , (xn, yn)}: the dataset, f(x; θ): the ma-
chine learning model parametrized by θ, σ2: the variance
of the random initialization of perturbation δ1 and δ2, δ1r
and δ2r : the perturbations added to the embedding vec-
tor, ϵ: perturbation bound, K: the number of iterations
for perturbation estimation, η: the step size for updating
perturbation, τ : the global learning rate, α: the smooth-
ing proportion of adversarial training in the augmented
learning objective, Π: the projection operation and C: the
classes.

1: for t = 1, .., T do
2: for (x, y) ∈ X do
3: δ1 ∼ N (0, σ2I)
4: δ2 ∼ N (0, σ2I)
5: yt = sample(C\y)
6: for m = 1, ..,K do
7: gadv ← ∇δ1 l(f(x+ δ1; θ), yt)
8: δ1 ← Π∥δ1∥∞≤ϵ(δ1 − ηgadv)
9: gadv ← ∇δ2 l(f(x+ δ2; θ), f(x; θ))

10: δ2 ← Π∥δ2∥∞≤ϵ(δ2 + ηgadv)
11: end for
12: gθ ← ∇θl(f(x+ δ1; θ), y)

+α∇θl(f(x+ δ2; θ), f(x; θ))
13: θ ← θ − τgθ
14: end for
15: end for
Output: θ

min
θ

E(x,y)∼D[max
δ1

l(f(x+ δ1; θ), y)+

αmax
δ2

l(f(x+ δ2; θ), f(x; θ))],

(1)

where δ1 and δ2 are two different perturbations,
bounded by a general lp norm ball, estimated by a
fixed K steps of the gradient-based optimization
approach and p =∞. Effectively, the second term
encourages smoothness in the input neighborhood,
and α is a hyperparameter that controls the trade-
off between standard errors and adversarial errors.
ALICE has been originally applied for the com-
monsense reasoning task, however, it is a general
algorithm that can be applied to other tasks as well.

We enhance ALICE by modifying the first term
of Equation 1, to improve the robustness of our tar-
get label. PKG-ADV first samples a label from the
class label set (excluding the correct label). This la-
bel class is sampled with a probability proportional
to its frequency in the training dataset. Intuitively,
we would like to focus training on prior knowledge
at hand. This knowledge consists of the dataset
label information, generated offline.

More specifically, PKG-ADV explicitly picks
a target yt ̸= y and tries to steer the model to-
wards yt. We accomplish this by sampling yt from
C\y = C − {y} in proportion to the dataset label
distribution. PKG-ADV can flexibly use different
prior knowledge, i.e. the dataset label information,
as shown in line 5. Then the adversarial sample
is estimated by the opposite direction as in line 8.
The two lines in blue color are the only changes
from ALICE. At last, following Jiang et al. (2019)
and Miyato et al. (2018), the adversarial regular-
izer is added to the standard training objective (e.g.,
cross-entropy between the correct label and predic-
tion). The algorithm of PKG-ADV is depicted in
Algorithm 1.

4 Experiments

We compare PKG-ADV with ALICE (Pereira et al.,
2020), a strong adversarial training baseline, and
several state-of-the-art temporal reasoning models.
We use the standard uncased RoBERTaBASE model
(Liu et al., 2019b) as the text encoder, unless noted
otherwise.

4.1 Datasets and Evaluation Metrics
We evaluated our model on the following tasks:
temporal ordering prediction task, event duration
prediction, and temporal commonsense reasoning.
We used the following datasets, respectively: MA-
TRES (Ning et al., 2018b), TimeML (Pan et al.,
2006), MC-TACO (Ben Zhou and Roth, 2019), TB-
Dense (Cassidy et al., 2014), and MAVEN-ERE
(Wang et al., 2022). Details of each dataset are in
Appendix A. We evaluate the performance of MA-
TRES and MAVEN-ERE in terms of accuracy and
F1-score, and TimeML in terms of accuracy. For
the MC-TACO and TB-Dense datasets, we report
F1 scores.

4.2 Implementation Details
Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020). We
use RoBERTaBASE (Liu et al., 2019b) as the text
encoder. RoBERTa remains a competitive pre-
trained model for its size among NLP practition-
ers. We used ADAM (Kingma and Ba, 2014) as
our optimizer with a learning rate in the range
∈ {9 × 10−6, 1 × 10−5} and a batch size in the
range ∈ {16, 32, 64}. The maximum number of
epochs was set to 10. A linear learning rate decay
schedule with warm-up over 0.1 was used unless
stated otherwise. To avoid gradient exploding, we

53



Model TimeML MC-TACO MATRES TB-Dense MAVEN-ERE
Acc F1 Acc F1 F1 Acc F1

Standard (RoBERTaBASE) 81.46 80.84 72.88 47.83 62.02 76.43 31.68
ALICE (RoBERTaBASE) 83.15 82.59 71.57 47.02 63.49 77.06 31.27
Multi-Task (ALBERT-xxlarge) (Kimura
et al., 2022)

81.10 80.30 77.20 - - - -

ChatGPT (Bian et al., 2023) - 46.79 - - - - -
ChatGPT_Prompt (Chan et al., 2024) - - - 35.00 23.30 - -
ChatGPT_PE (Chan et al., 2024) - - - 27.00 47.90 - -
ChatGPT_ICL (Chan et al., 2024) - - 25.00 44.90 - -
PKG-ADV (RoBERTaBASE) 84.75 83.01 73.00 49.93 65.59 78.09 32.06

Table 1: Test results. The best results are in bold. Standard denotes the standard fine-tuning procedure where we
fine-tune RoBERTa on each task specific temporal reasoning dataset. PKG-ADV denotes our proposed models.
Note that Standard, ALICE, and PKG-ADV models use RoBERTaBASE as the text encoder unless stated otherwise,
and for a fair comparison, all these results are produced by ourselves.

clipped the gradient norm within 1. All the texts
were tokenized using WordPiece and were chopped
to spans no longer than 512 tokens. We also set the
dropout rate of all the task-specific layers as 0.3.
During adversarial training, we follow Jiang et al.
(2019) and set the perturbation size to 1 × 10−5,
the step size to 1× 10−3, and to 1× 10−5 the vari-
ance for initializing perturbation. We search the
regularization weight α in {0.01, 0.1, 1}. We set
the number of projected gradient steps to 1.

4.3 Main Results

We present our results in Table 1. We compare our
model, PKG-ADV , with ALICE and other tempo-
ral reasoning models. Overall, the adversarial meth-
ods, ALICE and PKG-ADV , were able to outper-
form the standard fine-tuning approach (Standard)
and the other baselines, without using any addi-
tional knowledge source, and without using any ad-
ditional datasets other than the target task datasets.
Overall, PKG-ADV was able to outperform the
other baselines. Kimura et al. (2022) trains an AL-
BERT XXLarge v2 model using multi-task learn-
ing with several additional temporal datasets. Note
that ALBERT XXLarge v2 is around 2x larger
than the RoBERTa_BASE model. Except on the
MATRES dataset, our PKG-ADV model trained
on RoBERTa_BASE can outperform their model,
without using any additional dataset. Bian et al.
(2023) and Chan et al. (2024) use zero-shot in-
ference and designs prompt templates for differ-
ent datasets in the ChatGPT and ChatGPT_Prompt
baselines. In the ChatGPT_PE baseline, Chan et al.
(2024) manually designed a more sophisticated
prompt template based on the expert understanding.
The ChatGPT_ICL baseline refers to the in-context
learning approach (Brown et al., 2020), where a

number of input-output exemplars for the prompt
were manually selected. We observe that still there
is a considerable gap between these models and
that of supervised methods. Chan et al. (2024) hy-
pothesizes that the poor performance of ChatGPT
might be attributed to inadequate human feedback
during the model’s training process on temporal
features.

5 Conclusion

We have presented a Prior Knowledge Guided Ad-
versarial Training (PKG-ADV) algorithm to im-
prove adversarial training for natural language un-
derstanding. Albeit simple and drawn from a sim-
ple observation (label imbalance, common in most
nlp tasks), incorporating task-specific label distribu-
tion into the training process for generating better
adversarial perturbations has not yet been explored
in the literature. PKG-ADV overall shows supe-
rior performance compared to standard fine-tuning,
strong adversarial training baselines, and ChatGPT-
based baselines. PKG-ADV can be applied to other
language models as well by incorporating label dis-
tribution information. Other types of knowledge,
such as annotator agreement data, might help fur-
ther enhance the performance, and we leave this
for future work.

6 Limitations and Ethical Statement

Although our method is task, model, and language-
agnostic, we have conducted experiments only on
English classification benchmarks, and using only
the RoBERTa model. We focus on sentence-level
tasks at this time. Although we focused on tempo-
ral reasoning tasks, our model can be generalized to
other tasks as well. We plan to expand the scope of
the experiments in the future. In our work, we have
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only used publicly available datasets in our experi-
ments, ensuring that there are no privacy concerns
or violations.
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A Evaluation Datasets

TimeML (Pan et al., 2006): This task involves
predicting whether a given event has a duration
longer or shorter than a day.
TB-Dense (Cassidy et al., 2014): TB-Dense is a
public benchmark for temporal relation extraction
(TRE). It was annotated from TimeBank (Puste-
jovsky et al., 2003) and TempEval (UzZaman et al.,
2013). Given a passage and two event points, the
task is to classify the relations between events into
one of 6 types: BEFORE, AFTER, SIMULTANE-
OUS, VAGUE, IS_INCLUDED, and INCLUDES.
An example of a sentence with two events, e1 and
e2 (in bold) that hold the SIMULTANEOUS rela-
tion is shown below:

Nobody (e1:hurried) her up. No one
(e2:held) her back.

MATRES (Ning et al., 2018b): This dataset
was annotated from TimeBank (Pustejovsky et al.,
2003), AQUAINT, and Platinum documents. The
task involves predicting the temporal relation be-
tween a pair of input events in a span of text. It
originally contains 13,577 pairs of events anno-
tated with a temporal relation (BEFORE, AFTER,
EQUAL, VAGUE). The relations named EQUAL
and VAGUE are equivalent to SIMULTANEOUS
and NONE in TB-Dense. An example of a sen-
tence with two events, e1 and e2 (in bold) that hold
the BEFORE relation is shown below:

At one point , when it (e1:became) clear
controllers could not contact the plane,
someone (e2:said) a prayer.

MC-TACO (Ben Zhou and Roth, 2019): This task
entirely focuses on temporal commonsense rea-
soning. It considers five temporal properties, (1)
duration (how long an event takes), (2) temporal
ordering (typical order of events), (3) typical time
(when an event occurs), (4) frequency (how often
an event occurs), and (5) stationarity (whether a
state is maintained for a very long time or indefi-
nitely). It contains 13k tuples, each consisting of a
sentence, a question, and a candidate answer, that
should be judged as plausible or not. An example
from the dataset is below. The correct answer is in
bold.

Paragraph: Carl Laemmle, head of Uni-
versal Studios, gave Einstein a tour of his
studio and introduced him to Chaplin.

Question: How long did the tour last?

a) 9 hours

b) 45 minutes

c) 15 days

d) 5 seconds

MAVEN-ERE (Wang et al., 2022): This is a uni-
fied large-scale human-annotated event relation
extraction dataset. It was annotated at the docu-
ment level from Wikipedia and FrameNet (Baker
et al., 1998), for four tasks: event coreference,
temporal, causal, and subevent relations. In our
work, we focus on the sentence level temporal
event pair relations. Given a passage and two event
points, the task is to classify the relations between
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Dataset #Train #Test #Label Label Distribution Metrics
Train Test

TimeML 1,248 1,003 2 yes: 789, no: 459 yes: 610, no: 393 Accuracy
MC-TACO 3,783 9,442 2 yes: 1,229, no: 2,554 yes: 3,198, no: 6,244 F1-Score
TB-Dense 4,177 1,426 6 VAGUE: 2015, BE-

FORE: 885, AFTER:
730, IS_INCLUDED:
275, INCLUDES: 209,
SIMULTANEOUS: 63

VAGUE: 638, BE-
FORE: 380, AFTER:
278, IS_INCLUDED:
52, INCLUDES: 57,
SIMULTANEOUS: 22

F1-Score

MATRES 12,740 837 4 BEFORE: 6,425, AF-
TER: 1,416, VAGUE:
4,481, OVERLAP: 418

BEFORE: 427, AFTER:
271, VAGUE: 30,
OVERLAP: 109

Accuracy & F1-score

MAVEN-ERE 44,586 10,488 6 BEFORE: 35273,
CONTAINS: 5204,
SIMULTANEOUS:
2392, OVERLAP:
1605, BEGINS-ON: 58,
ENDS-ON: 54

BEFORE: 8092,
CONTAINS: 1426,
SIMULTANEOUS:
609, OVERLAP: 346,
BEGINS-ON: 6, ENDS-
ON: 9

Accuracy & F1-score

Table 2: Summary of the English evaluation datasets.

events into one of 6 types: BEFORE, SIMULTA-
NEOUS, CONTAINS, OVERLAP, ENDS-ON, and
BEGINS-ON. Despite its larger size, the authors
highlight that the label distribution in the dataset
is severely unbalanced, but decided to keep the un-
balanced distribution so that the dataset reflects the
real-world data distribution (Wang et al., 2022). An
example of a sentence with two events, e1 and e2
(in bold) that hold the BEFORE relation is shown
below:

It (e1: turned) again to 270 then began
an abnormal (e2: descent).
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Abstract

Recently, language models have demonstrated
exceptional performance compared to their pre-
decessors. In this context, attention mecha-
nisms and pre-training significantly contribute
to the enhanced performance of modern lan-
guage models. Additionally, a continuously in-
creasing number of parameters plays a crucial
role in these advancements. However, an in-
crease in the number of parameters significantly
increases the GPU memory and training time
required during fine-tuning of language mod-
els, this makes fine-tuning infeasible in environ-
ments with limited computing resources. Fur-
thermore, after fine-tuning, the storage space
required for deployment increases proportion-
ally with the number of tasks, making it chal-
lenging to deploy devices with limited storage
capacities. In this study, we propose IT-Tuning,
a Parameter Efficient Fine-Tuning method that
introduces a new concept called information
tokens to address these issues.

1 Introduction

Since the introduction of Transformer(Vaswani
et al., 2017) and BERT(Devlin et al., 2019), re-
cent Transformer based pre-trained language mod-
els have achieved unprecedented performance, co-
inciding with an increase in the number of pa-
rameters.(Kaplan et al., 2020; Brown et al., 2020;
Chowdhery et al., 2024; Touvron et al., 2023) Con-
sequently, research on various applications, such as
sentiment analysis, question answering, sentence
classification, summarization, and machine trans-
lation, has been actively conducted. Although pre-
trained language models can be utilized in vari-
ous tasks using only prompts without fine-tuning,
as demonstrated by approaches such as chain-of-
thought prompting(Wei et al., 2022) or in-context
learning(Dong et al., 2022), fine-tuning often leads
to better performance. However, recently intro-
duced language models have billions to tens of

billions of parameters(Zhao et al., 2023), resulting
in increased GPU memory and extended training
time requirements during fine-tuning. In addition,
deploying these models after fine-tuning across var-
ious tasks requires significant storage space propor-
tional to the size of the model and the number of
tasks, which poses a challenge.

In this context, we introduce a new concept
called "information token" to address this issue.
The information token attends to all tokens within
the input sentence during the attention mechanism
process, selectively condensing the information of
the sentence according to the task and delivering it
to the input and output sentences, enabling efficient
fine-tuning. Based on these information tokens, we
propose a new Parameter Efficient Fine-Tuning
(PEFT) method called IT-Tuning, the contributions
of which are as follows:

1. We introduce a new concept called informa-
tion tokens to efficiently fine-tune language
models and demonstrate experimental meth-
ods to adjust them more efficiently within the
model.

2. Using only 0.04% of the total parameters,
which is five times less than LoRA(Hu et al.,
2021), we surpass LoRA and full fine-tuning
in the General Language Understanding Eval-
uation (GLUE) benchmark(Wang et al., 2018),
demonstrating efficiency in Natural Language
Understanding (NLU) tasks.

3. We have achieved performance surpassing
that of full fine-tuning, Prefix Tuning(Li and
Liang, 2021), and LoRA using only 0.09%
of the total number of parameters in Natural
Language Generation (NLG) tasks, as demon-
strated through experiments on the End-to-
End Natural Language Generation Challenge
(E2E NLG Challenge) dataset(Dušek et al.,
2020).
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Figure 1: This is the overall architecture of IT-Tuning. As shown in the figure, we perform shifting or scaling after
the query vector, the output of the attention, and the feed-forward layer. Additionally, the yellow and red vectors
within the green box respectively denote the hidden states of all tokens of the input sentence and the information
tokens. N and R(rank) represent the length of the input sentence and the number of additional information tokens.
Inside the model, we scale or shift all tokens of the input sentence excluding the information tokens using a single
vector to assist the role of information tokens described in Section 3.2. For information tokens, we adjusted each
using an equal number of vectors.

2 Related Works

Recently, extensive research has been conducted
on PEFT, achieving a performance equivalent to
that of full fine-tuning using only 0.1% of the total
model parameters.(Hu et al., 2021; Li and Liang,
2021; Liu et al., 2022a; Yang et al., 2023) This
approach significantly reduces the size of the GPU
memory and training time required. Furthermore,
because PEFT requires only a few additional pa-
rameters to be stored when a single model is used
for various tasks, it saves storage space. In this sec-
tion, we describe the research on PEFT conducted
to date.

Adapter It is a method of inserting multiple
adapter modules (MLP modules) into the layers of
a language model. Research has continued exten-
sively after the Adapter(Houlsby et al., 2019), and
recent studies such as AdapterBias(Fu et al., 2022)
and AdaMix(Wang et al., 2022) have significantly
improved performance by modifying the structure
of the adapter module or proposing the Mixture-
of-Adaptation method. Furthermore, adapter-based
PEFT methods can adjust the number of param-
eters used in training by altering the number of
parameters in the adapter module, making them
applicable to both NLU and NLG tasks.

Trainable Prompt This method involves adding
trainable tokens to sentences, with prominent exam-
ples of P-Tuning v1 and v2(Liu et al., 2022b, 2021),

Prefix Tuning(Li and Liang, 2021), and Prompt
Tuning(Lester et al., 2021) . These studies aimed
to address the performance gap observed when us-
ing sentence-form prompts (discrete prompts) com-
pared with fine-tuned language models by incorpo-
rating trainable tokens through fine-tuning rather
than nontrainable sentence-form prompts. These
studies have demonstrated results achieving equiv-
alent performance to full fine-tuning in NLG(Li
and Liang, 2021) tasks and NLU(Liu et al., 2022b,
2021; Lester et al., 2021) tasks.

Low-Rank PEFT methodologies based on low-
rank, such as LoRA(Hu et al., 2021) and HiWi(Liao
et al., 2023), are gaining attention owing to their
robust performance and capability to mitigate the
issue of increased inference times associated with
additional parameters. However, one of the signif-
icant advantages of PEFT is its ability to switch
tasks in a multitasking environment, which is com-
promised by combining model parameters and low-
rank parameters to mitigate the increase in infer-
ence time. Additionally, there are studies such as
(IA)3(Liu et al., 2022a) that achieve better perfor-
mance with fewer parameters than LoRA in some
tasks. Nonetheless, LoRA has proven to be a ro-
bust method that is effective in both NLU and NLG
tasks. Therefore, we conducted experiments using
the LoRA as the baseline.

Direct Update This method directly adjusts the
hidden states of the model using the added vectors.
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Figure 2: This illustrates the difference in attention
mechanisms between Prefix Tuning(Li and Liang, 2021)
and IT-Tuning. PT represents additional tokens in Prefix
Tuning, IT represents information tokens. The arrows
indicate which tokens attend to which tokens.

For PASTA(Yang et al., 2023), only the hidden
states of special tokens, such as [CLS] and [SEP],
were updated at each layer of the model, result-
ing in an additional parameter number of 0.02%
(0.07M) based on RoBERTa-large(Liu et al., 2019),
while achieving a performance equivalent to LoRA
on the GLUE dataset. Furthermore, (IA)3(Liu et al.,
2022a) scales only the key and value of the at-
tention operation and the internal parameters of
the feed-forward network in each layer, surpassing
LoRA in limited-data settings. However, although
these approaches are structurally efficient, their in-
ability to adjust the number of trainable parameters
renders them unsuitable for tasks requiring more
parameters than NLU, such as NLG. IT-Tuning ex-
hibits structural efficiency akin to that observed in
two referenced studies. However, by addressing the
limitations associated with parameter adjustments
through the introduction of information tokens, it
also demonstrates applicability to NLG tasks .

3 IT-Tuning

3.1 Model Architecture

Figure 1 illustrates the model structure of IT-
Tuning. Our IT-Tuning employs a method that up-
dates the selected tokens using additional parame-
ters. We refer to these selected tokens as informa-
tion tokens and introduce this concept in Section
3.2. Furthermore, we introduce an efficient struc-
ture to enable the efficient update of information
tokens within the model in Section 3.3. The opera-
tional process of IT-Tuning within the model can
be mathematically represented as follows:

hQ = [hinputQ ⊙ V 1
Q;h

it
Q ⊙ V 2

Q]

hA = [hinputA ⊕ V 1
A;h

it
A ⊕ V 2

A]

hff = [hinputff ⊙ V 1
ff ;h

it
ff ⊙ V 2

ff ]

(1)

In Equation 1, hQ, hA, hff ∈ Rdmodel×(N+R)

represent the hidden state of the query vec-
tor and output of the attention and feedforward
layer containing information tokens, respectively.
hinputQ , hinputA , hinputff ∈ Rdmodel×N represent the
inputs of the model, excluding the information
tokens, and hitQ, h

it
A, h

it
ff ∈ Rdmodel×R repre-

sent the hidden states of the information tokens
V 1
Q, V

1
A, V

1
ff ∈ Rdmodel are vectors added to effi-

ciently fine-tune the input tokens, excluding the
information tokens; V 2

Q, V
2
A, V

2
ff ∈ Rdmodel×R rep-

resent vectors added to efficiently fine-tune the in-
formation tokens.

During our experimentation process, we exam-
ined the magnitude of backpropagated gradients
through learning for scaling vectors VQ, Vff , as
well as for shifting vector VA. We discovered that
the magnitude of gradients for the vectors for scal-
ing, VQ, Vff , was significantly smaller than the gra-
dients for the vector for shifting, VA, across all lay-
ers. To address this issue, similar to LoRA+(Hayou
et al., 2024), we varied the learning rate applied
to each vector. To achieve this, we introduced a
new parameter, α ≥ 1, where the magnitude of
the learning rate applied to VQ, Vff is determined
based on the value of α. This can be represented
mathematically as follows:.

VQ = VQ − αη ×GVQ

Vff = Vff − αη ×GVff

(2)

In equation 2, η represents the learning rate, and
G denotes the gradients for each vector.

3.2 Information Token
In this study, we introduce the concept of Infor-
mation Tokens. Information Tokens are tokens se-
lected or added within a sentence for efficient fine-
tuning and are updated by individual vectors. Fig-
ure 2 illustrates the differences between the Pre-
fix Tuning(Li and Liang, 2021) and IT-Tuning. As
shown on the left side of Figure 2, Prefix Tuning ad-
justs the tokens added to the beginning of the input
according to the task and updates both the input and
output by attending to the tokens added within the
input sentence. However, the tokens added at the
beginning of the input cannot attend to the tokens
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Figure 3: In unidirectional language models like
GPT(Radford et al., 2019), we modified the attention
score mask to allow each token to attend as shown in
Figure 2

Figure 4: This figure illustrates which hidden states need
to be updated for Information Tokens to select and sum-
marize tokens of the input sentence. In the figure, the
green box represents hidden states influenced by up-
dating the query vector, while the red box represents
hidden states influenced by updating the key vector.
For instance, if the key vector is updated as described
in (IA)3(Liu et al., 2022a), as illustrated by the atten-
tion distribution in the figure, this adjustment alters the
extent to which the tokens of the input sentence pay
attention to the Information Tokens.

within the input sentence. However, Information
Tokens, as shown on the right side of Figure 2, at-
tend to all tokens within the input sentence during
the attention operation process; conversely, all to-
kens within both the input and output sentences
can also attend to Information Tokens. Ultimately,
Information Tokens select and summarize informa-
tion from the input sentence according to the task
and convey this summarized information to both
the input and output sentences.

For Information Tokens to fulfill these roles dur-
ing the attention process, both bidirectional lan-
guage models (e.g., BERT(Devlin et al., 2019),
RoBERTa(Liu et al., 2019)) and unidirectional lan-

guage models (e.g., GPT-2(Radford et al., 2019))
must be capable of performing bidirectional atten-
tion. Therefore, we modified the attention mask
in the unidirectional language model, as shown in
Figure 3. In addition, when multiple Information
Tokens are added, as shown in Figure 3, each In-
formation Token is prevented from attending to
another. This allows each Information Token to at-
tend to the input tokens rather than to each other
during the learning process. Thus, we enable In-
formation Tokens to interact with all tokens within
a sentence in unidirectional language models, ul-
timately contributing to the prediction of the next
token.

Furthermore, unlike in (IA)3(Liu et al., 2022a),
in which update the key vectors, our method in-
volves updating the query vectors. As shown in
Figure 4, when updating the key vector of the i-th
token, this update adjusts how other tokens select
the i-th token, rather than how the i-th token selects
other tokens. However, our purpose was to enable
the Information Tokens to selectively attend to in-
formation in the input sentence according to the
task. Therefore, by updating the query vectors of
the Information Tokens, as shown in Figure 4, we
can enable the Information Tokens to selectively
encapsulate important tokens within the input.

3.3 Efficient Structure
In this section, we investigate shifting (addition)
and scaling (multiplication) vector operations to ad-
just the Information Tokens more efficiently within
the model. Figure 5 shows the dimensionality re-
duction of the [CLS] token from the last layer of the
BERT model before and after full fine-tuning using
the RTE dataset within GLUE(Wang et al., 2018)
using t-SNE(Van der Maaten and Hinton, 2008). As
is evident from this visualization, language models
may seem complex, but in reality, we believe it is
a simple process of adjusting the model’s param-
eters through fine-tuning to transform the hidden
states into a form that is easily classifiable by the
classification layers, as shown in Figure 5. How-
ever, rather than fine-tuning the model parameters,
our goal was to update the hidden states directly to
achieve similar effects, as depicted in Figure 5. To
achieve this goal, using both scaling and shifting si-
multaneously, as in SSF(Lian et al., 2022), is more
efficient for transforming vectors compared to the
structures of (IA)3 or PASTA(Yang et al., 2023),
which utilize only shifting or scaling operations.

To validate our idea, we conducted preliminary
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Figure 5: Both the left and right depict visualizations of
the [CLS] token from the 12th(last) layer of the BERT-
base model when inputting the RTE dataset. The top
represents the state after the BERT model has undergone
pretraining only, while the down represents the state
after conducting full fine-tuning using the RTE dataset.

experiments on tasks within the GLUE dataset be-
fore proceeding with the main experiments. Using
the BERT-base model, we experimented with five
different learning rates for each combination of
operations and selected the best-performing. Exper-
imental results, shown in Figure 6, demonstrate that
using a combination of one shifting and two scal-
ing operations yields better performance on both
large and small datasets than using only shifting
or scaling operations. Therefore, we deviate from
the framework of previous studies that used single
operations to update and enhance IT-Tuning per-
formance by appropriately combining shifting and
scaling, as illustrated in Figure 1.

4 Experiment

In this section, experiments are conducted on both
NLU and NLG tasks to demonstrate the effective-
ness of IT-Tuning. In NLU tasks, we selected the
[CLS] token as the information token, while in
NLG tasks, we inserted real words such as "sum-

marize", "transformation", "text", "table", etc., be-
tween input and output sentences and selected them
as information tokens for experimentation.

4.1 NLU
4.1.1 Dataset
In this experiment, we validate the efficiency of
IT-Tuning for NLU tasks using the GLUE bench-
mark. GLUE(Wang et al., 2018) consists of eight
datasets: The Corpus of Linguistic Acceptability
(CoLA), Stanford Sentiment Treebank (SST-2),
Microsoft Research Paraphrase Corpus (MRPC),
Semantic Textual Similarity Benchmark (STS-B),
Quora Question Pairs (QQP), MultiNLI (MNLI),
Question NLI (QNLI), and Recognizing Textual
Entailment (RTE). We conducted experiments us-
ing these datasets, excluding the WNLI. We used
the RoBERTa-large model(Liu et al., 2019) for ex-
perimentation, with both rank and α set to 1. Ad-
ditionally, although the RoBERTa paper suggests
using a model pretrained on the MNLI dataset as
the initial model when experimenting with small
datasets such as RTE, MRPC, and STS-B, we chose
not to employ this approach. This is because fine-
tuning a pretrained language model on the MNLI
dataset is not parameter efficient.

4.1.2 Result
Table 1 presents the results of the experiments
with the GLUE dataset using IT-Tuning applied
to RoBERTa-large. In Table 1, we report the per-
formance using ACC for the entire validation
dataset of the MNLI (matched and mismatched),
Matthew’s correlation for the CoLA, Pearson’s cor-
relation for the STS-B, and ACC for the remaining
datasets. Experimental results show that IT-Tuning
achieves a performance comparable to that of full
fine-tuning and LoRA(Hu et al., 2021) across the
GLUE dataset. Notably, IT-Tuning outperforms
both full fine-tuning and LoRA using only 0.04%
(0.14M) of the parameters of the entire model on
the CoLA, MRPC, and RTE datasets with less than
10K training data, excluding STS-B. Moreover, the
average IT-Tuning scores surpassed those of both
the full fine-tuning and LoRA. Through these exper-
imental results, we demonstrate the high efficiency
of IT-Tuning for NLU tasks.

4.2 NLG
4.2.1 Dataset
To demonstrate the effectiveness of IT-Tuning in
both NLU and NLG tasks, we conducted exper-
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Figure 6: We conducted experiments by updating the hidden states of the query vector, the output of the attention,
and the feed-forward layer. In the diagram, "Only shifting" and "Only scaling" represent using only shifting or
scaling for all three hidden states, respectively. "2 Shifting + 1 Scaling" applies scaling to the hidden state of the
query vector and shifting to the others. "1 Shifting + 2 Scaling" follows the same structure as Figure 1

iments using the E2E NLG Challenge dataset
(Dušek et al., 2020). The E2E NLG Challenge
dataset comprises approximately 42,000 training in-
stances and 4,600 validation instances for table-to-
text evaluation. Each input consisted of slot-value
pairs, and the output is a sentence generated based
on the input data. We conducted experiments using
the GPT2-large model(Radford et al., 2019), with
a rank of 4, and an α of 2.

4.2.2 Result
Table 2 presents the results of experiments with
the E2E NLG Challenge dataset using IT-Tuning
applied to GPT2-large. In Table 2, we evalu-
ated the sentences generated by the model using
BLEU(Papineni et al., 2002), NIST(Doddington,
2002), METEOR(Banerjee and Lavie, 2005),
ROUGE-L(Lin, 2004), and CIDEr(Vedantam et al.,
2015). Experimental results demonstrate the effi-
ciency of our IT-Tuning in both NLU and NLG
tasks. Despite using the fewest parameters among

all the methods in Table 2, our IT-Tuning has
demonstrated astonishing performance surpassing
both full fine-tuning and Prefix Tuning(Li and
Liang, 2021), as well as LoRA(Hu et al., 2021).
Through experiments in NLG tasks, we demon-
strated that IT tuning applies not only to NLU but
also to NLG. These findings suggest that IT-tuning
can serve as a viable alternative to full fine-tuning.

4.3 Ablation Study

4.3.1 Number of Information Token

For our NLU task, we employed one information
token, while for NLG tasks, we utilized four infor-
mation tokens. The ability to adjust the number of
information tokens allows us to control the num-
ber of parameters used in training, which is one
of the significant advantages of IT-Tuning. In this
section, we substantiate this aspect. The Table 3
demonstrates the performance variations observed
when adjusting the number of information tokens
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Model & Method # Trainable
Parameter CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

RoBlarge(FT)∗ 355.0M 68.0 96.4 90.9 92.4 92.2 90.2 94.7 86.6 88.92
RoBlarge(AdptP )† 3.0M 68.3 96.1 90.2 92.1 91.9 90.2 94.8 83.8 88.42
RoBlarge(AdptP )† 0.8M 67.8 96.6 89.7 91.9 91.7 90.5 94.8 80.1 87.88
RoBlarge(AdptH )† 6.0M 66.5 96.2 88.7 91.0 92.1 89.9 94.7 83.4 87.81
RoBlarge(AdptH )† 0.8M 66.3 96.3 87.7 91.5 91.5 90.3 94.7 72.9 86.40
RoBlarge(LoRA)† 0.8M 68.2 96.2 90.9 92.6 91.6 90.6 94.9 87.4 89.05
RoBlarge(PASTA)†† 0.07M 69.7 96.8 90.9 91.8 89.9 90.4 95.1 86.6 88.90
RoBlarge(ITT) 0.14M 69.5 96.7 92.2 91.9 89.7 90.0 94.3 88.4 89.08

Table 1: RoBERTa-large model performance on GLUE benchmark. In this table, † represents the experimental
results of LoRA(Hu et al., 2021), †† indicates the experimental results of PASTA(Yang et al., 2023) Bold indicates
the best, while underlining indicates the second best.

Model & Method # Trainable
Parameter BLEU NIST MET ROUGE-L CIDEr

GPT-2 L (FT)∗ 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdptL)† 23.00M 68.9 8.70 46.3 71.3 2.49
GPT-2 L (LoRA)† 0.77M 70.4 8.89 46.8 72.0 2.47
GPT-2 L (PrefixTuning)†† 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (ITT) 0.69M 73.4 8.75 49.1 76.1 2.52

Table 2: GPT2-large model performance on E2E NLG Challenge dataset. In this table, † represents the experimental
results of LoRA(Hu et al., 2021), and †† indicates the experimental results of Prefix Tuning(Li and Liang, 2021)
Higher is better for all metrics.

in NLG tasks. Notably, the Table 3 reveals a stark
BLEU score of 0.07 when employing only one
information token. These experimental findings un-
derscore the critical importance of scalability in
IT-Tuning. Furthermore, through our experimenta-
tion, we observed that as the rank increases, the rate
of decrease in training loss accelerates; however, it
also becomes easier to encounter overfitting issues.

4.3.2 Using Key instead of Query
As described in the section 3.2, the roles of key and
query within attention are different. We updated
the query to focus on selectively condensing the
information of input sentences, which is a main
role of information tokens. However, to further ex-
plore the impact of updating key vectors on the
performance of IT-Tuning, we conducted exper-
iments in the same environment as described in
Section 4.2. In Table 3, experimental results show
a slight decrease in performance when using key
vectors, but they still demonstrate efficiency. We
believe these experimental results highlight the im-
portance not only of how much information tokens
pay attention to the other tokens but also of how
much other tokens pay attention to the information

Model & Method # Trainable
Parameter BLEU ROUGE-L

GPT-2 L (ITT)
- rank : 1 0.27M 0.07 7.65
- rank : 2 0.41M 71.9 73.4
- rank : 4 0.69M 73.4 76.1
- rank : 8 1.24M 73.0 75.4
- rank : 4 & key 0.69M 72.9 75.1

Table 3: In this table, "rank" denotes the number of
information tokens utilized in the experiment, while
"key" signifies that key was updated instead of query.
Other experimental hyperparameters remain consistent
with those outlined in Section 4.2

tokens. Therefore, we believe that combining and
updating query and key appropriately to make IT-
Tuning more efficient will also be an interesting
future work.

5 Conclusion

In this study, we propose information tokens to effi-
ciently learn various tasks such as prediction, clas-
sification, and generation by selectively condensing
the information of input sentences according to the
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task and conveying the condensed information to
both input and output sentences. We enabled infor-
mation tokens to selectively attend to the tokens of
input sentences through direct updates of the query
vectors of the information tokens in each layer of
the model. In addition, we enabled bidirectional
operations for information tokens in the attention
process in unidirectional language models, such as
GPT(Radford et al., 2019), allowing information
tokens to fulfill their roles even in unidirectional
language models. Furthermore, we enhanced the
performance by proposing an efficient structure
that combines scaling and shifting within the layers
to update the hidden state of the information tokens
according to the task requirements.

Ultimately, when conducting experiments us-
ing IT-Tuning, we surpassed both full fine-tuning
and LoRA(Hu et al., 2021) on the GLUE bench-
mark(Wang et al., 2018) using only 0.14M parame-
ters, which is five times fewer. Furthermore, unlike
existing methods, such as BitFit(Ben Zaken et al.,
2022), PASTA(Yang et al., 2023), and (IA)3(Liu
et al., 2022a), where the increase or decrease in the
number of parameters used for training is fixed and
cannot be adjusted, making them applicable only to
specific tasks (e.g., NLU tasks), IT-Tuning enables
the adjustment of the number of parameters used
for training through information tokens. Owing to
the scalability of IT-Tuning, when applied to NLG
tasks, we achieved a performance surpassing both
full fine-tuning and Prefix Tuning(Li and Liang,
2021), as well as LoRA. This demonstrates the
wide applicability of IT-Tuning for various tasks.

6 Limitation and Future work

One of the drawbacks of attention architecture is
that the computational speed is significantly influ-
enced by the length of the input. In our experiments,
for NLU using BERT and RoBERTa, we utilized
the existing [CLS] token as the Information Token
without adding additional tokens, thus avoiding an
increase in input length. However, for NLG tasks
using GPT, additional tokens are added to serve as
Information Tokens, resulting in an increase in in-
put length. Given that our IT-Tuning has shown re-
markably superior performance in NLG tasks, it re-
mains the most efficient operation. However, while
the number of parameters used in training is 10%
less than LoRA, the training speed has increased
by 10%, and the size of GPU memory used during
training has increased by 100MB * batch size in the

same setting as the experiments. As a future work
to address these issues, we propose a method for
NLG tasks where Information Tokens are selected
from existing input tokens without adding addi-
tional tokens, similar to NLU tasks. Furturmore, we
provide our implementation of IT-Tuning to sup-
port various future work : https://github.com/KU-
INI/IT-Tuning.git
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Model Dataset CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

Optimizer AdamW
Warmup rate 0.06
LR Schedule Linear

RoBlarge

Batch Size 8 64 8 8 32 32 64 16
# Epochs 100 20 80 50 10 20 20 80

Learning Rate 9e-4 7e-4 3e-4 9e-4 7e-4 5e-4 7e-4 5e-4
IT-Tuning r 1
IT-Tuning a 1

Max Seq. Len. 128 + r

Model Dataset E2E NLG Challenge

Optimizer AdamW
Warmup rate 0.06
LR Schedule Cosine Restarts

GPT2large

Batch Size 8
# Epochs 20

Learning Rate 5e-3
IT-Tuning r 4
IT-Tuning a 2

Max Seq. Len. 128 + r

Num Beam 10
No Repeat Ngram 5

Length Penalty 1.2

Table 4: The hyperparameters we used for RoBERTa and GPT2.
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Abstract

Malaysian English is a low resource creole lan-
guage, where it carries the elements of Malay,
Chinese, and Tamil languages, in addition to
Standard English. Named Entity Recognition
(NER) models underperform when capturing
entities from Malaysian English text due to
its distinctive morphosyntactic adaptations, se-
mantic features and code-switching (mixing
English and Malay). Considering these gaps,
we introduce MENmBERT and MENBERT, a
pre-trained language model with contextual un-
derstanding, specifically tailored for Malaysian
English. We have fine-tuned MENmBERT and
MENBERT using manually annotated entities
and relations from the Malaysian English News
Article (MEN) Dataset. This fine-tuning pro-
cess allows the PLM to learn representations
that capture the nuances of Malaysian English
relevant for NER and RE tasks. MENmBERT
achieved a 1.52% and 26.27% improvement
on NER and RE tasks respectively compared
to the bert-base-multilingual-cased model. Al-
though the overall performance of NER does
not have a significant improvement, our fur-
ther analysis shows that there is a significant
improvement when evaluated by the 12 en-
tity labels. These findings suggest that pre-
training language models on language-specific
and geographically-focused corpora can be a
promising approach for improving NER per-
formance in low-resource settings. The dataset
and code published in this paper provide valu-
able resources for NLP research work focusing
on Malaysian English.

1 Introduction

With the recent proliferation of Large Language
Models (LLMs), the usage of Pre-trained Language
Models (PLMs) like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLM-RoBERTa (Con-
neau et al., 2020), ALBERT (Lan et al., 2020) has

*Corresponding Author.

been overshadowed. However, PLM has shown
some significant improvements when further pre-
trained in domain specific (Chalkidis et al., 2020;
Lee et al., 2019; Araci, 2019; Huang et al., 2020) or
language specific corpus (Martin et al., 2020; Chan
et al., 2020; Antoun et al., 2021; Vamvas et al.,
2023), and subsequently fine-tuned on NLP tasks.
The adaptability of pre-trained language model to
diverse languages and dialects has enabled its ap-
plication to specific linguistic contexts, including
Malaysian English, a unique and culturally rich
variant of the English language.

Malaysian English is also categorized as a creole
language due to its distinct characteristics that in-
clude loanwords, compound words, and the deriva-
tion of new terms from Malay, Chinese, and Tamil,
in addition to the Standard English (Chanthran
et al., 2024). Existing state-of-the-art (SOTA) so-
lutions do not produce satisfactory outcomes for
downstream tasks performed in Malaysian English
(Chanthran et al., 2024). This is mainly due to the
morphosyntactic and semantical adaption nature
of Malaysian English. Hence, there is a need to
improve this SOTA in order to support effective
processing of Malaysian English texts.

This work investigates the effectiveness of En-
glish pre-trained language models (PLMs) to the
low resource language like Malaysian English, in
downstream task, particularly Named Entity Recog-
nition (NER), and Relation Extraction (RE) per-
formed on Malaysian English. Our findings con-
tribute to the growing body of research on promot-
ing inclusivity in NLP by exploring the applicabil-
ity of PLMs to non-standard English varieties.

The contributions of this paper are as follows:

1. Multilingual Pre-trained Model for Malaysian
English: We introduce MENmBERT,
a BERT-based model pre-trained on a
Malaysian English News (MEN) Corpus.
MEN Corpus comprises 14,320 articles,
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facilitating research on applying PLMs
to Malaysian English (Chanthran et al.,
2024). This model will be made public to
develop resources and facilitate NLP research
in Malaysian English. The code for this
experiment, and dataset have been published
in https://github.com/mohanraj-nlp/
MEN-Dataset/tree/pretrained-lm.

2. Fine-Tuned and Evaluated NER and RE on
Malaysian English: We evaluated the effec-
tiveness of fine-tuned MENmBERT for NER
and RE tasks on a benchmark MEN-Dataset.
MEN-Dataset contains 200 news articles with
6,061 annotated entities and 4,095 relation
instances (Chanthran et al., 2024). This analy-
sis demonstrates the applicability of transfer
learning from English PLMs to Malaysian En-
glish NLP tasks.

This paper is structured as follows. Section
2 explores the utilization of pre-trained language
models in both English and non-English scenarios.
In Section 3, we dive deeper into the pre-training
and fine-tune methodologies of MENmBERT and
MENBERT. Section 4 we will discuss on the re-
sults of fine-tuned NER and RE. Finally, Section 5
concludes the work and shares potential enhance-
ment as the future work.

2 Related Work

2.1 Pre-Trained Language Model for
Non-English Context

Language-specific Pre-trained Language Models
(PLMs) are essential to handle complex languages
and improve performance on downstream NLP task
specific to particular language. Considering this,
AraBERT has been proposed to address the mor-
phological and syntactic differences in the Arabic
language compared to other languages, as Arabic
shares very little with Latin-based languages and
has unique characteristics (Antoun et al., 2021).
Multilingual models to learn representations for
multiple languages simultaneously resulted in lit-
tle data representation and small language-specific
vocabulary for Arabic, hindering performance com-
pared to a single-language model. (Antoun et al.,
2021) overcome these challenges, the researchers
pre-trained AraBERT specifically for the Arabic
language to capture the contextualized representa-
tions needed for Arabic NLP tasks. By customizing
the model for Arabic and optimizing factors such

as data size, vocabulary size, and pre-processing
techniques, AraBERT was able to achieve state-
of-the-art performance on various Arabic NLP
tasks. The pre-training has been completed with
70 million sentences and around 24GB of textual
Arabic data. AraBERT performs better in down-
stream tasks like Sentiment Analysis, Named En-
tity Recognition (NER), and Question Answering
(Antoun et al., 2021). Antoun et al. (2021) com-
pared the AraBERT fine-tuned model to SOTA and
M-BERT, the results shows AraBERT performing
better than mBERT or SOTA.

Following the success of AraBERT in Arabic
NLP, similar approaches can be applied to other
low-resource languages with unique characteristics.
One such example is KinyaBERT, a recent model
specifically designed to address the challenges of
Natural Language Processing (NLP) tasks in Kin-
yarwanda (Nzeyimana and Niyongabo Rubungo,
2022). KinyaBERT has been implemented with a
two-tier BERT architecture that token-level mor-
phology encoder and sentence/document level en-
coder. By dividing the model’s processing into
these two tiers, KinyaBERT aims to effectively
capture both the fine-grained morphological details
of individual tokens and the broader contextual in-
formation present in the input text. The pre-training
task has been completed with 16 million and 2.4GB
of Kinyarwanda language texts. KinyaBERT is
evaluated on NLP downstream tasks such as NER,
News Categorization Task (NEWS) and Machine-
Translated GLUE Benchmark. From the evaluation,
KinyaBERT has outperformed the baseline model
like BERT Base Pre-trained on Kinyarwanda Cor-
pus (BERT BPE), BERT Tokenized by Morpholog-
ical Analyzer (BERT MORPHO) and XLM-R.

Similarly to AraBERT and KinyaBERT, Swiss-
BERT has been proposed specifically for national
languages of Switzerland (Vamvas et al., 2023).
SwissBERT trained using a combination of do-
main adaptation, language adaptation, and multilin-
gual approaches. SwissBERT has been fine-tuned
for NER task and it was able to outperform the
baseline model which has been further pre-trained.
SwissBERT has undergone several key adaptations
and additions to make it impact for processing
Switzerland-related text, this includes:

1. Multilingual Adaptation: SwissBERT is
trained on a corpus of more than 21 million
Swiss news articles in the national languages
of Switzerland, including German, French,
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Italian, and Romansh Grischun.

2. Custom Language Adapters: SwissBERT uti-
lizes custom language adapters in each layer
of the transformer encoder for the four na-
tional languages of Switzerland.

3. Switzerland-Specific Subword Vocabulary:
To further enhance its performance on
Switzerland-related text, SwissBERT is
equipped with a Switzerland-specific subword
vocabulary.

SwissBERT’s superior performance in Switzerland-
related tasks, such as Named Entity Recognition
and Stance Detection, highlights its efficacy in han-
dling diverse linguistic content specific to Switzer-
land.

Devlin et al. (2019) has further pre-trained mul-
tilingual BERT (M-BERT) with 104 languages
Wikipedia corpus. Wang et al. (2020) suggests
enhancing M-BERT by pre-training with low-
resource corpora, as 11 languages are not cov-
ered in the current 104 languages. The research
found that fine-tuning M-BERT (E-MBERT) on
low-resource language corpora enhanced NER task
performance. Wu and Dredze (2020) found that
multilingual BERT (mBERT in Wu and Dredze
(2020)) may not perform well in low-resource lan-
guages. This inconsistency may be attributed to
the fact that mBERT is trained with a multitude of
languages. Pre-training mBERT for a low resource
language model can negatively impact the perfor-
mance compared to training a monolingual BERT
model for that language. Findings in related works
have inspired us to establish better evaluation and
model selection criteria for the development of a
pre-trained language model for Malaysian English.

3 MENmBERT and MENBERT

3.1 Overview
Chalkidis et al. (2020) discussed about two possible
further pre-training strategies:

1. Continued / Further Pre-training (FP): FP cre-
ates domain- or language-specific BERT mod-
els. FP utilises pre-trained model parameters,
saving time and data (Kalyan et al., 2021).

2. Pre-Training from Scratch (SC): Pre-training
from scratch lets you train the model with a lot
of data. Pre-training the model from scratch
will utilise existing language model architec-
ture and parameters (Kalyan et al., 2021).

The difference between two approach is, FP has
been pre-trained with generic corpora like Book-
Corpus, and English Wikipedia (Devlin et al., 2019)
while SC has not been pre-trained with any corpus.
With this in mind, we proposed to explore several
further pre-training strategies:

1. MENBERT-FP: Further pre-train bert-base-
cased model with MEN-Corpus

2. MENmBERT-FP: Further pre-train bert-base-
multilingual-cased model with MEN-Corpus

3. MENBERT-SC: We pre-train bert-base-cased
from scratch with MEN-Corpus

Malaysian English features loan words, compound
blend and derivations of new terms from multi-
ple languages local language, making multilingual
BERT an effective model for understanding the con-
texts of news articles. The need to further pre-train
BERT, mBERT and train BERT from scratch stems
from our hypothesis that PLM with rich language-
based understanding will improve the performance
of NER and RE after being fine-tuned. Section
3.2 presents the pre-training setup and hyperparam-
eters used, while Section 3.3 explains the model
fine-tuning tasks.

3.2 Further Pre-Training MENmBERT and
MENBERT

Python library Transformers (Wolf et al., 2020) has
been used to pre-train BERT. For MENmBERT and
MENBERT we have used bert-base-multilingual-
cased and bert-base-cased respectively. Since
MENBERT-SC was trained from scratch, we used
bert-base-cased architecture. We generated our
own vocabulary using BertWordPieceTokenizer for
MENBERT-SC, meanwhile for MENmBERT and
MENBERT we have used BertTokenizer. We se-
lected the hyperparameter combination with the
lowest training loss. Table 1 lists the important
hyperparameters used to train the models. Section
4 details the pre-training results and some analyses.

Hyperparameters MENBERT-FP MENmBERT-FP MENBERT-SC
epoch 30 30 30

batch_size 32 16 32
learning_rate 5e-5 5e-5 5e-5
weight_decay 0.001 0.001 0.001

max_sequence_length 512 512 512

Table 1: Hyperparameters used to train MENBERT-FP,
MENmBERT-FP, MENBERT-SC
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3.3 Fine-Tuning MENmBERT and
MENBERT

Fine-Tune is an adaptation method to train pre-
trained model for any NLP downstream task
(Kalyan et al., 2021). Three pre-trained model
MENBERT-FP, MENmBERT-FP, and MENBERT-
SC were fine-tuned for NER and RE using MEN-
Dataset. Additionally, we also fine-tuned pre-
trained models bert-base-cased and bert-base-
multilingual-cased. Fine-tuning on pre-trained and
further pre-trained models helps us to compare the
performance and validate our hypothesis (see Sec-
tion 3.1).

3.3.1 Named Entity Recognition
We used the Python library Transformers Wolf et al.
(2020), specifically the BertForTokenClassification
module, for fine-tuning. As suggested by Devlin
et al. (2019), we went through hyperparameter op-
timization to find an optimal hyperparameter for
fine-tuning. We leveraged on WandB (Biewald,
2020) for hyperparameter optimization and log-
ging. We used [2e-5, 5e-5] for the learning_rate,
[10, 20, 30] for num_train_epochs, [0.01, 0.001,
0.0001] for weight_decay, and finally [4, 8, 16] for
the per_device_train_batch_size.

We used a grid-based search approach to find an
optimal hyperparameter with maximum F1-Score
and minimum evaluation loss. Table 2 provides
the hyperparameters used to fine-tune for NER.
The MEN-Dataset is split into training (75%), test
(10%) and validation (15%), with total entities of
5065, 453 and 618 respectively. Models fine-tuned
with optimal hyperparameter were evaluated using
the validation set, and discussed in the following
Section 4.2.1.

Hyperparameters epoch batch_size learning_rate weight_decay
bert-based-cased 20 4 5e-5 0.0001
MENBERT-FP 30 4 5e-5 0.01

mbert-based-cased 30 4 5e-5 0.01
MENmBERT-FP 30 4 5e-5 0.01
MENBERT-SC 30 4 5e-5 0.01

Table 2: Optimal Hyperparameters used to fine-
tune bert-base-cased, bert-base-multilingual-cased,
MENBERT-FP, MENmBERT-FP, MENBERT-SC for
NER

3.3.2 Relation Extraction
To efficiently fine-tune PLM for RE on the MEN-
Dataset, we leveraged existing fine-tuning code
for document-level relation extraction1. We then

1DocRED_Bert Github Link

Hyperparameters epoch batch_size learning_rate weight_decay
bert-based-cased 30 4 5e-5 0.1
MENBERT-FP 30 4 5e-5 0.1

mbert-based-cased 30 4 5e-5 0.1
MENmBERT-FP 30 4 5e-5 0.1
MENBERT-SC 30 4 5e-5 0.1

Table 3: Optimal Hyperparameters used to fine-
tune bert-base-cased, bert-base-multilingual-cased,
MENBERT-FP, MENmBERT-FP, MENBERT-SC for
RE

carefully modified this code to accommodate
the specific characteristics and labeling scheme
of the MEN-Dataset. Similarly like NER we
went through hyperparameter optimization to find
an optimal hyperparameter for fine-tuning. We
used [2e-5, 5e-5] for the learning_rate, [10, 20,
30] for num_train_epochs, [0.01, 0.001, 0.0001]
for weight_decay, and finally [4, 8, 16] for the
per_device_train_batch_size. Table 3 provides the
hyperparameters used to fine-tune for RE.

MEN-Dataset has relation labels adapted from
prominent RE dataset like DocRED (Yao et al.,
2019) and ACE-2005 (Walker, 2005). There are
84 relation labels that are adapted from DocRED,
and 16 relation labels from ACE-2005. For this
study, we concentrated on the relation labels orig-
inating from the DocRED dataset. One of the
reason for our decision are due to Label Distri-
bution. The DocRED labels constitute the major-
ity within the MEN-Dataset. Focusing on these
prevalent labels allows the model to learn robust
representations for the most frequently occurring
relation types, leading to potentially better perfor-
mance on tasks involving these relations. Apart
from that, we have also excluded a special rela-
tion label "NO_RELATION", as they are used is
to indicate entities that might have a relation but
not captured by the predefined relation set (Chan-
thran et al., 2024). Including "NO_RELATION"
could introduce noise or ambiguity during model
training.

MEN-Dataset has a total of 2,237 relation in-
stances adapted from DocRED relation labels, dis-
tributed across training (1,693), testing (267), and
validation (277) sets. To ensure a comprehensive
representation of relation labels during training, we
employed a stratified sampling approach on the
MEN-Dataset. While the original split allocates
75%, 10%, and 15% for training, validation, and
testing, respectively, our stratified sampling guar-
antees that all relation labels are present in the
training data. The result and analysis of fine-tuned
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Figure 1: Precision, recall, and F1-score calculated for NER on the MEN-Dataset validation set.

PLM for RE have been discussed in Section 4.2.2.

4 Experiment Result and Analysis

4.1 Further Pre-trained Language Model

(Salazar et al., 2020; Kauf and Ivanova, 2023) sug-
gests a "pseudo-log-likelihood" score calculated
by masking tokens individually. The score is com-
puted by summing the log-losses at the different
masked positions. However, we are more interested
in how accurately the models predict the masked
token. This will help us to understand PLM mod-
els understanding and contextual awareness. We
have collected 100 sentences from Malaysian En-
glish news article platform and we have done val-
idation to ensure those sentence not part of our
pre-training MEN-Corpus. In the first 70 sentences,
one token from the local language, such as Ba-
hasa Malaysia, has been randomly masked. In
the remaining 30 sentences, one token of Standard
English has been masked. We employ accuracy
metrics to assess each model’s effectiveness, pro-
viding a clear differentiation in their performance.
The results demonstrate that additional pretraining
on language-specific data significantly enhances
the models’ predictive capabilities, underscoring
the importance of tailored training for improved
language understanding.

For each pre-trained model, we calculated the
accuracy of correctly predicted masked tokens. We
used bert-based-cased and bert-base-multilingual-
cased as baseline to investigate the improvement
made by further pre-trained model. Based on
the result in Figure 2, we have identified that
MENmBERT-FP has highest accuracy on predict-
ing masked token from Malaysian English sentence.

Figure 2: Accuracy of different pre-trained model pre-
dicting masked tokens in 50 Malaysian English Sen-
tence.

In Table 4, we present some sample of sentences
showcasing how different PLMs perform in predict-
ing masked tokens. Here are the findings obtained
from the sample result shown in Table 4:

1. MENmBERT-FP: Even though the model did
not predict the exact ground-truth token, in
some cases it identified semantically similar
tokens. For instance, in the Malaysian context,
Bumiputera often refers to the Muslim com-
munity. Here, MENmBERT-FP might predict
a token related to ethnicity but not strictly syn-
onymous with Muslim. This highlights the
model’s ability to capture semantic nuances,
even when encountering challenging cases.
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Masked Sentence Masked Token
Pretrained Model

bert-based
-cased

mbert-based
-cased

menbert-fp menbert-sc menmbert-fp

There are three levels of disaster management,
the first involves a locality in a district,

secondly when more than two districts of a
state is involved and the third involves

two or three states. So everyone is aware of this,”
he told a press conference at <MASK> Sri

Muda today.

Taman the Sri the ’ Taman

On the Perlindungan Tenang Voucher,
he said all eight million recipients

of <MASK> Prihatin Rakyat are eligible to
receive the voucher worth RM50 announced

in Budget 2021 for the benefit of
the B40 group.

Bantuan the the the the Anugerah

Ismail Sabri also hoped that ties between
Umno and PAS in Bera would remain

strong and despite the harsh statement issued
by the top leaders of the two parties, priority

should be given to unite the Malay
Muslims and <MASK>.

Bumiputera Christians Muslims Muslims , Muslims

The Ministry of <MASK> Territories
(KWP) while ensuring the flood
management in Kuala Lumpur is

proceeding well.

Federal New Protected Federal ##am Federal

Hamzah said he had discussed the issue with
Inspector-General of Police Tan Sri

Acryl Sani <MASK> Sani.
Abdullah - . Abdullah ser Abdullah

Hamzah also said police had set up
a Tactical Command Centre in <MASK>
Langat district in Selangor to coordinate

flood relief operations of all units.

Hulu the the Kuala , Hulu

Table 4: Some sentences from the MEN-Dataset were used to predict masked tokens using various PLMs. Bold
tokens indicate correctly predicted tokens when compared to the ground truth.

2. MENBERT-FP: When we compared the
performance of MENBERT-FP with bert-
based-cased, we can understand that further-
pretraining has improved the performance of
language model. The success ratio of bert-
based-cased is 0, and once further pre-trained,
there is an improvement of +33%.

3. bert-based-cased: Since bert-based-cased has
only been trained with English corpus, it was
not able to unmask any tokens with compound
blend correctly.

4. MENBERT-SC: Based on our observation,
MENBERT-SC has produced bad results
when unmasking the tokens. Once fine-tune,
we will be able to understand better on the
performance of the model.

In Section 4.2 we have discussed the performance
of pre-trained model once fine-tune them for NER
and RE.

4.2 Fine-Tuning Pre-Trained Model
4.2.1 Named Entity Recognition
Figure 1 shows the comparison of Precision, Re-
call, and F1-Score among five different pre-trained
models. To evaluate the performance of further
pre-trained models, we also fine-tuned pre-trained
model (bert-base-cased, and bert-base-multilingual-
cased) as the baseline. Meanwhile in Table 5, we
detailed the performance of model by entity labels.

Referring to the results, we observe that
MENmBERT-FP achieves the highest F1-Score
(0.831), while MENBERT-SC obtains the lowest
F1-Score (0.316). Nevertheless, Figure 1 demon-
strates an improvement when further pre-training
the BERT model, which validated our hypothesis
(discussed in Section 3.1). A few other observa-
tions from this experiment:

1. MENmBERT-FP has a higher F1-Score
(0.831) than mBERT-base-cased (0.819). We
observe a +1.52% improvement. Although
the improvement is not significant, but when
we analyse the F1-Score based on the entity
label:
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Entity Label
Total Annotated

Entity in
MEN-Dataset

Total Annotated
Entity in

Validation Set
bert-based-cased mbert-based-cased menbert-fp menbert-sc menmbert-fp

PERSON 1646 108 0.74 0.84 0.79 0.17 0.86
LOCATION 1157 150 0.86 0.88 0.87 0.48 0.91

ORGANIZATION 1624 262 0.81 0.89 0.82 0.29 0.89
EVENT 386 30 0.67 0.61 0.66 0.13 0.77

PRODUCT 72 6 0.24 0.33 0.13 0 0.07
FACILITY 208 27 0.24 0.11 0.47 0 0.25

ROLE 485 35 0.39 0.4 0.37 0.35 0.6
NORP 114 5 0.88 0.6 0.89 0.21 0.57
TITLE 300 4 0.55 0 0.43 0.18 0.5
LAW 62 5 0.15 0.12 0.17 0.1 0.13

LANGUAGE 0 0 0 0 0 0 0
WORK_OF_ART 7 2 0.1 0.15 0.12 0 0.16

Total Entities 6061 634
Overall

Micro F1-Score 0.763 0.819 0.778 0.316 0.831

Table 5: Fine-Tuned model performance (based on F1-Score) calculated based on validation set for each entity
labels.

Figure 3: Precision, recall, and F1-score calculated for RE on the MEN-Dataset validation set.

(a) There is an significant improvement for 6
out of 11 entity labels that are evaluated.

(b) On average, the difference in F1-Score
between MENmBERT-FP and mBERT-
base-cased is +10%.

(c) mBERT-base-cased is only able to
achieve on-par in terms of F1-Score with
MENmBERT-FP, specifically for entity
label ORGANIZATION.

This in-depth observation proves the signifi-
cant performance of MENmBERT-FP.

2. MENBERT-FP (F1-Score is 0.778) has a
higher F1-Score than bert-based-cased (F1-
Score is 0.763), with an improvement of
+1.94%. However, after further investigated
the performance based on entity labels:

(a) MENBERT-FP has only improved the

performance of only 7 out of 11 entity
labels.

(b) On average, the improvement is only
around +2%.

(c) When compared with MENmBERT-FP,
MENBERT-FP is able to outperform
in terms of F1-Score for 4 out of 11
entity labels. These include entity la-
bels PRODUCT, FACILITY, NORP and
LAW.

3. MENBERT-SC has not shown any improve-
ment in the performance of NER. Our evalua-
tion in Section 4.1 also shows it was not able
to unmask the tokens correctly.

The experimental results and findings conclude that
our fine-tuned MENmBERT-FP has achieved high-
est F1-Score compared to other pre-trained models.
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MENmBERT-FP could be used to fine-tune for
more NLP downstream tasks, involving Malaysian
English, for improved performance.

4.2.2 Relation Extraction
Figure 3 shows F1-Scores compared across five
PLMs. Like with NER, we used fine-tuned bert-
base-cased and bert-base-multilingual-cased as
baselines.

MENmBERT-FP achieved the highest F1-score
(0.353), indicating a slight improvement over our
baseline PLMs. This suggests that further pre-
training on MEN-Dataset has been beneficial for
RE on Malaysian English context. Here are some
of ur observations from the experiment:

1. MENmBERT-FP has made +33.21% improve-
ment in F1-Score compared to baseline ap-
proach mBERT-base-cased. This has been
proven significant. Our cross-analysis of NER
and RE predictions reveals that the TP relation
instances have entity pairs correctly classified
by the fine-tuned NER model (from previous
analysis). This suggests a significant improve-
ment in RE performance due to the model’s
enhanced entity prediction capabilities.

2. MENBERT-FP (F1-Score is 0.3105) has a
higher F1-Score than bert-based-cased (F1-
Score is 0.2602), with an improvement of
+19.33%. The analysis of the fine-tuned
model’s predictions did not reveal any sur-
prising or unexpected patterns. This aligns
with the observations from the previous
point. Meanwhile, for MENBERT-SC was
performed badly when fine-tuned for RE task.

Apart from that, it’s important to note that our fine-
tuned RE models achieved lower performance com-
pared to reported results on other document-level
relation extraction datasets like DocRED. For in-
stance, prior work using a fine-tuned BERT model
on DocRED (38,269 relation instances) achieved
an F1-score of 54.16 (Dev) and 53.20 (Test) (Wang
et al., 2019). Compared with our finding, the over-
all F1-Score could be not significant due to the
nature of MEN-Dataset with a small set of annota-
tion instance.

5 Conclusion

This work introduced MENmBERT, a contextual-
ized language model pre-trained on a Malaysian
English corpus. Our experiments demonstrated

that fine-tuning MENmBERT on language-specific
data significantly improves performance on NER
tasks with average of +1.74%. For RE, we have
achieved average improvement of +26.27% com-
pare our MENmBERT and MENBERT with base-
line PLM’s. However, the fine-tuned RE models
achieved lower performance compared to reported
results on other document-level relation extrac-
tion datasets. This suggests that while MENm-
BERT’s entity prediction capabilities benefit RE
tasks, further exploration is needed to optimize RE
performance in the context of our dataset. This has
gaps has suggested us for future work, explore sev-
eral avenues to improve RE performance. One of
the approach involve investigating data augmenta-
tion techniques to expand our dataset and improve
model training. Beyond that, we will extend our
experiment do several other downstream NLP task.
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Abstract

Knowledge Graphs (KGs) are fundamental re-
sources in knowledge-intensive tasks in NLP.
Due to the limitation of manually creating
KGs, KG Completion (KGC) has an impor-
tant role in automatically completing KGs by
scoring their links with KG Embedding (KGE).
To handle many entities in training, KGE re-
lies on Negative Sampling (NS) loss that can
reduce the computational cost by sampling.
Since the appearance frequencies for each link
are at most one in KGs, sparsity is an essen-
tial and inevitable problem. The NS loss is
no exception. As a solution, the NS loss in
KGE relies on smoothing methods like Self-
Adversarial Negative Sampling (SANS) and
subsampling. However, it is uncertain what
kind of smoothing method is suitable for this
purpose due to the lack of theoretical under-
standing. This paper provides theoretical in-
terpretations of the smoothing methods for the
NS loss in KGE and induces a new NS loss,
Triplet Adaptive Negative Sampling (TANS),
that can cover the characteristics of the con-
ventional smoothing methods. Experimental
results of TransE, DistMult, ComplEx, RotatE,
HAKE, and HousE on FB15k-237, WN18RR,
and YAGO3-10 datasets and their sparser sub-
sets show the soundness of our interpretation
and performance improvement by our TANS.

1 Introduction

Knowledge Graphs (KGs) represent human knowl-
edge using various entities and their relationships
as graph structures. KGs are fundamental resources
for knowledge-intensive tasks like dialog (Moon
et al., 2019), question answering (Reese et al.,
2020), named entity recognition (Liu et al., 2019),
open-domain questions (Hu et al., 2022), and rec-
ommendation systems (Gao et al., 2020), etc.

However, to create complete KGs, we need to
consider a large number of entities and all their
possible relationships. Taking into account the ex-
plosively large number of combinations between

entities, only relying on manual approaches is un-
realistic to make complete KGs.

Knowledge Graph Completion (KGC) is a task
to deal with this problem. KGC involves automat-
ically completing missing links corresponding to
relationships between entities in KGs. To complete
the KGs, we need to score each link between enti-
ties. For this purpose, current KGC commonly re-
lies on Knowledge Graph Embedding (KGE) (Bor-
des et al., 2011). KGE models predict the missing
relations, named link prediction, by learning struc-
tural representations. In the current KGE, mod-
els need to complete a link (triplet) (ei, rk, ej) of
entities ei and ej , and their relationship rk by an-
swering ei or ej from a given query (?, rk, ej) or
(ei, rk, ?), respectively. Hence, KGE needs to han-
dle a large number of entities and their relationships
during its training.

To handle a large number of entities and rela-
tionships in KGs, Negative Sampling (NS) loss
(Mikolov et al., 2013) is frequently used for train-
ing KGE models. The original NS loss is proposed
to approximate softmax cross-entropy loss to re-
duce computational costs by sampling false labels
from its noise distribution in training. Trouillon
et al. (2016) import the NS loss from word embed-
ding to KGE with utilizing uniform distribution
as its noise distribution. Sun et al. (2019) extend
the NS loss to Self-Adversarial Negative Sampling
(SANS) loss for efficient training of KGE. Unlike
the NS loss with uniform distribution, the SANS
loss utilizes the training model’s prediction as the
noise distribution. Since the negative samples in
the SANS loss become more difficult to discrimi-
nate for models in training, the SANS can extract
models’ potential compared with the NS loss with
uniform distribution.

One of the problems left for KGE is the sparsity
of KGs. Figure 1 shows the appearance frequency
of queries and answers (entities) in the training data
of FB15k-237, WN18RR and YAGO3-10 datasets.
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Figure 1: Appearance frequencies of queries and answers (entities) in the training data of FB15k-237, WN18RR,
and YAGO3-10. Note that the indices are sorted from high frequency to low.
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Figure 2: Performances of KGE models HousE, HAKE, RotatE, ComplEx, DistMult, and TransE on datasets
FB15k-237, WN18RR, and YAGO3-10 using NS, SANS, and subsampling methods (noted as Base, Freq, Uniq).

From the long-tail distribution of this figure, we
can understand that both queries and answers nec-
essary for training KGE models may suffer from
the sparsity problem.

As a solution, several smoothing methods are
used in KGE. Sun et al. (2019) import subsampling
from word2vec (Mikolov et al., 2013) to KGE. Sub-
sampling can smooth the appearance frequency of
triplets and queries in KGs. Kamigaito and Hayashi
(2022a) show a general formulation that covers the
basic subsampling of Sun et al. (2019) (Base), their
frequency-based subsampling (Freq) and unique-
based subsampling (Uniq) for KGE. Kamigaito and
Hayashi (2021) indicate that SANS has a similar ef-
fect of using label-smoothing (Szegedy et al., 2016)
and thus SANS can smooth the frequencies of an-
swers in training. Figure 2 shows the effectiveness
of SANS and subsampling in KGC performance.
From the figure, since FB15k-237 is more sparse
(imbalanced) than WN18RR and YAGO3-10 based
on Figure 1, we can understand that strategy in
choosing smoothing methods have more consider-
able influences than models when data is sparse.

While SANS and subsampling can improve
model performance by smoothing the appearance
frequencies of triplets, queries, and answers, their

theoretical relationship is not clear, leaving their ca-
pabilities and deficiencies a question. For example,
conventional works (Sun et al., 2019; Zhang et al.,
2020b; Kamigaito and Hayashi, 2022a)1 jointly
use SANS and subsampling with no theoretical
background. Thus, there is a call for further inter-
pretability and performance improvement.

To solve the above problem, we theoretically
and empirically study the differences of SANS and
subsampling on three common datasets and their
sparser subsets with six popular KGE models2. Our
contributions are as follows:

• By focusing on the smoothing targets, we theo-
retically reveal the differences between SANS
and subsampling and induce a new NS loss,
Triplet Adaptive Negative Sampling (TANS),
that can cover the smoothing target of both
SANS and subsampling.

• We theoretically show that TANS with sub-
sampling can potentially cover the conven-

1Note that Sun et al. (2019); Zhang et al. (2020b) use sub-
sampling in their released implementation without referring
to it in their paper.

2Our code and data are available at https://github.
com/xincanfeng/ss_kge.
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tional usages of SANS and subsampling.

• We empirically verify that TANS improves
KGC performance on sparse KGs in terms of
MRR.

• We empirically verify that TANS with sub-
sampling can cover the conventional usages
of SANS and subsampling in terms of MRR.

2 Background

In this section, we describe the problem formu-
lation for solving KGC by KGE and explain the
conventional NS loss functions in KGE.

2.1 Formulation of KGE
KGC is a research topic for automatically inferring
new links in a KG that are likely but not yet known
to be true. To infer the new links by KGE, we de-
compose KGs into a set of triplets (links). By using
entities ei, ej and their relation rk, we represent the
triplet as (ei, rk, ej). In a typical KGC task, a KGE
model receives a query (ei, rk, ?) or (?, rk, ej) and
predicts the entity corresponding to ? as an answer.

In KGE, a KGE model scores a triplet (ei, rk, ej)
by using a scoring function sθ(x, y), where θ de-
notes model parameters. Here, using a softmax
function, we represent the existence probability
pθ(y|x) for an answer y of the query x as follows:

pθ(y|x) =
exp(sθ(x, y))∑

y′∈Y exp(sθ(x, y′))
, (1)

where Y is a set of entities.

2.2 NS Loss in KGE
To train sθ(x, y), we need to calculate losses for
the observables D = {(x1, y1), · · · , (xn, yn)} that
follow pd(x, y). Even if we can represent KGC
by Eq. (1), it does not mean we can tractably per-
form KGC due to the large number of Y in KGs.
For the reason of the computational cost, the NS
loss (Mikolov et al., 2013) is used to approximate
Eq. (1) by sampling false answers.

By modifying that of Mikolov et al. (2013), the
following NS loss (Sun et al., 2019; Ahrabian et al.,
2020) is commonly used in KGE:

ℓNS(θ)

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+
1

ν

ν∑

yi∼U

log(σ(−sθ(x, yi)− τ))
]
, (2)

where U is the noise distribution that follows uni-
form distribution, σ is the sigmoid function, ν is
the number of negative samples per positive sample
(x, y), and τ is a margin term to adjust the value
range decided by sθ(x, y).

2.3 Smoothing Methods for the NS Loss in
KGE

As shown in Figure 1, KGC needs to deal with the
sparsity problem caused by low frequent queries
and answers in KGs. Imposing smoothing on the
appearance frequencies of queries and answers can
mitigate this problem. The following subsections
introduce subsampling (Mikolov et al., 2013; Sun
et al., 2019; Kamigaito and Hayashi, 2022a) and
SANS (Sun et al., 2019), the conventional smooth-
ing methods for the NS loss in KGE.

2.3.1 Subsampling
Subsampling (Mikolov et al., 2013) is a method to
smooth the frequency of triplets or queries in the
NS loss. Sun et al. (2019) import this approach
from word embedding to KGE. Kamigaito and
Hayashi (2022b,a) add some variants to subsam-
pling for KGC and theoretically provide a unified
expression of them as follows:

ℓSUB(θ)

=− 1

|D|
∑

(x,y)∈D

[
A(x, y;α) log(σ(sθ(x, y)+τ))

+
1

ν

ν∑

yi∼U

B(x, y;α)log(σ(−sθ(x, yi)−τ))
]
, (3)

where α is a temperature term to adjust the frequecy
of triplets and queries. Note that we incorporate α
into Eq. (3) to consider various loss functions even
though Kamigaito and Hayashi (2022b,a) do not
consider α. In this formulation, we can consider
several assumptions for deciding A(x, y;α) and
B(x, y;α). We introduce these assumptions in the
following paragraphs:

Base As a basic subsampling approach, Sun et al.
(2019) import the one originally used in word2vec
(Mikolov et al., 2013) to KGE, defined as follows:

A(x, y;α)=B(x, y;α)=
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,

(4)
where # is the symbol for frequency and #(x, y)
represents the frequency of (x, y). In word2vec,
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subsampling randomly discards a word by a proba-
bility 1−

√
t/f , where t is a constant value and f is

a frequency of a word. This is similar to randomly
keeping a word with a probability

√
t/f . Thus,

we can understand that Eq. (4) follows the original
use in word2vec. Since the actual (x, y) occurs at
most once in KGs, when (x, y) = (ei, rk, ej), they
approximate the frequency of (x, y) as:

#(x, y) ≈ #(ei, rk) + #(rk, ej), (5)

based on the approximation of n-gram language
modeling (Katz, 1987).

Freq Kamigaito and Hayashi (2022a) propose
frequency-based subsamping (Freq) by assuming a
case that (x, y) originally has a frequency, but the
observed one in the KG is at most 1.

A(x, y;α) =
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,

B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (6)

Uniq Kamigaito and Hayashi (2022a) also pro-
pose unique-based subsamping (Uniq) by assum-
ing a case that the originally frequency and the
observed one in the KG are both 1.

A(x, y;α) = B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (7)

2.3.2 SANS Loss
SANS is originally proposed as a kind of NS loss
to train KGE models efficiently by considering neg-
ative samples close to their corresponding positive
ones. Kamigaito and Hayashi (2021) show that us-
ing SANS is similar to imposing label-smoothing
on Eq. (1). Thus, SANS is a method to smooth the
frequency of answers in the NS loss. The SANS
loss is represented as follows:

ℓSANS(θ)

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+

ν∑

yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (8)

pθ(yi|x;β) ≈
exp(βsθ(x, yi))∑ν
j=1 exp(βsθ(x, yj))

, (9)

where β is a temperature to adjust the distribu-
tion of negative sampling. Different from subsam-
pling, SANS uses pθ(yi|x;β) that is predicted by

a model θ to adjust the frequency of the answer yi.
Since pθ(yi|x;β) is essentially a noise distribution,
it does not receive any gradient during training.

3 Triplet Adaptive Negative Sampling

In this section, we explain our proposed Triplet
Adaptive Negative Sampling (TANS) in detail. We
first show the overview of our TANS through the
comparison with the conventional smoothing meth-
ods of the NS loss for KGE (See §2.3) in §3.1 and
after that we explain the details of TANS through
its mathematical formulations in §3.2 and §3.3.

3.1 Overview
TANS is fundamentally different from SANS, with
SANS only taking into account the conditional
probability of negative samples and TANS being a
loss function that considers the joint probability of
the pair of queries and their answers.

Table 1 shows the characteristics of TANS and
the conventional smoothing methods of the NS loss
for KGE introduced in §2.3. These characteristics
are based on the decomposition of pd(x, y), the
appearance probability for the triplet (x, y), into
that of its answer pd(y|x) and query p(x):

pd(x, y) = pd(y|x)pd(x) (10)

In Eq. (10), smoothing both pd(y|x) and pd(x) is
similar to smoothing pd(x, y). However, smooth-
ing pd(x, y) does not ensure smoothing both pd(x)
and pd(y|x) considering the case of only one of
them being smoothed, and the left one being still
sparse. Similarly, smoothing only pd(x) or pd(y|x)
does not ensure pd(x, y) being smoothed due to
the case where one of them is still sparse. In Table
1, we denote such a case where the method can
influence the probability, but no guarantee of the
probability be smoothed as△.

In TANS, we aim to smooth pd(x, y) by smooth-
ing both pd(y|x) and pd(x) based on Eq. (10).

3.2 Formulation
Here, we induce TANS from SANS with targeting
to smooth pd(x, y) by smoothing both pd(y|x) and
pd(x). First, we assume a simple replacement from
pθ(y|x) to pθ(x, y) in ℓSANS(θ) of Eq. (9):

− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+

ν∑

yi∼U

pθ(x, yi) log(σ(−sθ(x, yi)− τ))
]
. (11)
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Method
Smoothing

Remarks
p(x, y) p(y|x) p(x)

Subsampling
Base ✓ △ △ p(y|x) and p(x) are influenced by p(x, y).
Uniq △ × ✓ p(x, y) is indirectly controlled by p(x).
Freq ✓ △ ✓ p(y|x) is indirectly controlled by p(x, y) or p(x).

SANS △ ✓ × p(x, y) is indirectly controlled by p(y|x).
TANS ✓ ✓ ✓

Table 1: The characteristics of each smoothing method for the NS loss in KGE (See §2.3 for the details.) and our
proposed TANS. ✓ and△ respectively denote the method smooths the probability directly and indirectly. × denotes
the method does not smooth the probability.

However, using Eq. (11) causes an imbalanced loss
between the first and second terms since the sum
of pθ(x, yi) on all negative samples is not always
1. Thus, Eq. (11) is impractical as a loss function.

As a solution, we focus on the decomposition
pθ(x, y) = pθ(y|x)pθ(x) and the fact that the sum
of pθ(y|x) of all negative samples is always 1. By
using pθ(x) to make a balance between the first
and second loss term, we can modify Eq. (11) and
induce our TANS as follows:

ℓTANS(θ)

=− 1

|D|
∑

(x,y)∈D
pθ(x; γ)

[
log(σ(sθ(x, y) + τ))

+
ν∑

yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (12)

pθ(x; γ) =
∑

yi∈D
pθ(x, yi; γ),

pθ(x, yi; γ)=
exp (γsθ(x, yi))∑

(x′,y′)∈Dexp(γsθ(x
′, y′))

, (13)

where γ is a temperature to smooth the frequency
of queries. Since TANS uses a noise distribution de-
cided by pθ(x; γ) and pθ(yi|x;β), it does not prop-
agate gradients through probabilities for negative
samples, and thus, memory usage is not increased.

3.3 Theoretical Interpretation

In this subsection, we discuss the difference and
similarities among TANS and other smoothing
methods for the NS loss in KGE. As shown in
Table 1, the subsampling methods, Base and Freq,
can smooth triplet frequencies similar to our TANS.
To investigate TANS from the view point of sub-

sampling, we reformulate Eq. (12) as follows:

ℓTANS(θ)

=− 1

|D|
∑

(x,y)∈D

[
A(x, y; γ) log(σ(sθ(x, y)+τ))

+
ν∑

yi∼U

B(x, y;β, γ) log(σ(−sθ(x, yi)−τ))
]
,

(14)

A(x, y; γ) = pθ(x; γ),

B(x, y;β, γ) = pθ(yi|x;β)pθ(x; γ). (15)

Apart from the temperature terms, α, β, and γ, we
can see that the general formulation of subsampling
in Eq. (3) and the above Eq. (14) has the same for-
mulation. Thus, TANS is not merely an extension
of SANS but also a novel subsampling method.

Even though their similar characteristic, TANS
and subsampling have an essential difference:
TANS smooths the frequencies by model-predicted
distributions as in Eq. (13), and the subsampling
methods smooth them by counting appearance fre-
quencies on the observed data as in Eq. (4), (5), (6),
and (7). For instance, TANS can work even when
the entity or relations included in the target triplet
appear more than once, which is theoretically dif-
ferent from conventional approaches.

Since the superiority of using either model-based
or count-based frequencies depends on the model
and dataset, we empirically investigate this point
through our experiments.

4 Unified Interpretation of SANS and
Subsampling

In the previous section, we understand that our
TANS can smooth triplets, queries, and answers
partially covered by SANS and subsampling meth-
ods. On the other hand, TANS only relies on model-
predicted frequencies to smooth the frequencies.
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Temperature Induced NS Loss
α β γ

= 0 = 0 = 0 Equivalent to ℓNS(θ), the basic NS loss in KGE (Eq. (2))
= 0 = 0 ̸= 0 Currently does not exist
= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9))
= 0 ̸= 0 ̸= 0 Equivalent to our ℓTANS(θ), the TANS loss (Eq. (12))
̸= 0 = 0 = 0 Proportional to ℓNS(θ), the basic NS loss in KGE (Eq. (2)) with subsampling in §2.3
̸= 0 = 0 ̸= 0 Currently does not exist
̸= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9)) with subsampling in §2.3
̸= 0 ̸= 0 ̸= 0 Equivalent to our ℓUNI(θ), the unified NS loss in KGE (Eq. (16))

and also equivalent to our ℓTANS(θ), the TANS loss (Eq. (12)) with subsampling in §2.3

Table 2: The relationship among the loss functions from the viewpoint of the unified NS loss, ℓUNI(θ) in Eq. (16).

Neubig and Dyer (2016) point out the benefits of
combining count-based and model-predicted fre-
quencies in language modeling. This section inte-
grates smoothing methods for the NS loss in KGE
from a unified interpretation.

4.1 Formulation

We formulate the unified loss function by introduc-
ing subsampling (Eq. (3)) into our TANS (Eq. (12))
as follows:

ℓUNI(θ)

=− 1

|D|
∑

(x,y)∈D
pθ(x; γ)

[
A(x, y;α)log(σ(sθ(x, y)+τ))

+η
ν∑

yi∼U

B(x, y;α)pθ(yi|x;β)log(σ(−sθ(x, yi)−τ))
]
,

(16)

where η is a hyperparamter that can be any value
to absorb the difference among the three different
subsampling methods, Base, Uniq, and Freq.

Here, we can induce the NS losses shown in our
paper from Eq. (16) by changing the temperature
parameters α, β, and γ. Table 2 shows the induced
losses from our ℓUNI(θ). Note that since pθ(x; γ)
only appears in our TANS, canceling pθ(x; γ) by
γ = 0 induces an inequivalent but a proportional
relationship to the conventional NS loss.

4.2 Theoretical Interpretation

As shown in Table 2, TANS w/ subsampling has
characteristics of all smoothing methods for the NS
loss in KGE introduced in this paper. Therefore,
we can expect higher performance of TANS w/
subsampling than the combination of conventional
methods, the basic NS, SANS, and subsampling.
However, because TANS w/ subsampling uses sub-
sampling in §2.3, we need to choose the one from

Base, Uniq, and Freq for TANS w/ subsampling.
Since this part is out of the scope of theoretical in-
terpretation, we investigate this in the experiments.

5 Experiments

In this section, we investigate our theoretical inter-
pretation in §3.3 and §4.2 through experiments.

5.1 Experimental Settings

Datasets We used three common datasets, FB15k-
237 (Toutanova and Chen, 2015), WN18RR, and
YAGO3-10 (Dettmers et al., 2018) 3.

Comparison Methods As comparison methods,
we used TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), RotatE (Sun et al., 2019), HAKE (Zhang
et al., 2020a), and HousE (Li et al., 2022). We fol-
lowed the original settings of Sun et al. (2019) for
TransE, DistMult, ComplEx, and RotatE with their
implementation4, the original settings of Zhang
et al. (2020a) for HAKE with their implementa-
tion5, and the original settings of Li et al. (2022) for
HousE with their implementation6. We tuned tem-
perature γ on the validation split for each dataset.

Metrics We employed conventional metrics in
KGC, i.e., MRR, Hits@1 (H@1), Hits@3 (H@3),
and Hits@10 (H@10) and reported the average
scores and their standard deviations by three differ-
ent runs with fixed random seeds.

3Table 3 in Appendix A shows the dataset statistics.
4https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding
5https://github.com/MIRALab-USTC/

KGE-HAKE
6https://github.com/rui9812/HousE
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Figure 3: KGC performance on common KGs (Notations are the same as in Figure 2).

5.2 Results

Since the result tables are large7, we discuss them
individually, focusing on important information in
the following subsections.

5.2.1 Effectiveness of TANS

Figure 3a shows the MRR scores of each method.
From the result, we can understand the effective-
ness of considering triplet information in SANS
as conducted in TANS. Thus, the result is along
with our expectation in §3.3 that TANS can cover
the role of subsampling methods. However, as the
result of HAKE on WN18RR shows, there is a case
that subsampling methods outperform TANS. As
discussed in §3.3, using only TANS does not cover
all combinations of NS loss and subsampling. Con-
sidering this theoretical fact, we further compare
TANS with subsampling and the SANS loss with
subsampling in the following section.

7The full experimental results are listed in Appendix B.
The scores are included in Table 5, 6, and 7 of Appendix B.1.
The training loss curves and validation MRR curves for each
smoothing method are in Figure 6, 7, and 8 of Appendix B.2.

5.2.2 Validity of the Unified Interpretation
Figure 3b shows the result for each configuration.
We can see performance improvements by using
subsampling in both SANS and TANS. Further-
more, in almost all cases, TANS with subsampling
achieve the highest MRR. This observation is along
with the theoretical conclusion in §3.3 that TANS
with subsampling can cover the characteristic of
other NS loss in terms of smoothing. On the other
hand, the results of HAKE on YAGO3-10 show the
different tendency that SANS with subsampling
achieves the best MRR instead of TANS. Because
the model prediction estimates the triplet frequen-
cies, TANS is influenced by the selected model.
Therefore, carefully choosing the combination of
a loss function and model is still effective in im-
proving KGC performance on the NS loss with
subsampling.

6 Analysis

We analyze how TANS mitigates the sparsity prob-
lem in imbalanced KGs commonly caused by low
frequent triplets in KGC. By considering that all
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(Notations are the same as in Figure 2).

triplets in KGs appear at most once, we focus on
queries. We extracted 0.5% triplets with the highest
or lowest frequent queries in training, validation,
and test splits as the sparser subsets FB15k-237-
HL, WN18RR-HL, and YAGO3-10-HL, respec-
tively 8 from original data, for the investigation.

Figure 4 shows MRRs for each model on each
sparser dataset. From the result, we can under-
stand that TANS can perform even much better in
KGC when KGs get more imbalanced. You can
see further detailed results in Table 8, 9, and 10
of Appendix C.3.

7 Related Work

Knowledge Graph Knowledge graphs have im-
portant roles in various knowledge-intensive NLP
tasks like dialog (Moon et al., 2019), question an-
swering (Reese et al., 2020), named entity recogni-
tion (Liu et al., 2019), open-domain questions (Hu
et al., 2022), recommendation systems (Gao et al.,
2020), and commonsense reasoning (Sakai et al.,
2024b), etc. In addition to these text-only tasks,
knowledge-intensive vision and language (V&L)
tasks such as visual question answering (VQA)
(Yue et al., 2023), image generation (Kamigaito
et al., 2023), explanation generation (Hayashi et al.,
2024), and image review generation (Saito et al.,
2024) also require external knowledge. Visual KGs
(Zhu et al., 2024) have the potential to contribute to
solving these tasks. Therefore, KGs are important
materials in various different fields.

Knowlege Graph Completion Even though
KGs are useful, their sparsity is a fundamental prob-

8Note that we show their appearance frequencies of queries
and answers in the training data in Figure 5 and detailed
statistics in Table 4 of Appendix C.1 and C.2, respectively.

lem. To solve the sparsity of knowledge graphs, we
need to complete them by inferring their unseen
links between nodes, which are entities. For that
purpose, knowledge graph completion (KGC) and
knowledge graph embedding (KGE) (Bordes et al.,
2011), which represents KG information as a con-
tinuous vector space, are commonly used. As KGE
methods, vector space models like TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), RotatE (Sun et al.,
2019), HAKE (Zhang et al., 2020a), and HousE (Li
et al., 2022), that learn only from task-specific
datasets expand this field as pioneers. As well
as such approaches, pre-trained language model
(PLM)-based approaches like KEPLER (Wang
et al., 2021) and SimKGC (Wang et al., 2022)
also have an important role in KGC due to their
ability to utilize the knowledge obtained in pre-
training. However, as pointed out by Sakai et al.
(2024a), PLM-based approaches have a leakage
issue caused by data contamination in pre-training.
Generation-based KGC methods like KGT5 (Sax-
ena et al., 2022) and GenKGC (Xie et al., 2022) are
unique in directly generating entity names. In hier-
archical text classification (HTC), generation-based
approaches contribute to improving performance
(Kwon et al., 2023) supported by considering label
hierarchies by fusing pre-trained text and label em-
beddings (Xiong et al., 2021; Zhang et al., 2021)
on the decoder. However, Sakai et al. (2024a) point
out that commonly used KGC methods conduct
link-level prediction, and such generation-based
KGC methods make it difficult to use structure in-
formation of KGs directly. Thus, their performance
gain is limited. This situation requires investigating
the benefits of inferring links by generation-based
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KGC under predefined entities and relationships.

Negative Sampling Mikolov et al. (2013) ini-
tially propose the NS loss of the frequent words
to train their word embedding model, word2vec.
Trouillon et al. (2016) introduce the NS loss to
KGE to speed up training. Melamud et al. (2017)
use the NS loss to train the language model. In
contextualized pre-trained embeddings, Clark et al.
(2020a) indicate that a BERT (Devlin et al., 2019)-
like model ELECTRA (Clark et al., 2020b) uses the
NS loss to perform better and faster than language
models. Sun et al. (2019) extend the NS loss to
SANS loss for KGE and propose their noise distri-
bution, which is subsampled by a uniformed prob-
ability pθ(yi|x). Kamigaito and Hayashi (2021)
point out the sparseness problem of KGs through
their theoretical analysis of the NS loss in KGE.
Furthermore, Kamigaito and Hayashi (2022a,b) re-
veal that subsampling (Mikolov et al., 2013) can
alleviate the sparseness problem in the NS for KGE
and conclude three assumptions for subsampling,
i.e., Base, Freq, and Uniq. Feng et al. (2023) in-
corporate their proposed model-based subsampling
that estimates frequencies for entities and their re-
lationships by a trained KGE model into the sub-
sampling of the NS loss to mitigate the sparseness
issue of counting the frequency by increasing com-
putational cost to train the additional KGE model.

Our Work Through our work, we theoretically
clarify the position of the previous works on
SANS loss and subsampling from the viewpoint
of smoothing methods for the NS loss in KGE.
Since our work unitedly interprets SANS loss and
subsampling, our proposed TANS inherits the ad-
vantages of conventional works and can deal with
the sparsity problem in the NS loss for KGE.

8 Conclusion

We reveal the relationships between SANS loss and
subsampling for the KG completion task through
theoretical analysis. We explain that SANS loss
and subsampling under three assumptions, Base,
Freq, and Uniq have similar roles to mitigate the
sparseness problem of queries and answers of KGs
by smoothing the frequencies of queries and an-
swers. Furthermore, based on our interpretation,
we induce a new loss function, Triplet Adaptive
Negative Sampling (TANS), by integrating SANS
loss and subsampling. We also introduce a theoreti-
cal interpretation that TANS with subsampling can

cover all conventional combinations of SANS loss
and subsampling.

We verified our interpretation by empirical
experiments in three common datasets, FB15k-
237, WN18RR, and YAGO3-10, and six popular
KGE models, TransE, DistMult, ComplEx, Ro-
tatE, HAKE, and HousE. The experimental results
show that our TANS loss can outperform subsam-
pling and SANS loss with many models in terms
of MRR as expected by our theoretical interpreta-
tion. Furthermore, the combinatorial use of TANS
and subsampling achieved comparable or better
performance than other combinations and showed
the validity of our theoretical interpretation that
TANS with subsampling can cover all conventional
combinations of SANS loss and subsampling in
KGE.

Limitations

Our experiments are conducted exclusively on pub-
lic datasets, which are relatively well-balanced.
Consequently, we anticipate that our TANS will
perform better on real-world KGs.

Ethics Statement

We used the publicly available datasets, FB15k-
237, WN18RR, and YAGO3-10, to train and evalu-
ate KGE models, and there is no ethical considera-
tion.

Reproducibility Statement

We used the publicly available code to implement
KGE models, TransE, DistMult, ComplEx, RotatE,
HAKE, and HousE with the author-provided hy-
perparameters as described in §5.1. Regarding the
temperature parameter γ, we tuned it on the valida-
tion split for each dataset and reported the values
in Table 5, 6, and 7 of Appendix B. Our code and
data are available at https://github.com/
xincanfeng/ss_kge.
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A Dataset Statistics

Table 3 shows the dataset statistics for dataset
FB15k-237, WN18RR, and YAGO3-10, introduced
in §5.1.

B Full Experimental Results

B.1 Results Tables

Table 5, 6, and 7 list all results on FB15k-237,
WN18RR, and YAGO3-10, explained in §5.2. In
these tables, the bold scores are the best results
for each subsampling type (e.g. None, Base, Freq,
and Uniq.), † indicates the best scores for each
model, SD denotes the standard deviation of the
three trials, and γ denotes the temperature chosen
by development data.

B.2 Training Loss and Validation MRR Curve

Figure 6, 7, and 8 show the training loss curves and
validation MRR curves for each smoothing method.
From these figures, we can understand that the
convergence of TANS loss is as well as SANS and
NS loss on datasets FB15k-237, WN18RR, and
YAGO3-10 for each KGE model. Meanwhile, the
time complexity of TANS is the same with SANS
and NS loss too.

C Sparse Queries

C.1 Appearance Frequencies of Queries and
Answers

Figure 5 shows the appearance frequencies of
queries and answers in the training set of our fil-
tered sparser data FB15k-237-HL, WN18RR-HL,
and YAGO3-10-HL, expained in §6.

C.2 Data Statistics
Table 4 shows detailed statistics of our filtered
sparser data FB15k-237-HL, WN18RR-HL, and
YAGO3-10-HL, expained in §6.

C.3 Detailed Results
Table 8, 9, and 10 shows the detailed results on
our filtered sparser data FB15k-237-HL, WN18RR-
HL, and YAGO3-10-HL, expained in §6. Notations
are as those described in §B.1.
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Figure 5: Appearance frequencies of queries and answers (entities) in the training data of the sparser subsets
FB15k-237-HL, WN18RR-HL, and YAGO3-10-HL. Note that the indices are sorted from high frequency to low.

Dataset Split Tuple Query Entity Relation

FB15k-237

Total 310,116 150,508 14,541 237

#Train 272,115 138,694 14,505 237

#Valid 17,535 19,750 9,809 223

#Test 20,466 22,379 10,348 224

WN18RR

Total 93,003 77,479 40,943 11

#Train 86,835 74,587 40,559 11

#Valid 3,034 5,431 5,173 11

#Test 3,134 5,565 5,323 11

YAGO3-10

Total 1,089,040 372,775 123,182 37

#Train 1,079,040 371,077 123,143 37

#Valid 5,000 8,534 7,948 33

#Test 5,000 8,531 7,937 34

Table 3: Statistics for each public dataset.

Dataset Split Tuple Query Entity Relation

FB15k-237-HL

Total 111,631 63,330 11,828 155

#Train 95,244 55,923 11,600 155

#Valid 7,571 6,918 4,933 90

#Test 8,816 7,830 5,406 89

WN18RR-HL

Total 14,697 14,675 12,973 10

#Train 13,758 13,785 12,275 10

#Valid 465 619 613 9

#Test 474 623 619 8

YAGO3-10-HL

Total 366,079 182,274 95,788 29

#Train 362,728 181,196 95,432 29

#Valid 1,662 2,316 2,113 13

#Test 1,689 2,359 2,135 14

Table 4: Statistics of the filtered sparser datasets.
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FB15k-237

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 23.9 0.2 15.8 0.1 26.1 0.3 40.0 0.2 -
SANS 22.3 0.1 13.8 0.1 24.2 0.0 39.5 0.2 -
TANS 32.8 0.2 23.2 0.1 36.2 0.2 52.2 0.1 -2

Base

NS 27.2 0.1 19.1 0.1 29.5 0.1 43.0 0.2 -
SANS 32.3 0.0 23.0 0.1 35.4 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.1 †36.9 0.1 †52.7 0.0 -1

Freq

NS 25.1 0.2 17.1 0.3 27.4 0.2 41.0 0.2 -
SANS 32.7 0.1 23.6 0.1 36.0 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.0 36.8 0.1 52.1 0.2 -0.5

Uniq

NS 22.8 0.4 14.7 0.5 24.7 0.4 39.0 0.1 -
SANS 32.6 0.0 23.5 0.1 35.8 0.1 51.2 0.1 -
TANS 33.0 0.1 23.5 0.1 36.5 0.1 52.1 0.1 -0.5

DistMult

None

NS 23.3 0.1 15.6 0.1 25.7 0.1 38.4 0.1 -
SANS 22.3 0.1 14.0 0.2 24.1 0.1 39.2 0.0 -
TANS 31.0 0.1 21.7 0.1 34.0 0.1 49.6 0.1 -1

Base

NS 25.4 0.1 17.9 0.1 27.6 0.1 40.4 0.1 -
SANS 30.8 0.1 21.9 0.1 33.6 0.1 48.4 0.1 -

TANS †31.5 0.1 †22.4 0.1 †34.6 0.1 †49.7 0.0 -0.5

Freq

NS 24.0 0.1 16.7 0.2 25.9 0.1 38.4 0.1 -
SANS 29.9 0.0 21.2 0.1 32.8 0.0 47.5 0.1 -
TANS 30.7 0.0 21.6 0.0 34.0 0.0 49.0 0.0 -1

Uniq

NS 21.0 0.1 13.5 0.2 22.8 0.2 36.3 0.2 -
SANS 29.2 0.0 20.5 0.1 31.9 0.0 46.7 0.0 -
TANS 30.7 0.1 21.5 0.1 33.8 0.1 49.3 0.1 -2

TransE

None

NS 30.4 0.0 21.3 0.1 33.4 0.1 48.5 0.0 -

SANS 33.0 0.1 22.9 0.1 37.2 0.1 †53.0 0.1 -

TANS 33.6 0.0 23.9 0.0 37.3 0.0 †53.0 0.1 -0.5

Base

NS 29.4 0.1 20.0 0.1 32.8 0.0 48.1 0.0 -
SANS 33.0 0.1 23.1 0.1 36.8 0.1 52.7 0.1 -
TANS 33.0 0.0 23.1 0.0 36.8 0.1 52.7 0.1 -0.1

Freq

NS 29.3 0.1 20.0 0.1 32.8 0.1 47.8 0.1 -
SANS 33.5 0.0 23.9 0.1 37.2 0.1 52.8 0.1 -
TANS 33.5 0.1 23.9 0.1 37.2 0.0 52.8 0.1 -0.1

Uniq

NS 30.1 0.1 21.0 0.1 33.6 0.0 48.0 0.0 -
SANS 33.5 0.0 23.9 0.0 37.3 0.2 52.7 0.1 -

TANS †34.0 0.1 †24.5 0.1 †37.7 0.1 †53.0 0.1 0.5

RotatE

None

NS 30.3 0.0 21.4 0.1 33.2 0.1 48.4 0.1 -
SANS 32.9 0.1 22.8 0.1 36.8 0.0 53.1 0.2 -

TANS 34.1 0.1 24.6 0.1 37.7 0.1 †53.3 0.1 -0.5

Base

NS 29.5 0.0 20.3 0.0 32.7 0.1 47.9 0.0 -
SANS 33.6 0.1 23.9 0.1 37.3 0.1 53.1 0.0 -
TANS 33.8 0.0 24.2 0.0 37.4 0.0 53.0 0.1 -0.5

Freq

NS 29.4 0.1 20.2 0.1 32.6 0.1 47.6 0.1 -
SANS 34.0 0.1 24.6 0.0 37.7 0.0 53.0 0.0 -
TANS 34.1 0.0 24.6 0.0 37.7 0.0 53.1 0.1 -0.01

Uniq

NS 30.1 0.0 21.2 0.1 33.3 0.1 47.7 0.1 -
SANS 33.9 0.1 24.4 0.1 37.6 0.1 52.9 0.1 -

TANS †34.2 0.0 †24.7 0.1 †37.8 0.0 53.1 0.1 0.5

HAKE

None

NS 30.8 0.1 21.8 0.1 33.8 0.1 48.6 0.1 -
SANS 32.8 0.2 22.7 0.3 36.9 0.1 52.8 0.1 -
TANS 34.4 0.1 24.9 0.1 37.9 0.2 53.6 0.0 -0.5

Base

NS 30.4 0.1 21.6 0.1 33.3 0.1 48.2 0.0 -
SANS 34.1 0.1 24.4 0.1 37.9 0.1 53.6 0.2 -
TANS 34.1 0.0 24.4 0.0 37.9 0.0 53.7 0.0 -0.05

Freq

NS 30.2 0.1 21.5 0.0 33.1 0.0 47.7 0.1 -
SANS 34.7 0.0 25.2 0.1 38.2 0.0 53.8 0.1 -
TANS 34.6 0.0 25.0 0.1 38.2 0.2 53.7 0.1 0.05

Uniq

NS 30.7 0.1 22.2 0.1 33.5 0.1 48.0 0.1 -
SANS 34.7 0.1 25.1 0.1 38.3 0.1 53.9 0.1 -

TANS †34.9 0.0 †25.4 0.0 †38.6 0.1 †54.0 0.1 0.5

HousE

None

NS 29.1 0.1 20.6 0.1 31.6 0.1 46.3 0.1 -
SANS 34.7 0.2 24.8 0.2 38.5 0.3 54.4 0.2 -
TANS 35.6 0.1 26.1 0.1 39.4 0.1 54.5 0.1 -1

Base

NS 28.1 0.1 19.6 0.1 30.9 0.2 45.1 0.2 -
SANS 35.2 0.2 25.6 0.2 39.0 0.2 54.4 0.3 -
TANS 35.6 0.1 26.1 0.1 39.4 0.2 54.5 0.1 -0.5

Freq

NS 27.9 0.1 19.2 0.1 30.7 0.2 45.2 0.1 -
SANS 35.9 0.2 26.4 0.2 39.5 0.2 54.7 0.1 -
TANS 35.8 0.2 26.4 0.2 39.6 0.2 54.7 0.1 -0.01

Uniq

NS 28.8 0.1 20.2 0.2 31.9 0.1 45.7 0.0 -

SANS 36.1 0.1 †26.7 0.2 39.8 0.1 †54.8 0.2 -

TANS †36.2 0.1 †26.7 0.2 †39.9 0.1 †54.8 0.1 0.1

Table 5: Results on FB15k-237.91



WN18RR

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 44.5 0.1 38.1 0.2 48.3 0.2 55.5 0.1 -
SANS 45.0 0.1 41.0 0.1 46.5 0.3 53.3 0.3 -
TANS 47.3 0.0 43.3 0.0 49.1 0.1 55.7 0.1 -2

Base

NS 45.0 0.1 38.9 0.1 48.6 0.2 55.7 0.1 -
SANS 46.9 0.1 42.7 0.2 48.5 0.2 55.5 0.2 -
TANS 47.7 0.2 43.6 0.1 49.3 0.2 55.9 0.3 -2

Freq

NS 45.1 0.1 38.9 0.1 48.8 0.2 56.0 0.2 -
SANS 47.4 0.1 43.2 0.1 49.2 0.2 56.0 0.2 -

TANS 48.0 0.1 43.9 0.1 †49.7 0.1 56.1 0.1 -2

Uniq

NS 45.0 0.1 38.7 0.1 48.8 0.1 56.0 0.3 -
SANS 47.5 0.1 43.3 0.1 49.1 0.2 56.2 0.2 -

TANS †48.3 0.1 †44.4 0.2 49.6 0.1 †56.3 0.2 -1

DistMult

None

NS 38.5 0.2 30.6 0.3 42.9 0.2 52.5 0.1 -
SANS 42.4 0.0 38.2 0.1 43.7 0.0 51.0 0.2 -
TANS 44.2 0.1 40.1 0.1 45.3 0.1 53.2 0.2 -2

Base

NS 39.3 0.2 31.9 0.2 43.3 0.1 53.0 0.2 -
SANS 43.9 0.1 39.4 0.1 45.2 0.1 53.3 0.2 -
TANS 44.6 0.0 40.5 0.2 45.7 0.1 53.9 0.1 -2

Freq

NS 39.0 0.2 31.2 0.2 43.2 0.1 52.9 0.2 -
SANS 44.5 0.1 40.0 0.1 46.0 0.1 54.2 0.2 -
TANS 44.7 0.1 40.5 0.2 45.8 0.0 54.0 0.2 -2

Uniq

NS 38.8 0.2 30.8 0.2 43.1 0.1 53.0 0.2 -

SANS 44.7 0.1 40.1 0.1 †46.2 0.3 54.3 0.0 -

TANS †45.0 0.1 †40.7 0.1 46.1 0.2 †54.5 0.2 -0.5

TransE

None

NS 21.1 0.0 2.1 0.1 36.5 0.2 50.4 0.2 -
SANS 22.5 0.1 1.7 0.1 40.2 0.1 52.5 0.2 -
TANS 22.7 0.0 2.5 0.0 39.5 0.2 53.4 0.1 0.5

Base

NS 20.3 0.1 1.6 0.1 35.1 0.2 49.9 0.2 -
SANS 22.3 0.0 1.3 0.1 40.2 0.1 52.9 0.1 -
TANS 22.4 0.1 1.4 0.1 40.1 0.1 53.0 0.1 0.1

Freq

NS 21.0 0.1 1.8 0.1 36.4 0.2 51.0 0.2 -
SANS 23.0 0.0 1.9 0.1 40.9 0.2 53.6 0.0 -

TANS 23.1 0.0 2.1 0.0 †41.0 0.1 53.8 0.0 0.1

Uniq

NS 21.5 0.1 2.2 0.0 37.2 0.1 51.4 0.2 -
SANS 23.2 0.0 2.3 0.1 40.9 0.2 53.6 0.1 -

TANS †23.3 0.1 †3.0 0.0 40.2 0.2 †54.4 0.1 0.5

RotatE

None

NS 47.0 0.1 42.5 0.2 48.6 0.2 55.8 0.3 -
SANS 47.2 0.1 42.6 0.1 49.1 0.1 56.7 0.0 -
TANS 47.3 0.1 42.6 0.1 49.1 0.1 56.7 0.1 -0.01

Base

NS 47.0 0.0 42.2 0.1 48.7 0.1 56.3 0.1 -
SANS 47.5 0.1 42.7 0.2 49.3 0.1 57.2 0.1 -
TANS 47.5 0.1 42.7 0.2 49.3 0.1 57.1 0.1 0.01

Freq

NS 47.1 0.1 42.3 0.1 48.7 0.1 56.4 0.1 -

SANS 47.7 0.1 †42.9 0.2 49.6 0.0 57.4 0.1 -
TANS 47.7 0.1 42.8 0.2 49.7 0.1 57.4 0.1 0.1

Uniq

NS 47.2 0.2 42.7 0.2 48.7 0.1 56.3 0.1 -

SANS 47.7 0.1 †42.9 0.1 49.6 0.1 57.2 0.1 -

TANS †47.8 0.2 42.8 0.3 †49.8 0.1 †57.6 0.1 0.5

HAKE

None

NS 48.8 0.1 44.5 0.1 50.5 0.2 57.3 0.1 -
SANS 48.9 0.0 44.5 0.2 50.6 0.3 57.7 0.1 -
TANS 48.9 0.0 44.4 0.1 50.5 0.3 57.8 0.1 0.01

Base

NS 49.2 0.0 44.6 0.1 51.1 0.1 57.9 0.2 -
SANS 49.5 0.1 45.0 0.2 51.2 0.2 58.2 0.2 -
TANS 49.5 0.1 45.0 0.2 51.2 0.3 58.4 0.2 0.1

Freq

NS 49.3 0.1 44.8 0.1 51.3 0.2 58.0 0.2 -
SANS 49.7 0.1 45.2 0.2 51.5 0.1 58.4 0.2 -
TANS 49.7 0.0 45.2 0.2 51.6 0.3 58.4 0.2 -0.01

Uniq

NS 49.4 0.2 44.9 0.2 51.3 0.2 57.8 0.2 -

SANS †49.9 0.0 45.3 0.1 †51.8 0.2 †58.6 0.2 -

TANS †49.9 0.1 †45.4 0.1 †51.8 0.2 58.5 0.2 0.05

HousE

None

NS 47.4 0.1 41.7 0.1 50.2 0.1 57.3 0.1 -
SANS 49.7 0.1 44.8 0.2 51.5 0.1 59.5 0.1 -
TANS 50.2 0.1 45.3 0.1 52.0 0.1 60.0 0.1 -0.5

Base

NS 48.1 0.1 42.4 0.1 50.9 0.1 58.5 0.2 -
SANS 51.2 0.1 46.7 0.1 53.0 0.2 60.3 0.1 -
TANS 51.3 0.1 46.7 0.2 53.0 0.0 60.4 0.1 0.05

Freq

NS 48.1 0.2 42.5 0.3 50.9 0.2 58.5 0.2 -

SANS †51.4 0.1 †46.8 0.1 †53.2 0.3 †60.5 0.1 -

TANS 51.3 0.2 46.7 0.2 53.1 0.3 †60.5 0.1 0.05

Uniq

NS 48.1 0.1 42.5 0.1 50.8 0.2 58.1 0.1 -

SANS 51.2 0.2 †46.8 0.2 52.7 0.1 60.1 0.1 -
TANS 51.1 0.3 46.7 0.5 52.7 0.1 60.0 0.1 -0.1

Table 6: Results on WN18RR.
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YAGO3-10

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

RotatE

None

NS 43.5 0.1 32.8 0.2 49.1 0.2 63.7 0.3 -
SANS 49.6 0.2 39.9 0.1 55.3 0.3 67.3 0.2 -
TANS 49.6 0.2 40.0 0.2 55.4 0.5 67.2 0.3 -0.05

Base

NS 44.8 0.1 34.5 0.3 50.0 0.2 64.7 0.2 -
SANS 49.6 0.3 40.1 0.3 55.2 0.4 67.4 0.3 -
TANS 49.5 0.3 40.1 0.3 55.0 0.5 67.3 0.3 -0.05

Freq

NS 44.8 0.2 34.5 0.3 50.0 0.1 64.7 0.2 -
SANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.3 -
TANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.2 0.01

Uniq

NS 44.4 0.2 34.0 0.3 49.8 0.2 64.3 0.2 -
SANS 50.0 0.3 40.6 0.2 55.6 0.3 67.5 0.2 -

TANS †50.1 0.2 †40.7 0.1 †55.7 0.3 †67.6 0.3 0.05

HAKE

None

NS 47.4 0.3 36.6 0.5 53.9 0.1 67.0 0.1 -
SANS 53.5 0.2 44.6 0.3 59.1 0.4 69.0 0.2 -
TANS 53.7 0.1 45.3 0.3 59.0 0.1 68.8 0.1 0.05

Base

NS 48.8 0.3 38.4 0.4 55.0 0.2 68.1 0.3 -
SANS 54.6 0.2 46.2 0.3 59.9 0.2 69.6 0.2 -
TANS 54.5 0.2 45.9 0.3 59.9 0.2 69.9 0.1 -0.1

Freq

NS 49.3 0.2 39.1 0.3 55.4 0.1 68.1 0.2 -
SANS 54.6 0.4 46.0 0.7 60.2 0.1 69.6 0.3 -
TANS 54.8 0.2 46.4 0.3 60.1 0.1 69.6 0.3 0.05

Uniq

NS 45.2 0.1 34.3 0.1 51.1 0.1 65.8 0.3 -

SANS †55.2 0.3 †46.8 0.5 †60.5 0.2 †70.0 0.3 -

TANS 55.1 0.2 †46.8 0.3 60.3 0.1 69.9 0.2 -0.1

HousE

None

NS 29.2 0.0 18.3 0.1 33.6 0.2 50.1 0.2 -
SANS 54.8 1.3 46.8 1.3 59.7 1.2 68.9 1.2 -
TANS 54.8 1.2 46.9 1.2 59.6 1.2 68.8 1.1 0.01

Base

NS 29.6 0.1 19.8 0.1 33.6 0.2 48.9 0.1 -
SANS 56.7 0.1 48.6 0.2 61.7 0.2 71.3 0.1 -

TANS 57.0 0.2 49.0 0.4 61.9 0.3 †71.5 0.2 -0.1

Freq

NS 27.3 0.8 17.5 0.9 31.0 0.8 46.6 0.8 -
SANS 57.0 0.1 49.0 0.2 62.0 0.1 71.4 0.1 -

TANS 57.2 0.1 49.3 0.1 †62.3 0.1 71.4 0.1 -0.1

Uniq

NS 28.1 0.2 18.2 0.4 31.8 0.1 47.6 0.0 -
SANS 57.2 0.1 49.3 0.2 62.0 0.0 71.4 0.2 -

TANS †57.3 0.2 †49.5 0.3 62.2 0.1 †71.5 0.1 -0.05

Table 7: Results on YAGO3-10.
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Figure 6: Training loss and validation MRR Curve on FB15k-237.

94



Figure 7: Training loss and validation MRR Curve on WN18RR.
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Figure 8: Training loss and validation MRR Curve on YAGO3-10.
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FB15k-237-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 38.1 0.3 28.4 0.5 -

SANS 35.2 0.2 24.5 0.3 -

TANS 41.1 0.1 33.0 0.1 -1

Base

NS 40.5 0.1 31.8 0.2 -

SANS 38.4 0.2 28.9 0.2 -

TANS 41.8 0.1 33.6 0.2 -1

Freq

NS 41.1 0.1 32.8 0.1 -

SANS 40.2 0.0 31.5 0.1 -

TANS †42.0 0.1 †33.7 0.1 -1

Uniq

NS 41.5 0.1 33.2 0.1 -

SANS 41.1 0.0 32.8 0.0 -

TANS 41.9 0.2 33.5 0.2 -0.1

RotatE

None

NS 40.0 0.1 30.8 0.1 -

SANS 36.3 0.1 25.3 0.2 -

TANS 41.5 0.0 33.1 0.1 -1

Base

NS 41.8 0.1 33.6 0.1 -

SANS 40.7 0.1 31.7 0.2 -

TANS 42.0 0.1 33.8 0.1 -0.5

Freq

NS 41.3 0.1 33.2 0.1 -

SANS 42.0 0.2 33.6 0.3 -

TANS †42.3 0.0 †34.1 0.1 -0.5

Uniq

NS 41.7 0.1 33.7 0.2 -

SANS 42.2 0.1 33.8 0.2 -

TANS 42.1 0.1 33.8 0.2 -0.05

HousE

None

NS 39.1 0.2 29.8 0.2 -

SANS 37.0 0.2 26.2 0.4 -

TANS 42.3 0.1 34.1 0.2 -2

Base

NS 40.3 0.1 31.3 0.2 -

SANS 40.5 0.4 31.3 0.4 -

TANS 42.4 0.2 34.2 0.3 -2

Freq

NS 39.8 0.3 31.0 0.3 -

SANS 42.1 0.2 33.8 0.2 -

TANS †42.8 0.3 †34.8 0.4 -1

Uniq

NS 40.5 0.2 31.9 0.2 -

SANS 42.4 0.2 34.4 0.2 -

TANS 42.5 0.1 34.5 0.0 -1

Table 8: Results on FB15k-237-HL.

WN18RR-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 10.8 0.1 8.7 0.2 -

SANS 10.3 0.1 7.8 0.1 -

TANS 13.9 0.2 †12.1 0.2 -2

Base

NS 12.1 0.2 9.5 0.3 -

SANS 11.1 0.1 9.1 0.1 -

TANS 13.7 0.1 11.7 0.3 -2

Freq

NS 12.4 0.1 10.4 0.1 -

SANS 11.9 0.2 9.5 0.2 -

TANS †14.2 0.5 11.9 0.4 -2

Uniq

NS 13.3 0.3 11.3 0.3 -

SANS 11.9 0.2 9.7 0.2 -

TANS 14.1 0.2 11.7 0.2 -2

RotatE

None

NS 14.2 0.2 11.8 0.3 -

SANS 13.9 0.3 11.7 0.3 -

TANS 14.4 0.1 11.8 0.2 -2

Base

NS 13.9 0.2 11.5 0.2 -

SANS 14.1 0.3 11.7 0.3 -

TANS 14.5 0.1 11.7 0.1 -2

Freq

NS 14.4 0.1 12.0 0.1 -

SANS 14.3 0.4 12.0 0.3 -

TANS †15.1 0.1 12.2 0.1 -2

Uniq

NS 14.4 0.2 12.2 0.1 -

SANS 14.2 0.2 11.9 0.2 -

TANS †15.1 0.2 †12.3 0.3 -2

HousE

None

NS 10.7 1.8 8.4 1.4 -

SANS 11.7 1.1 9.5 0.9 -

TANS 13.4 0.4 11.0 0.4 -2

Base

NS 9.9 0.4 8.4 0.4 -

SANS 11.5 0.2 9.5 0.2 -

TANS 13.4 0.2 11.3 0.3 -2

Freq

NS †13.9 0.1 11.8 0.2 -

SANS 13.8 0.2 11.9 0.3 -

TANS †13.9 0.3 †12.0 0.2 0.1

Uniq

NS 13.7 0.1 11.6 0.1 -

SANS 13.8 0.2 11.6 0.2 -

TANS 13.8 0.2 11.7 0.3 -0.05

Table 9: Results on WN18RR-HL.
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YAGO3-10-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 45.9 0.0 36.9 0.1 -

SANS 47.8 0.4 40.0 0.6 -

TANS 49.2 0.4 39.8 0.7 -0.5

Base

NS 50.2 0.3 43.0 0.3 -

SANS 47.7 0.4 40.5 0.7 -

TANS 50.1 0.3 41.4 0.3 -0.5

Freq

NS †50.8 0.3 †43.3 0.2 -

SANS 48.8 0.1 41.3 0.2 -

TANS 49.7 0.3 41.0 0.2 -0.5

Uniq

NS 49.4 0.2 40.8 0.2 -

SANS 46.9 0.4 39.8 0.5 -

TANS 49.4 0.6 40.6 0.8 -0.5

RotatE

None

NS 38.0 0.1 28.7 0.3 -

SANS 41.3 0.1 32.3 0.2 -

TANS 43.5 0.1 34.8 0.2 -0.5

Base

NS 40.6 0.2 31.8 0.5 -

SANS 43.8 0.2 35.1 0.1 -

TANS 43.8 0.2 35.2 0.1 -0.05

Freq

NS 40.3 0.2 31.4 0.4 -

SANS 43.5 0.2 34.6 0.1 -

TANS 43.7 0.0 35.1 0.1 -0.1

Uniq

NS 40.2 0.0 31.3 0.2 -

SANS 43.9 0.1 35.1 0.2 -

TANS †44.1 0.1 †35.4 0.3 -0.1

HousE

None

NS 37.8 0.3 26.9 0.4 -

SANS 50.3 0.1 40.7 0.3 -

TANS †52.5 0.5 †45.4 0.3 -0.5

Base

NS 42.8 1.2 34.3 1.9 -

SANS 51.9 0.3 44.4 0.2 -

TANS 51.9 0.6 44.3 0.8 0.05

Freq

NS 39.7 0.8 29.9 1.5 -

SANS 48.6 1.7 40.0 1.4 -

TANS 52.0 0.1 44.5 0.3 -1

Uniq

NS 41.0 0.1 31.6 0.1 -

SANS 49.4 0.3 41.1 1.1 -

TANS 52.2 0.1 44.7 0.1 -0.05

Table 10: Results on YAGO3-10-HL.
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Abstract

Recent breakthroughs in scale have enabled
the emergence of powerful generative language
models, and the ability to fine-tune these mod-
els on various tasks by casting them into
prompts or instructions. In this landscape, the
problem of Unsupervised Domain Adaptation
(UDA), or the problem of leveraging knowl-
edge from a labeled source domain to an un-
labeled target domain, has been left behind,
with recent UDA methods still addressing dis-
criminative classification. In particular, two
popular UDA approaches, involving Continued
Pre-Training (CPT) and learning domain invari-
ant representations, have been under-explored
in the generative setting, signaling a gap. In this
work, we evaluate the utility of CPT for gener-
ative UDA. We first perform an empirical eval-
uation to measure the trade-offs between CPT
and strong methods promoting domain invari-
ance. We further evaluate how well the ben-
efits of CPT extend to different architectures,
tuning methods and data regimes. We then
motivate the use of CPT by studying to what
degree it benefits classification performance
on the target domain. Finally, we attempt to
understand the mechanism behind which CPT
improves classification performance on the un-
labeled target domain. Our findings suggest
that the model implicitly learns the downstream
task while predicting masked words informa-
tive to that task. Our work connects the body of
UDA research with that of instruction tuning,
enabling an initial step towards a wider appli-
cability of modern language models. Our code
is available at https://github.com/Uppaal/
cpt-generative-uda.

1 Introduction

Recent advancements in the pre-training of lan-
guage models have enabled the widespread use
of powerful generative models, which can be
leveraged across multiple domains with no train-
ing (Brown et al., 2020; Scao et al., 2022; Touvron

et al., 2023, inter alia). Despite these advance-
ments, these autoregressive models are still fragile
under certain kinds of data distribution shifts, mak-
ing their applications across these domains chal-
lenging (Ribeiro et al., 2020; Bajaj et al., 2021;
Chuang et al., 2023; Uppaal et al., 2024, inter alia).
This is addressed, in part, by the concept of instruc-
tion tuning with templates (Zhang et al., 2023; Sanh
et al., 2022; Ouyang et al., 2022; Wang et al., 2022;
Wei et al., 2022), enabling the learning of new tasks
without any randomly initialized parameters.

The problem of unsupervised domain adapta-
tion (UDA) leverages learned knowledge from a
labeled source domain to an unlabeled target do-
main (Pan and Yang, 2010; Ganin and Lempitsky,
2015; Long et al., 2015, inter alia). It is useful for
adaptation to unlabeled domains with high labeling
costs, where supervised instruction tuning does not
suffice. Despite the pervasive need for models to
generalize to such domains, recent UDA methods
still address discriminative classification, barring
the application of these approaches to recent gener-
ative models. In particular, Continued Pre-Training
and Domain Invariance-based methods, two widely
popular classes of UDA approaches (Ramponi and
Plank, 2020), are completely unexplored for UDA
in the generative setting.

The Continued Pre-Training (CPT) approach in-
volves extended pre-training on a domain or task,
followed by supervised training on the downstream
task (Gururangan et al., 2020). This approach
has been widely used for adaptation to labeled do-
mains (Gao et al., 2021; Kim et al., 2021; Hung
et al., 2023, inter alia), and in the UDA setup for un-
labeled domains (Han and Eisenstein, 2019; Zhang
et al., 2021b; Karouzos et al., 2021; Pfeiffer et al.,
2020; Parović et al., 2023). Invariance-based ap-
proaches attempt to learn representations that are
invariant across domains (Tzeng et al., 2014; Ganin
et al., 2016; Wu and Shi, 2022; Guo et al., 2022),
with the notion that when the learned representa-
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tions from both domains cannot be distinguished
by a classifier and the classifier performs well on
the source domain, it will also exhibit strong per-
formance on the target domain. These two classes
of methods introduce a trade-off: invariance-based
methods suffer from instability issues (Han and
Eisenstein, 2019; Kashyap et al., 2021), while con-
tinued pre-training requires a larger computational
budget. But how would this trade-off extrapolate
to the generative setting? For example, invariance-
based methods are well motivated in discriminative
tasks, where there is a clear decision boundary;
however, the same does not hold for generative
tasks.

To address these gaps, we introduce the setting of
Generative UDA, where an autoregressive model
is trained to leverage knowledge from a labeled
source domain to an unlabeled target domain, us-
ing only next word prediction as its objective. We
formalize the use of CPT for this setting in Sec-
tion 2, and then attempt to explore and understand
the behaviour of CPT for Generative UDA. We
begin by performing an empirical analysis on 40
real-world domain pairs to explore the tradeoff be-
tween continued pre-training and invariance-based
approaches, and find vanilla CPT to be competitive
with and significantly more stable than a state of
the art invariance-based approach (Section 3). We
then stress test CPT, by applying it across varying
model architectures and scales, tuning approaches
and data regimes. We find that CPT is robust
across these settings, unlike our invariance-based
approach (Section 4).

With recent language models being trained
across vast corpora which may include domains
similar to the target domain, the requirement for
continued pre-training may be raised to question.
In Section 5, we show that continued pre-training
is indeed essential for strong downstream perfor-
mance on the target domain, and this performance
rapidly degrades with limited target domain ex-
posure. Finally, we attempt to shed light on how
masking plays a role in improving classification ac-
curacy on the unlabeled target domain in Section 6.
We find that the model may implicitly learn the
downstream task as it predicts masked words that
are informative to the downstream task.

Our work attempts to connect the body of UDA
research with recent trends in language modeling,
by providing a set of insights into the behaviour
of the popular class of continued pre-training ap-

proaches, in the Generative UDA setting. We hope
this enables an initial step towards a wider applica-
bility of modern language models.

2 Continued Pre-Training for Generative
UDA

2.1 Preliminaries: The UDA Problem
We consider a text classification task, where X
is the input space of all text sentences and Y =
{1, ...K} is the label space. In the UDA prob-
lem, we have access to a source labeled dataset
Dsrc = {(xi, yi)}Ni=1 consisting of samples from
a joint distribution Psrc, and a target unlabeled
dataset Dtgt = {xj}Mj=1 sampling from a target
input distribution PX

tgt. We further denote PX
src

as the marginal distribution of Psrc on X , where
PX

src ̸= PX
tgt. The goal of UDA is to learn a func-

tion f : X → Y that minimizes the error rate
Ex∼PX

tgt
1[f(x) ̸= y].

2.2 CPT for UDA as a Sequence of Prompt
Based Tasks

We now formalize the extension of continued pre-
training to the setting of generative UDA. We use
the traditional two-phase training pipeline from Gu-
rurangan et al. (2020)1. The first phase uses tem-
plates to cast the source and target domain se-
quences into an autoregressive pre-training task.2

The second phase applies supervised instruction-
tuning of the model on source-labeled data.

Task 1: Autoregressive Continued Pre-training
We reuse the input sequences from the source-
labeled datasetDsrc as the source-unlabeled dataset,
denoted as DX

src. Next, similar to Raffel et al.
(2020); Song et al. (2019), for an unlabeled se-
quence x ∈ DX

src and Dsrc, we use a prompt tem-
plate to convert the sequence x to an input-output
sequence pair, i.e., M(x) = (x̃, ỹ). For masked
language modeling (MLM), an instruction is pre-
pended to a randomly masked sequence x to cre-
ate x̃. The output sequence ỹ is a concatenation
of masked words from x. For example, given
x =“The movie was so cool! Two hours of fun.”,
we construct x̃ =“Fill in the blanks: "The _ cool!

1While we use the two-phase multi-task training pipeline
(sequential) in our main experiments, in Appendix I, we show
that an equivalent single-phase multi-task training pipeline
(joint) results in similar performance.

2We investigate mask language modeling for T5 models
and switch to causal language modeling for decoder-only mod-
els with a few simple template changes. We compare both in
Section 4.
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Two hours _”, and ỹ = “<sep> movie was so <sep>
of fun. <sep>”. For causal language modeling
(CLM), x̃ = x.

Given (x̃, ỹ), we train an autoregressive LM
parameterized by θ to minimize the negative log-
likelihood loss averaged over output words and the
total loss over a corpus D = DX

src ∪ Dtgt.

ℓ(x̃, ỹ; θ) = − 1

|ỹ|
∑

t

logPθ(ỹt|x̃, ỹ1:t−1) (1)

LCPT(D; θ) =
1

|D|
∑

x∈D
ℓ(M(x); θ)

Task 2: Source Supervised Instruction-tuning
In the second phase, we use labeled data from the
source domain to train the model on the down-
stream classification task. Similar to the first phase,
we use prompts3 to generate input-output sequence
pairs: C(x, y) = (x̃, ỹ) ∀ (x, y) ∈ Dsrc. For ex-
ample, for sentiment classification, if x =“I like
this movie.”, y = 1 ⇒ x̃ = “[x] Is this sentence
positive or negative?”, ỹ = “Positive”.

Given the augmented sequence pair (x̃, ỹ) and
the model trained after the first phase, we compute
the same negative log-likelihood loss ℓ(x̃, ỹ; θ) in
Eq. (1). Finally, we define the total loss on the
source-labeled dataset in the second phase as:

LCLS(Dsrc; θ) =
1

|Dsrc|
∑

(x,y)∈Dsrc

l(C(x, y); θ)

(2)
After training, we follow the practice of Liu et al.

(2022) to convert a label string ỹ to its correspond-
ing label y at test time for evaluation.

3 Evaluating the Efficacy of Continued
Pre-training for Generative UDA

3.1 Experimental Setup
Datasets We use the MNLI and Amazon Re-
view classification datasets, which are widely used
UDA benchmarks (Malik et al., 2023; Karouzos
et al., 2021; Guo et al., 2020). The MNLI cor-
pus (Williams et al., 2018) contains sentence pairs
across five genres: Travel (T), Fiction (F), Gov-
ernment (G), Slate (S), and Telephone (Te). The
task classifies every sentence pair as entailment,
neutral, or contradiction. The Multi-Domain Sen-
timent Analysis Dataset (Blitzer et al., 2007) con-
tains binary sentiment reviews for different types

3Prompt templates were selected from the Public Pool of
Prompts (Bach et al., 2022).

of Amazon products. We use reviews from the Ap-
parel (A), Baby (B), Books (Bo), Cameras (C), and
Movies (M) domains. We evaluate a total of 40
pairs of source and target domains, across the two
datasets. Appendix A contains more details about
the datasets.

Models and Tuning Methods Our main exper-
iments use the T5v1.1 base model and (IA)3 (Liu
et al., 2022) PEFT method. T5v1.1 is an improved
version of the original T5 model (Raffel et al.,
2020), and unlike the original T5 model, it is not
trained on any supervised datasets. We then extend
our evaluation to different model architectures (T0,
GPT-2), tuning methods (full fine-tuning, adapters)
and data regimes (Section 4).

Training Each training phase is 30,000 steps
long for MNLI and 15,000 steps for the Amazon
dataset. We use Adam, a batch size of 8, and a
learning rate of 0.003. We set the maximum se-
quence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs. More
details can be found in Appendix B.

Baselines Since our goal is to study the behaviour
of CPT for generative UDA, we compare it with a
simple supervised baseline, and a state-of-the-art
invariance-based approach.
• Src+Tgt (All labeled): We fine-tune the model

using labeled data from both the source and tar-
get domains. This serves as an upper bound on
target domain performance.

• UDAPTER: Malik et al. (2023) propose an
invariance-based method that measures the
multi-kernel maximum mean discrepancy (MK-
MMD) (Gretton et al., 2012; Bousmalis et al.,
2016) between source and target embeddings
from each transformer layer and sums them to
obtain an aggregate loss Ldiv. The final loss is
the weighted sum of Ldiv and the classification
loss, i.e., L = λ Lcls + (1 − λ) Ldiv, where λ
gradually changes from 0 to 1 during training.
Here, we use the embeddings from a model as
it is being instruction tuned on the downstream
classification task. Their method achieves state-
of-the-art performance, and outperforms popu-
lar UDA approaches like DANN (Ganin et al.,
2016) and DSN (Bousmalis et al., 2016); thus
we only compare CPT with this approach.
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3.2 Continued Pre-training is Competitive
with Domain-Invariance Methods

Performance We compare CPT with other base-
lines over 40 domain pairs of the MNLI and Ama-
zon Review datasets, and report the average ac-
curacies over all pairs in Table 1. We see that
CPT is competitive to UDAPTER. (Appendix C
contains detailed results over 40 pairs and signif-
icance tests to check for competitiveness.) Inter-
estingly, a visualization of sentence embeddings
in Figure 8 (Appendix C) suggests that represen-
tations learned through CPT are not domain in-
variant. In addition to the MMD based method
of Malik et al. (2023), we also compare CPT on
one domain pair with other methods that promote
domain invariance (DANN (Ganin et al., 2016),
CORAL (Sun et al., 2017)) and weight interpola-
tion (Ilharco et al., 2022) in Appendix C, further
confirming the competitiveness of CPT.

Dataset Src+Tgt UDAPTER CPT

Amazon 92.66 (0.45) 89.02 (2.17) 89.34 (0.48)
MNLI 78.14 (0.25) 70.19 (1.71) 74.12 (0.68)

Table 1: Avg. target-domain classification accuracy and
standard deviation over 3 runs.

Stability CPT performs more stably than
UDAPTER, with the invariance-based method often
reporting a variance of over 20% across runs (Ta-
ble 6 in Appendix C). For example, for the MNLI
pair Fiction (F) → Government (G), minimizing
UDAPTER yields a variance of 23.4% across runs.
This observation is consistent with existing find-
ings (Kashyap et al., 2021; Han and Eisenstein,
2019) that minimizing divergence measures like
MMD, when combined with auxiliary task-specific
loss functions, result in training instabilities and
vanishing gradients. We discuss this in more detail
in Appendix J.

4 How General are the Benefits of CPT?

Instruction tuning for large models is often per-
formed through parameter-efficient fine-tuning
(PEFT) on limited data. This tuning also applies
to models of different scales and architectures
(decoder-only and encoder-decoder). In this sec-
tion, we evaluate the utility of CPT across these
factors, using the A→M domain pair from the Ama-
zon Reviews dataset.

CPT Helps Decoder-only Models. We extend
our analysis from MLM with encoder-decoder lan-

guage models, to causal language modeling (CLM)
with decoder-only language models, using GPT-2
(medium) (Radford et al., 2019). We perform CLM
in the first training phase by simply training the
model for next-word prediction given the original
sequence. Table 2 shows that CPT provides strong
improvements on the target domain in comparison
to the invariance-based baseline.

Method Accuracy

Src+Tgt 79.8 (0.3)
UDAPTER 66.0 (1.1)
CPT 75.8 (0.4)

Table 2: Performance of CPT with causal language
modeling for the decoder-only GPT-2 model. CPT sig-
nificantly outperforms the invariance-based method.

CPT Outweighs Invariance-based Methods for
Instruction-tuned Models. We evaluate the per-
formance of CPT over T5v1.1 XL (3B param-
eters) and the instruction-tuned T0 (3B param-
eters) (Sanh et al., 2022). Figure 1 (Table 8
of Appendix D) shows a wider gap between
UDAPTER and CPT with higher model capacity,
and this gap is further increased with instruction
tuning. We hypothesize that this gap is due to the
vast difference between the objectives of domain
invariance and instruction tuning.

T5v1.1 Base
(60M)

T5v1.1 XL
(3B)

T0
(3B)

(ins. tuned)

50

60

70

80

90

Ac
cu

ra
cy

Src+Tgt
UDAPTER
CPT

Figure 1: The performance gap between CPT and
UDAPTER increases with larger models, from
T5v1.1 Base (60M parameters) to T5v1.1 XL (3B
parameters), and further increases with instruction
tuning (T0 3B).

CPT Benefits are Consistent across Tuning Ap-
proaches. PEFT approaches have been shown
to introduce resilience to domain shift (Fu et al.,
2023). To isolate this effect from the CPT frame-
work, we use T5v1.1 to evaluate CPT in a full fine-
tuning setup. Additionally, we compare CPT with
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two PEFT approaches4 : Adapters (Houlsby et al.,
2019) and (IA)3 (Liu et al., 2022). We see in Fig-
ure 2 (Table 9 in Appendix E) that CPT continues
to perform stronger than the domain invariance-
based UDAPTER method.

Full Fine-tuning (IA)3 Adapter
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Figure 2: Performance of CPT across different tuning
approaches with the T5v1.1 base model. CPT remains
more powerful than UDAPTER across all tuning ap-
proaches.

CPT Outperforms Invariance-based Methods in
Low-data Regimes. In this low-data experiment,
we assume access to k labeled source-domain ex-
amples. For CPT, we assume access to the full un-
labeled dataset in both domains for the first training
phase, and k-shot access to labeled source-domain
examples for the second phase of supervised train-
ing. For a fair comparison, we also introduce a
two-phase version of the UDAPTER pipeline—the
first phase minimizes MMD between unlabeled
source and target domain embeddings (full data ac-
cess), while the second phase optimizes supervised
training on the source domain (k-shot). Figure 3
(Table 10 in Appendix F) showcases CPT clearly
outperforming both variants of UDAPTER, across
three different models for k = 256. Furthermore,
Figure 4 (Table 11 in Appendix F) shows CPT
providing consistent improvements in as low as
32-shots, unlike the unstable invariance-based ap-
proach.

5 To What Extent is Target-Domain
Exposure Beneficial?

Given the vast distributions language models are
pre-trained on, a natural assumption might be that

4We choose Adapters because He et al. (2022) present
a unified view of PEFT approaches which shows that the
operations applied by Adapters are very similar to those of
Prefix Tuning (Li and Liang, 2021) and LoRA (Hu et al.,
2022). We choose (IA)3 since it is a state-of-the-art PEFT
approach that uses a fraction of the learnable parameters of
Adapters (More in Appendix E).
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Figure 3: Performance of CPT across different mod-
els, in a 256-shot learning setup. Unlike both variants
of UDAPTER, CPT is stable and provides consistent
benefits across models.

the model has already been exposed to a domain
similar to the target domain during pre-training.
This would mean that the model could simply ex-
trapolate the learned downstream task from the
source to the target domain, questioning the need
for CPT.

In this section, we establish that exposure to
the target domain is helpful, even when similar
domains may have been encountered during pre-
training. Table 3 evaluates CPT on the A→M do-
main pair with the T5v1.1 model. We note that
the performance on the target domain is strongly
impacted by the presence of target-domain data
during the first phase of training.

Phase 1 Data Accuracy
Source Target

Source Only 93.3 (0.1) 76.5 (0.2)
Target Only 92.9 (0.4) 82.3 (0.7)
Source + Target 93.5 (0.4) 83.3 (0.5)

Table 3: Comparison of CPT with varying data exposure
during the first phase of training. Performance on the
target domain strongly benefits more from exposure to
target domain, and is boosted further with exposure to
the source domain.

For a more fine-grained analysis, we investigate
the impact of degree of exposure to the target do-
main, by varying the masking rates during the first
phase of training. While masking 15% of a se-
quence is considered standard for random masking,
previous work has shown that BERT-sized models
(Devlin et al., 2019) can learn from as high as 80%
masking rates during pre-training followed by adap-
tation to a labeled task (Wettig et al., 2023). The
source-domain performance shown in Figure 5 (Ta-
ble 12 in Appendix) matches this trend. However,
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Figure 4: Few-shot performance of CPT, for varying
k. Unlike both variants of UDAPTER, CPT is stable
and provides consistent benefits across number of
shots.

high masking rates effectively reduce the exposure
of the model to target data, strongly deteriorating
the performance on the target domain5. We hypoth-
esize that since the model never sees any labeled
data of the target domain, it heavily depends on
the signal it gets from the unlabeled data through
masking.
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Figure 5: Impact of Masking Rate on CPT. With high
masking rates, the performance on the source domain
is largely maintained, but the performance on the target
domain rapidly deteriorates.

6 Why does Word Prediction Aid
Classification for Generative UDA?

In this section, we examine why predicting
masked words of the source and target domains
through CPT boosts sentence classification on the
unlabeled target domain for generative UDA. We
hypothesize that by having to predict masked words
that are informative to the downstream task during

5With masking rates under the optimal value of 15%, the
semantic and background features learned through model pre-
diction of masked words is limited, hurting performance on
the target domain.

pre-training, the model implicitly learns informa-
tion about the downstream task. For example, given
the masked sentence, “I really _ the movie, it was
a fascinating watch.”, the masked word is indica-
tive of the downstream task, in this case sentiment
analysis. The model can only predict this masked
word (which would be a positive word like “loved”
or “enjoyed”) by using other words informative to
the task (“fascinating”). Through this process, the
model is essentially learning features which are
useful to the downstream task, despite having no
direct supervision.

To test this hypothesis, we quantize the “infor-
mativeness” of each word to a classification task:
an informative word is highly correlated with any
of the labels in the downstream task.6 Specifically,
we follow Gururangan et al. (2018) and use point-
wise mutual information (PMI) (Fano, 1961) of the
word with respect to the class label:

PMI(word, class) = log
p(word, class)
p(word)p(class)

,

where we count the frequency of a word-class pair
on Dsrc to estimate p(word, class), and similarly
count a word and a class individually on Dsrc to
estimate p(word) and p(class).

674 100119

Source

Target

Figure 6: Vocabulary overlap between label-informative
words of the source and target domains. The numbers
in the Venn diagram indicate the number of words in
both sets.

We use two sets of words from a dataset: those
with the top k% (informative) and bottom k% (un-
informative) PMI with any inference label (k =
15). We also filter out low-frequency words from
the selection.7 We compute these sets for the source
and target domains individually, assuming access
to target labels. We use the T5v1.1 model on the
A→M pair for our analysis.

6These informative words are similar to pivot fea-
tures (Blitzer et al., 2006; Ziser and Reichart, 2018; Ben-David
et al., 2020, inter alia), with the exception that they are chosen
based on information from the source domain only.

7Any word that occurs less than 10 times in the entire
training corpus is considered to be low frequency.
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How Masking helps Learn Classification We
first confirm that label-informative words indeed
impact the classification performance of the CPT
model. We do this by masking informative words
from a sentence at inference. Figure 7 (a) shows
us that the performance of the model on the source
domain is not impacted by masking uninformative
words, but drops on masking informative words.
However, how do we know how much of this bias
towards label informative words was learned dur-
ing the continued pre-training phase, rather than
during supervised fine-tuning? To attempt to disen-
tangle the impact of the training phases, we train
the model through selective masking (informative
or uninformative) in the first phase of training, and
minimize the impact of the second phase by mak-
ing it a few-shot task. Figure 7 (c) shows us that the
model performs best on classification when trained
to predict label informative words during masking,
indicating that the model does indeed learn fea-
tures relevant to the downstream task during the
first phase of training.

The Interplay between CPT and Classification
for Generative UDA We now extend this analy-
sis to the target domain to understand how CPT
plays a role in learning features from the unla-
beled domain. Figure 7 (d) shows us that infor-
mative masking outperforms uninformative mask-
ing by a significant gap, once again signaling that
the masking process helps the model implicitly
learn the downstream task. However, unlike with
the source domain, random masking results in the
strongest performance. This is due to the domain
mismatch: the informative words for the source
and target domains are not identical (Figure 6), and
the supervised training on the source domain adds
a bias towards source-informative words. The mix-
ture of these two sets of words are best predicted
through random masking, explaining its strong per-
formance.

This phenomenon also draws the observation
that random masking is preferred to selective mask-
ing for generative UDA, contrary to single domain
settings where informative masking is more use-
ful (Levine et al., 2021; Gu et al., 2020).

7 Discussion

The Computational Trade-off of CPT Our
results in Section 3.2 show that continued pre-
training and methods promoting domain invariance
are competitive with each other. Continued pre-

training suffers from the computational drawback
of requiring an additional phase of training. Con-
versely, invariance-based methods are difficult to
optimize, possibly requiring more runs to achieve
a stable optimum, and having a higher amortized
computational cost. Inspired by Karouzos et al.
(2021), we introduce a simple single phase variant
of continued pre-training which is equivalent in
performance to its two phase variant, nullifying the
additional computational overhead of the approach
(more details in Appendix I).

UDA in the Age of LLMs Recent breakthroughs
in scale have showcased that large language mod-
els (LLMs) are highly powerful, and can perform
various downstream tasks with limited or no train-
ing. This may raise question on the relevance of
the UDA problem as a whole — does a model
even require expensive adaptation to a domain
it may have already been exposed to during pre-
training? In addition to our analysis in Section 5,
we argue that the requirement to adapt small mod-
els to unseen domains still holds in specific cases.
Small supervised models have been shown to be
comparable with, or even outperform, zero-shot
general-purpose LLMs on various downstream
tasks (Huang et al., 2023; Zhu et al., 2023; Tang
et al., 2024), serving as lightweight and customize-
able (through fine-tuning) alternatives. Safety criti-
cal domains like healthcare and finance would ben-
efit more from these models than a generalist LLM.
Our study does not address how to better adapt to
domains, rather we investigate ways a model may
adapt to data unseen during pre-training. This is
a question that holds for current LLMs, and will
continue to hold as long as models are unable to
access infinite data during pre-training.

8 Related Work

UDA through Promoting Domain Invariance
A major class of approaches in Model-centric UDA
methods (Ramponi and Plank, 2020) aims to mini-
mize H∆H divergence (Ben-David et al., 2010)
between the source and target domain features,
through adversarial training (Tzeng et al., 2014;
Ganin et al., 2016; Tzeng et al., 2017; Guo et al.,
2022, inter alia) or through minimizing measures
of domain similarity (Bousmalis et al., 2016; Ge
et al., 2023). Malik et al. (2023) have shown
the minimization of MMD to outperform other
invariance-based methods. However, past work has
shown that domain-invariance is a weak constraint
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Figure 7: The impact of selective masking on classification performance of a CPT trained model. Left: Masking
label informative words during inference degrades classification performance, compared to the original unmasked
sequence. However, the removal of uninformative words does not impact the model on the source domain. Right:
The impact of continued pre-training can be partially disentangled from that of supervised training by making the
supervised training phase few-shot and training the model to mask informative or uninformative words during the
continued pre-training phase. Informative masking is most beneficial for the source domain, indicating that the
model learns task relevant features during masking. On the target domain, informative masking still captures some
knowledge about the downstream task, however, the supervised training phase adds a bias towards source label
informative words. Thus, random masking is most powerful.

for adaptation (Zhao et al., 2019; Karouzos et al.,
2021), could introduce domain-specific hyperpa-
rameters (Trung et al., 2022), and is also prone to
instability issues (Han and Eisenstein, 2019; Sun
et al., 2019; Wilson and Cook, 2020; Kashyap et al.,
2021).

UDA through Continued Pre-Training The
limitations of invariance-based model-centric meth-
ods have encouraged the emergence of alternate
approaches, based on self-supervised learning
through contrastive learning (Kumar et al., 2022;
Shen et al., 2022; Long et al., 2022), pseudo-
labeling (Zhou and Li, 2005; Ruder and Plank,
2017, inter alia) or language model pre-training.
Despite not being directly useful to certain down-
stream tasks (Uppaal et al., 2023), CPT has been
used for adaptation to labeled tasks, in both full
fine-tuning (Gururangan et al., 2020; Lee et al.,
2020; Gao et al., 2021, inter alia) and PEFT se-
tups (Kim et al., 2021; Hung et al., 2023). A
smaller body of work has explored the utility
of CPT in a UDA setup (Han and Eisenstein, 2019;
Zhang et al., 2021b; Karouzos et al., 2021; Parović
et al., 2023), identifying the class of methods to be
more stable than invariance-based methods.

Generative UDA The emergence of large lan-
guage models (Brown et al., 2020; Scao et al., 2022;
Touvron et al., 2023, inter alia) introduced the con-
cept of instruction tuning with templates (Zhang

et al., 2023; Sanh et al., 2022; Ouyang et al., 2022;
Wang et al., 2022; Wei et al., 2022; Gao et al., 2021;
Liu et al., 2023), enabling multi-task training with-
out any task specific architectural changes. How-
ever, the framework of casting discriminative clas-
sification tasks into generative next word prediction
tasks has not yet been extended to UDA. The clos-
est work to this setting (Ben-David et al., 2021)
uses a generative model to create domain identi-
fier prompts and feed them back into the model,
however the final task label prediction is still dis-
criminative. In our work, we focus on gaining
insights to extend the powerful class of CPT meth-
ods to purely generative UDA, where prediction on
the downstream task is treated as a next word pre-
diction task. Through this, we also present novel
findings on the impact of CPT to prompt-based clas-
sifiers in the UDA framework, countering previous
findings from other studies in a single-domain set-
ting (Gu et al., 2020; Levine et al., 2021; Wettig
et al., 2023).

9 Conclusion

We introduce the setting of Generative UDA, and
perform an investigation on the utility of continued
pre-training in this setting. We compare the ap-
proach with the popular class of domain-invariance
based methods for UDA, showing that CPT is both
competitive with, and more stable than invariance-
based approaches. Our experiments show that the
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benefits of CPT extend to different architectures,
tuning methods and data regimes. We motivate
the need for target domain exposure through CPT
by showing that performance on the target domain
gradually degrades with increasing masking rate.
Finally, we shed light on the interplay between
masking and classification performance, and how
this aids UDA. Our analysis shows that in predict-
ing masked words that are informative to the down-
stream task, the model implicitly learns about the
downstream task, furthering the benefits of directly
learning the task. Our work connects the body of
UDA research with that of instruction tuning, en-
abling an initial step towards a wider applicability
of modern language models.

Limitations

Our work presents an investigation into contin-
ued pre-training for UDA in a generative setting.
Since generative UDA is an almost completely un-
explored area, we establish a proof of concept by
using sentence classification tasks for our analy-
sis. We leave the extending our analysis to more
complex tasks to future work.

In our study, we consider a class of PEFT meth-
ods that involve inserting learnable parameters be-
tween the layers of the model. Other classes of
PEFT methods were not considered. However,
we use Adapters and He et al. (2022) have shown
connections between the method with Prefix Tun-
ing (Li and Liang, 2021) and LoRA (Hu et al.,
2022).

Due to the high variance across runs in PEFT-
based learning, we note that the performance can
vary significantly across random seeds. We attempt
to make our findings reproducible by averaging ev-
ery experiment over 3 seeds. Taking environmental
costs into consideration, we reduce our computa-
tional budget by running a majority of our experi-
ments with a smaller-sized model. Learning with
larger models is discussed in Section 4.

Ethics Statement

Our project aims to extend the problem of unsuper-
vised domain adaptation to the generative setting,
matching current needs with large language models.
This is an effort towards improving the reliability
and safety of language models, which can be frag-
ile under distribution shift (Ribeiro et al., 2020) and
incur great costs over incorrect predictions (Ulmer
et al., 2020; Zhang et al., 2021a).

Our study does not involve any human subjects
or violation of legal compliance. We do not an-
ticipate any potentially harmful consequences to
our work. As detailed in Appendix A, all of our
experiments are conducted using publicly avail-
able datasets. Our code shall be released for re-
producibility. Through our study and releasing our
code, we hope to raise stronger research and soci-
etal awareness toward the problem of unsupervised
domain adaptation in natural language processing.
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A Preparation of Evaluation Benchmarks

We use two classification datasets, with 5 domains
each. This results in a total of 40 pairs of source
and target domains. For brevity, we include results
of 24 domain pairs in the main paper, and the re-
maining 16 in Appendix C. For both datasets, we
use the train, validation and test splits from (Malik
et al., 2023). More statistics about each dataset
is available in Table 4. The listed datasets are in-
tended for research purposes only. We do not make
any commercial use of them.

MNLI The Multigenre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018) con-
tains sentence pairs across multiple genres: Travel
(T), Fiction (F), Government (G), Slate (S) and
Telephone (Te). The NLI task involves classifying
every premise-hypothesis sentence pair as Entail-
ment, Neutral or Contradiction.

Amazon The Multi Domain Sentiment Analy-
sis Dataset (Blitzer et al., 2007) contains Amazon
product reviews for different type of products. We
use reviews from the Apparel (A), Baby (B), Books
(Bo), Cameras (C) and Movies (M) domains. Each
review is labelled as positive or negative.

Dataset Language License Statistics per Domain
Train Val Test

MNLI English cc-by-4.0 69600* 7735** 1945
Amazon English cc-by-4.0 1440 160 400

Table 4: Artifacts used in our study. The dataset statis-
tics report the values used in our study.
* All domains contain approximately 69,600 examples.
The exception is the Telephone domain, with 75,013
examples.
** All domains contain 7735 validation examples, ex-
cept for Slate and Telephone, which contain 7731 and
8336 examples respectively.

B Details on Implementation

Models and Implementation We use T5v1.1,
T0 and GPT-2 and LLaMA-2 from the Hugging-
Face library8, and use PyTorch9 to train our models.

Training We use the default hyperparameters
from Liu et al. (2022), except for batch size and
training duration. We perform a grid search for
these values. We train each training phase for
30,000 steps on MNLI and 15,000 steps on the

8https://github.com/huggingface/transformers
9https://pytorch.org/

Training Steps Source Accuracy Target Accuracy

5,000 93.2 (0.4) 81.9 (0.4)
10,000 93.4 (0.5) 81.6 (0.6)
15,000 93.5 (0.4) 83.3 (0.5)

Table 5: We use early stopping on one domain pair to
determine the number of training steps, which we then
use for all domain pairs of that dataset. For example, the
Apparel→Movies domain pair of the Amazon Reviews
dataset shown in the table saturates at 15,000 steps.

Amazon dataset, with a batch size of 8. For the
T5v1.1 XL and T0 models (3B parameters each),
we use a batch size of 1. We train with Adam and
use a learning rate of 0.003. We set the maximum
sequence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs.

We choose the number of training steps based on
early stopping on the validation set for one domain,
and use that number of steps for all domains within
that dataset. We report the test set performance
after a varying number of training steps in the ta-
ble below. For example, for the Apparel→Movies
domain pair of the Amazon Reviews dataset, the
performance saturates at 15,000 steps, as shown in
Table 5.

Computations Using the (IA)3 PEFT frame-
work, training the T5v1.1 Base model (60 million
parameters) for 15,000 steps takes approximately
two hours on a single NVIDIA RTX A6000 GPU.
The T5v1.1 XL model and T0 model (3 billion pa-
rameters) take approximately 8 hours for 15,000
steps of training. For reproducibility, each exper-
iment is repeated thrice, with changing random
seeds. In total, we run 540 experiments with the
Base model and 72 experiments with the larger
models. This results in a total compute time of
approximately 2400 GPU hours.

C Detailed results with the Amazon and
MNLI Datasets

Table 6 shows the performance of CPT on the Ama-
zon and MNLI datasets.

On the Amazon dataset, CPT is competitive with
the state of the art UDAPTER method from Malik
et al. (2023) on average. We confirm this by check-
ing for a significant difference in the performance
of CPT and UDAPTER on the 20 dataset pairs. The
Mann-Whitney U test and Student’s t-test both re-

112

https://github.com/huggingface/transformers
https://pytorch.org/


Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 8: UMap visualizations of sentence embeddings
from the Apparel→Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Despite not pro-
moting domain-invariance, CPT may be learning sen-
tence embeddings that are separable by class labels,
regardless of the domain of these sentences. The clas-
sification hyperplane for the source domain has been
imagined as a solid line for illustration purposes, and
its extension to the target domain is shown as a dashed
line.

sulted in non-significant p-values of 0.5516 and
0.8316, confirming the hypothesis that there is no
significant difference between CPT and UDAPTER

on the Amazon dataset.
However, on the MNLI dataset, where all do-

mains have larger gaps, both significant tests
showed a significant difference between CPT and
UDAPTER, with CPT being more powerful. This is
exemplified through cases like Travel (T)→ Gov-
ernment (G), where CPT yields an accuracy of
83.6% on the target domain, equalling the upper
bound of the Src+Tgt baseline.

Comparison with other Model Centric Ap-
proaches In addition to the MMD based method
of Malik et al. (2023), we also compare CPT with
other methods that promote domain invariance: 1)
DANN (Ganin et al., 2016), which is the most
widely used UDA method in NLP (Ramponi and
Plank, 2020), but has been shown to be highly un-
stable; 2) CORAL (Sun et al., 2017), which min-
imizes second order statistics of the data embed-
dings. Additionally, with an emerging class of
weight interpolation based methods, we make a
comparison with task vector arithmetic (Ilharco
et al., 2022). The use of task vectors with PEFT
methods beyond LoRA (Hu et al., 2022) has been
unexplored in the literature, and we find that the

method does not work with IA3. With fully fine-
tuned models, the method improves in performance,
but is still weaker than CPT.

CPT may learn representations that general-
ize across domains To better understand the im-
proved UDA performance, we visualize the sen-
tence embeddings learned by CPT in Figure 8. Us-
ing UMap (McInnes et al., 2018), the figure visual-
izes embeddings for the Apparel→Movies domain
pair from the Amazon Product Review dataset. We
see that CPT learns sentence embeddings that gen-
eralize across domains. For illustration, we draw
a black line that cuts across both source and tar-
get domains. Note that the solid line suggests that
there exists a classification hyperplane learned on
the source labeled data (in blue and green). The
same classifier can be potentially used to separate
target data (in gray and orange). The visualization
suggests that CPT achieves competitive UDA re-
sults without having to explicitly promote domain-
invariant representations.

D CPT across Model Architectures and
Scales

We evaluate the performance of CPT over T5v1.1
XL and the instruction tuned T0 (3B) (Sanh et al.,
2022) in Table 8.

E PEFT Frameworks

The framework proposed in Section 2 is general
and can be applied to fine-tune all model param-
eters. Additionally, our CPT framework is com-
patible with the parameter-efficient fine-tuning ap-
proach. The PEFT approach is desirable because
it adds only a small amount of learnable parame-
ters ϕ to a pre-trained language model θ, and fine-
tunes only ϕ to perform prediction while keeping
the other model parameters θ frozen. We use two
instantiations in our implementations: Adapters
(Houlsby et al., 2019) and (IA)3 (Liu et al., 2022).

(IA)3 is a state of the art PEFT learning method,
and uses around a tenth of learnable parameters
compared to popular methods like Adapters. (IA)3

works by element-wise multiplication (i.e. rescal-
ing) of the model’s activations against a learned
vector. In this case, the set of learnable parame-
ters ϕ is a set of vectors {lv, lk, lff} applied to each
attention mechanism and feed-forward layer as,
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Amazon MNLI
Src+Tgt UDAPTER CPT Src+Tgt UDAPTER CPT

A→ B 94.7 (0.2) 93.8 (0.3) 93.9 (0.3) T→ F 77.2 (0.4) 69.7 (0.8) 74.1 (0.9)
A→ Bo 94.3 (0.4) 92.5 (1.1) 90.2 (1.2) T→ G 83.6 (0.7) 79.3 (0.5) 83.6 (0.3)
A→ C 95.0 (0.2) 91.8 (0.5) 92.1 (0.5) T→ S 72.3 (0.5) 69.6 (0.1) 70.7 (0.6)
A→M 85.8 (0.5) 81.3 (0.6) 83.3 (0.5) T→ Te 77.8 (0.1) 69.4 (0.8) 76.8 (0.0)

B→ A 93.4 (0.3) 93.3 (0.2) 93.4 (0.4) F→ T 79.9 (0.1) 69.9 (0.2) 65.4 (0.8)
B→ Bo 94.7 (0.7) 93.8 (0.3) 92.2 (0.1) F→ G 82.3 (0.1) 54.3 (23.4) 78.8 (2.5)
B→ C 94.7 (0.8) 93.4 (0.1) 92.1 (0.3) F→ S 72.1 (0.2) 64.6 (1.8) 65.3 (1.6)
B→M 85.3 (0.2) 81.3 (0.7) 82.8 (0.2) F→ Te 78.3 (0.6) 64.6 (0.7) 72.5 (0.2)

Bo→ A 94.6 (0.3) 91.6 (0.5) 91.3 (0.2) G→ T 79.9 (0.4) 75.9 (0.3) 75.8 (0.6)
Bo→ B 94.8 (0.2) 92.9 (0.6) 90.9 (0.2) G→ F 76.7 (0.1) 69.9 (0.2) 73.5 (0.2)
Bo→ C 94.3 (0.2) 89.8 (0.1) 90.3 (0.4) G→ S 73.1 (0.0) 69.4 (0.1) 68.0 (1.8)
Bo→M 85.5 (0.9) 84.6 (0.7) 80.1 (1.2) G→ Te 78.1 (0.6) 69.9 (0.3) 73.5 (0.6)

C→ A 93.4 (0.4) 92.3 (0.3) 92.5 (0.6) S→ T 79.5 (0.3) 74.4 (1.7) 76.8 (0.1)
C→ B 95.0 (0.6) 94.1 (0.1) 92.1 (0.2) S→ F 77.7 (0.2) 73.1 (0.0) 72.4 (0.5)
C→ Bo 93.9 (0.8) 91.3 (0.5) 89.0 (0.1) S→ G 83.4 (0.2) 78.2 (0.5) 76.3 (0.9)
C→M 85.8 (0.1) 81.5 (0.7) 79.7 (1.2) S→ Te 78.5 (0.0) 66.7 (0.2) 74.8 (0.3)

M→ A 94.2 (0.7) 89.1 (1.4) 90.1 (0.5) Te→ T 79.8 (0.3) 71.4 (0.0) 76.5 (0.4)
M→ B 95.3 (0.5) 81.0 (16.1) 89.9 (1.2) Te→ F 77.9 (0.1) 69.9 (0.5) 74.3 (0.5)
M→ Bo 94.1 (0.4) 80.5 (18.6) 91.5 (0.0) Te→ G 82.5 (0.1) 75.6 (1.6) 82.0 (0.6)
M→ C 94.3 (0.5) 90.5 (0.0) 89.7 (0.3) Te→ S 72.2 (0.0) 68.0 (0.4) 71.3 (0.5)

Table 6: Comparison of CPT and UDAPTER by target domain classification accuracy on the Amazon Product
Review and MNLI datasets. Each row represents a Source→ Target pair. On average, CPT is competitive
with UDAPTER, often outperforming it. We use the T5v1.1 base model, and (IA)3 as a PEFT method. The
highest values between CPT and UDAPTER have been marked in bold.

Method Accuracy

CPT 83.3 (0.9)
UDAPTER 81.3 (0.6)
DANN 52.3 (1.7)
CORAL 80.9 (0.4)
Task Vectors 48.0 (0.7)
Task Vectors (fine-tuning) 69.0 (0.4)

Table 7: Comparison of CPT with more baselines, using
the T5v1.1 base model and (IA)3 PEFT method on the
Apparel→Movies pair from the Amazon review dataset.
For task vectors, we include versions with (IA)3 as well
as full fine-tuning. CPT outperforms all baselines.

h = σ

(
Q(lk ⊚• KT )√

dk

)
(lv ⊚• V )

h = (lff ⊚• γ(W1x)W2)

Here, K, Q and V are the key, query and value
representations used in an attention block, and W1

and W2 are the weights in the feed-forward layer
following an attention block. lk ∈ Rdk , lv ∈ Rdv ,
lff ∈ Rdff , σ is the softmax function while γ is any
non-linearity.

Model Src+Tgt UDAPTER CPT

T5 v1.1 Base 85.8 (0.5) 78.6 (1.3) 83.3 (0.5)
T5 v1.1 XL 93.0 (0.5) 65.2 (9.5) 92.0 (1.5)
T0 3B 92.2 (0.7) 51.8 (0.8) 93.8 (0.4)

Table 8: The performance gap between CPT and
UDAPTER increases with larger models, from
T5v1.1 Base (60M parameters) to T5v1.1 XL (3B
parameters), and further increases with instruction
tuning (T0 3B).

Intuitively, each vector l simply learns weights
measuring the importance of each feature in an
activation of the pre-trained model, for the specific
downstream task the model is trained on.

Adapters are a popularly used and high perform-
ing PEFT framework, and He et al. (2022) have
shown equivalence in the operations applied by
Adapters, Prefix Tuning (Li and Liang, 2021) and
LoRA (Hu et al., 2022).

Adapters work by adding small learnable
modules between transformer layers. Specifi-
cally, down and up projections Wdown ∈ Rd×r

and Wup ∈ Rr×d are learnt such that ϕ =
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{Wup,Wdown}. A residual connection and non-
linearity γ is added at every layer,

h = h+ γ(hWdown)Wup

Table 9 shows CPT beats UDAPTER across dif-
ferent tuning methods. We also note that fine-
tuning yields slightly better performance for all
UDA methods.

F CPT in a Few-Shot Setup

Table 10 accompanies Figure 1 (Section 4), show-
ing the 256-shot performance of CPT and other
baselines, across model sizes. Similarly, Table 11
accompanies Figure 3, showing the relative perfor-
mance of all baselines across varying k.

G Impact of Target Domain Exposure

The experiments in this section use the T5v1.1 base
model on the Apparel→Movies domain pair of the
Amazon reviews dataset.

Table 12 accompanies results from Figure 5,
which show the impact of varying masking rates
on CPT. Using the T5v1.1 base model, we train
CPT using varying random masking rates on the
Apparel → Movies domain pair, and report the
mean and standard deviation over three runs. With
high masking rates, the performance on the source
domain is largely maintained, but the performance
on the target domain rapidly deteriorates.

H Understanding how CPT aids UDA

Table 13 (accompanies Figure 7) shows the impact
of masking sequences at inference, on classification
accuracy. Words are selected for masking based
on their their “informativeness”, measured by their
PMI to the inference class label. The performance
of the model is best with the original unmasked
sequences, indicating the presence of both infor-
mative and uninformative words are essential for
strong classification performance.

Table 15 accompanies Figure 7 and shows the
impact of varying masking strategies on classifica-
tion performance, in a few-shot setting. We also
consider two different few-shot setups: one with
access to the full unlabelled datasets in phase 1 pre-
training, and another where even the unlabelled
data is few-shot.

To isolate any effects of PEFT methods or pre-
training data, we repeat the analysis from Table 15
in Table 14 with fine-tuning Flan-T5 in a full data
setting, and note similar trends.

I Single Phase CPT Training

Our proposed approach in Section 2 involves two
stages of training, which is more expensive than
standard single phase UDA approaches. In this
section, we propose a single training phase variant
to CPT, and show that it performs similarly to the
original method. We use the two phase pipeline in
our experiments in the main paper, but note that the
single and two phase pipelines are interchangeable.

We simply replace the two phase training with a
joint multi-task objective as follows,

L(D,Dsrc; θ) =
1

|D|
1

|Dsrc|
∑

x′∈D

∑

(x,y)∈Dsrc

(λ l(C(x, y); θ)
+ (1− λ) l(M(x′); θ))

where l is the cross-entropy loss defined in Eq. (1),
and M and C are the templates defined in Section 2.
λ is the adaptation factor which gradually changes
from 0 to 1 over the course of training. This results
in the model being trained almost exclusively on
the MLM task early on in training, and the CLS
task towards the end of training.

Table 16 compares the performance of the sin-
gle phase and two phase variants of CPT. We also
compare with a vanilla joint single phase objective,
where λ is fixed at 0.5 through training (called Sin-
gle Phase Vanilla). The performance of the single
and two phase variants are almost identical, and
either can be used interchangeably. In compari-
son, the vanilla single phase method is significantly
weaker on the target domain.

J Instability of Domain Invariance
Methods for UDA

The Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2012) measures the difference between
first order moments of variables in a Reproduc-
ing Kernel Hilbert Space (Aronszajn, 1950). Mul-
tiple lines of work have shown that minimiz-
ing divergence measures like MMD, when com-
bined with auxiliary task-specific loss functions,
results in training instabilities and vanishing gra-
dients (Kashyap et al., 2021; Han and Eisenstein,
2019).

We also note that as minimizing MMD does not
use any label information, there is a possibility
for embeddings of the target domain to be aligned
with the closest source domain class cluster. For
example, Figure 9 shows us a setting where both
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Method Src+Tgt UDAPTER CPT

Fine-Tuning 86.4 (0.4) 82.4 (1.6) 84.4 (0.3)
(IA)3 85.8 (0.5) 81.3 (0.6) 83.3 (0.5)
Adapters 85.3 (0.5) 79.1 (0.3) 82.7 (0.5)

Table 9: Performance of CPT across different adaptation methods with the T5v1.1 base model on the Apparel→
Movies domain pair. CPT remains more powerful than UDAPTER across all methods.

Model Src+Tgt UDAPTER CPT

T5v1.1 Base 77.8 (0.4) 60.9 (1.6) 73.1 (1.7)
T5v1.1 XL 84.4 (0.1) 84.8 (1.5) 89.9 (1.1)
T0 3B 88.3 (0.5) 81.8 (1.3) 93.9 (0.4)

Model Src+Tgt UDAPTER Two Phase CPT

T5v1.1 Base 82.8 (0.6) 62.5 (0.7) 79.8 (1.4) 81.2 (0.7)
T5v1.1 XL 92.5 (0.4) 71.7 (7.8) 84.3 (0.9) 86.8 (2.2)
T0 3B 91.8 (0.6) 79.5 (6.7) 53.5 (0.4) 92.8 (0.2)

Table 10: Performance of CPT across different models, in a k-shot learning setup on the Apparel→Movies domain
pair. We see CPT retaining strong performance on the target domain across models. Left: 32-shot. Right: 256-shot.

Number of Shots Src+Tgt UDAPTER Two Phase UDAPTER CPT

32 77.8 (0.4) 60.9 (1.6) 59.4 (2.0) 73.1 (1.7)
128 82.5 (0.5) 75.1 (0.6) 62.8 (0.6) 78.8 (1.0)
256 82.8 (0.6) 62.5 (0.7) 79.8 (1.4) 81.2 (0.7)

Table 11: Performance of CPT across different number of shots, on the Apparel→Movies domain pair, using the
T5v1.1 base model. We see CPT retaining strong performance on the target domain across shots.

Masking Rate Accuracy
Source Target

5% 92.8 (0.8) 78.8 (1.8)
15% 93.5 (0.4) 83.3 (0.5)
30% 92.8 (0.6) 78.8 (1.4)
60% 92.5 (0.9) 71.0 (3.0)
90% 92.3 (0.5) 70.4 (1.5)

Table 12: Impact of Masking Rate on CPT. We train
CPT using varying random masking rates on the Ap-
parel→Movies domain pair. With high masking rates,
the performance on the source domain is largely main-
tained, but the performance on the target domain rapidly
deteriorates.

Method Accuracy
Source Target

Original 93.5 83.3
Informative Masking 88.0 78.8
Uninformative Masking 92.0 79.0

Table 13: Impact of masking at inference. We evaluate
CPT on the Apparel→Movies domain pair, and select
words for masking based on their “informativeness” to
the classification task.

classes of the target domain (shown in green and
gray) are mapped to the cluster of negative class

Masking Strategy Accuracy
Source Target

Random 95.8 (0.0) 86.8 (0.3)
Informative 93.9 (0.6) 85.3 (0.3)
Uninformative 95.0 (0.0) 84.8 (0.1)

Table 14: Impact of word selection for masking during
training, using Flan-T5 base and no PEFT methods.

Phase 1 Data Masking Strategy Accuracy
Source Target

256 Shot Random 91.0 (0.9) 78.1 (2.4)
Informative 90.4 (0.5) 76.0 (0.7)
Uninformative 89.6 (1.2) 73.5 (1.6)

Full Data Random 90.1 (0.5) 81.2 (0.7)
Informative 91.8 (0.5) 78.0 (0.9)
Uninformative 89.3 (0.5) 72.8 (1.1)

Table 15: Impact of word selection for masking, in a
256-shot learning setup. We evaluate CPT on the Ap-
parel→Movies domain pair, and select words for mask-
ing based on their “informativeness” to the classification
task. Random masking is most powerful for the target
domain, indicating that both semantic and background
features are necessary for effective classification on the
unlabelled domain. However, informative masking is
significantly more useful than uninformative masking.
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Method Accuracy
Source Target

Two Phase 93.7 (0.3) 83.3 (0.9)
Singe Phase 93.5 (0.4) 83.3 (0.5)
Singe Phase Vanilla 93.6 (0.1) 75.0 (5.7)

Table 16: Comparison of single and two-phase variants
of CPT, on the Apparel → Movies domain pair. The
single and two phase variants are almost identical in
performance.

Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 9: UMap visualizations of sentence embeddings
from the Apparel→Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Training with
UDAPTER risks stability issues, and all embeddings
from the target domain can be mapped to the closest
source class cluster. This results in poor classifica-
tion performance on the target domain.

source embeddings (shown in blue).
We compare variants of the UDAPTER method

in Table 17 and show that the loss is sensitive to
small changes in the loss design. Specifically we
compare the UDAPTER method used in the main
paper with:

• MMD over Logits: Measures the MMD be-
tween the logits of source and target domains,
instead of using intermediate model outputs.

• Fixed Weight MMD: Instead of the multi-task
loss for the MMD reduction and classification
tasks, we use fixed weights for both tasks10.

• Two Phase MMD: The first training phase is
used to minimize MMD between source and

10For the weighted loss, LCLS + 3 LMMD was found to be
the best performing.

target embeddings, while the second phase is
used to train the model for classification on
the source domain.

CPT remains more powerful than all variants.

Method Accuracy
Source Target

CPT 93.7 (0.3) 83.3 (0.9)
UDAPTER 94.7 (0.3) 81.3 (0.6)
UDAPTER over Logits 95.0 (0.2) 81.3 (0.7)
Fixed Weight MMD 93.4 (0.2) 78.6 (1.3)
Two Phase UDAPTER 90.1 (0.1) 68.7 (2.0)

Table 17: Comparison of variants of minimizing MMD,
on the Apparel→ Movies domain pair. CPT remains
more powerful than all variants.
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Abstract

All existing transformer-based approaches to
NLP using subword tokenisation algorithms en-
code whitespace (word boundary information)
through the use of special space symbols (such
as ## or _) forming part of tokens. These sym-
bols have been shown to a) lead to reduced mor-
phological validity of tokenisations, and b) give
substantial vocabulary redundancy. As such, re-
moving these symbols has been shown to have
a beneficial effect on the processing of mor-
phologically complex words for transformer
encoders in the pretrain-finetune paradigm. In
this work, we explore whether word bound-
ary information is at all useful to such mod-
els. In particular, we train transformer encoders
across four different training scales, and investi-
gate several alternative approaches to including
word boundary information, evaluating on two
languages (English and Finnish) with a range
of tasks across different domains and problem
set-ups: sentence classification datasets, NER
(for token-level classification), and two classifi-
cation datasets involving complex words (Su-
perbizarre and FLOTA). Overall, through an ex-
tensive experimental setup that includes the pre-
training of 35 models, we find no substantial
improvements from our alternative approaches,
suggesting that modifying tokenisers to remove
word boundary information isn’t leading to a
loss of useful information.

1 Introduction

Transformer (Vaswani et al., 2017) pretrained lan-
guage models for NLP, such as BERT (Devlin et al.,
2019) and the GPT family (Brown et al., 2020;
Achiam et al., 2023), typically use subword tokeni-
sation algorithms, such as WordPiece (Schuster and
Nakajima, 2012), to process text. Previous work
(Church, 2020; Park et al., 2021) has shown that
such methods have limited alignment with word
morphology, resulting in worsened downstream
performance for various tasks (Klein and Tsarfaty,

2020; Bostrom and Durrett, 2020; Pinter et al.,
2020). In fact, it has been shown that the morpho-
logical validity of tokenisation can be improved by
removing all whitespace markers (and hence word
boundary (WB) information) from the tokenisers
(Gow-Smith et al., 2022). However, the full impact
of this modification on downstream performance is
unknown, and the question of whether WB informa-
tion is at all useful to models is as yet unanswered.
In this work, we first perform a morphological eval-
uation of WordPiece and WordPiece′, a version
which has been modified to have no WB informa-
tion. We find that WordPiece′ significantly im-
proves the alignment with morphological gold stan-
dard references. Then, we evaluate WordPiece and
WordPiece′ as tokenisers on downstream tasks. We
also introduce models which modify WordPiece′ by
including WB information in various ways – either
explicitly through the input or implicitly through
the pretraining objective. Much interest recently
has been in the scaling laws of language models
(Kaplan et al., 2020; Hoffmann et al., 2022), and
a direction towards training larger models. On the
other hand, there has been recent work investigat-
ing sample-efficient pretraining on datasets of a de-
velopmentally plausible size (Warstadt et al., 2023).
In companion to such work, we train our models
across four training scales, from approximately 6M
params and 250M tokens at the lowest scale to ap-
proximately 370M params and 23B tokens at the
highest scale.

Across these scales we pretrain all of our models
and evaluate in English on four downstream tasks

tthis game unis beat able

 WordPiece:

WordPiece':

tthis game un ##beis ##ble##ata

Figure 1: Tokenisations generated by WordPiece and
WordPiece′ for the input sequence “this game is unbeat-
able”.
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(comprising 16 datasets): Named Entity Recogni-
tion (NER), GLUE, and two tasks involving clas-
sifying complex words. We additionally train and
evaluate in Finnish across two tasks: NER and
Sequence Classification.

The findings of our work are as follows: (1) we
show that modifying WordPiece to remove WB
information (giving WordPiece′) substantially im-
proves the morphological validity of the resulting
tokenisations across English and Finnish; (2) across
four training scales, we find that WordPiece′ out-
performs WordPiece on downstream tasks involv-
ing complex words, and gives better performance
across most datasets at the lower training scales;
(3) we find that none of our methods for including
WB information into models, whether implicit or
explicit, or through finetuning alone, significantly
affects the performance across four downstream
tasks and three training scales. Our results indi-
cate that word boundary information isn’t provid-
ing additional useful information to models, with
morphemes being the most important subunit.

2 Tokenisers

One particular design choice of subword tokenisers
used by transformer models is the addition of pre-
fixes such as “_” and “##” in order to encode space
information, hence representing word boundaries
in languages with spaces between words. Previous
work (Gow-Smith et al., 2022) has investigated the
impact of these prefixes, showing they lead to less
morphologically valid tokenisations, and also to
a reduced efficiency, since the dual representation
of subwords (e.g. “beat” and “_beat”) gives a vo-
cabulary redundancy (of approximately 9%). As
such, removing these tokens for Unigram (Kudo,
2018) and BPE (Sennrich et al., 2015) has been
shown to have a beneficial effect on downstream
performance for complex word tasks, whilst re-
taining equivalent performance in general natural
language understanding tasks. We refer readers to
Gow-Smith et al. (2022) for a full analysis, but here
we focus on WordPiece′ – WordPiece modified
such that WB information is removed. We train this
model and the default on 1 million sentences from
Wikipedia for two languages (English and Finnish).
We show an example of the tokenisations gener-
ated by this compared to the default for English in
Figure 1. We perform a morphological evaluation
of WordPiece′ compared to WordPiece across the
two languages, shown in Table 2. For English, we

use four datasets (LADEC (Gagné et al., 2019),
MorphoLex (Sánchez-Gutiérrez et al., 2018), Mor-
phyNet (Batsuren et al., 2021), DagoBERT (Hof-
mann et al., 2020)), and we average across all four
(full breakdown in Table 7). For Finnish, we use
the subset of MorphyNet. Here, we follow the eval-
uation standard from Creutz et al. (2004), reporting
precision and F1. Averaging across English and
Finnish, we see that WordPiece′ gives 14% shorter
sequences, 46% higher precision, and 34% higher
F1 compared to WordPiece. We also show exam-
ples of English tokenisations for WordPiece and
WordPiece′ in Table 1. In general, we can see that
WordPiece generates more meaningful tokenisa-
tions, but sometimes they are still of limited mor-
phological validity, as for “undesirable” where the
prefix is incorrectly split and the base form of the
word is lost: we note that WordPiece (like BPE) is
a greedy algorithm, meaning it has a tendency to
overlengthen the initial token of a word.

WordPiece WordPiece′

hyp ##ores ##po ##n ##s ##iveness hypo respons iveness
non ##m ##ult ##ipl ##ayer non multi player

over ##pr ##iced over price d
un ##icy ##cle uni cycle

und ##es ##ira ##ble und es ira ble

Table 1: Some examples of the tokenisations from
WordPiece and WordPiece′.

3 Models

The sequences generated by WordPiece′ have no
word boundary information, which means some in-
formation is lost when using it to encode sequences.
We aim to answer the question of whether such in-
formation is at all useful to transformer encoders –
i.e. can it be incorporated in an alternative way
to improve performance? We investigate trans-
former encoders pretrained using the masked lan-
guage modelling (MLM) task, and then finetuned
on downstream tasks (pretrain-finetune paradigm).

English Finnish

Len Precis. F1 Len Precis. F1

WordPiece 3.29 24.8 33.8 3.21 28.3 38.9
WordPiece′ 2.75 42.6 52.7 2.86 34.7 45.0

Table 2: Performance of WordPiece and WordPiece′

across English and Finnish, showing the average se-
quence length, precision and F1 score generated follow-
ing the standard introduced by Creutz et al. (2004).
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L = L1 

Transformer

Encoder

MLM1

1 2this 1game 1is 1un 2[MASK] able

beat

(a) Explicit model, where word boundary embeddings
are passed in the input.

MLM2

L = L1+L2 

Transformer

Encoder

MLM1

game is un [MASK] able

beat 2

this

(b) Implicit model, with an additional MLM head for
predicting word boundaries.

Figure 2: Network diagrams for the modified transformer architectures trained in this work.

We then look to include WB information in two
ways, either directly as input (both in pretraining
and finetuning), or through a modification of the
pretraining task.

3.1 Explicit Model

One approach is to include WB information ex-
plicitly through the input. Naively, we could add
WB tokens in the input sequence, shown in Fig-
ure 3. However, this is rather inefficient as it leads
to much longer sequences and has been shown to
lead to reduced downstream task performance, even
when the number of epochs (rather than steps) is
matched (Gow-Smith et al., 2022). Nevertheless,
we implement this as a baseline. An alternative,
and significantly more efficient, way to include
this information is to add “word boundary embed-
dings” to the input, added element-wise with the to-
ken embeddings and standard position embeddings,
shown in Figure 2a. These embeddings are equiva-
lent to the standard position embeddings in being
randomly-initialised and then learned through train-
ing.

ungametthis [WB] [WB] [WB]is beat able

Figure 3: WordPiece′ with word boundary tokens.

We experiment with three methods for indexing
the WB embeddings: binary index, word index,
and subword index, shown in Figure 4. The word
index is the position of the word the correspond-
ing token belongs to, whereas the subword index
is the position within the word. These are cho-
sen to align with how the standard position indices

work within transformer architectures, but the bi-
nary index aligns with how standard WordPiece
processes word-initial and word-internal tokens,
having a value of 1 if a token appears at the start of
the word, and a value of 2 otherwise. The binary
index is also more parameter-efficient, since it only
requires an embedding dimension of 2. In fact, for
our experiments the subword index gives the most
new parameters, since even in our English pretrain-
ing corpora (Wikipedia and C4) we encounter large
chunks of (e.g. Chinese) text with no whitespace,
requiring a high embedding dimension.1

tthisTokens:

Binary Index:

Word Index:

Subword Index:

game ablebeatunis

1 1 1 1 2 2

1 2 3 4 4 4

1 1 1 1 2 3

Figure 4: Three alternative indexing methods for the
word boundary embeddings.

3.1.1 Finetuning
Alongside including WB information at pretraining,
we also experiment with pretraining using the de-
fault MLM task and architecture, and then passing
the WB information during finetuning only, either
with binary index WB embeddings, or WB tokens.

3.2 Implicit Model
One possible drawback of the explicit approach
is the reduced difficulty of the MLM task: pass-

1We set the embedding dimension at 512, which covers
all text encountered for all scales. For the word index, the
embedding dimension is set at the max sequence length (256).
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# Articles (M) Params (M) Batch Size # GPUs Steps (k)
Eng. Fin.

V Low 0.1 0.1 5.8 1024 1 25
Low 0.5 2 21.2 512 1 50
High 6.5 10 98.2 256 1 400
V High 40 - 370.4 128 4 400

Table 3: The four training scales we use to evaluate our
models.

ing WB information in the input allows the model
to utilise this directly for predicting the masked
token, rather than inferring it from context alone.
Thus, as an alternative, we modify the architecture
with an additional MLM head such that the model
has to predict the word boundaries from the input,
which we state as implicitly using WB information
through backpropagation. We show the architec-
ture in Figure 2b. In this set-up, we simply sum the
losses from the two MLM heads to give the overall
loss.2

4 Experiments

We evaluate the two tokenisers (WordPiece and
WordPiece′) and our seven explicit and implicit
models in the pretrain-finetune paradigm for En-
glish and Finnish across three training scales (V
Low, Low, High), with an additional scale (V High)
for English WordPiece and WordPiece′ (unmodi-
fied) – due to the high computational cost of train-
ing, we don’t train the other models at this scale.
Across these scales we vary the number of param-
eters, batch size, and training steps, shown in Ta-
ble 3, with further detail in the appendix in Tables 8
and 9. The first three set-ups for English, and the
first two for Finnish, take the training data from
Wikipedia, whilst the remaining take data from C4
(Raffel et al., 2020). The number of parameters
is altered by adjusting the layers, attention heads,
and embedding dimension, and a breakdown of
this is given in the appendix in Table 10. We train
our models in the manner of RoBERTa (Liu et al.,
2019) (in comparison to BERT, this involves no
next sentence prediction, and dynamic masking is
performed), and we mask 15% of tokens. Across
all set-ups, we linearly warmup the learning rate to
a maximum value of 1e-4, and then linearly decay
to 0. We use a sequence length of 256. All training
is performed on A100 or H100 GPUs. Training
and validation losses for these models are given in
the appendix: Figures 7 and 8.

2In preliminary experiments we tried weighting the two
losses, but no increase in performance was observed.

For these models, we run an evaluation on four
downstream tasks. The first two tasks focus on nat-
ural language understanding across a broad range
of domains:

GLUE We evaluate on 8 GLUE (Wang et al.,
2018) tasks (excluding the 9th task of WNLI
(Levesque et al., 2012), following previous work,
due to its adversarial nature). These tasks all in-
volve sequence classification, and cover a wide
range of domains and set-ups: two single-sentence
tasks, three similarity and paraphrase tasks, and
three inference tasks. We report the average metric
across all tasks.

NER We evaluate on three NER datasets from
different domains: the English portion of the
CoNLL-2003 NER dataset (Tjong Kim Sang and
De Meulder, 2003), consisting of sentences taken
from the Reuters news corpus (Rose et al., 2002);
the NCBI Disease corpus (Doğan et al., 2014), con-
sisting of PubMed abstracts; and the WNUT2017
Shared Task (Derczynski et al., 2017), with train-
ing data taken from Twitter, and test data from
YouTube.

The final two tasks specifically involve morpho-
logically complex words, where we expect more
morphologically valid tokenisations to result in im-
proved performance:

Superbizarre The Superbizarre datasets (Hof-
mann et al., 2021) involve the binary classification
of standalone complex words. We take the two top-
icality datasets: Arxiv, which involves predicting
whether a word comes from the Physics or Com-
puter Science subject areas; Reddit, which involves
predicting whether a word comes from an enter-
tainment or discussion subreddit. We report the
average macro F1 across the two datasets.

FLOTA The datasets introduced alongside the
FLOTA tokenisation method (Hofmann et al.,
2022) involve classifying the title of an Arxiv pa-
per into one of 20 subareas for three subject areas
(Computer Science, Maths, Physics). We take the
small version of the dataset, with a train set of 2 000
titles per subject area. We report the average macro
F1 across the three datasets.

4.1 Finnish
In addition to our experiments on English, we
train models on Finnish, to see whether our re-
sults are transferable to a morphologically complex
language – one could hypothesise that with greater
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GLUE NER Superbizarre FLOTA

V Low Low High V High V Low Low High V High V Low Low High V High V Low Low High V High

WordPiece 54.7 (.6) 67.7 (1.5) 77.9 (.4) 83.1 (.4) 54.3 (.5) 68.9 (.4) 76.9 (.3) 81.5 (.4) 65.7 (.1) 66.2 (.1) 67.3 (.1) 68.6 (.1) 19.5 (.8) 31.2 (3.7) 50.4 (.7) 55.0 (1.1)
WordPiece′ 56.2 (.4) 69.8 (.5) 78.0 (.2) 83.7 (1.1) 53.6 (.6) 68.0 (.5) 75.7 (.2) 81.5 (.4) 66.9 (.1) 67.6 (.1) 68.4 (.3) 69.5 (.2) 23.6 (.4) 43.1 (.2) 52.3 (.5) 55.2 (1.0)

Table 4: English results across the four tasks and training scales for WordPiece and WordPiece′, with standard
deviations in parentheses. Results in bold are those better by more than the combined standard deviation ranges.

GLUE NER Superbizarre FLOTA

V Low Low High V Low Low High V Low Low High V Low Low High

WordPiece′ 56.2 (.4) 69.8 (.5) 78.0 (.2) 53.6 (.6) 68.0 (.5) 75.7 (.2) 66.9 (.1) 67.6 (.1) 68.4 (.3) 23.6 (.4) 43.1 (.2) 52.3 (.5)
WordPiece′ implicit 56.2 (.3) 69.0 (.2) 77.8 (.8) 55.3 (.3) 69.2 (.2) 75.6 (.4) 66.9 (.1) 67.6 (.1) 68.3 (.1) 23.5 (1.1) 45.1 (.8) 51.8 (1.3)
WordPiece′ explicit binary 55.7 (.4) 70.1 (.2) 78.4 (.5) 54.4 (.4) 68.2 (.8) 75.3 (.4) 66.9 (.1) 67.6 (.1) 68.2 (.1) 24.5 (1.7) 44.5 (.9) 51.8 (.6)
WordPiece′ explicit word 57.2 (.4) 69.2 (.1) 78.8 (.3) 54.9 (.3) 68.4 (.3) 75.4 (.4) 66.8 (.1) 67.6 (.1) 68.4 (.1) 22.3 (.7) 43.2 (1.0) 51.0 (2.7)
WordPiece′ explicit subword 55.6 (.6) 70.3 (.2) 78.1 (.4) 55.0 (.3) 68.1 (.4) 75.4 (.3) 67.0 (.1) 67.7 (.2) 68.2 (.2) 24.3 (1.2) 38.2 (4.9) 51.8 (2.8)
WordPiece′ explicit WB tokens 55.3 (.6) 68.7 (.2) 77.5 (2.0) 52.4 (.5) 67.6 (.2) 74.1 (.2) 66.6 (.1) 67.5 (.1) 68.3 (.2) 23.3 (1.1) 43.5 (.2) 52.3 (.1)
WordPiece′ explicit f/t WB tokens 55.1 (.2) 69.8 (.3) 76.7 (.5) 53.6 (.6) 68.3 (.4) 75.7 (.2) - - - 23.4 (1.5) 43.7 (.7) 52.5 (.8)
WordPiece′ explicit f/t binary 56.2 (.6) 69.9 (.4) 77.8 (.4) 53.6 (.3) 68.6 (.5) 75.4 (.4) 66.9 (.1) 67.5 (.1) 68.1 (.4) 23.4 (1.2) 43.6 (1.5) 52.6 (1.3)

Table 5: English results across the four tasks and three training scales for WordPiece′ and the modified architectures
which include word boundary information, with standard deviations in parentheses.

NER SeqClass

V Low Low High V Low Low High

WordPiece 72.2 (.2) 84.2 (.6) 89.9 (.3) 73.1 (.2) 78.7 (.3) 83.6 (.2)
WordPiece′ 73.0 (.6) 85.0 (.4) 89.8 (.2) 73.0 (.6) 79.0 (.5) 84.1 (.3)

Table 6: Finnish results across the three tasks and train-
ing scales for WordPiece and WordPiece′, with standard
deviations in parentheses. Results in bold are those
better by more than the combined standard deviation
ranges.

morphological complexity, word boundary infor-
mation would be more helpful in disambiguation.
We run our experiments on Finnish for WordPiece
and WordPiece′ across three training scales, and
evaluate on two downstream tasks:

NER We evaluate on the FiNER dataset (Ruoko-
lainen et al., 2020), consisting of news articles an-
notated with six entity classes, reporting macro F1.

Sequence Classification We look at two se-
quence classification datasets: the Eduskunta
dataset,3 consisting of ministers’ answers to ques-
tions from MPs, labelled with the relevant ministry;
the FinnSentiment dataset (Lindén et al., 2023),
consisting of sentences from social media labelled
with their polarity. We report the accuracy over
these two datasets.

4.2 Finetuning Procedure

An overview of all datasets is given in Table 11. We
finetune on each dataset by updating all parameters,
with the following hyperparameters: batch size

3https://github.com/aajanki/eduskunta-vkk

32, max sequence length 128, learning rate of 2e-
5, warm-up for 5% of steps. We evaluate every
epoch on the dev set, taking the best-performing
epoch. We train five seeds for every model and
report the average metric across these. We also
remove outliers which lie more than two standard
deviations from the mean, or when very low scores
suggest the model failed to train.4 For the English
NER and Complex Words Datasets, and all Finnish
datasets, we train for 20 epochs, but for GLUE we
limit it to 10 epochs per dataset due to the relatively
high training time.

5 Results

We report our full results across all individual
datasets for all models in the appendix (Tables 12
and 13). Here, we look at the overall metrics from
the four tasks across the training scales, and present
our main findings. We note that the plots produced
(Figures 5 and 6, and Figures 9 to 12 in the ap-
pendix) are approximately logarithmic in training
scale, and we reproduce them using a scale factor
on the x-axis in the appendix: Figures 15 to 19.

Firstly, we compare WordPiece and WordPiece′

in Table 4 and Figure 5. On GLUE, we see that
WordPiece′ performs better than WordPiece across
all scales, with a bigger performance difference

4This occurs for the following. High: one seed of
WordPiece′ FLOTA CS (score of 7), one seed of WordPiece′

FLOTA Maths (score of 11), one seed of WordPiece′ f/t WB
tokens (score of 3); V High: one seed of WordPiece′ WB
tokens CoLA (score of 0), two seeds of WordPiece CoLA
(scores of 0 and 8), one seed of WordPiece′ STS-B (score of
2), one seed of WordPiece FLOTA CS (score of 4), one seed
of WordPiece FLOTA Maths (score of 3).
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Figure 5: English results for WordPiece and WordPiece′ across four training scales and four tasks.
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Figure 6: Finnish results for WordPiece and WordPiece′

across three training scales and two tasks.

at the lower scales (+1.5 and +2.1 for the V Low
and Low training scales, respectively). We note
that at the higher scales, the differences are within
two standard deviations of the baseline, so these
results are consistent with those by Gow-Smith
et al. (2022). For NER, on the other hand, we find
that WordPiece′ performs worse than WordPiece
across all training scales except V High, where
they perform equivalently. Looking at the individ-
ual dataset performances (Table 12 in the appendix)
we see that the worse performance on WNUT2017
(-2.5 average decrease across scales) accounts for
the worse overall NER performance, with the other
two datasets giving similar results (apart from at
the V Low scale, where WordPiece′ performs sub-
stantially better on them). This dataset involves tag-
ging “unusual, previously-unseen entities”, which
means morphological composition cannot be lever-
aged – we hypothesise that the improved ability
of WordPiece′ to do this is the cause of the perfor-
mance drop, due to the futility of composing the

meaning of novel surface forms from subunits. Our
results on Finnish (Table 6 and Figure 6) show no
significant performance difference between Word-
Piece and WordPiece′ across the sequence classi-
fication and NER tasks, apart from for the High
training scale on sequence classification, where
WordPiece′ outperforms WordPiece.

For the complex word tasks, WordPiece′ substan-
tially outperforms WordPiece: averaging across the
training scales, we get 1.1 average increase for Su-
perbizarre, and 4.5 average increase for FLOTA.
The relative performance difference is most sig-
nificant for Superbizarre: at the V Low scale, we
would require approximately 20 times the train-
ing scale for WordPiece to match WordPiece′ (Fig-
ure 15c in the appendix). In general, we find the
performance differences to decrease as the training
scale increases, as expected,5 however this effect
seems significantly less for Superbizarre, which
still has a large performance difference at the V
High training scale (+0.9).

Next, we look at the models that attempt to use
WB information, with results in Table 5.

Comparing WordPiece′ and the implicit variant
(shown also in Figure 9 in the appendix), we find
that adding the extra loss term gives mixed results
across the four tasks and training scales. We do
however see that at the V Low and Low training
scales, the implicit model improves performance
for NER (+1.7 and +1.2, respectively). Since this
prediction task is very similar to the finetuning
task of token classification, this may explain the
effect on performance. The additional MLM head
increases the total loss (see Figure 13 in the ap-

5Improved morphological validity should matter less when
the model capacity is greater, and when morphologically com-
plex and rare words have been encountered more times during
pretraining.
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pendix), but when we look at the evaluation accu-
racies for the two MLM heads (Figure 14 in the
appendix), we see that the default MLM head has
very similar accuracies to the WordPiece′ baseline.
We also note that for the Very Low training scale,
there is a 3.5% (relative) improvement in default
MLM accuracy, which could be contributing to the
performance improvement – in a low resource sce-
nario (both compute and data), the extra prediction
task may help to leverage additional information.

Next, we look at the explicit variants. Naively
including the WB information through additional
tokens leads to decreased performance across all
tasks except for FLOTA, where there is no sub-
stantial performance difference (Figure 10 in the
appendix). Overall, these differences are small:
around 1 for GLUE, 0.5-2 for NER, 0.1-0.3 for
Superbizarre. This is despite a significantly lower
MLM loss (approximately 60%: Figure 13 in the
appendix) due to the high probability of WB tokens,
and the fact that this model trains for around 40%
fewer epochs (Table 8 in the appendix). We next
look at the three variants for WB embeddings (see
appendix: Figure 11). Overall, none of these mod-
els consistently improve over WordPiece′, and the
relative performance of the three indexing methods
varies with training scale and task. The subword
index model has the greatest number of additional
parameters, which might explain why this model
performs the best overall at the V Low scale. In
this setting this model has 2.3% more parameters
than the baseline, compared to 1.1% for the word
index model, and 0.01% for the binary index model.
The model achieves an average performance across
the four tasks of 50.5, compared to 50.3 for the
other two variants, and 50.1 for the baseline. How-
ever, at the Low training scale, this model actually
performs worse than the other two variants (61.1
average compared to 62.6 and 62.1 for binary and
word, respectively). At the High training scale
they all perform equivalently (68.4 average). Since
all three indexing methods are encoding equivalent
information through trivial transformations, the per-
formance equivalence is perhaps expected.

Finally, we look at two approaches to includ-
ing WB information during finetuning only (Fig-
ure 12 in the appendix) – with WB tokens or bi-
nary index WB embeddings. We find that nei-
ther of these approaches improve over the baseline,
with the WB tokens approach performing overall
slightly worse: averaged across all training scales
and datasets, we get 57.5 for default WordPiece′,

57.5 for WordPiece′ f/t binary index, and 57.3 for
WordPiece′ f/t WB tokens. This corroborates the
results by Abdou et al. (2022), who find that adding
position embeddings after pretraining without them
does not lead to improved performance. On aver-
age, including the WB embeddings during finetun-
ing decreases training stability (increased standard
deviation across seeds).

6 Discussion

Overall, we find that incorporating word bound-
ary information in transformer encoders, either
explicitly or implicitly, does not lead to substan-
tial performance improvements. This suggests that:
a) modifying tokenisers such as WordPiece to re-
move space information does not result in the loss
of useful information, b) the default MLM task is
sufficient for such models to pretrain effectively.

The pre-tokenisation step of splitting on whites-
pace prevents tokens from ever crossing word
boundaries, which is perhaps a sufficient restriction.
Our results indicate the importance of a morpheme
compared to a word as the key feature which con-
tributes to meaning.

For English, across all models and training
scales, we only see a weak correlation between
performance on NER and GLUE – if we compare
the difference compared to WordPiece′ for the im-
plicit and explicit models, we find a correlation
with Pearson’s ρ = 0.332.

The Superbizarre task is significantly less af-
fected by model scaling than the other tasks we
evaluate on, but much more affected by the choice
of tokeniser. This suggests that morphologically
valid tokenisation is vital for generating good rep-
resentations of complex words in the absence of
context. This task is also less likely to be depen-
dent on spurious correlations (annotation artefacts)
in the data.

All of our models at the High and V High train-
ing scales outperform the dev results reported by
Hofmann et al. (2022) on the FLOTA ArXiv-S
datasets using their tokenisation method. We hy-
pothesise this is likely an effect of hyperparameters,
e.g. we use a batch size of 32 rather than their 64,
and we use a learning rate scheduler with warm-up,
whereas they do not.

7 Related Work

This work aligns with other works that aim to im-
prove the morphological validity of subword to-
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kenisers: Westhelle et al. (2022) introduce Mor-
phologically Informed Segmentation (MIS), a to-
keniser based on Morfessor for Portuguese; Hof-
mann et al. (2022) introduce Few Longest Token
Approximation (FLOTA), which preserves the mor-
phology of complex words without necessarily
keeping all the characters. Jimenez Gutierrez et al.
(2023) introduce a tokeniser for the biomedical do-
main that is better aligned with morpheme segmen-
tation, and then train their BioVocabBERT model
using it. There has also been work looking at the
impact of how subword tokens are marked, either
with word-initial or word-final prefixes (Jacobs and
Pinter, 2022).

There is previous work which has passed addi-
tional position indices to transformer models. Jia
et al. (2021) introduce a model for neural text-
to-speech called PnG BERT which uses word-
position embeddings to provide alignment between
phonemes and graphemes at the word level. In NLP,
Bai et al. (2020) introduce Segatron, a model which
modifies the Transformer-XL (Dai et al., 2019)
with two additional position embeddings: a sen-
tence index and a paragraph index. They also apply
the same modifications to BERT, giving SegaBERT.
They find that SegaBERT gives lower validation
losses during pre-training, lower language mod-
elling perplexities, and improves upon the GLUE
score of BERT. Cheng et al. (2023) include POS
tags as additional input embeddings during BERT
pretraining, which they find to reduce performance
on (Super)GLUE (Wang et al., 2019) and MSGS
(Warstadt et al., 2020).

There has also been work which has modified
the pretraining objective of transformer models.
Yamaguchi et al. (2021) introduce various alterna-
tives to MLM, and pre-train models using them,
finding that default MLM is superior in the higher-
parameter setting. There have been various works
using linguistically-motivated pretraining objec-
tives (Zhou et al., 2019; Levine et al., 2020), with
the closest to our work being that by Cui et al.
(2022), who find improved performance through
simply adding additional MLM heads for linguistic
tasks and summing their losses.

8 Conclusion

In this work we investigate whether word boundary
information is useful for transformer encoders. In
particular, we start with WordPiece′, a version of
WordPiece modified to remove word boundary in-

formation, and show that it leads to more linguisti-
cally meaningful tokenisations, as well as improved
performance on tasks involving morphologically
complex words, whilst having no significant effect
on performance for general domain tasks across
English and Finnish. We also investigate modi-
fications to the default model architecture which
involve incorporating word boundary information,
either explicitly (through the input), or implicitly
(through the pretraining task), and through pretrain-
ing or finetuning alone. Across all models and
training scales, we find that these modifications
give no substantial improvements in performance,
which suggests transformer encoders can perform
well without word boundary information, either in
the form of prefixes (“##” or “_”), word boundary
tokens, word boundary embeddings, or through a
modification to the pretraining task.
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Limitations

In this work we have only looked at transformer
encoder architectures. For encoder-decoder or de-
coder models, word boundary information needs to
be generated in the output – i.e. WordPiece′ is lossy
which is problematic for generation. Not including
such architectures is a significant limitation of the
scope of our work and an important future direc-
tion. Despite running pretraining across four scales,
we don’t look at altering the vocabulary size of our
tokenisers, which is another limitation. Whilst we
have investigated many approaches to including
word boundary information through modified ar-
chitectures, it is possible that there are alternative
approaches which would perform better than these.
In addition, whilst we have tried to run experiments
on a extensive range of downstream tasks with two
languages, it is possible that there are other tasks
and languages where the omission of word bound-
ary information would have a significant negative
impact on performance.
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LADEC MorphoLex MorphyNet DagoBERT MEAN

Len Precis. F1 Len Precis. F1 Len Precis. F1 Len Precis. F1 Len Precis. F1

WordPiece 3.34 38.0 53.3 2.91 26.0 31.4 3.43 13.2 19.7 3.47 21.9 30.7 3.29 24.8 33.8
WordPiece′ 2.66 53.7 67.1 2.55 50.0 55.1 2.95 25.5 36.1 2.85 41.1 52.5 2.75 42.6 52.7

Table 7: Performance of WordPiece and WordPiece′ across four English morphological datasets, showing the
average sequence length, precision and F1 score generated following the standard introduced by Creutz et al. (2004).

Base Dataset # Articles (M) Examples (M) Params (M) Batch Size # GPUs Steps (k) Epochs Train Time (h)
WP WP’ WP’ spaces WP WP’ WP’ Spaces

V Low Wikipedia 0.1 1.2 1.1 1.8 5.8 1024 1 25 21.5 23.0 13.9 11.0
Low Wikipedia 0.5 4.1 3.8 6.3 21.2 512 1 50 6.3 6.7 4.1 19.0
High Wikipedia 6.5 19.8 18.5 30.2 98.2 256 1 400 5.2 5.5 3.4 29.2
V High C4 40 88.0 82.2 - 370.4 128 4 400 2.3 2.5 - 70.9

Table 8: The four training scales we use to evaluate our models in English.

Base Dataset # Articles (M) Examples (M) Params (M) Batch Size # GPUs Steps (k) Epochs Train Time (h)
WP WP’ WP WP’

V Low Wikipedia 0.1 0.3 0.3 5.8 1024 1 25 78.9 84.8 4.1
Low Wikipedia 2 1.0 1.0 21.2 512 1 50 24.7 26.6 7.8
High C4 10 37.6 34.6 98.2 256 1 400 1.4 1.5 78.4

Table 9: The three training scales we use to evaluate our models in Finnish.
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Figure 7: Training and valid losses for WordPiece and WordPiece′ across three training scales for English.
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Figure 8: Training and valid losses for WordPiece and WordPiece′ across three training scales for Finnish.
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Figure 9: Results for WordPiece′ and WordPiece′ implicit.
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Figure 10: Results for WordPiece′ and WordPiece′ explicit with word boundary tokens.
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Figure 11: Results for WordPiece′ and WordPiece′ explicit with word boundary embeddings.
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Figure 12: Results for WordPiece′ and WordPiece′ finetuned with either word boundary tokens or binary index
word boundary embeddings.
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Layers Att. Heads Embed. Dim.

V Low 2 4 256
Low 4 8 512
High 12 12 768
V High 26 16 1024

Table 10: Layers, attention heads, and embedding di-
mension for the four training scales.

Figure 13: Pretraining MLM losses for all English
models across three training scales, averaged across the
last 100 steps.

Figure 14: English pretraining evaluation accuracies
for WordPiece′ and the two MLM heads for WordPiece′

extra loss.
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Figure 15: Results for WordPiece and WordPiece′ with log training scale on the x-axis.
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Figure 16: Results for WordPiece′ and WordPiece′ implicit with log training scale on the x-axis.
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Figure 17: Results for WordPiece′ and WordPiece′ explicit with word boundary tokens with log training scale on
the x-axis.
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Figure 18: Results for WordPiece′ and WordPiece′ explicit with word boundary embeddings with log training scale
on the x-axis.
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Figure 19: Results for WordPiece′ and WordPiece′ finetuned with either word boundary tokens or binary index
word boundary embeddings with log training scale on the x-axis.
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|Train| (k) |Dev| (k) Metric Domain

CoLA (Warstadt et al., 2018) 8.5 1 Matthew’s Correlation Books and Journal Articles
SST-2 (Socher et al., 2013) 67 1 Accuracy Film Reviews
MRPC (Dolan and Brockett, 2005) 3.7 0.4 F1 / Accuracy Online News
STS-B (Cer et al., 2017) 5.8 1.5 Pearson / Spearman Correlation Various
QQP (https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) 364 40 F1 / Accuracy Quora questions
MNLI (Williams et al., 2018) 393 9.8 Accuracy Various
QNLI (Rajpurkar et al., 2016) 105 5.5 Accuracy Wikipedia
RTE (Bentivogli et al., 2009) 2.5 0.3 Accuracy Wikipedia and News
Superbizarre-Arxiv (Hofmann et al., 2021) 58 19 F1 Arxiv Papers
Superbizarre-Reddit (Hofmann et al., 2021) 51 17 F1 Reddit
FLOTA (Hofmann et al., 2022) 1.2 0.4 F1 Arxiv Paper Titles
FiNER (Ruokolainen et al., 2020) 13.5 1.0 F1 Online News
Eduskunta (https://github.com/aajanki/eduskunta-vkk) 49.1 3.0 Accuracy Parliamentary Questions
FinnSentiment (Lindén et al., 2023) 24.3 2.7 Accuracy Social Media

Table 11: Information for the datasets we use for evaluation.

mnli SB FLOTA
conll ncbi wnut17 cola sst2 mrpc stsb qqp m mm qnli rte A R CS M P

V Low WP 79.5 59.5 24.0 6.9 79.7 76.0 15.7 74.0 59.9 61.1 64.6 54.2 66.1 63.9 20.8 16.9 20.8
WP′ 80.2 60.4 20.4 3.5 80.8 76.2 15.8 77.4 63.8 65.1 67.3 56.0 68.3 65.4 23.0 23.1 24.7
WP′ extra loss 80.1 61.3 23.0 6.7 80.6 75.6 16.0 76.7 63.3 64.9 65.7 55.3 68.4 65.4 21.6 20.3 28.7
WP′ binary 79.7 60.8 22.6 7.4 82.7 76.0 15.2 74.7 62.5 63.6 63.6 55.4 68.3 65.4 24.2 21.8 27.4
WP′ word pos 80.3 60.5 23.9 7.7 81.4 76.1 20.6 78.6 63.7 65.1 68.0 53.8 68.3 65.4 21.7 19.6 25.6
WP′ subword pos 80.9 62.5 21.6 5.7 82.8 75.9 13.1 74.2 63.0 64.3 65.0 56.0 68.6 65.3 26.0 22.3 24.6
WP′ spaces 78.0 58.8 20.4 7.3 80.6 76.5 14.4 75.6 62.0 62.6 64.9 53.6 67.8 65.3 20.0 19.9 23.2
WP′ f/t binary 80.3 60.3 20.1 4.7 81.0 75.5 16.0 77.3 63.8 65.0 66.4 55.7 68.4 65.4 22.1 22.1 25.6
WP′ f/t spaces 80.2 60.4 20.4 1.9 81.4 76.5 14.0 74.4 63.3 64.6 65.2 54.9 - - 22.3 21.9 26.0

Low WP 89.3 78.0 39.5 11.9 85.0 78.2 66.1 85.2 71.9 72.2 82.0 56.7 68.1 64.4 30.3 28.7 34.7
WP′ 89.9 77.0 37.3 16.9 85.3 79.0 78.0 85.6 72.2 72.7 81.6 56.6 69.3 66.0 44.1 38.7 46.6
WP′ extra loss 90.7 77.6 39.3 15.5 84.6 77.3 75.2 85.2 72.6 73.1 81.2 56.3 69.2 65.9 46.3 41.0 48.1
WP′ binary 89.9 77.5 37.2 18.5 87.1 77.0 76.3 85.3 73.4 73.4 82.7 57.3 69.1 66.0 44.6 41.7 47.3
WP′ word pos 89.7 77.1 38.3 16.3 84.2 78.0 76.4 84.8 71.4 72.0 81.8 57.5 69.2 66.0 42.9 39.4 47.4
WP′ subword pos 90.0 77.0 37.1 18.4 86.3 78.9 77.5 85.6 72.8 73.0 82.5 58.1 69.5 66.0 40.2 33.6 40.8
WP′ spaces 89.1 76.3 37.5 16.3 84.3 76.0 74.3 85.0 72.0 72.2 80.0 58.1 69.2 65.7 43.2 40.4 47.0
WP′ f/t binary 90.0 77.3 38.6 16.0 84.9 79.1 77.5 85.5 72.4 73.0 82.3 58.6 69.3 65.8 44.0 40.6 46.1
WP′ f/t spaces 90.0 76.9 38.1 16.3 84.3 78.2 79.6 85.3 71.9 72.9 81.4 57.1 - - 45.8 39.3 46.0

High WP 95.0 83.7 52.1 34.7 90.0 87.2 85.6 88.9 80.3 80.4 89.1 65.1 69.5 65.2 51.6 47.6 52.0
WP′ 94.9 83.7 48.6 40.2 90.8 87.3 85.7 88.6 79.9 80.0 87.1 62.8 70.3 66.5 53.2 49.8 53.8
WP′ extra loss 94.9 83.2 48.7 34.6 90.4 87.2 85.7 88.5 79.5 80.0 88.5 65.6 70.6 66.1 53.5 48.5 53.3
WP′ binary 94.6 84.0 47.4 40.4 90.5 87.6 85.7 88.7 79.9 80.3 88.5 64.3 70.1 66.2 52.0 48.1 53.0
WP′ word pos 94.6 83.1 48.5 40.0 90.7 88.2 86.3 88.7 80.5 80.4 88.2 66.1 70.3 66.5 51.9 49.0 54.7
WP′ subword pos 94.4 83.7 48.1 38.4 90.4 86.5 85.7 88.8 80.4 80.6 87.9 63.8 70.0 66.4 47.3 46.3 51.0
WP′ spaces 93.8 83.8 44.6 38.0 90.2 86.6 84.9 88.3 79.3 79.5 86.4 64.3 70.3 66.2 54.0 49.6 53.2
WP′ f/t binary 94.8 83.3 48.2 39.0 90.9 87.1 85.8 88.5 79.9 80.0 87.0 61.9 70.1 66.0 51.6 51.6 54.7
WP′ f/t WB tokens 94.9 83.7 48.6 36.3 90.5 87.1 85.7 88.4 80.1 80.6 86.7 63.3 - - 52.9 49.9 54.7

V High WP 95.6 86.1 62.9 61.3 92.3 89.2 89.0 89.9 85.6 85.7 91.2 63.9 70.6 66.5 59.2 51.4 54.3
WP′ 95.7 86.5 62.2 61.3 93.1 90.9 89.4 90.0 85.2 85.3 90.9 67.1 71.6 67.4 60.4 49.4 55.6

Table 12: Full English results across all datasets, training scales, and models.

FiNER Eduskunta FinnSentiment

V Low WP 72.2 64.6 81.6
WP′ 73.0 65.2 80.9

Low WP 84.2 71.3 86.3
WP′ 85.0 71.1 86.8

High WP 89.9 75.9 91.3
WP′ 89.8 75.3 92.9

Table 13: Full Finnish results across all datasets, train-
ing scales, and models.
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Abstract

Knowledge graph embeddings (KGEs) provide
low-dimensional representations of the entities
and relations in a knowledge graph (KG) in or-
der to reason about the KG and to inject struc-
tured knowledge into various downstream ap-
plications. Most prior work, however, focuses
almost exclusively on training and evaluating
KGE models for the task of link prediction. In
this work, we explore KGE models as general-
purpose representations of KGs and study their
suitability (i) for more generally capturing prop-
erties of the KG and (ii) for downstream tasks
such as entity classification and regression. For
(i), we designed a new set of graph-structure
prediction tasks to assess whether models cap-
ture different structures in the graph. For (ii),
we investigate whether models provide useful
features for a variety of downstream tasks. We
found that strong link prediction performance
was neither an indication that models generally
capture patterns in the graph, nor that they were
more useful in downstream tasks. As a result,
we included our proposed graph-structure pre-
diction tasks as additional training objectives
and found that models trained with this multi-
task approach generally, but not always, per-
formed better at both graph-structure prediction
and downstream tasks. However, the most suit-
able choice of pre-training tasks varies across
KGE models and types of downstream tasks,
suggesting opportunities for more research into
the relation between pre-training KGE models
and their usability on downstream applications.

1 Introduction

Knowledge graph embeddings (KGE) provide rep-
resentations of the entities and relations in a knowl-
edge graph (KG). Although a large number of KGE
models have been proposed, e.g. Ge et al. (2023);
Xiao et al. (2022); Bai et al. (2022), most prior
work focuses on the task of link prediction, i.e.,
answering questions such as (Austin, capitalOf, ?)
by reasoning over an incomplete KG. In addition

to link prediction, it is often argued that KGEs
can provide representations that capture semantic
properties of the entities (Wang et al., 2022a; Ji
et al., 2021; Wang et al., 2017; Nickel et al., 2015;
Bordes et al., 2013, 2011) and, indeed, pre-trained
KGE models have been used to inject structured
knowledge into recommender systems (El-Kishky
et al., 2022; Wang et al., 2018), question answer-
ing systems (Ilyas et al., 2022) and other types of
downstream applications (Ji et al., 2021).

Despite their use as KG representations in down-
stream applications, the question of whether pre-
trained KGE models are generally useful represen-
tations of KGs—i.e. representations that are useful
beyond the link prediction task—remains largely
unexplored. Specifically, it is not well-understood
how different pre-training settings affect these rep-
resentations. This stands in contrast with represen-
tation learning of natural language, where represen-
tations are intrinsically tested for known linguistic
properties (Mikolov et al., 2013) and extrinsically
on their usability in downstream applications (De-
vlin et al., 2019; Radford et al., 2018), and where
different pre-training settings are known to improve
performance (Raffel et al., 2020; Liu et al., 2019).

In this work, we study the suitability of KGE
models as general-purpose KG representations.
First, we intrinsically assess whether KGE models
capture known properties of the graph, by evalu-
ating their performance on basic graph-structure
prediction tasks. We focus on new tasks that are
similar to link prediction, but that test different
forms of structural knowledge, such as predicting
the relation of a triple (e.g., the relationship be-
tween Austin and Texas), the domain and range of
a relation (e.g., whether Austin is a capital), and the
entity and relation neighborhood of an entity (e.g.,
which entities are related to Austin). We found that
commonly trained KGE models often performed
poorly on such tasks, challenging the intuition that
KGE models preserve the structure of a KG.
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Second, we extrinsically evaluate whether KGE
models are useful pre-trained representations for
node-level downstream tasks such as entity clas-
sification (e.g., the profession of a person) or re-
gression (e.g., the rating of a movie). We conduct
an empirical study using 35 downstream tasks on
three different KGs. We found that KGE models
often perform decent on these tasks, almost always
exceeding the performance of graph neural net-
works that train directly on the downstream task,
such as KE-GCN (Yu et al., 2021). However, the
KGE models with best downstream task perfor-
mance were often not the best-performing models
for link prediction. For example, the basic TransE
model (Bordes et al., 2013) can be superior to KGE
models with stronger performance on link predic-
tion, such as ComplEx (Trouillon et al., 2016) or
RotatE (Sun et al., 2019). This suggests that good
link prediction performance is not necessarily in-
dicative of good downstream task performance.

Both of these findings suggest that the focus on
link prediction tasks is too narrow for pre-training
KGE models, i.e., to provide generally useful rep-
resentations of a KG. We thus included the graph-
structure prediction tasks discussed above as ad-
ditional training objectives. The resulting multi-
task KGE models had significantly better overall
performance for graph-structure prediction tasks,
suggesting that the learned representations capture
more information about the graph, at the cost of a
small drop in link prediction performance.

Perhaps more importantly, when using pre-
trained KGEs in downstream tasks, we found that
multi-task training often (but not always) improved
downstream performance, especially as data be-
comes scarce. In fact, excluding the link prediction
task during pre-training resulted in better down-
stream performance more often than not. However,
capturing more information about the graph did
not directly translate to better downstream perfor-
mance, as the best performing models in down-
stream applications were often those that were not
pre-trained using all possible tasks. In general, the
best choice of pre-training tasks depends on the
dataset, KGE model, and type of downstream task,
suggesting opportunities for more research to bet-
ter understand how to pre-train KGE models so
they provide generally useful KG representations.
We provide all of our resources1 to promote future
work in this direction.

1Available at https://github.com/uma-pi1/kge-pretraining.

2 Preliminaries and Related Work

We briefly describe KGE models, training and eval-
uation methods for link prediction, as well as prior
work on other tasks. For a more comprehensive
discussion, please see surveys from Nickel et al.
(2015); Wang et al. (2017); Ji et al. (2021).

Link prediction. A knowledge graph G ⊆
E × R × E is a collection of (subject, predicate,
object)-triples over a set E of entities and a set R
of relations. Triples represent known facts such as
(Austin, capitalOf, Texas). In the KGE literature,
the link prediction task is defined as predicting the
subject or object to questions of the form (?, capi-
talOf, Texas) and (Austin, capitalOf, ?), resp.

KGE models. KGE models represent each
entity and each relation of a KG with a low-
dimensional embedding. Each model has a scoring
function s : E × R × E → R that maps each
possible triple to a real-valued score. Intuitively,
high scores indicate plausible triples, low scores
implausible triples. For example, TransE (Bor-
des et al., 2013) is a translation-based model with
s(i, k, j) = −∥ei + rk − ej∥, where ei ∈ Rd and
rk ∈ Rd are entity and relation embeddings, resp.
Scoring functions can be more involved, e.g., based
on transformers (Chen et al., 2021a).

Standard training. KGE models are com-
monly trained on the link prediction task. For each
training triple (s, p, o), models are trained such
that score s(s, p, o) is high (a known positive) but
score s(s, p, o′) is low for (pseudo-)negative triples
(s, p, o′), where o′ ̸= o ∈ E ; similarly for subjects
s′ ∈ E with negative triple (s′, p, o). Different
training objectives exist, all of which follow this
approach, but otherwise differ in other hyperparam-
eters; for details, see Ali et al. (2021).

Standard evaluation. The most common evalu-
ation protocol is entity ranking (ER), and it is also
based on link prediction. Given test triple (s, p, o),
models answer the link prediction queries (s, p, ?)
and (?, p, o) by ranking all possible answers to each
query by their scores, after filtering other known
answers. Metrics such as mean reciprocal rank
(MRR) and Hits@K are then computed based on
the rank of the answers s and o, resp. As an evalua-
tion method, entity ranking has been questioned in
prior work (Zhou et al., 2022; Tiwari et al., 2021;
Safavi and Koutra, 2020; Wang et al., 2019). In this
work, we focus mostly on other evaluation tasks.

Other training approaches. Nickel et al. (2011)
and Li et al. (2021) trained on the reconstruction
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task, which aims at reconstructing the training
set using cost functions such as

∑
t∈Gtrain

∥I[(t)]−
s(s, p, o)∥22, for training set Gtrain and where I[·] is a
0/1 indicator. We do not consider such methods due
to excessive training costs. Chen et al. (2021b) aug-
mented the link prediction task with relation predic-
tion during training (but not evaluation). We extend
this work by including additional pre-training tasks
and by focusing on graph-structure prediction and
downstream task performance instead.

Other evaluation approaches. Some works
evaluate KGE models using triple classifica-
tion (Socher et al., 2013; Lin et al., 2015; Wang
et al., 2022b). We do not consider this task be-
cause performance estimates are typically overly
optimistic and misleading unless hard negatives are
used (Safavi and Koutra, 2020); such hard neg-
atives are generally not available. Chang et al.
(2020) evaluated KGE models on the relation pre-
diction task, which we also consider as one evalua-
tion task in this work. There is also work on prob-
ing KGE models (Meilicke et al., 2018; Allen et al.,
2021; Rim et al., 2021), which focus on link predic-
tion performance across different types of relations,
e.g. symmetric. In contrast, we focus on studying
whether models provide useful representations, i.e.
we focus on embedding quality, not just on link
prediction performance. In addition, pre-trained
KGE models have been used as components in lan-
guage models (He et al., 2020; Zhang et al., 2019),
visual models (Baier et al., 2017), recommender
systems (El-Kishky et al., 2022; Wang et al., 2018),
or question answering systems (Ilyas et al., 2022).
Similarly, some studies have evaluated pre-trained
KGE models for entity classification or regression
tasks (Pezeshkpour et al., 2018; Jain et al., 2021),
as we do. We extend this line of work with a larger
set of downstream tasks, and by being the first (to
our knowledge) to study the impact of different pre-
training methods on downstream task performance.

3 Graph Structure Prediction

In this section, we describe the new graph-structure
tasks used in our study. Specifically, how we use
them to test whether KGE models preserve known
properties in a KG, and how we adapted KGEs to
efficiently train on these tasks.

3.1 Graph-Structure Tasks

An example and summary of the graph-structure
tasks that we use in our study is given in Table 1.

We describe the queries for each task as a triple
such as (s, ?, ∗), where s or o denote input entities,
p denotes an input relation, ? denotes the prediction
target, and ∗ acts as a wildcard. Using this notation,
we consider the following tasks and queries:

• Link prediction (LP): Given a relation and a sub-
ject, predict the object (denoted (s, p, ?)). Like-
wise, given a relation and an object, predict the
subject (denoted (?, p, o)).

• Relation prediction (REL, Chang et al. (2020);
Chen et al. (2021b)): Given two entities s and
p, predict the relation between them (denoted
(s, ?, o)).

• Domain prediction (DOM): Given a relation,
predict its domain (denoted (?, p, ∗)) or its range
(denoted (∗, p, ?)).

• Entity neighborhood prediction (NBE): Given
a subject entity, predict related objects (denoted
(s, ∗, ?)). Likewise, given an object, predict re-
lated subjects (denoted (?, ∗, o)).

• Relation neighborhood prediction (NBR):
Given a entity, predict the relations where it oc-
curs as subject (denoted (s, ?, ∗)) and where it
occurs as object (denoted (∗, ?, o)).

Note that we use the wildcard to denote existential
quantification. For example, given a ground-truth
KG G and domain prediction query (?, p, ∗), an
entity s ∈ E is a correct answer if there exists an
entity o ∈ E such that (s, p, o) ∈ G. We illustrate
these new tasks in Figure 2 in Appendix A.

We chose this particular set of tasks because
they are simple, they capture basic information
about the graph structure beyond link prediction,
and they only have one prediction target (an en-
tity or a relation). The latter property allows ef-
ficient pre-training and evaluation, as discussed
below. For this reason, we exclude tasks such as
entity-pair prediction (Wang et al., 2019) (denoted
(?, p, ?)) or reconstruction (Nickel et al., 2011) (de-
noted (?, ?, ?)). In our experimental study in Sec. 4,
we found that the exclusion of some of the above
pre-training tasks (e.g., LP) often improves down-
stream task performance. The optimal choice of
tasks depends on dataset, KGE model, and down-
stream task, however. We leave the exploration of
task selection as well as on exploring additional
pre-training tasks to future work.
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Knowledge graph Task Example query Some answers

(Dallas, locatedIn, Texas) Link (LP) (Austin, locatedIn, ?) Texas, USA
(Texas, locatedIn, USA) (?, locatedIn, Texas) Austin, Dallas
(Austin, capitalOf, Texas) Relation (REL) (Austin, ?, Texas) locatedIn, capitalOf
(Austin, locatedIn, Texas) Domain (DOM) (*, locatedIn, ?) Texas, USA, North A.
(Arkansas, borders, Texas) (?, locatedIn, *) Dallas, Texas, USA
(USA, locatedIn, North A.) Entity neighb. (NBE) (Austin, *, ?) Texas, USA
(Austin, locatedIn, USA) (?, *, Texas) Dallas, Arkansas

Relation neighb. (NBR) (Austin, ?, *) capitalOf, locatedIn
(*, ?, Texas) borders, capitalOf

Table 1: Graph-structure prediction tasks used for self-supervised pre-training and evaluation along with example
queries. Here ? denotes the prediction target and ∗ acts as a wildcard.

3.2 Multi-Task Ranking

To intrinsically evaluate whether KGE models pre-
serve properties that are known to exist in a KG,
we use the set of graph-structure prediction tasks
described above to generalize the entity ranking
(ER) protocol for link prediction (see Sec. 2) to a
multi-task ranking (MTR) protocol. Intuitively, for
each of the nine queries (LP/REL/DOM/NBE/NBR
for both subject and object targets), we construct a
query from each test triple, obtain a ranking of the
prediction targets that do not already occur in the
training/validation/test data (filtered setting), and
use metrics such as MRR or Hits@K. The final
metric is the micro-average over all nine queries.

We now describe how to obtain task-specific
rankings. First, for a REL query of form (s, ?, o),
we proceed as in Chang et al. (2020) and rank all
p′ ∈ R such that (s, p′, o) /∈ Gtrain in descend-
ing order of their scores s(s, p′, o). For the other
tasks, which involve wildcards, it is not imme-
diately clear how to perform prediction using a
KGE model. We first discuss scoring and rank-
ing, then filtering of data for evaluation. Consider
for example the NBR query (s, ?, ∗), where our
goal is to rank relations. The perhaps simplest ap-
proach to obtain a relation ranking is to first rank
all triples of form (s, p′, o′), where p′ ∈ R and
o′ ∈ E , and then rank relations by their first ap-
pearance (e.g., the relation of the highest-scoring
triple is ranked at the top). Generally, we make
use of an extended score function that accepts wild-
cards (described in Algorithm 2 in Appendix A).
The approach just described corresponds to using
s(s, p′, ∗) = maxo′∈E s(s, p′, o′), i.e, the score of
a relation p′ is the score of its most plausible triple.
Although other aggregation functions are feasible,

we only consider max-aggregation because it does
not make any additional assumptions on the scoring
function. To filter training/validation/test data dur-
ing model evaluation (as done in the literature), we
remove all relations p′ such that (s, p′, o′) ∈ Gtrain
for some o′ ∈ E ; i.e., we remove all prediction tar-
gets that are already implied by the filtering splits.
We proceed similarly for all other tasks involving
wildcards. Note that the number of score compu-
tations needed to predict entity targets for queries
without wildcards is O(|E|), whereas the one for
queries with wildcards is O(|E||R|). Similarly, pre-
dicting target relations costs O(|R||E|) and O(|R|)
with and without wildcards, respectively. We dis-
cuss in the next section how to reduce the additional
cost of using wildcards to O(|E|) or O(|R|).

3.3 Multi-Task Training

We generalize standard KGE model training to
all of the graph-structure prediction tasks, called
multi-task training (MTT). Our goal is to be able
to train KGE models on multiple tasks simultane-
ously, while keeping training and prediction cost
low. We do this by constructing a task-specific cost
function for each individual task first; the final cost
function is then given as a weighted linear com-
bination of the task-specific costs (and additional
regularization terms), where the weights are hy-
perparameters (costs increase only linearly in the
number of tasks, see Table 12). We formalize the
MTT training objective in Appendix A.

The task-specific cost functions for link pre-
diction and relation prediction are obtained as in
standard training (Sec. 2): for each positive triple
(s, p, o) ∈ G, we construct a set of negatives accord-
ing to the query (i.e., by perturbing the position of
the prediction target) and then apply the loss func-
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tion (e.g., cross entropy). For our proposed tasks in-
volving wildcards, we proceed differently. Instead
of performing some form of (costly) score aggrega-
tion during training, we “convert” these tasks with
wildcards into tasks without wildcards. To do so,
we make use of three virtual wildcard objects—one
for subjects (anyS), one for relations (anyR), and
one for objects (anyO)—and learn embeddings for
these objects. During training, we conceptually
replace wildcards by their corresponding wildcard
entity and proceed as before. For example, for
training triple (s, p, o) and NBR query (s, ?, ∗), we
consider the virtual triple (s, p, anyO) along with
query (s, ?, anyO). By doing so, we convert the
NBR task into a REL task. We also use these wild-
card embeddings during inference in the same way;
e.g., we set s(s, p′, ∗) = s(s, p′, anyO). Instead
of performing score aggregation, the model thus
directly learns extended scores at the same cost
(per task) as standard link prediction, i.e. O(|E|)
for target entities, and O(|R|) for target relations.

4 Experimental Study

To our knowledge, no prior work has studied the
impact that different training objectives have on
KG embedding quality, despite this being com-
mon practice, e.g. in language models (Raffel et al.,
2020; Liu et al., 2019). We conducted a large exper-
imental study with the following goals: (i) to assess
whether KGE models capture various properties
of a KG by intrinsically evaluating their perfor-
mance on new graph-structure prediction tasks, (ii)
to determine whether (and by how much) KGEs im-
prove their performance on these tasks when simul-
taneously trained for them, and (iii) to assess the
impact that different pre-training approaches have
on downstream tasks by extrinsically evaluating
pre-trained KGE models. We briefly describe our
experimental setup here, for details, see Sec. B.1.

Pre-Training Setup. For training and evaluating
KGEs, we closely follow Ruffinelli et al. (2020).
We implemented everything in LibKGE (Broscheit
et al., 2020), used four benchmark datasets com-
monly used in recent work (Ge et al., 2023; Xiao
et al., 2022; Zhu et al., 2022), all models were
trained under the same conditions (as much as pos-
sible) and tuned with a large hyperparameter space
using random search. For MTT training, we used
all tasks in Table 1 (LP, REL, DOM, NBE, NBR),
and evaluated models on each of these tasks using
filtered MRR, and aggregated these metrics into

multi-task ranking MRR (MTR). We selected stan-
dard (STD) models with LP and MTT models with
both the LP and MTR task, all on validation.

Choice of KGE models. We focused on models
that provide entity representations, so we may test
their quality in downstream tasks, as done in the
industry (El-Kishky et al., 2022; Ilyas et al., 2022).
We chose four popular models: TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), Ro-
tatE (Sun et al., 2019) and ComplEx (Trouillon
et al., 2016). These are not the latest KGE models,
but they are common baselines in recent work (Ge
et al., 2023; Gui et al., 2022; Chao et al., 2021), and
are common choices for pre-trained models (Zhu
et al., 2022; El-Kishky et al., 2022; Ilyas et al.,
2022). They can also reach SOTA performance
with reasonable embedding sizes (Ruffinelli et al.,
2020), allowing us to scale our study, and with
larger embedding size (Lacroix et al., 2018) and
additional training objectives (Chen et al., 2021b),
ComplEx outperforms more involved models, e.g.
the transformer-based HittER model (Chen et al.,
2021a). Some recent models achieve better perfor-
mance on link prediction, but focus exclusively on
that task and do not directly provide entity repre-
sentations for downstream tasks, e.g. HittER (Chen
et al., 2021a) and NBFNet (Zhu et al., 2021).

Downstream Tasks Setup. To extrinsically eval-
uate our pre-trained models, we collected/created
data for 35 downstream tasks on FB15K-237,
YAGO3-10 and WIKI5M (examples in Table 2).
For downstream models, we used scikit-learn (Pe-
dregosa et al., 2011) models that use only entity
embeddings from pre-trained KGE models as input
features. We used multilayer perceptrons (MLP),
logistic regression, KNN, and random forests for
classification, and linear regression and MLP for
regression, and treated the choice of downstream
model as a hyperparameter. For entity classifica-
tion, we report weighted F1 (as Jain et al. (2021))
aggregated across all classification tasks (denoted
EC). For regression, we chose relative squared er-
ror (RSE) (defined in Sec. B.2), as it allows mean-
ingful averaging across different regression tasks
(denoted REG, lower values are better). We report
mean and standard deviation over 3 training runs.
As baseline, we included KE-GCN (Yu et al., 2021),
a state-of-the-art GNN for entity classification. In
contrast to KGEs, this model is directly trained on
the downstream task (i.e., no pre-training) and uses
the KG for inference. Tuning, training, evaluation
was done as with KGEs and downstream models.
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Benchmark Name Train Size
E

C
FB15K-237 Entity Type 6 719

Profession 2 537
YAGO3-10 Entity Type 69 592

Player Type 33 928

R
E

G

FB15K-237 Birth Year 3 538
Latitude 2 568

YAGO3-10 Born on Year 60 409
Created on Year 23 896

Table 2: Some datasets for entity classification (EC) and
regression (REG) downstream tasks used to evaluate
pre-trained KGEs. See Appendix B for a complete list.

4.1 Results on Graph-Structure Prediction

In Table 3, we report test MRR of graph-structure
prediction tasks using standard (STD) and MTT
training. We report both training approaches with
LP for model selection, as we found this to often
produce better downstream performance with MTT
(such “cross-over” selection was not useful for STD
training, see Table 11). We report MTT with MTR
for model selection, and results for WNRR and
WIKI5M in Appendix C (Tables 13 and 14, resp.)

Every model is able to capture more information
about the KG when trained on multiple tasks simul-
taneously. For a given model, the improvement can
be large, often by a factor of 2x and up to 10x de-
pending on model, task and dataset (or even larger
when MTT is used with MTR for model selection,
see Table 13). This suggests that, unless trained for
it, KGE models often fail to capture graph struc-
ture beyond what is necessary to perform link
prediction. MTT models had slightly lower perfor-
mance on LP, but the decrease was often small and
outweighed by significantly improved performance
on other tasks. Moreover, the best models for LP
with STD training are often far outperformed on
other tasks by other STD models with lower LP
performance, suggesting that good LP performance
is not indicative of general KG representation. For
example, the best LP performance on FB15K-237
is ComplEx STD, but RotatE STD outperforms it
considerably on REL and TransE STD on DOM.
Similar observations also hold for the best mod-
els on MTR, but the compromise on other tasks
is significanly smaller. In general, MTT im-
proved significantly on STD for graph structure
prediction and can thus be used so models si-
multaneously learn more properties in a KG.

Note that our performance on LP, even with MTT,
is comparable and sometimes better than recently
published works that use comparable embedding
sizes (Yang et al., 2022; Dong et al., 2022), or even
larger embedding sizes (Gui et al., 2022).

Discussion. From a training perspective, these
results are not surprising, as STD training only
focuses on the LP task. However, these results do
challenge studies that describe KGEs as generally
capturing semantic properties of a KG (Ge et al.,
2023; Xiao et al., 2022; Gui et al., 2022; Nickel
et al., 2015; Bordes et al., 2013), which were likely
inspired by work on capturing properties of words
despite not directly training for it (Mikolov et al.,
2013; Bordes et al., 2013). In addition, some of the
new tasks are similar enough to link prediction that
the results are indeed unexpected. For example, a
good link prediction model may be able to answer
(Austin, capital of, ?) and (?, capital of, Texas),
yet it may not be able to predict that capital of is a
relation connected to Austin and/or Texas (NBR).
Similar arguments can be made for other tasks.
Generally, if the goal is purely link prediction, STD
training is more suitable. But we show empirically
in Sec. 4.3 that the choice of training objective has
an impact on the learned representations and that
including the LP task during pre-training is often
detrimental for downstream performance.

4.2 Results on Downstream Tasks
Table 3 also reports downstream performance using
models pre-trained with STD and MTT. The EC
column reports mean weighted F1 across all clas-
sification datasets, and REG column reports mean
RSE across all regression datasets. We report on
individual downstream tasks in Appendix C.

The best overall downstream task performance
across all KGE models was achieved by MTT in all
cases, and often combined with LP for model selec-
tion. While the margin compared to STD was some-
times small (e.g., EC on YAGO3-10) and some-
times large (e.g., REG on FB1K-237), training only
for link prediction (STD) resulted in worse average
downstream performance compared to MTT more
often than not (especially when considering MTT
with MTR selection, see Table 13). Nevertheless,
for a given KGE model, STD training did perform
better at times. In addition, we found that the best
models for both LP and MTR are often not the
best models in downstream applications. Perhaps
more importantly, the best downstream perfor-
mance often comes from models with weaker LP
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Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT LP .336 .964 .557 .195 .794 .525 .858±.005 .394±.057

DistMult STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT LP .334 .944 .557 .139 .818 .516 .865±.005 .472±.026

RotatE STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT LP .319 .965 .758 .136 .880 .572 .890±.003 .573±.062

TransE STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT LP .317 .963 .653 .152 .855 .547 .855±.007 .795±.257

KE-GCN – – – – – – .829±.526 .501±.001

YA
G

O
3-

10

ComplEx STD LP .550 .900 .120 .215 .517 .411 .712±.008 .589±.023
MTT LP .538 .941 .836 .591 .978 .759 .729±.005 .466±.017

DistMult STD LP .539 .881 .010 .327 .613 .429 .734±.003 .519±.019
MTT LP .536 .945 .861 .581 .978 .762 .746±.006 .472±.029

RotatE STD LP .436 .809 .046 .400 .656 .432 .701±.002 .696±.018
MTT LP .509 .918 .011 .609 .366 .434 .708±.002 .659±.059

TransE STD LP .504 .860 .178 .287 .175 .349 .742±.002 .447±.036
MTT LP .462 .940 .037 .476 .338 .396 .723±.004 .441±.029

KE-GCN – – – – – – .700±.223 .398±.008

Table 3: Performance on test data of graph-structure prediction and downstream tasks. Bold entries show perfor-
mance per task and dataset. Underlined entries show best performance between STD and MTT.

performance (e.g. RotatE on EC in FB15K-237)
or weaker MTR performance (e.g. ComplEx on
REG in FB15K-237). This is more clearly visi-
ble in Table 15 in Appendix C. This is problem-
atic, as it suggests that MTR and, perhaps more
importantly, LP are often inadequate tasks to
guide the choice of the more suitable KGE mod-
els for downstream applications. Ultimately, we
conclude that the choice of pre-training objective
clearly has an impact on downstream performance,
but it is unclear how to make this choice in order
to maximize downstream performance.

Downstream Baseline Performance. Com-
pared to KE-GCN, KGE models clearly outperform
KE-GCN almost every time (except in REG on
YAGO3-10) These results suggest that the informa-
tion captured by KGE models during pre-training
is useful for simple downstream models to be com-
petitive with, and even outperform, more involved
downstream models that train directly on the task.

4.3 Impact of Pre-Training Task Selection

Table 4 summarizes our results about the impact
that pre-training task selection has on downstream
tasks. To keep computational costs feasible, we

focused on FB15K-237. We explored perfor-
mance using MTT without either the LP, REL,
DOM, NBE, or NBR pre-training task, and with-
out LP+REL or without DOM+NBR. We report
models and sets of tasks relevant for our discussion.
For details, see Table 16.

Impact on Graph-Structure Tasks. We found
that for graph-structure predictions, excluding a
task generally led to lower performance on that
task, as expected. It may also, however, lead to a
boost in performance on other tasks. For example,
RotatE performs best on DOM when the standard
LP task is excluded from the training objective.

Impact on Downstream Tasks. For down-
stream performance, the choice of pre-training
tasks has a significant impact, but good choices
differ between KGE models and the type of down-
stream task. For example, compared to full MTT
training, using a subset of tasks led to improve-
ments almost every time. Surprisingly, excluding
the LP task during pre-training improved down-
stream performance half of the time compared to
STD and full MTT training, suggesting that pre-
training with LP can often be detrimental to down-
stream performance.
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Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

C
om

pl
E

x

STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037
w/o LP MTR .154 .972 .831 .200 .932 .579 .870±.002 .512±.044
w/o NBE MTR .315 .958 .850 .005 .936 .575 .856±.002 .562±.038
w/o LP+REL MTR .001 .009 .843 .177 .939 .436 .849±.011 .542±.054

R
ot

at
E

STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060
w/o LP MTR .204 .914 .842 .126 .928 .568 .874±.000 .661±.043
w/o DOM MTR .319 .965 .661 .170 .883 .559 .898±.001 .593±.078
w/o NBR MTR .318 .964 .710 .168 .673 .522 .863±.007 .552±.035

Table 4: Performance on test data of graph-structure and downstream tasks for FB15K-237 of STD and various
MTT objectives. Objectives such as w/o LP are MTT objectives with all tasks in Table 1 except one, e.g. LP.

4.4 Data Efficiency Tests

To see whether KGE models that capture more
information during pre-training are more benefi-
cial as downstream data becomes scarce, we tested
models in a few-shot scenario. For classification,
we sampled n positive and n negative examples
per class, where n ∈ {3, 5, 10}. Figure 1 shows
the results for the YAGO3-10 classification tasks
(higher is better). We found that as less data be-
comes available, the average performance of STD
models becomes considerably lower compared to
pre-trained MTT models, except TransE, where
performance difference is not as significant. We ob-
served the same pattern in FB15K-237 (see Fig. 3).
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5 Shots
3 Shots

0.50
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0.70
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 STD LP
 MTT MTR
 MTT LP

Figure 1: Few-shot performance of entity classification
tasks for YAGO3-10 (higher is better). Each n-shot
training set consists of n sampled positive and negative
examples for each class.

The few-shot scenario applied to regression tasks
produced unsatisfactory models almost every time.
We thus constructed a different scenario with scarce
training data. We randomly sampled n% of the
training set, where again n ∈ {3, 5, 10} (see Fig-
ures 5 and 7 in Appendix C, lower is better). For
most models, the trend observed with a complete
training set is mostly maintained, suggesting that
pre-trained MTT models are not always more ben-
eficial with less training data. Still, at no point
do models pre-trained with STD become a better
choice. Overall, although not every time, we
observed the clear trend that MTT models are
more data efficient than STD models, especially
for the classification tasks in our tests.

5 Conclusion

To explore KGE models as general-purpose repre-
sentions of KGs, we designed a new set of graph-
structure prediction tasks for intrinsic evaluation.
We found that standard KGE models are not good
at predicting simple structures in the graph, chal-
lenging the intuition that these models generally
capture properties in a KG. In addition, we extrinsi-
cally evaluated pre-trained KGE models on several
entity-level downstream tasks. We found that link
prediction was not indicative of good downstream
performance, and that multi-task pre-training was
generally better for downstream tasks, often when
excluding link prediction during pre-training. How-
ever, the best choice of pre-training tasks depends
on both KGE model and downstream task, suggest-
ing more research is needed into pre-training KGEs
to obtain generally-useful KG representations.
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6 Limitations

In our study, we explored the use of different self-
supervised tasks for training KGE models. How-
ever, as a first step, we tested models using only
a limited set of simple pre-training tasks. Aside
from the link prediction task that is almost exclu-
sively used in the literature, we also included the
relation prediction task (as already done by Chen
et al. (2021b)), as well a new set of tasks that
we proposed (see Table 1). However, other pre-
training tasks are possible and should be explored,
e.g. self-supervised tasks such as predicting the n-
hop neighborhood of an entity, or even objectives
that resemble downstream tasks, such as predict-
ing the size of a neighborhood. It is also possible
to combine such objectives with supervised train-
ing objectives during training, as already done in
previous work (Aribandi et al., 2022).

Another limitation of our work is the small va-
riety in types of downstream tasks. While we
focused on entity-level classification and regres-
sion tasks, the impact of different pre-training ap-
proaches on more involved downstream applica-
tions should be explored. Some examples would
be testing the use of pre-trained KGEs in recom-
mender systems as in El-Kishky et al. (2022), or
question answering systems as in Ilyas et al. (2022).

Finally, while we take the first steps into explor-
ing alternatives for pre-training KGE models, our
work does not find a concrete solution to the prob-
lem, which may indeed by challenging, as models
need to encode hundreds or thousands of differ-
ent, and often uncorrelated, relation types between
entities. We observed the impact that different pre-
training tasks have both on capturing properties of
a graph, as well as in downstream application per-
formance. In particular, we found that training with
more tasks is beneficial for capturing more proper-
ties of a KG, and often for improving downstream
performance. However, we have no concrete sug-
gestions on how to pre-train KGE models more
generally. Different pre-training tasks should be
explored in the context of different types of down-
stream tasks, so that we may better understand
the relation between pre-training KGEs and their
quality as KG representations in downstream appli-
cations. As part of our work, we provide all of our
code as well as our collection of downstream task
data, to create opportunities for future research into
this unexplored question.
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A Multi-Task Training and Evaluation

We illustrate how training objectives are con-
structed using more than one training task, i.e.
query. To this end, we define both the standard
training objective (STD) based on link prediction
and our proposed multi-task objective (MTT) as
follows. Let To = {(t, l)} be the set of relevant
positive and negative examples t and corresponding
label l induced by the link prediction query (s, p, ?)
in a given training set. Let Ts be the analogous set
of examples for query (?, p, o). For some loss func-
tion L, the STD training approach optimizes the
following objective function (we omit the penalty
term for brevity):

f(θ) = argmin
θ


 1

|Ts|
∑

(t,l)∈Ts

L(s(t), l) +

1

|To|
∑

(t,l)∈To

L(s(t), l)




(1)

where s is a KGE score function parameterized by
model parameters θ. We generalize this objective
to define the following multi-task training (MTT)
objective:

f(θ) = argmin
θ

1

N

∑

Ti∈T

∑

(t,l)∈Ti

λiL(s(t), l) (2)

where T = {T1, T2, . . .} is a superset of training
examples for queries Ti, N is the sum of the car-
dinalities of each Ti and λi a hyperparameter that
controls the impact of query i in the training objec-
tive. Chen et al. (2021b) have already followed this
training approach by adding the relation prediction
task, i.e. (i, ?, j) to Eq. 1. They set λs = λo = 1

and tune λr. Note that Equations 1 and 2 do not
describe the exact training objective with some loss
functions, e.g. some losses require a positive and
corresponding set of negatives to compute a loss
value. However, the MTT objective can be refor-
mulated for every loss function commonly used to
train KGE models. We provide such a general de-
scription of the MTT approach in Algorithm 1. As
with loss functions, the MTT approach is agnostic
to the choice of model and training task.

W.r.t. to evaluation, Algorithm 2 describes the
extended score function described in Section 3.2.

B Experimental Settings

B.1 Experimental Setup: Pre-Training KGEs

Knowledge graphs. We chose four com-
monly used benchmark datasets for evaluating
KGE models: FB15K-237 (Toutanova and Chen,
2015), WNRR (Dettmers et al., 2018), YAGO3-
10 (Mahdisoltani et al., 2014), and WIKIDATA5M
(WIKI5M) (Wang et al., 2021). Each dataset is as-
sociated with a training, a validation and a test split.
FB15K-237 and WNRR are designed to be harder
benchmarks for link prediction. YAGO3-10 and
WIKI5M are considerably larger. Dataset statistics
are summarized in Table 5.

KGE training. We used LibKGE (Broscheit
et al., 2020) for STD training (LP only) as
a baseline and added MTT/MTR model train-
ing/evaluation. All KGE models were trained for
a maximum of 200 epochs with early stopping on
validation MRR checked every 10 epochs. We
used cross-entropy as loss function, as it system-
atically outperformed other losses in most prior
studies. We used 1vsAll training with FB15K-237
and WNRR (to achieve good results) and NegSamp
with YAGO3-10 and WIKI5M to scale to these
larger datasets. Models were selected w.r.t. perfor-
mance (MRR) on the validation data. We selected
STD models with LP task and MTT models with
the MTR task. For MTT training, we used all tasks
in Table 1.

KGE evaluation. As with training, we evalu-
ate KGE models with respect to each of the five
graph-structure prediction tasks in Table 1 (LP,
REL, DOM, NBE, NBR) using filtered MRR on
test data. We also aggregate these metrics into the
multi-task ranking MRR (MTR).

KGE hyperparameters. We closely follow the
approach of the experimental study of Ruffinelli
et al. (2020) to perform hyperparameter selection.
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Figure 2: Visualization of all proposed prediction tasks that use wildcards introduced in Table 1.

Algorithm 1: Multi-task Training (MTT)
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters,
Q: set of (q, w) pairs of training queries and corresponding weights

Ensure: Updated model parameters θ
1 foreach q, w ∈ Q do
2 N ← construct set of negatives for q using T
3 Tall ← T ∪N
4 sall ← COMPUTE_SCORES(Tall)
5 lq ← w ∗ COMPUTE_LOSS(sall, Tall) // loss weighted by w

6 θ ← UPDATE_PARAMETERS(θ, lq)
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Algorithm 2: Extended Score Function (accepts wildcards)
Require: t: (i, k, j) triple to compute score

q: task query, e.g. (i, k, ∗)
s: model score function
C: set of candidates for wildcard slot

Ensure: Score of given triple t
1 max_score← 0
2 if q does not have a wildcard then
3 max_score← s(t)
4 else
5 foreach c ∈ C do
6 candidate_t = (i, k, c) // e.g. for q = (i, k, ∗)
7 candidate_score = s(candidate_t)
8 if candidate_score ≥ max_score then
9 max_score← candidate_score

10 return max_score

Dataset Entities Relations Train Valid Test

FB15K-237 14 505 237 272 115 17 535 20 466
YAGO3-10 123 182 37 1 079 040 5 000 5 000
WNRR 40 559 11 86 835 3 034 3 134
WIKIDATA5M 4 818 679 828 21 343 681 5 357 5 321

Table 5: Statistics of benchmark datasets for pre-training knowledge graph
embeddings.

We performed 30 random trials using SOBOL sam-
pling (Bergstra and Bengio, 2012) over a large
search space to tune several hyperparameters, e.g.
regularization, embedding size, batch size, dropout,
initialization, and task weights (each in [0.1, 10.0],
log scale). To keep our study feasible, we reduced
the maximum batch and embedding size for larger
datasets and expensive models. The full search
space can be found in Table 6.

B.2 Relative Squared Error
For evaluating regression performance, we chose
relative squared error (RSE), defined as follows:

RSE =

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(3)

where N is the number of evaluation examples,
yi are targets to predict, ŷi are model predictions,
and ȳ = 1

N

∑
n yi, i.e. the mean of targets to pre-

dict. We chose RSE because it is interpretable and
allows meaningful averaging across the different
regression tasks (denoted REG). An RSE value of
1 is equivalent to the performance of a model that

predicts the average of the dependent variable in
the evaluation data; lower values are better.

B.3 Experimental Setup: Downstream Tasks

Downstream tasks. We collected or created data
for 35 downstream tasks on FB15K-237, YAGO3-
10 or WIKI5M (see Tables 7 and 8). This includes
the datasets of Jain et al. (2021) for entity classifica-
tion on FB15K-237 and YAGO3-10, which aim to
predict the types of entities at different granularities.
For regression, we use the datasets of Pezeshkpour
et al. (2018) for YAGO3-10, which consist of tem-
poral prediction tasks (e.g., the year an event took
place), and the dataset of Huang et al. (2021) for
node importance prediction. We also created sev-
eral regression tasks for FB15K-237 from the multi-
modal data of García-Durán et al. (2018) by pre-
dicting literals associated to entities (e.g., a date, a
person’s height, the rating of a movie). To create re-
gression tasks for WIKI5M, we followed the same
approach using numerical relations extracted from
Wikidata (Van Veen, 2019). Datasets statistics are
given in Tables 7 and 8.
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Hyperparameter Values

Embedding size† {128, 256, 512}
Training type {NegSamp (YAGO3-10), 1vsAll (FB15K, WNRR)}
Task Weights (MTT) [0.1, 10], log scale

No. subject samples (NegSamp) [1, 10000], log scale
No. object samples (NegSamp) [1, 10000], log scale

Optimizer {Adam, Adagrad}
Batch size* {128, 256, 512, 1024(except on YAGO3-10)}
Learning rate [10−4, 1], log scale
LR scheduler patience [0, 10]

Lp regularization {L1, L2, L3, None}
Entity emb. weight [10−20, 10−5]
Relation emb. weight [10−20, 10−5]
Frequency weighting {True, False}

Embedding normalization (TransE)
Entity {True, False}
Relation {True, False}

Dropout
Entity embedding [0.0, 0.5]
Relation embedding [0.0, 0.5]

Embedding initialization {Normal, Unif, XvNorm, XvUnif}
Std. deviation (Normal) [10−5, 1.0]
Interval (Unif) [−1.0, 1.0]
Gain (XvNorm) 1.0
Gain (XvUnif) 1.0

† For RotatE, embedding size is fixed 128 on WNRR and set to either 128 or 256 for YAGO3-10. For Transe,
this is set to either 128 or 256 for FB15K-237 and fixed to 128 for WNRR and 1024 for YAGO3-10.

* For RotatE, batch size is fixed to 256 in YAGO3-10 and to 128 on FB15K-237 and WNRR. For Transe, this is
set to either 128 or 256 on YAGO3-10.

Table 6: Hyperparameter search space for pre-training KGE models. Restrictions for RotatE and
TransE are due to higher memory consumption and runtime.

Benchmark Name Train Validation Test

FB15K-237 Entity Type 6 719 – 1 680
Profession 2 537 – 635
Organization Type 342 – 86
Writer Type 136 – 34

YAGO3-10 Entity Type 69 592 – 17 398
Player Type 33 928 – 8 483
Profession 14 480 – 3 621
Writer Type 4 870 – 1 218
Scientist Type 2 041 – 511
Organization Type 1 248 – 312
Artists Type 520 – 130
Waterbody Type 195 – 49

Table 7: Statistics of datasets for entity classification downstream tasks used to evaluate pre-trained KGEs. All
datasets were created by Jain et al. (2021), they are split into trainining and test only and each consists of predicting
entity types at different levels of the entity hierarchy.
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Benchmark Name Train Validation Test

FB15K-237 Node Importance 9 877 1 380 2 823
Birth Year 3 538 442 444
Latitude 2 568 321 322
Longitude 2 560 320 322
Person Height 2 295 287 288
Size Area 1 731 216 218
Population 1 543 193 193
Film Release Year 1 493 186 188
Org Year Founded 985 123 124
Film Rating 591 73 75

YAGO3-10 Born on Year 60 409 – 6 730
Created on Year 23 896 – 2 638
Died on Year 13 582 – 1 513
Destroyed on Year 1 630 – 186
Happened on Year 749 – 73

WIKI5M Date of Birth 992 126 124 015 124 017
Album Publication 29 156 3 644 3 645
Asteroid Magnitude 16 722 2 090 2 091
River Length 10 092 1 261 1 262
Airport Elevation 9 054 1 131 1 133
Sports Season Start 7 631 953 955
Village Population 3 691 461 462
Municipality Area 3 158 394 396

Table 8: Statistics of datasets for regression downstream tasks used to evaluate pre-trained KGEs. YAGO3-10
datasets were created by Pezeshkpour et al. (2018). All FB15K-237 and WIKI5M datasets were created by us,
except node importance, created by Huang et al. (2021).

KGE models. Since we are interested in pre-
trained KGE models, we used the KGE models
trained for the experiments discussed in Sec. 4.1.
Thus, no information from downstream tasks was
used for KGE model training and selection; i.e.
the same KGE model is used for all downstream
tasks in each experiment. For model selection, we
selected STD models with LP task (the standard
approach), but combined MTT models with the
LP task or the MTR task. Further improvements
may be made by using downstream tasks during
training (Aribandi et al., 2022) at the cost, perhaps,
of obtaining less general representations; we leave
such exploration to future work.

Downstream models. We use scikit-learn (Pe-
dregosa et al., 2011) using only the node embed-
dings of the pre-trained KG model as input fea-
tures. For classification, we use multilayer percep-
trons (MLP), logistic regression, KNN, and random
forests. For regression, we use MLP and linear re-
gression.

Downstream training. Each model was trained
using 5-fold cross validation and selected based
on mean validation performance across folds (see
below). We then retrained the selected model on
the union of the training and validation split (if
present). To tune hyperparameters, we use 10 tri-
als of random search with SOBOL sampling for
each downstream model. The search space for each
downstream model is given in Table 9. Note that
we treat the choice of downstream model as a hy-
perparameter as well.

Downstream evaluation. For entity classifica-
tion, we report weighted F1, as in Jain et al. (2021),
aggregated across all classification tasks (denoted
EC). For regression, we chose relative squared er-
ror (RSE) because it is interpretable and allows
meaningful averaging across the different regres-
sion tasks (denoted REG). An RSE value of 1 is
equivalent to the performance of a model that pre-
dicts the average of the dependent variable in the
evaluation data; lower values are better. For each
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metric, we report the mean and standard deviation
over 3 training runs of the downstream model.

Downstream baselines. We include KE-
GCN (Yu et al., 2021), a recent GNN with state-
of-the-art results for graph alignment and entity
classification. In contrast to KGEs, this model is
directly trained on the downstream task (i.e., no pre-
training) and needs to access the KG to perform
predictions. For regression tasks, we use a linear
layer after the final convolutional layer of KE-GCN,
as this led to better performance in our experiments
compared to using a single dimensional output in
the final convolution layer as done by Huang et al.
(2021). We tune hyperparameters using 30 SOBOL
trials (as for KGE models); the search space is
shown in Table 9. For training, evaluation, and
model selection, we follow the approach for our
downstream models (e.g,. 5-fold CV).

C Additional Experimental Results

Model selection using downstream information.
To explore whether results can improve by using
downstream information to select models, Table 10
reports performance on FB15K-237 of some KGE
models using both training approaches in combi-
nation with either LP for model selection (which
consistently provided better results for these mod-
els with both training approaches) or by selecting
directly on the metric used to evaluate the down-
stream task (weighted F1 for entity classification
and RSE for regression). We found that model se-
lection with the downstream task metric provides
only marginal benefits for both STD and MTT and
can in fact be detrimental, likely due to overfit-
ting on validation data. This indicates that model
selection without information about downstream
tasks—i.e., using LP or MTR—may be preferrable
to using downstream information. This is benefi-
cial, as including downstream information during
pre-training or model selection would likely make
the resulting representations less general.

Overall, we found that full MTT training with LP
for model selection was a suitable choice, but fur-
ther improvements are possible by dataset-, model-
and task-specific choices of pre-training task and
validation objective, as discussed in the next sec-
tion.

Further model selection approaches. For com-
pleteness, we also explored the impact of further
combinations of model selection methods with both
STD and MTT training. To explore whether there

would be improvements in STD models when se-
lecting them based on performance on the MTR
task, Table 11 reports downstream performance of
some KGE models using STD training combined
with either LP or MTR for model selection. We see
that the combination of STD with MTR leads to
lower downstream performance almost every time.
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Model Hyperparameter Values

MLP Hidden Layer {(100,), (10, ),
(100, 100), (10, 10)}

Alpha [0.00001, 0.001]
Learning Rate [0.001, 0.01]
Solver [Adam,LBFGS]

Logistic Regression C [100, 100000]

KNN n_neighbors [1, 10]

Random Forest num_estimators [10, 50, 100, 200]

Linear Regression Alpha [0.00001, 0.001]

KE-GCN Dimension {16, 32, 64}
Additional Layers {0, 1, 2}
Learning Rate {0.001, 0.005,

0.01, 0.05, 0.1}
Alpha {0.3, 0.5}

Table 9: Hyperparameter search space for training downstream models. All hyperparameters except those of
KE-GCN follow the semantics by scikit-learn.

Selection Method
EC - Weighted F1 REG - RSE

LP Weighted F1 LP RSE

ComplEx STD .844 .850 .447 .437
MTT .858 .827 .394 .393

DistMult STD .873 .846 .551 .539
MTT .865 .864 .472 .476

Table 10: Performance on FB15K-237 downstream
tasks for different KGE model training (STD and
MTT) and two model selection approaches: LP and
weighted F1 (higher is better) or RSE (lower is bet-
ter). Using downstream task data for model selection
provides only marginal gains and is sometimes detri-
mental to downstream performance, likely due to
overfitting on validation data.

Selection Method
EC - Weighted F1 REG - RSE

LP MTR LP MTR

ComplEx STD .844 .858 .447 .545
DistMult STD .873 .836 .551 .686

Table 11: Performance on FB15K-237 downstream
tasks for STD training and two model selection ap-
proaches: LP and MTR. On both types of tasks, the
best performance is obtained by combining STD
training with LP model selection.

Avg. epoch time in seconds
FB-237 YAGO WNRR WIKI5M

ComplEx STD 004.92 097.88 002.32 0823.80
MTT 010.83 137.13 008.13 1635.90

TransE STD 078.76 141.62 098.45 1115.65
MTT 245.05 219.42 278.60 2124.29

Table 12: Average training epoch time in seconds over
first 5 epochs of best models with STD and MTT train-
ing. All tests were done with an 11th gen. Intel Core
i7-11700K, 64GB of RAM and an NVIDIA GeForce
RTX 3090.
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Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT LP .336 .964 .557 .195 .794 .525 .858±.005 .394±.057
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037

DistMult STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT LP .334 .944 .557 .139 .818 .516 .865±.005 .472±.026
MTT MTR .327 .939 .780 .142 .879 .577 .857±.006 .482±.026

RotatE STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT LP .319 .965 .758 .136 .880 .572 .890±.003 .573±.062
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060

TransE STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT LP .317 .963 .653 .152 .855 .547 .855±.007 .795±.257
MTT MTR .288 .960 .708 .112 .911 .555 .878±.009 .681±.095

KE-GCN – – – – – – .829±.526 .501±.001

YA
G

O
3-

10

ComplEx STD LP .550 .900 .120 .215 .517 .411 .712±.008 .589±.023
MTT LP .538 .941 .836 .591 .978 .759 .729±.005 .466±.017
MTT MTR .538 .930 .836 .591 .940 .749 .729±.005 .459±.020

DistMult STD LP .539 .881 .010 .327 .613 .429 .734±.003 .519±.019
MTT LP .536 .945 .861 .581 .978 .762 .746±.006 .472±.029
MTT MTR .536 .941 .861 .581 .967 .759 .735±.004 .466±.021

RotatE STD LP .436 .809 .046 .400 .656 .432 .701±.002 .696±.018
MTT LP .509 .918 .011 .609 .366 .434 .708±.002 .659±.059
MTT MTR .427 .933 .032 .550 .694 .482 .746±.001 .470±.017

TransE STD LP .504 .860 .178 .287 .175 .349 .742±.002 .447±.036
MTT LP .462 .940 .037 .476 .338 .396 .723±.004 .441±.029
MTT MTR .048 .954 .686 .046 .798 .457 .688±.005 .680±.026

KE-GCN – – – – – – .700±.223 .398±.008

Table 13: Performance on test data of graph-structure prediction and downstream tasks. Bold entries show best
performance per task and dataset. Underlined entries show best performance between STD and MTT.
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Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

W
N

R
R

ComplEx STD LP .474 .782 .396 .246 .690 .488 – –
MTT MTR .459 .831 .593 .426 .953 .633 – –

DistMult STD LP .447 .767 .081 .253 .702 .415 – –
MTT MTR .431 .804 .573 .342 .952 .600 – –

RotatE STD LP .469 .794 .311 .432 .881 .553 – –
MTT MTR .431 .874 .512 .239 .955 .572 – –

TransE STD LP .174 .707 .044 .171 .332 .239 – –
MTT MTR .094 .603 .476 .095 .827 .399 – –

W
IK

I5
M

ComplEx STD* LP .288 – – – – – – .687±.032
MTT LP .204 .680 .028 .130 .197 .200 – .706±.025
MTT MTR .215 .804 .087 .136 .342 .263 – .720±.023

TransE STD* LP .288 – – – – – – .596±.011
MTT LP .250 .908 .185 .169 .503 .347 – .636±.025
MTT MTR .250 .908 .185 .169 .503 .347 – .650±.018

KE-GCN† – – – – – – – –
* Not evaluated on new graph-structure prediction tasks due to high cost.
† GCN-based model by Yu et al. (2021). Not evaluated due to OOM.

Table 14: Performance on test data of graph-structure prediction and downstream tasks with MTT training
and two model selection methods: LP and MTR. Due to high cost, we trained only two models for WIKI5M:
ComplEx and TransE. Bold entries show best performance per task and dataset. Underlined entries show best
performance between STD and MTT. For entity classification (EC) we report weighted F1 (higher is better),
and for regression (REG) we report relative squared error (lower is better).

Model Performance Sorted in Decreasing Order for each Pre-Training and Downstream Task
Graph-structure Downstream Tasks

LP (↑) MTR (↑) EC (↑) REG (↓)

F
B

15
K

-2
37

ComplEx STD .346 ComplEx MTT .606 RotatE MTT .890±.003 ComplEx MTT .394±.057
DistMult STD .342 RotatE MTT .598 TransE MTT .878±.009 ComplEx STD .447±.051
ComplEx MTT .331 DistMult MTT .577 TransE STD .873±.015 DistMult MTT .472±.026
TransE STD .330 TransE MTT .555 DistMult STD .873±.009 KE-GCN .501±.001
DistMult MTT .327 RotatE STD .342 RotatE STD .868±003 DistMult STD .551±.062
RotatE MTT .314 TransE STD .332 DistMult MTT .865±009 RotatE MTT .573±.062
RotatE STD .312 ComplEx STD .274 ComplEx MTT .858±005 TransE MTT .681±.095
TransE MTT .288 DistMult STD .139 ComplEx STD .844±008 TransE STD .742±.287

KE-GCN .829±.526 RotatE STD .797±.286

YA
G

O
3-

10

ComplEx STD .550 DistMult MTT .759 DistMult MTT .746±.006 KE-GCN .398±.008
DistMult STD .539 ComplEx MTT .749 RotatE MTT .746±.001 TransE MTT .441±.029
ComplEx MTT .538 RotatE MTT .482 TransE STD .742±.002 TransE STD .447±.036
DistMult MTT .536 TransE MTT .457 DistMult STD .734±.003 ComplEx MTT .459±.020
TransE STD .504 RotatE STD .432 ComplEx MTT .729±.005 RotatE MTT .470±.017
RotatE STD .436 DistMult STD .429 TransE MTT .723±.004 DistMult MTT .472±.029
RotatE MTT .427 ComplEx STD .411 ComplEx STD .712±.008 DistMult STD .519±.019
TransE MTT .048 TransE STD .349 RotatE STD .701±.002 ComplEx STD .589±.023

KE-GCN .700±.223 RotatE STD .696±.018

Table 15: Sorted performance on test data of graph-structure prediction tasks and downstream tasks
of all KGE models we tested, as well as KE-GCN by Yu et al. (2021). The ranking of models given
by their LP or MTR performance is not the same as the ranking of models given by their downstream
performance, which suggests that more work is needed to understand how to pre-train KGE models to
optimize downstream performance.
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Train. Sel. Graph-structure prediction (↑) Downstream tasks
LP REL DOM NBE NBR MTR EC (↑) REG (↓)

C
om

pl
E

x

STD LP .346 .805 .423 .016 .046 .274 .844±.008 .447±.051
MTT MTR .331 .977 .773 .210 .925 .606 .843±.002 .412±.037
w/o LP MTR .154 .972 .831 .200 .932 .579 .870±.002 .512±.044
w/o REL MTR .322 .831 .831 .159 .927 .590 .851±.005 .486±.035
w/o DOM MTR .327 .966 .713 .198 .915 .586 .851±.003 .479±.029
w/o NBE MTR .315 .958 .850 .005 .936 .575 .856±.002 .562±.038
w/o NBR MTR .325 .967 .795 .199 .874 .595 .858±.000 .459±.062
w/o LP+REL MTR .001 .009 .843 .177 .939 .436 .849±.011 .542±.054
w/o DOM+NBR MTR .330 .970 .074 .199 .107 .266 .856±.001 .415±.029

D
is

tM
ul

t

STD LP .342 .388 .045 .009 .036 .139 .873±.009 .551±.062
MTT MTR .327 .939 .780 .142 .879 .577 .857±.006 .482±.026
w/o LP MTR .159 .954 .826 .087 .937 .553 .861±.008 .522±.067
w/o REL MTR .323 .857 .827 .057 .932 .571 .868±.008 .536±.077
w/o DOM MTR .323 .948 .703 .106 .914 .560 .849±.002 .478±.027
w/o NBE MTR .316 .928 .848 .003 .937 .571 .844±.002 .524±.047
w/o NBR MTR .325 .956 .801 .112 .775 .554 .859±.002 .493±.043
w/o LP+REL MTR .000 .019 .837 .108 .937 .420 .856±.001 .572±.085
w/o DOM+NBR MTR .307 .955 .136 .147 .279 .299 .839±.001 .545±.060

R
ot

at
E

STD LP .312 .919 .581 .051 .136 .342 .868±.003 .797±.286
MTT MTR .314 .964 .813 .160 .922 .598 .847±.001 .704±.060
w/o LP MTR .204 .914 .842 .126 .928 .568 .874±.000 .661±.043
w/o REL MTR .272 .887 .846 .137 .924 .583 .862±.003 .692±.079
w/o DOM MTR .319 .965 .661 .170 .883 .559 .898±.001 .593±.078
w/o NBE MTR .301 .960 .813 .003 .912 .558 .862±.003 .558±.050
w/o NBR MTR .318 .964 .710 .168 .673 .522 .863±.007 .552±.035
w/o LP+REL MTR .012 .031 .842 .124 .916 .424 .864±.001 .743±.123
w/o DOM+NBR MTR .322 .945 .016 .166 .019 .221 .854±.001 .809±.249

Tr
an

sE

STD LP .330 .900 .624 .038 .054 .332 .873±.015 .742±.287
MTT MTR .288 .960 .708 .112 .911 .555 .878±.009 .681±.095
w/o LP MTR .271 .968 .781 .138 .901 .572 .870±.000 .486±.027
w/o REL MTR .307 .944 .698 .124 .906 .557 .856±.001 .622±.061
w/o DOM MTR .325 .965 .626 .126 .879 .542 .863±.000 .539±.052
w/o NBE MTR .330 .966 .801 .012 .904 .562 .884±.002 .463±.032
w/o NBR MTR .329 .966 .723 .125 .790 .545 .857±.007 .458±.024
w/o LP+REL MTR .149 .930 .821 .116 .924 .550 .860±.001 .594±.032
w/o DOM+NBR MTR .312 .962 .360 .129 .580 .414 .864±.001 .497±.057

Table 16: Performance on test data of graph-structure prediction and downstream tasks for FB15K-237 of STD with
LP model selection and various forms of multi-task training, all using MTR for model selection. Objectives such as
w/o LP are MTT objectives with all tasks in Table 1 except one, in this case, LP. Our results show that excluding the
LP task during pre-training often results in improved downstream performance, and that using all pre-training tasks
is often not the best choice.
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FB15K-237
Entity Classification (Weighted F1 - higher is better)

Type Profession Organization Writer

ComplEx STD+LP .986±.001 .808±.011 .921±.021 .661±.000
MTT+LP .986±.000 .820±.005 .946±.003 .682±.012
MTT+MTR .986±.000 .802±.004 .944±.003 .641±.000

DistMult STD+LP .984±.000 .811±.007 .912±.009 .785±.020
MTT+LP .987±.000 .810±.016 .974±.002 .690±.000
MTT+MTR .986±.000 .785±.006 .890±.000 .768±.018

RotatE STD+LP .985±.000 .797±.000 .908±.013 .781±.000
MTT+LP .989±.001 .807±.000 .934±.012 .828±.000
MTT+MTR .989±.000 .810±.000 .931±.003 .658±.000

TransE STD+LP .984±.001 .791±.005 .913±.032 .806±.021
MTT+LP .987±.000 .805±.006 .946±.009 .681±.014
MTT+MTR .987±.000 .796±.000 .942±.000 .789±.034

KE-GCN .988±.000 .738±.000 .906±.002 .685±.020

Table 17: Weighted F1 on test data of downstream classifiers (MLP, Logistic Regression, KNN and Random Forest)
that use pre-trained KGE embeddings as input to solve entity classification tasks about entities in FB15K-237; and
KE-GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Datasets are sorted by decreasing
size of the training set from left to right.

YAGO3-10
Entity Classification (Weighted F1 - higher is better)

Type Player Profession Writer Scientist Organization Artist Waterbody

ComplEx STD+LP .994±.000 .918±.001 .753±.004 .575±.006 .518±.013 .789±.005 .480±.018 .673±.015
MTT+LP .997±.000 .919±.002 .790±.002 .619±.006 .553±.011 .877±.003 .466±.013 .614±.000
MTT+MTR .996±.000 .914±.001 .776±.000 .617±.009 .556±.007 .871±.005 .491±.021 .614±.000

DistMult STD+LP .994±.000 .919±.001 .764±.003 .577±.000 .529±.003 .814±.011 .535±.007 .738±.000
MTT+LP .996±.000 .919±.002 .789±.002 .634±.019 .556±.003 .890±.010 .495±.010 .691±.000
MTT+MTR .996±.000 .918±.002 .776±.000 .622±.006 .539±.009 .876±.005 .462±.006 .691±.000

RotatE STD+LP .973±.001 .914±.000 .706±.002 .611±.000 .545±.000 .734±.014 .530±.000 .593±.000
MTT+LP .990±.001 .913±.001 .733±.000 .605±.000 .469±.009 .793±.005 .413±.000 .751±.000
MTT+MTR .994±.000 .919±.001 .768±.000 .643±.000 .576±.000 .830±.011 .534±.000 .707±.000

TransE STD+LP .993±.000 .919±.001 .762±.000 .623±.000 .630±.000 .833±.000 .507±.015 .670±.000
MTT+LP .991±.000 .912±.000 .728±.005 .583±.000 .603±.000 .804±.011 .506±.007 .654±.006
MTT+MTR .992±.000 .892±.000 .750±.000 .580±.000 .401±.012 .809±.003 .464±.015 .614±.012

KE-GCN .996±.000 .896±.001 .709±.000 .582±.005 .610±.006 .853±.006 .463±.014 .488±.014

Table 18: Weighted F1 on test data of downstream classifiers (MLP, Logistic Regression, KNN and Random Forest)
that use pre-trained KGE embeddings as input to solve entity classification tasks about entities in YAGO3-10; and
KE-GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Datasets are sorted by decreasing
size of the training set from left to right.
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FB15K-237
Regression (RSE - lower is better)

Node Imp. Birth Year Latitude Longitude Person Height

ComplEx STD+LP .870±.048 .601±.239 .172±.013 .089±.010 .678±.010
MTT+LP .918±.142 .477±.190 .145±.015 .066±.008 .661±.011
MTT+MTR .909±.086 .214±.050 .143±.009 .096±.008 .678±.000

DistMult STD+LP .807±.023 .844±.042 .182±.031 .088±.005 .669±.003
MTT+LP .788±.006 .827±.065 .143±.001 .083±.013 .651±.009
MTT+MTR .802±.049 .701±.052 .232±.053 .070±.006 .691±.000

RotatE STD+LP .913±.000 .872±.027 .498±.057 .279±.003 .657±.000
MTT+LP .834±.016 .797±.069 .313±.014 .173±.003 .813±.136
MTT+MTR .856±.003 .811±.005 .411±.022 .225±.096 .847±.000

TransE STD+LP .886±.035 .836±.041 .170±.022 .084±.006 .722±.003
MTT+LP .833±.018 .812±.012 .078±.011 .061±.003 .769±.009
MTT+MTR .897±.044 .655±.053 .088±.005 .052±.006 .824±.000

KE-GCN .804±.005 .376±.035 .218±.023 .113±.003 .748±.002

Table 19: Part 1: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in FB15K-237; and KE-
GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the training set from left to right.

FB15K-237
Regression (RSE - lower is better)

Size Area Population Film Year Date Founded Film Rating

ComplEx STD+LP .234±.018 .442±.071 .156±.016 .494±.042 .736±.046
MTT+LP .046±.026 .260±.064 .138±.007 .431±.047 .795±.058
MTT+MTR .049±.021 .493±.097 .126±.003 .605±.033 .804±.065

DistMult STD+LP .412±.318 .914±.093 .152±.003 .627±.036 .813±.062
MTT+LP .435±.046 .503±.004 .134±.012 .429±.045 .728±.063
MTT+MTR .025±.008 .540±.030 .146±.005 .718±.012 .894±.043

RotatE STD+LP .700±.223 .463±.429 .176±.004 .618±.024 .792±.089
MTT+LP .708±.112 .537±.035 .146±.008 .514±.055 .897±.168
MTT+MTR .440±.190 .710±.158 .157±.010 .631±.060 .949±.056

TransE STD+LP .326±.075 .906±.574 .153±.019 .499±.046 .839±.045
MTT+LP .041±.744 .227±.730 .141±.004 .300±.013 .690±.031
MTT+MTR .833±.684 .675±.109 .130±.012 .708±.022 .946±.018

KE-GCN .754±.0180 .664±.051 .144±.008 .498±.034 .691±.009

Table 20: Part 2: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in FB15K-237; and KE-
GCN (Yu et al., 2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the training set from left to right.
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YAGO3-10
Regression (RSE - lower is better)

Born on Date Created on Date Died on Date Destroyed on Date Happened on Date

ComplEx STD+LP .519±.001 .672±.033 .555±.014 .872±.060 .324±.006
MTT+LP .345±.025 .603±.009 .377±.005 .709±.009 .296±.036
MTT+MTR .363±.010 .643±.016 .406±.023 .605±.029 .277±.023

DistMult STD+LP .432±.013 .612±.024 .466±.025 .773±.004 .311±.030
MTT+LP .345±.023 .565±.015 .416±.023 .724±.044 .312±.040
MTT+MTR .352±.006 .648±.016 .438±.035 .677±.024 .214±.022

RotatE STD+LP .689±.027 .800±.009 .849±.000 .913±.000 .227±.055
MTT+LP .538±.006 .717±.008 .657±.018 .886±.031 .497±.233
MTT+MTR .421±.016 .706±.012 .468±.003 .616±.043 .137±.013

TransE STD+LP .422±.018 .647±.008 .351±.037 .513±.057 .300±.059
MTT+LP .371±.006 .725±.022 .434±.009 .573±.081 .100±.027
MTT+MTR .494±.017 .777±.000 .521±.038 .942±.048 .666±.024

KE-GCN .256±.009 .611±.008 .299±.011 .657±.045 .167±.001

Table 21: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression) that use
pre-trained KGE embeddings as input to solve regression tasks about entities in YAGO3-10; and KE-GCN (Yu et al.,
2021), a GCN that trains directly on the downstream data. Models with RSE above 1 are considered unsatisfactory.
Datasets are sorted by decreasing size of the training set from left to right.

WIKIDATA5M
Regression (RSE - lower is better)

Date of Birth Album Pub. Asteroid Mag. River Length

ComplEx STD+LP .475±.003 .760±.009 .436±.014 .559±.022
MTT+LP .481±.006 .844±.009 .519±.026 .540±.007
MTT+MTR .468±.010 .813±.006 .518±.014 .659±.025

TransE STD+LP .373±.002 .555±.004 .377±.015 .444±.016
MTT+LP .434±.007 .669±.003 .439±.013 .433±.029
MTT+MTR .455±.005 .667±.010 .455±.021 .418±.021

Table 22: Part 1: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in WIKIDATA5M; Models
with RSE above 1 are considered unsatisfactory. Datasets are sorted by decreasing size of the training set from left
to right.

WIKIDATA5M
Regression (RSE - lower is better)
Airport Elev. Season Start Population Munic. Area

ComplEx STD+LP .849±.007 .596±.002 .019±.197 .801±.000
MTT+LP .917±.000 .695±.014 .785±.139 .867±.000
MTT+MTR .928±.000 .657±.040 .841±.086 .877±.000

TransE STD+LP .734±.019 .546±.029 .928±.000 .811±.000
MTT+LP .894±.037 .654±.024 .739±.087 .825±.000
MTT+MTR .873±.000 .610±.011 .896±.080 .825±.000

Table 23: Part 2: Relative squared error (RSE) on test data of downstream models (MLP and Linear Regression)
that use pre-trained KGE embeddings as input to solve regression tasks about entities in WIKIDATA5M; Models
with RSE above 1 are considered unsatisfactory. Datasets are sorted by decreasing size of the training set from left
to right.
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Figure 3: Few-shot performance of entity classification tasks for FB15K-237 (higher is better). Each n-shot training
set consists of n sampled positive and negative examples for each class.
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Figure 4: Performance on entity classification for FB15K-237 with downsampled training sets (higher is better).
Each training set was constructed by sampling (stratified) a percentage of the training set.
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Figure 5: Performance of regression tasks for FB15K-237 with downsampled training sets (lower is better). Each
training set was constructed by sampling a percentage of the training set.
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Figure 6: Performance on entity classification for YAGO3-10 with downsampled training sets (higher is better).
Each training set was constructed by sampling (stratified) a percentage of the training set.
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Figure 7: Performance of regression tasks for YAGO3-10 with downsampled training sets (lower is better). Each
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Abstract

In real-world environments, continual learn-
ing is essential for machine learning models,
as they need to acquire new knowledge incre-
mentally without forgetting what they have
already learned. While pretrained language
models have shown impressive capabilities on
various static tasks, applying them to contin-
ual learning poses significant challenges, in-
cluding avoiding catastrophic forgetting, fa-
cilitating knowledge transfer, and maintaining
parameter efficiency. In this paper, we intro-
duce MOCL-P, a novel lightweight contin-
ual learning method that addresses these chal-
lenges simultaneously. Unlike traditional ap-
proaches that continuously expand parameters
for newly arriving tasks, MOCL-P integrates
task representation-guided module composi-
tion with adaptive pruning, effectively balanc-
ing knowledge integration and computational
overhead. Our evaluation across three con-
tinual learning benchmarks with up to 176
tasks shows that MOCL-P achieves state-of-
the-art performance and improves parameter
efficiency by up to three times, demonstrating
its potential for practical applications where
resource requirements are constrained.

1 Introduction

Continual learning (CL) is a learning paradigm
aiming at incrementally acquiring and integrating
new knowledge over time without forgetting ex-
isting knowledge. This capability is essential for
machine learning models to stay effective as they
encounter dynamic and evolving real-world en-
vironments. While pretrained language models
(PLMs) have demonstrated remarkable capabilities
on various static tasks, adapting them for continual
task learning remains challenging.

In particular, there are three notable challenges
for continual learning. (1) Avoiding catastrophic
forgetting: The newly learned information should
not disrupt and degrade previously acquired knowl-

edge (McCloskey and Cohen, 1989). (2) Facili-
tating knowledge transfer: The knowledge from
past tasks should be reused for efficient learning of
new tasks. (3) Maintaining parameter efficiency:
The language models need to stay lightweight and
effective even if the continual learning sequence
scales to hundreds of tasks.

To mitigate catastrophic forgetting, a line of
prior works adopt the idea of parameter isolation
(Razdaibiedina et al., 2022; Wang et al., 2023d,e,
2024), which allocates isolated parameters dedi-
cated for each task to avoid inter-task interference.
While parameter isolation typically does not al-
low knowledge transfer across tasks (Wang et al.,
2023d,e), there are attempts to address both chal-
lenges of catastrophic forgetting and knowledge
transfer at the same time, e.g., by progressively
concatenating (Razdaibiedina et al., 2022) or com-
posing task-specific modules (Wang et al., 2024).

Despite their effectiveness in terms of task per-
formance, parameter isolation methods do not
scale well with the number of tasks. When the
number of tasks in a continual learning sequence is
growing into the hundreds, the progressive expan-
sion of task-specific parameters leads to parameter
inefficiency and significantly increases computa-
tional and storage costs.

In this paper, we address all three continual
learning challenges simultaneously and introduce
MOCL-P, a lightweight continual learning ap-
proach that leverages task representation-guided
module composition and adaptive pruning. First,
to avoid catastrophic forgetting, MOCL-P continu-
ally adds task-specific modules to PLMs for learn-
ing new tasks while keeping the modules frozen
once the training on the respective tasks is finished.
In addition, to enable knowledge transfer across
tasks, MOCL-P allows the model to reuse existing
knowledge via module composition. Finally, to
keep the language model lightweight, MOCL-P
adopts an adaptive pruning strategy by removing
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modules with redundant information and retain-
ing only the most salient modules throughout the
continual learning process.

In our evaluation on three popular datasets as
continual learning benchmarks with up to 176 tasks
in the learning sequence, MOCL-P stands out by
not only showing state-of-the-art performance but
also outperforming prior algorithms in parameter
efficiency by up to three times across benchmarks.

To the best of our knowledge, this is the first
paper that tackles the three challenges of continual
learning simultaneously: MOCL-P avoids catas-
trophic forgetting, allows knowledge transfer and
ensures parameter efficiency. Thus, MOCL-P pro-
poses a sustainable way for continual learning, al-
lowing models to remain lightweight and effective
as they evolve with accumulating tasks.

The code base for MoCL is available online.1

2 Related Work

2.1 Avoiding Catastrophic Forgetting in
Continual Learning

A major challenge in continual learning is known
as catastrophic forgetting, where newly learned
information disrupts and degrades previously ac-
quired knowledge (McCloskey and Cohen, 1989).
Existing approaches to overcome this issue can be
broadly divided into three categories (Wang et al.,
2023a): (1) Regularization-based methods explic-
itly add regularization terms to the loss function to
restrict model updates and preserve existing knowl-
edge (Li and Hoiem, 2017; Kirkpatrick et al., 2017;
Aljundi et al., 2018); (2) Rehearsal-based methods
leverage a memory buffer to store real examples
(Rebuffi et al., 2017; Rolnick et al., 2019; Zhang
et al., 2022a) or generated pseudo-examples of
past tasks for future rehearsal to avoid catastrophic
forgetting (Shin et al., 2017; Su et al., 2019); (3)
Parameter isolation-based methods construct task-
specific parameters to prevent inter-task interfer-
ence by either dynamically expanding model capac-
ity or isolating existing model weights (Madotto
et al., 2020; Zhang et al., 2022b; Razdaibiedina
et al., 2022; Wang et al., 2023e,d, 2024).

Our method, MOCL-P, belongs to the
parameter-isolation based category. We use task
representation-guided module composition and
adaptive pruning to effectively manage isolated
parameters.

1https://github.com/boschresearch/MoCL-Pruning

2.2 Transferring Knowledge in Continual
Learning

Recent studies in continual learning demonstrate
the effectiveness of parameter isolation methods
in avoiding catastrophic forgetting (Razdaibiedina
et al., 2022; Wang et al., 2023e,d, 2024). How-
ever, naive parameter isolation methods do not
allow knowledge transfer across tasks, which leads
to inefficient learning as the model cannot lever-
age previously acquired knowledge to facilitate
learning new tasks. To address this, Yoon et al.
(2017) and Zhu et al. (2022) attempt to first iden-
tify reusable modules and only add new parame-
ters when necessary. Ke et al. (2021) and Wang
et al. (2022) introduce knowledge-sharing modules
to facilitate knowledge transfer while maintaining
task-specific parameters to prevent interference.
Razdaibiedina et al. (2022) progressively concate-
nate task-specific modules to incrementally build
a composite model that leverages both new and
existing knowledge. Wang et al. (2024) introduce
a modular and compositional continual learning
framework to compose the new module with exist-
ing ones based on task module matching.

2.3 Parameter-Efficient Continual Learning

With the ever-increasing number of parameters
in PLMs, it becomes increasingly important to
develop machine learning systems that are more
scalable, practical, and resource-efficient. In the
context of continual learning, this necessitates
parameter-efficient approaches that can effectively
integrate new knowledge without excessive com-
putational and storage costs as the number of tasks
in the continual learning sequence increases.

Recent advancements in continual learning inte-
grate parameter isolation with parameter-efficient
fine-tuning (PEFT), i.e., they allocate task-specific
PEFT modules for learning and inference (Razdai-
biedina et al., 2022; Wang et al., 2023e,d, 2024).
Various PEFT techniques, such as adapter tuning
(Houlsby et al., 2019), prefix tuning (Li and Liang,
2021), and LoRA (Huang, 2022), have been ap-
plied in continual learning. Although they reduce
the number of training parameters to some extent
by freezing the PLM and only updating the PEFT
module parameters, it remains challenging to apply
them to long-sequence benchmarks that consist of
hundreds of tasks. The continuous expansion of
task-specific modules leads to significant computa-
tional overhead as the number of tasks increases.
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Figure 1: Overview of our proposed method MOCL-P for parameter-efficient continual learning. Step 1: We match
the n-th task input with task feature vectors to determine the contribution of each existing module for learning the
current task. Step 2: We compose the newly initialized module with existing ones and perform adaptive module
pruning to preserve only the dominant modules. Step 3: Finally, we combine the composed module p′m with the
PLM for training and inference.

Our approach builds on the idea of Wang et al.
(2024) by utilizing task representations for module
composition, ensuring that the model effectively
reuses relevant knowledge from previous tasks. Be-
yond that, we introduce an adaptive pruning strat-
egy to keep the language model lightweight and
effective throughout the continual learning process,
thus making it scalable for continual learning sce-
narios with long task sequences.

3 Problem Definition

Continual learning focuses on addressing a series
of tasks which arrive in a sequential order. The
primary goal is to optimize the model’s average
performance across all tasks after learning them
sequentially. Formally, the sequence of tasks is
denoted as {T1, . . . , TN}. Each task contains a set
of input samples {(xin, yin)}. For the text classifica-
tion tasks we study in this work, xin is the input text,
yin is the ground-truth label, and n ∈ {1, . . . , N}
is the task identity.

In this work, we focus on rehearsal-free con-
tinual learning, i.e., data from earlier tasks is not
available when training later tasks. Therefore, our
model does not suffer from the memory or pri-
vacy issues associated with rehearsal-based meth-
ods. We assume the task labels are provided dur-
ing both training and testing, i.e., task-incremental
continual learning (Wang et al., 2023a). However,
MOCL-P can be adapted for class-incremental
learning, where the task labels are not given during
testing, with minor modifications following Wang
et al. (2024). We leave the exploration of other
continual learning settings for future work.

4 Method

In this section, we describe MOCL-P, our pro-
posed CL approach for language models, as il-
lustrated in Figure 1, which tackles catastrophic
forgetting and enhances knowledge transfer with
superior parameter efficiency at the same time.

4.1 Continual Learning with PEFT

We inherit the idea of parameter isolation with
parameter-efficient fine-tuning (PEFT) introduced
in prior work (Razdaibiedina et al., 2022; Wang
et al., 2023d,e, 2024), which allocates trainable
PEFT parameters for each task while keeping other
parameters frozen.

We utilize prefix-tuning (Li and Liang, 2021) as
the PEFT module in consistency with prior works.2

For each task in the CL sequence, we add a set
of trainable PEFT parameters, i.e., a task-specific
module, to the pretrained language model (PLM)
for downstream task fine-tuning. Instead of up-
dating the whole model, only a small number of
the PEFT parameters are optimized. Once training
on one given task is completed, the corresponding
PEFT module is frozen to preserve the task-specific
knowledge in the subsequent training process, thus
avoiding catastrophic forgetting.

4.2 Task Representation-Guided Module
Matching

In contrast to completely isolating task-specific
parameters during continual learning, which ex-
cludes knowledge transfer, we follow the idea of

2Other PEFT methods like Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2021) can also be combined with MOCL-
P in general. We leave such exploration for future work.
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task module composition introduced in Wang et al.
(2024) to facilitate knowledge transfer.

To this end, we utilize task representations for
task module matching, and consequently for com-
posing old and new modules for learning. The
module matching aims to determine the contribu-
tion of each existing module to learning the current
task, i.e., to what extent previously learned mod-
ules can be reused for the current task.

We introduce trainable feature vectors V ∈
RN×D as task representations to capture the fea-
tures of each task in the CL sequence.3 We set the
dimension of each task feature vector v ∈ RD to
the same value as the dimension of the input em-
beddings xn ∈ RD. Then, we calculate the cosine
similarity between the input embeddings xn and
each feature vector vi up to the current task as the
matching score αi = cos(xn, vi). Consequently,
we get the module matching weights {α0, α1, ...}
for module composition (details will be introduced
in Section 4.3) to reuse existing knowledge.

4.3 Module Composition with Adaptive
Pruning

When the CL learning sequence scales to dozens or
hundreds of tasks, the need for efficiency increases.
Continuously expanding the module pool to assign
a PEFT module to each task, as done in prior works
(Wang et al., 2023e; Razdaibiedina et al., 2022;
Wang et al., 2024), leads to large computational
costs. In contrast, we employ an adaptive pruning
strategy to make our approach scalable in scenarios
with long task sequences.

In particular, our pruning strategy aims at pre-
serving only those modules that add new and
valuable information to the set of already se-
lected modules. Given a set of selected mod-
ules {P0, . . . , Pm−1} from previous tasks and a
new task Tn, (m − 1 ≪ n), we initialize a
trainable module Pm and add it temporarily to
the model. For each instance4 xin of the cur-
rent task Tn, we compute the matching weights
{α0, . . . , αm} by matching xn with all task fea-
ture vectors {v0, . . . , vm} from our current set of
modules. Specifically, we calculate the cosine sim-
ilarity between xn and {v0, . . . , vm} as module
matching weights α0:m as detailed in Section 4.2.

3Note that MOCL-P is agnostic to different types of task
representations. In addition to the trainable feature vectors,
other static task representations such as task embeddings or
Gaussian task distributions can also be combined with MOCL-
P. We analyze these options in Section 6.2.

4For simplicity, we refer to this as xn in the following.

Then, we compose the new and old modules via
a weighted sum: P ′

m =
∑m

k=0 αkPk. Finally, the
composed module P ′

m is combined with the PLM,
consisting of all the selected module components
up to the current task.

After the training on Tn is finished (specifically,
the training of the PEFT module Pm and the task
feature vector vm), we compare αm, the matching
weight of the new module Pm, with a threshold5 to
decide whether to prune Pm or leave it in the set of
existing modules. The intuition is that large match-
ing weights indicate new and valuable information,
while task modules with small matching weights
do not contribute new information and, thus can,
be discarded.

4.4 Training and Inference
The training objective for the n-th task in the con-
tinual learning sequence is to find the PEFT mod-
ule Pm and the task feature vector vm that mini-
mize the cross-entropy loss of training examples,
and, at the same time, maximize the cosine similar-
ity between the task-specific feature vector vm and
the corresponding task input embeddings xn:

min
Pm,vm

−
∑

xn,yn

log p(yn|xn, P
′
n, θ)−

∑

xn

cos(xn, vm)

Here P ′
n =

∑m
k=1 αkPk is the weighted sum-

mation of the new trainable task module and the
existing frozen task modules as introduced in Sec-
tion 4.3. During inference, MOCL-P performs
per-instance task module matching and composi-
tion. The resulting module is combined with the
PLM for inference.

5 Experimental Setup

In this section, we describe datasets, training de-
tails and baselines for our experiments.

5.1 Datasets
To evaluate the performance of our method and the
effectiveness of its module pruning functionality,
we experiment with three continual learning bench-
marks, each with long task sequences. Following
prior work (Razdaibiedina et al., 2022; Wang et al.,
2024), we use MTL15, a multi-task continual learn-
ing benchmark comprising 15 classification tasks,
and AfriSenti (Muhammad et al., 2023), a multi-
lingual sentiment analysis dataset that includes 12
low-resource African languages. Additionally, we

5The threshold is a tunable hyperparameter.
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Method
AfriSenti WikiAnn

AVG O1 O2 O3 # Params AVG O1 O2 O3 # Params

Seq FT (F) 6.17 5.62 6.52 6.30 560M 14.50 3.44 23.36 16.70 110M
Seq FT 49.10 50.05 49.74 47.53 0.4M 67.99 68.25 65.05 70.66 0.1M
Per-task FT 52.41 52.41 52.41 52.41 4.5M 71.22 71.22 71.22 71.22 24.8M
ProgPrompt 49.07 50.16 46.74 50.30 4.5M 73.20 73.24 73.22 73.15 24.8M
EPI 43.10 41.49 42.65 45.16 4.5M 67.34 67.72 67.12 67.18 24.8M
MoCL 59.31 59.56 58.98 59.40 4.5M 73.80 73.78 73.81 73.82 24.9M
MOCL-P (Ours) 59.41 59.52 58.97 59.76 2.2M±0.4 73.91 73.94 73.94 73.86 8.0M±0.1

Table 1: Summary of the continual learning results on two multilingual benchmarks: AfriSenti and WikiAnn
NER, with 12 and 176 languages in the task sequence, respectively. We compare MOCL-P with various baseline
methods, and show the average model performance (AVG) across different task orders (O1, O2, O3) with the
number of trainable parameters (# Params) used by each method. MOCL-P outperforms other methods with
significantly fewer parameters, demonstrating its superiority in both model performance and parameter efficiency
in long-sequence continual learning scenarios.

include WikiAnn (Pan et al., 2017), a multilingual
named entity recognition (NER) dataset covering
176 languages; its long task sequence provides an
adequate testbed for the pruning ability of our ap-
proach.

We report macro-weighted F1 scores on the
AfriSenti benchmark, accuracy on MTL15, and
micro-weighted F1 scores on WikiAnn. On the
MTL15 benchmark, we select 1000 random sam-
ples per class for training each task and hold out
500 samples per class for validation.6 We explore
three task orders for each benchmark, adopting the
same multiple task orders as the prior work. Please
refer to Appendix A.1 for more details about the
benchmarks and task orders.

5.2 Training Details

We deploy three LMs for these datasets, in line with
prior work (Razdaibiedina et al., 2022; Wang et al.,
2024). We use encoder-based models for AfriSenti
and WikiAnn NER (AfroXLM and BERT, respec-
tively), and the encoder-decoder model T5 for
MTL15. Prefix-tuning is used as the task-specific
modules for all deployed models. All design
choices are consistent with previous works to en-
sure a fair comparison. The reported results rep-
resent the average performance after training on
all tasks consecutively and are averaged over three
random seeds. The detailed experimental settings
are provided in Appendix A.2.1.

6All design choices of MOCL-P are kept consistent with
previous works (Wang et al., 2023b,d, 2024) to ensure a fair
comparison.

5.3 Baselines
To compare different CL methods, we include the
following baselines: (1) Sequential fine-tuning con-
tinuously fine-tunes the language model on the task
sequence: (a) Seq FT (F) refers to all model param-
eters are updated (fully fine-tuning), while (b) Seq
FT only fine-tunes the PEFT parameters; (2) Per-
task FT trains a separate PEFT module for each
task; and the parameter isolation-based methods (3)
ProgPrompt (Razdaibiedina et al., 2022) assigns
task-specific parameters and progressively concate-
nates modules of all tasks to encourage knowledge
transfer; (4) EPI (Wang et al., 2023e) introduces
a non-parametric task identification technique to
select modules for task training and inference; (5)
O-LoRA (Wang et al., 2023d) learns tasks in differ-
ent low-rank vector spaces that are kept orthogonal
to each other to minimize interference; and (6)
MoCL (Wang et al., 2024) introduces a modular
and compositional framework that progressively
expands task-specific modules and composes the
new module with existing ones to facilitate knowl-
edge transfer. A detailed description of these meth-
ods can be found in Appendix A.2.2.

6 Results and Analysis

In this section, we present and analyze our experi-
mental results.

6.1 Overall Results
Table 1 shows the performance of MOCL-P
and other baseline methods on the AfriSenti and
WikiAnn benchmarks. MOCL-P consistently out-
performs the baselines while significantly reduc-
ing the number of trainable parameters. Using
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only 50% and 30% of the trainable parameters
compared to other CL methods on Afrisenti and
Wikiann respectively, MOCL-P showcases an ex-
ceptional balance of efficiency and performance.
In the MTL15 benchmark, as illustrated in Table 2,
MOCL-P also shows superior performance. As
mentioned in prior work (Wang et al., 2024), tasks
in this benchmark share lower similarity compared
to AfriSenti and WikiAnn, resulting in weaker
reusability of task modules. Therefore, we do not
observe a significant drop in the number of train-
able parameters here as seen in the other bench-
marks. However, we still achieve a 25% reduction
in parameter size while maintaining final perfor-
mance.

Overall, MOCL-P demonstrates its superiority
in efficiently managing the continual learning pro-
cess without the substantial parameter overhead.
The competitive performance of MOCL-P across
different benchmarks highlights its robust adapt-
ability and scalability to the continual learning se-
quence up to 176 tasks long.

Method
MTL15

AVG O1 O2 O3 # Params

Seq FT-F 7.4 7.4 7.4 7.5 770M
Seq FT-P 64.7 69.9 58.9 65.1 1.4M
Per-task FT 80.5 80.5 80.5 80.5 21.1M
ProgPrompt 77.9 78.0 77.7 77.9 21.1M
EPI 65.4 62.8 65.3 68.1 21.1M
O-LoRA 69.6 78.0 77.7 77.9 33.8M
MoCL 82.5 82.9 82.8 81.9 21.1M
MOCL-P (Ours) 82.5 83.0 82.7 81.8 15.6M±1.1

Table 2: Summary of the continual learning results
on the MTL15 benchmark with the T5-large model.
MOCL-P achieves the best average performance (AVG)
while using fewer parameters (# Params), demonstrating
its effectiveness on the multi-task CL benchmark.

6.2 Task Representation Comparison
In this work, we adopt learnable task feature vec-
tors as task representation, and based on these, we
perform module composition and pruning. In Sec-
tion 6.1, we demonstrate the effectiveness of this
design choice. While this is not the only option
for task representations, in this section, we experi-
ment with two other types of task representation:
(1) using Gaussian distributions to model the input
embeddings of each task (w/ Gaussian) and (2) cal-
culating the mean of the input embeddings of each
task for task representations(w/ Embed mean).

Table 3 provides the results of using different
task representation options for module composition

AfriSenti WikiAnn
AVG # Params AVG # Params

Per-task FT 49.10 4.5M 71.22 24.8M

MoCL 59.31 4.5M 73.80 24.9M
w/ Gaussian 42.25 4.5M 67.38 24.8M
w/ Embed mean 52.63 4.5M 70.12 24.8M

MOCL-P (Ours) 59.41 2.2M±0.4 73.91 8.0M±0.1

w/ Gaussian 42.15 4.1M±0.0 67.46 5.4M±0.3

w/ Embed mean 52.13 3.9M±0.2 70.21 20.3M±0.7

Table 3: Performance comparison of different task rep-
resentation methods for module composition and prun-
ing. Specifically, we use Gaussian distribution to model
the input embeddings of each task (w/ Gaussian rep)
and calculate the mean of the input embeddings of each
task (w/ Embed mean). Notably, the use of these vari-
ations results in substantially lower performance com-
pared to the original MoCL and MOCL-P which uti-
lizes learnable feature vectors as task representations.

and pruning. A significant performance drop oc-
curs when using Gaussian distributions or the mean
of task input embeddings as the task representation.
In most cases, their performance is worse than the
Per-Task FT baseline, indicating that using these
task representations for module composition leads
to performance degradation rather than beneficial
knowledge transfer across tasks.

We believe that this degradation is due to the fact
that both of these task representations are static and
are solely based on the input embeddings. In con-
trast, MOCL-P utilizes trainable task feature vec-
tors, meaning the model can automatically learn
to capture the salient task features necessary for
effective module composition. Trainable task rep-
resentations are a better choice because not all
information in the input embedding is relevant
for module composition. To effectively capture
reusability between task modules, the model must
focus on the salient features while ignoring irrel-
evant ones. Static task representations, which are
purely based on input embeddings, fail to achieve
this selective focus.

6.3 Ablation Study: Varying the Training
Epochs for Task Feature Vectors

To substantiate our assumption introduced in Sec-
tion 6.2, we additionally conduct ablation exper-
iments on WikiAnn where we vary the training
epochs for task feature vectors in MOCL-P. As
illustrated in Figure 3, training the task feature vec-
tors for different epochs shows a clear pattern: the
model performance improves significantly with the
initial increase of the number of training epochs.
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Figure 2: Visualization of task feature vectors on the WikiAnn benchmark using PCA for dimensionality reduction.
We vary the training epochs for task feature vectors in MOCL-P. As the training epochs increase, the task feature
vectors spread out from the initial dense cluster. Notably, the feature vectors of preserved modules (in orange) are
spread across a large area while the discarded modules (in blue) form a dense cluster, indicating their redundancy.

Beyond a certain point (epoch = 4), additional train-
ing does not yield further benefits and converges
towards a performance plateau. This observation
suggests that by allowing the model to adapt these
vectors over several epochs, MOCL-P can more
accurately identify and leverage the most relevant
features for module composition. This underscores
the critical importance of the trainable nature of
task feature vectors in MOCL-P.

In Figure 2, we visualize the task feature vec-
tors at different training epochs on the WikiAnn
dataset, which includes a total of 176 tasks. The
colors represent two categories of task modules:
those that are eventually discarded (blue) and those
that are preserved (orange) through the learning
process. Initially (training epoch = 0), the vec-
tors are evenly distributed around the origin since
they are uniformly initialized. As the training
epochs increase, the task vectors spread out and
become more distinct, suggesting that the model
captures distinct features of tasks and utilizes them
for module pruning. Notably, the feature vectors of
preserved modules are spread across a large area,
while the discarded modules form a dense cluster,
indicating their redundancy. The embeddings of
task feature vectors stabilize by epoch 5, indicating
a convergence in the task representation learning
process. These observed patterns demonstrate the
effectiveness of our strategy of using trainable task

representations for module composition and prun-
ing, which helps in preserving only the most salient
modules for continual learning.
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Figure 3: Experimental results with different training
epochs for task feature vectors in MOCL-P. The model
performance improves rapidly with the initial increase
of the number of training epochs and converges towards
a performance plateau after epochs > 4. MOCL-P
achieves significantly better performance than other
task representation options. It highlights the advantage
of trainable task representations in capturing salient task
features for effective module composition.
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Figure 4: Impact of pruning thresholds on the performance and parameter size of MOCL-P across different
benchmarks. The performance of MOCL-P exhibits robustness to different thresholds, with a significant reduction
in the number of trainable parameters. This demonstrates that MOCL-P can maintain effective performance despite
using fewer parameters.

6.4 Ablation Study: Varying the Pruning
Threshold

In this section, we study the impact of using dif-
ferent thresholds on the performance of MOCL-
P. As introduced in Section 4.3, we compare the
matching weight of the newly initialized task mod-
ule αm with the pre-specified threshold αths, if
αm < αths, then we discard the newly learned
module. We vary αths from 0 to 0.25 for the three
benchmarks used in this work.

The results are shown in Figure 4. The figure il-
lustrates how varying the pruning threshold affects
both the average performance and the parameter
size across different benchmarks.

For the model performance, we observe that the
initial increase in the pruning threshold leads to
a performance increase on all three benchmarks.
This indicates that excluding the redundant mod-
ules benefits performance. As the threshold con-
tinues to increase, the average performance on
AfriSenti and MTL15 remains relatively stable,
while the performance on WikiAnn drops, possi-
bly due to the loss of information in potentially
useful modules. Additionally, it is worth noting
that the performance of MOCL-P is consistently
and significantly better than the Per-Task FT base-
line, suggesting that MOCL-P achieves effective
knowledge transfer at different pruning thresholds.

Furthermore, for the parameter size, a significant
reduction is observed as the threshold increases
on all three benchmarks. This demonstrates the
superiority of MOCL-P on parameter efficiency.
We observe that the parameter size decreases more
pronounced and faster on AfriSenti and WikiAnn,
while it decreases less and more slowly on MTL15.

We believe it is due to the characteristics of the
benchmarks. As mentioned in Section 6.1, tasks in
this benchmark share a lower similarity, therefore,
most task modules are highly specialized to these
distinct tasks and cannot be discarded.

We choose different pruning thresholds for dif-
ferent benchmarks reported in Table 1. For each
benchmark, we select the pruning threshold that
best balances performance and parameter size to
report the results in Table 1. Specifically, we use
αths = 0.025 for AfriSenti and WikiAnn, and
αths = 0.25 for MTL15. With these thresholds,
MOCL-P achieves equally good performance with
only 50%, 30%, and 75% of the number of train-
able parameters compared to MoCL without prun-
ing on these three benchmarks, respectively.

7 Conclusion

In this paper, we introduce MOCL-P, a novel
continual learning approach that addresses the
core challenges of catastrophic forgetting, knowl-
edge transfer, and parameter efficiency in contin-
ual learning. We utilize learnable task representa-
tions for module composition and adaptive pruning,
maintaining a lightweight model while achieving
state-of-the-art performance across various bench-
marks. Notably, MOCL-P scales effectively to
long continual learning sequences, handling up
to 176 tasks without compromising performance.
These experimental results showcase MOCL-P’s
potential to enhance practical machine learning ap-
plications by effectively managing computational
costs, thus providing a scalable and efficient so-
lution for real-world scenarios where minimum
resource requirements are crucial.
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Limitations

While MOCL-P demonstrates significant advance-
ments in continual learning, our study has some
limitations that should be addressed in future work.
First, we only use the long sequence multilingual
benchmark, i.e., WikiAnn with 176 tasks, in this
work due to the lack of existing long sequence
multi-task benchmarks. The absence of these
benchmarks limits the evaluation of MOCL-P’s
performance across diverse multi-task scenarios.
Building a long sequence multi-task benchmark
for continual learning would be an interesting re-
search direction, although it is beyond the scope
of this work. Second, as we follow the evaluation
setup from prior works, we do not include gener-
ative tasks for evaluation. Therefore, we may not
capture the potential of MOCL-P in a wider range
of continual learning challenges. Including gener-
ative tasks in future evaluations would provide a
more comprehensive understanding of MOCL-P’s
capabilities.
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A Appendix

A.1 Dataset Information

Here we provide detailed information on the
datasets used in this work. The MTL15 bench-
mark consists of 15 classification tasks, combin-
ing five datasets from the standard CL bench-
mark MTL5 (AG News, Amazon reviews, Yelp
reviews, DBpedia, and Yahoo Answers) (Zhang
et al., 2015), four tasks from the GLUE benchmark
(MNLI, QQP, RTE, SST2) (Wang et al., 2018), five
tasks from the SuperGLUE benchmark (WiC, CB,
COPA, MultiRC, BoolQ), and the IMDB movie
reviews dataset (Maas et al., 2011). Details of
the MTL15 benchmark are provided in Table 4.
Following Wang et al. (2024), we use AfriSenti
(Muhammad et al., 2023; Wang et al., 2023c),
a multilingual sentiment analysis dataset cover-
ing 12 low-resource African languages, including
Amharic (am), Algerian Arabic (dz), Hausa (ha),
Igbo (ig), Kinyarwanda (kr), Moroccan Arabic
(ma), Nigerian Pidgin (pcm), Mozambican Por-
tuguese (pt), Swahili (sw), Xitsonga (ts), Twi (twi),
and Yoruba (yo). Additionally, to further evalu-
ate the module pruning capability of MOCL-P,
we include WikiAnn, a multilingual named en-
tity recognition (NER) dataset that covers 176
languages. The long task sequence in WikiAnn
provides an adequate testbed for evaluating the
pruning functionality of MOCL-P. Due to space
constraints, we do not list the names of the 176
languages and their corresponding abbreviations.
The specific language information is available at
https://huggingface.co/datasets/wikiann.

We use different task orders for each dataset to
evaluate the robustness of continual learning meth-
ods against changing task orders. For the MTL15
and AfriSenti benchmarks, we follow the task or-
ders used in prior works, while for the WikiAnn
benchmarks, we generate three random task orders
for evaluation. The task orders used are summa-
rized in Table 6.

A.2 Experiment Details

In this section, we provide the implementation de-
tails for the experiments and a detailed description
of the baseline methods used in this work.

A.2.1 Implementation Details
We use the AdamW optimizer (Loshchilov and
Hutter, 2017) for all experiments. We choose the
same maximum sequence length and prefix length

as prior work (Razdaibiedina et al., 2022; Wang
et al., 2023e). Table 5 provides detailed hyper-
parameter choices for MOCL-P across different
datasets. The training was performed on Nvidia
A100 GPUs.7

A.2.2 Baseline Methods
In Section 6, we evaluate MOCL-P and prior con-
tinual learning methods on different benchmark
datasets. Here, we provide a more detailed descrip-
tion of the baseline methods used in this work.

ProgPrompt (Razdaibiedina et al., 2022): A pa-
rameter isolation-based continual learning method
that assigns task-specific parameters to avoid catas-
trophic forgetting. During continual learning, Prog-
Prompt progressively concatenates all task-specific
modules to encourage forward transfer.

EPI (Wang et al., 2023e): A parameter isolation-
based method applicable to the class-incremental
learning setting (CIL), where task identities are
not given during inference. EPI introduces a non-
parametric task identification module that identifies
tasks during testing. Given reliable task identifica-
tion, the CIL performance of EPI could be compa-
rable to TIL, where the ground truth task identities
are given during inference.

O-LoRA (Wang et al., 2023d): A parameter
isolation-based method that learns tasks in differ-
ent low-rank vector spaces that are kept orthogonal
to each other to minimize interference. It mitigates
catastrophic forgetting by constraining the gradient
update of the current task to be orthogonal to the
gradient space of past tasks. However, the orthogo-
nality of the gradient subspace for individual tasks
also limits knowledge transfer between tasks.

MoCL (Wang et al., 2024): Introduces a mod-
ular and compositional continual learning frame-
work to compose the new module with existing
ones based on task module matching. This compo-
sitional strategy enables effective knowledge trans-
fer by considering task interaction.

As discussed in Section 2, we build on the idea
of MoCL (Wang et al., 2024) by utilizing task
representations for module composition, ensuring
that the model effectively reuses relevant knowl-
edge from previous tasks. Beyond that, we intro-
duce an adaptive pruning strategy to keep the lan-
guage model lightweight and effective throughout
the continual learning process, making it scalable
for continual learning scenarios with long task se-
quences.

7All experiments ran on a carbon-neutral GPU cluster.
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Dataset name Category Task Domain
Yelp MTL5 sentiment analysis Yelp reviews
Amazon MTL5 sentiment analysis Amazon reviews
DBpedia MTL5 topic classification Wikipedia
Yahoo MTL5 QA Yahoo Q&A
AG News MTL5 topic classification news
MNLI GLUE NLI various
QQP GLUE paraphrase detection Quora
RTE GLUE NLI news, Wikipedia
SST2 GLUE sentiment analysis movie reviews
WiC SuperGLUE word sense disambiguation lexical databases
CB SuperGLUE NLI various
COPA SuperGLUE QA blogs, encyclopedia
BoolQ SuperGLUE boolean QA Wikipedia
MultiRC SuperGLUE QA various
IMDB Other sentiment analysis movie reviews

Table 4: The details of 15 datasets used in the MTL15 benchmark. NLI denotes natural language inference, and QA
denotes questions and answers task.

Hyperparameters
AfriSenti-AfroXLMR WikiAnn-BERT MTL15-T5

Epochs 40 5 40
Early stop patience 5 N/A 5
Batch size 8 32 8
Learning rate 2e-4 1e-3 5e-2
Max. sequence length 256 128 512
Prefix length 16 8 10

Table 5: Hyperparameters used in this work across different CL experiments.
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Table 6: The different orders of task sequences used for continual learning experiments.

Dataset Order Model Task Sequence

AfriSenti
1 AfroXLMR

am→ dz→ ha→ ig→ kr→ ma
→ pcm→ pt→ sw→ ts→ twi→ yo

2 AfroXLMR
ma→ pcm→ kr→ pt→ ig→ sw
→ ha→ ts→ dz→ twi→ am→ yo

3 AfroXLMR
am→ dz→ ha→ ma→ ig→ kr
→ sw→ ts→ twi→ yo→ pcm→ pt

MTL15
1 T5

mnli→ cb→ wic→ copa→ qqp→ boolq→ rte→ imdb→
yelp→ amazon→ sst2→ dbpedia→ ag→ multirc→ yahoo

2 T5
multirc→ boolq→ wic→ mnli→ cb→ copa→ qqp→ rte→

imdb→ sst2→ dbpedia→ ag→ yelp→ amazon→ yahoo

3 T5
yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb→

sst2→ dbpedia→ ag→ yahoo→ multirc→ boolq→ wic

WikiAnn
1 BERT

ga→ fi→ sco→ bs→ co→ pnb→ eu→ vls→ os→ de→
hy→ mwl→ ca→ or→ wa→ rw→ simple→ tl→ crh→

lij→ min→ ko→ scn→ an→ mk→ hi→ ug→ ext→ sl→
sw→ nap→ et→ wuu→ uz→ mzn→ ast→ jv→ su→

ilo→ csb→ cdo→ tk→ ckb→ lv→ ur→ th→ am→ kn→
pms→ ba→ tt→ pl→ vec→ ru→ cs→ ne→ bn→ es→
fy→ fiu-vro→ bo→ mt→ fr→ mr→ nn→ bar→ ang→
no→ fo→ el→ qu→ fa→ eml→ kk→ tr→ pt→ km→

dv→ hsb→ rm→ ta→ fur→ war→ frr→ ps→ io→ da→
zh-yue→ ms→ cv→ diq→ mn→ lb→ cy→ sa→ ig→

oc→ hu→ arc→ ln→ ku→ hr→ nds→ az→ ar→ ce→
lt→ zea→ it→ zh-classical→ be-x-old→ mi→ ia→ is→
la→ sv→ nl→ gd→ pa→ xmf→ ksh→ zh-min-nan→

lmo→ tg→ sh→ eo→ zh→ te→ he→ vep→ as→
yi→ cbk-zam→ yo→ ro→ ace→ id→ jbo→ nov→ bg→
map-bms→ be→ sr→ sah→ ml→ my→ vo→ so→ gu→
br→ gl→ ka→ li→ pdc→ ky→ bat-smg→ als→ mg→

szl→ gn→ ceb→ vi→ sq→ mhr→ ay→ en→ bh→ uk→
gan→ sk→ si→ hak→ af→ ja→ arz→ sd

Continued on next page
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Table 6 – continued from previous page
Dataset Order Model Task Sequence

2 BERT

wuu→ cy→ mwl→ eu→ gn→ scn→ ka→ pdc→ it→
ro→ pnb→ ig→ tl→ sah→ is→ ga→ ml→ wa→

vo→ simple→ hr→ dv→ mn→ csb→ sl→ gl→ fy→
bn→ tg→ fr→ th→ vls→ arz→ zh-classical→ ln→ tr→

su→ min→ si→ ur→ sr→ et→ eo→ sh→ li→
fiu-vro→ rw→ no→ mg→ mr→ oc→ nap→ yi→ pa→
lt→ ug→ co→ tt→ sv→ uk→ so→ ext→ ky→ ru→
kk→ sa→ la→ el→ hsb→ be-x-old→ bg→ pt→ bh→

br→ mt→ ne→ id→ te→ cv→ fo→ cdo→ bs→
lij→ sw→ he→ ceb→ hak→ es→ kn→ mk→ am→

or→ ms→ az→ als→ my→ ce→ os→ ca→ tk→ diq→
zh→ fi→ jbo→ mhr→ ay→ pms→ rm→ zea→ en→

zh-yue→ sco→ ang→ bo→ ar→ ia→ zh-min-nan→ ckb→
fa→ crh→ as→ yo→ szl→ fur→ hi→ eml→ mi→ lb→
de→ bat-smg→ uz→ lv→ nov→ ast→ cs→ hy→ sk→

sq→ be→ xmf→ af→ ps→ qu→ da→ ja→ vep→ ku→
mzn→ nl→ vec→ map-bms→ ace→ io→ gu→ bar→

ilo→ km→ arc→ cbk-zam→ pl→ ksh→ war→ gd→ ba→
lmo→ gan→ ko→ an→ frr→ vi→ hu→ jv→ sd→

nds→ nn→ tas

3 BERT

tl→ sah→ ckb→ qu→ az→ ast→ mr→ eo→ wa→
zh-classical→ fiu-vro→ eu→ nl→ map-bms→ id→ szl→

mi→ io→ lt→ war→ my→ bat-smg→ jv→ en→
zh-min-nan→ sh→ su→ frr→ am→ hu→ hy→ zh→ ps→

hi→ tg→ pl→ nov→ dv→ min→ jbo→ diq→ ksh→
gn→ vec→ nds→ lij→ pdc→ os→ rw→ als→ sq→
fi→ da→ sr→ ru→ uz→ fr→ scn→ tt→ bh→ bn→
mwl→ et→ hsb→ kn→ rm→ nn→ mhr→ bg→ sd→
ko→ la→ ka→ de→ he→ pt→ cs→ hr→ tk→ cy→

co→ or→ csb→ bar→ mt→ vo→ oc→ simple→ ml→
bs→ km→ sk→ ang→ br→ xmf→ ay→ zea→ ln→

sco→ ku→ ilo→ lv→ mzn→ zh-yue→ gan→ ta→ gl→
ca→ hak→ mg→ ne→ ur→ cbk-zam→ uk→ mn→ fy→
ba→ nap→ kk→ yo→ tr→ so→ fo→ ug→ ace→ fur→
pa→ lmo→ it→ be-x-old→ sa→ arc→ ig→ lb→ ms→

th→ cv→ arz→ bo→ el→ eml→ gd→ pnb→ cdo→
ky→ af→ vls→ be→ ga→ es→ yi→ si→ ext→ gu→
mk→ ja→ is→ no→ ceb→ ro→ sv→ ar→ an→ te→
sl→ sw→ wuu→ pms→ fa→ vi→ as→ ce→ vep→

li→ ia→ crh
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Abstract

Traditional image clustering techniques only
find a single grouping within visual data. In
particular, they do not provide a possibility to
explicitly define multiple types of clustering.
This work explores the potential of large vision-
language models to facilitate alternative image
clustering. We propose Text-Guided Alterna-
tive Image Consensus Clustering (TGAICC),
a novel approach that leverages user-specified
interests via prompts to guide the discovery of
diverse clusterings. To achieve this, it generates
a clustering for each prompt, groups them us-
ing hierarchical clustering, and then aggregates
them using consensus clustering. TGAICC out-
performs image- and text-based baselines on
four alternative image clustering benchmark
datasets. Furthermore, using count-based word
statistics, we are able to obtain text-based expla-
nations of the alternative clusterings. In conclu-
sion, our research illustrates how contemporary
large vision-language models can transform ex-
planatory data analysis, enabling the generation
of insightful, customizable, and diverse image
clusterings. 1

1 Introduction

Exploratory data analysis (EDA) is crucial in the
comprehension and analysis of data (Tukey, 1970).
Clustering arises as a cornerstone EDA methodol-
ogy, facilitating the grouping of similar data ob-
jects into coherent groups. A dataset of images, for
example, can be clustered based on semantic simi-
larities between the shown objects. Nevertheless,
within applied contexts, variations in user require-
ments or foci demand distinct clustering formations.
One might, for instance, cluster a dataset of cards
by rank or by suit (see Figure 1). In such circum-
stances, it is advantageous to derive multifaceted
insights into a dataset from diverse perspectives.

1Code available at https://github.com/AndSt/
alternative_image_clustering.

Figure 1: Assume we have an image of a card depicting
a “heart two”. Given two different user queries, the
VQA model gives different responses. Clustering the
generated text based on different prompts results in
alternative clusterings that satisfy different needs. The
colors in the figure represent the ground truths of “rank”
and “suit” for different generated texts.

Current approaches in alternative image clus-
tering either rely on image-based features (Mautz
et al., 2018; Miklautz et al., 2020) or utilize text
through image-text bi-encoders, often with archi-
tectures resembling CLIP (Radford et al., 2021;
Yao et al., 2024). These methods, while power-
ful, neglect the rich insights that can be extracted
by models explicitly trained to retrieve specific as-
pects of information from images using text (e.g.,
visual question answering (VQA) models (Antol
et al., 2015)). Stephan et al. (2024) demonstrate
the effectiveness of using generated text descrip-
tions to improve standard image clustering tasks,
i.e. in scenarios where a single clustering structure
is expected.

We aim to use image-to-text models to obtain
alternative clusterings. By encoding visual content
into text, similarity dimensions beyond the visual
features can be explored, potentially revealing in-
terpretable relationships. We introduce TGAICC
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(Text-Guided Alternative Image Consensus Clus-
tering), a clustering method that uses the output of
multiple image-to-text models to obtain alternative
clusterings. TGAICC incorporates VQA models
to generate multiple textual descriptions of images
and then clusters the images based on the generated
natural language descriptions. We identify similar
clusterings using their mutual information, group
them using hierarchical clustering and aggregate
them using consensus clustering to form refined,
alternative clusterings.

Our experimental setup employs four widely
used alternative image clustering datasets, each
possessing two or three ground truth labelings (e.g.,
playing cards clustered by rank or suit). We com-
pare TGAICC against baselines for alternative clus-
tering using image-only features and baselines that
make use of the generated text. Our experiments
demonstrate the following key findings: methods
clustering the generated text outperform methods
based on image features on these alternative clus-
tering datasets, underscoring the power of textual
representations in capturing diverse aspects of sim-
ilarity. Further, TGAICC, on average, achieves
superior results across the evaluated datasets and
metrics when compared to all other methods, high-
lighting the effectiveness of our framework in lever-
aging image-to-text models to uncover alternative
and insightful clusterings. Lastly, we can better
interpret the clusterings by explaining the content
using word statistics. Our case study on the cards
dataset shows that text provides an opportunity to
obtain an informative overview of the data.

In summary, our research provides the following
contributions:

1. We introduce a prompt-based setup to obtain
alternative image clusterings.

2. We introduce TGAICC, a method that com-
bines ideas from multi-modality, hierarchical
clustering, and consensus clustering to obtain
alternative clusterings.

3. Our experiments on four common alternative
image clustering datasets show that TGAICC
outperforms baseline algorithms.

4. Our methodology enables the ability to gen-
erate textual cluster explanations, offering a
clear overview of the unique content captured
within each alternative clustering.

2 Related Work

This work builds upon image clustering, consensus
clustering, and alternative clustering approaches.
We provide a brief overview of these relevant areas
and describe the necessary background.

2.1 Image Clustering

Research in image clustering has addressed sev-
eral standard issues, and a variety of techniques
have been developed to tackle them. (Ezugwu
et al., 2022) provide a survey on clustering ap-
proaches. Classic approaches like k-means (Lloyd,
1982) have demonstrated effectiveness but often
struggle with complex or high-dimensional image
data. To address these limitations, more recent
work has explored deep clustering methods such as
DEC (Xie et al., 2016) and IDEC (Guo et al., 2017).
In addition to these core techniques, representa-
tion learning and more specifically, self-supervised
learning (Jaiswal et al., 2021) has emerged as a vi-
tal aspect of image clustering (Lehner et al., 2023;
Adaloglou et al., 2023). In Contrastive Clustering
(Li et al., 2021), the authors use one loss contrast-
ing image features and another loss contrasting
clustering features, i.e., the predicted cluster of two
augmentations of the same image. A different ap-
proach is used in Text-Guided Image Clustering
(Stephan et al., 2024). This paradigm leverages
image-to-text models and subsequently cluster text.
The observation that text often outperforms image-
based features motivates this work.

2.2 Consensus Clustering

Variability in clustering results arises from different
clustering algorithms or variations in their initializa-
tions. Given that different clusterings potentially re-
veal different insights (e.g., accurately identifying
a cluster representing "hearts"). Consensus cluster-
ing methods aim to aggregate results from multiple
base clustering algorithms to produce a more ro-
bust and stable final clustering. The problem was
formalized by (Strehl and Ghosh, 2002) and the
authors introduce the Cluster-based Similarity Par-
titioning Algorithm (CSPA), HyperGraph Partition-
ing Algorithm (HGPA), and the Meta-CLustering
Algorithm (MCLA). All three methods employ sim-
ilarity functions, e.g. Normalized Mutual Informa-
tion (NMI), to construct a similarity graph and use
graph theory to obtain a consensus clustering. In
(Li and Ding, 2008), non-negative matrix factoriza-
tion (NMF) is used to obtain a consensus clustering.
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The Hybrid Bipartite Graph Formulation (HBGF)
(Fern and Brodley, 2004) employs a bipartite graph
representation. In (Miklautz et al., 2022), the au-
thors introduce DECCS, a deep learning-based con-
sensus method, which learns a representation on
which heterogeneous clustering algorithms share a
consensus on the obtained clusterings.

2.3 Alternative Clustering
Clustering methods usually focus on finding a sin-
gle optimal clustering solution. Motivated by the
fact that there may be multiple meaningful ways to
group data points, alternative clustering approaches
aim to uncover multiple, diverse clustering struc-
tures within the same data (Yu et al., 2024; Müller
et al., 2012).

Cui et al. (2007) first apply a traditional cluster-
ing algorithm and then transform the dataset into a
feature space orthogonal to the current clustering.
Two strategies are proposed: orthogonal cluster-
ing (orth1) and clustering in orthogonal subspaces
(orth2). In contrast, Non-redundant K-means (Nr-
Kmeans) (Mautz et al., 2018) simultaneously iden-
tifies multiple clusterings within a dataset by itera-
tively rotating the feature space and assigning fea-
tures to specific clusterings. ENRC (Miklautz et al.,
2020) is a deep non-redundant clustering method
that learns multiple clusterings from a dataset by
(soft-)assigning each dimension of the embedded
space to a clustering. In (Kwon et al., 2024), the
authors provide initial text criteria, e.g., suits and
ranks, and use image-to-text models to extract infor-
mation, and then GPT-4 to obtain cluster names and
classify images into clusters. Thus, this approach
is expensive. In concurrent work, (Yao et al., 2024)
use GPT-4 to generate cluster name candidates and
contrastively fine-tune CLIP (Radford et al., 2021).

2.4 Image-To-Text Models
Recently, the development of multimodal models
has seen rapid advancement. Image-to-text models,
in particular, learn to associate visual content with
corresponding textual descriptions, which is useful
for, e.g., visual question-answering (VQA) (Yin
et al., 2023; Antol et al., 2015).

Flamingo (Alayrac et al., 2022) allows interleav-
ing images and text by using Perceiver Resamplers
on top of pre-trained models. BLIP and BLIP2 (Li
et al., 2022, 2023a) employ a frozen image encoder
along with a frozen LLM to generate text. LLaVA
and LLaVA-NeXT(Liu et al., 2023b,a) convert im-
age patches into token embeddings using a fixed

Vision Transformer encoder followed by a trained
MLP. These tokens then become the input for the
LLM, enhancing the descriptive results.

In this work, we use LLaVA to extract relevant
information from images. More specifically, we
frame the image-to-text generation as a VQA task:
we prompt LLaVA with an image and correspond-
ing questions about it to generate natural language
descriptions of the image.

3 TGAICC

We use image-to-text models, specifically models
that are able to describe specific aspects of infor-
mation from images in order to obtain different
clusterings. Thus, we design prompts to perform
VQA. It is well known (Bach et al., 2022; Sclar
et al., 2024) that responses to seemingly semanti-
cally equal prompts might vary heavily. Thus, we
use multiple formulations of each prompt and ag-
gregate their clusterings afterward. Figure 2 gives
an overview of the process.

Setup. The input to TGAICC is a dataset of
k datapoints, t initial prompts, and, as common
in the alternative-clustering literature, the num-
ber of clusters in the ground truth clusterings
{z1, . . . , zt}, zi ∈ N. E.g., {2, 4} means the al-
gorithm should return one clustering with 2 and
one clustering with 4 clusters. Note that the differ-
ence between the traditional alternative clustering
setup and ours is that we assume additional initial
prompts. The output is comprised of t clusterings
where the k data points are grouped into z1, . . . , zt
clusters.

3.1 Initialization

The initialization encompasses step 1 to step 4 in
Figure 2 and returns a set of clusterings.

Prompt Design In Step 1, we write a query and
ask GPT-4 (OpenAI et al., 2024) to automatically
generate additional questions. The specific prompt
is ’Generate three diverse paraphrases for the fol-
lowing question: {initial question}’. Further, we
generate a variation of each prompt by appending
the directive "Write concisely.", aiming to reduce
the verbosity of the responses. The output is de-
picted in Step 2. This is based on the observation
that image clusters are often described by succinct
short descriptors, e.g., the datasets in our experi-
ments or ImageNet-based (Deng et al., 2009) clus-
tering datasets. Thus, these prompts align with our
knowledge about the clustering tasks.
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Figure 2: An overview of our methodology. In 1) a user provides text, indicating his interest in the data. In 2) a
LLM generates a set of prompts tailored to extract specific information from images, and in 3) VQA is performed
for each prompt on each data sample. In 4) the texts generated per prompt are clustered (colors resemble ground
truth “rank” and “suit”). In 5) a hierarchy of similar clusterings is built. Based on a threshold (dotted line), multiple
groups of clusterings (green and orange) are identified and in 6) aggregated to obtain the final alternative clusterings.

Initial Clustering In Step 3, we perform VQA
for each pair of images and prompts, generating
responses relevant to the visual content. Next, in
Step 4, we create text representations using both
traditional TF-IDF (Sparck Jones, 1988) and an
advanced sentence embedding model, namely gte-
large (Li et al., 2023b). Finally, we apply k-means
to these text representations and obtain a clustering
for each prompt and each representation.

3.2 Grouping

The input to the grouping stage are n pairs of
prompt and corresponding clustering (pi, πi), i ∈
[n] and the number of ground truth clustering sizes
{z1, . . . , zt}, zi ∈ N, e.g. {2, 4}. The goal is to
obtain groups of clusterings to later find consen-
sus between the individual clusterings explaining
the data from a similar perspective. This is dis-
played in Step 5 of Figure 2. Specifically, we aim
to connect semantically similar clusterings and de-
tect potential outlier clusterings, which are caused
by prompts leading to unexpected or inconsistent
VQA outcomes and are not useful for our final clus-
tering. Find examples of generated text in Table
6.

Therefore, we compute the similarity of two clus-
terings using Adjusted Mutual Information (AMI)

(Vinh et al., 2010). We choose AMI as it is a stan-
dard clustering metric based on information theory.
Then, we use a spanning-tree-based hierarchical
clustering (Müllner, 2011) algorithm2 to system-
atically group similar prompts, facilitating a struc-
tured analysis of clustering behavior (see Step 5
of Figure 2). The basic idea is that for a threshold
τ ∈ (0, 1), two clusterings A,B are connected if
their distance is less than τ , i.e. AMI(A,B) < τ .
Here, we use two strategies, which we call “min”
and “max”. For “min”, we find a minimum thresh-
old such that the resulting number of groups is
equal to the number of expected groupings t. For
“max”, we find a maximum threshold such that this
constraint is fulfilled. We use the trivial solution to
iterate over all thresholds in τ ∈ (0, 1) in steps of
0.02 as the runtime is negligible.

3.3 Aggregation

In the end, we synthesize each group of cluster-
ings. Given that we aggregate potentially very dif-
ferent clusterings, it is beneficial to use different
aggregation schemes. Therefore, we apply multi-

2Algorithm is readily available in the Scipy library (Vir-
tanen et al., 2020): https://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.hierarchy.
fcluster.html
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ple consensus clustering algorithms for each group
and choose the instance with the lowest cluster-
ing loss. Specifically, we employ MCLA, HBGF,
CSPA, and NMF (Strehl and Ghosh, 2002; Li and
Ding, 2008) to aggregate the clusterings within the
groups3. Thereby, we aim to use consensus cluster-
ing to combine the strength of multiple clusterings.
In our ablation analysis we also test the simple so-
lution where we concatenate the generated text of
the prompts in each clustering group and perform
k-means on the concatenated string.

4 Experiments

In this section, we introduce the experimental setup.
Afterwards, we discuss the main results obtained,
highlighting the performance of TGAICC and text-
based methods. Additionally, we provide an ab-
lation study, systematically analyzing the impact
of various components and prompts on the overall
performance. Finally, we perform a simple cluster
explainability method to get a textual overview of
the data.

Dataset #samples #clusters Size
Fruits-360 4856 4; 4 100x100
Cards 8029 3; 4 224x224
GTSRB 6720 4; 2 15x15 to 250x250
NR-Objects 10000 6; 2; 3 100x100

Table 1: Overview of statistics of the dataset. The third
column contains the number of clusters in the ground
truth clusterings.

4.1 Experimental Setup

In this section, we outline the key components of
our experimental setup, including the evaluation
metrics, data representations, and models used. All
experiments were run on a single A100 GPU. VQA
took approximately 24 hours, and TGAICC experi-
ments took about the same amount of time. Embed-
ding text and running consensus clustering are the
most time-consuming elements. Each algorithm
is executed 10 times with different random states,
and we report the average performance across these
runs.

4.1.1 Metrics
We employ two widely used metrics to assess the
performance of our clustering models. The Ad-
justed Rand Index (ARI) (Rand, 1971) measures

3We used the library Cluster Ensembles: https://
github.com/GGiecold-zz/Cluster_Ensembles

the similarity between the predicted cluster assign-
ments and the ground truth labels, adjusting for
chance agreement. The Adjusted Mutual Informa-
tion (AMI) (Vinh et al., 2010) quantifies the shared
information between the predicted clusters and the
true labels. We multiply by 100 to increase read-
ability.

4.1.2 Representations

We utilize image- and text-based representations to
capture different aspects of the data.

Image Embeddings: We utilize the LLaVA-
NeXT model (Liu et al., 2023a), which incorpo-
rates the image encoder of a frozen CLIP model.
This allows us to directly use the image embed-
dings learned during the contrastive pre-training
of CLIP (Radford et al., 2021) for our clustering
tasks.

Statistical text embeddings: We employ Term
Frequency-Inverse Document Frequency (TF-IDF)
embeddings, a standard word frequency-based tech-
nique for representing documents.

Neural text embeddings: To better capture se-
mantic relationships, we employ the “gte-large”4

model (Li et al., 2023b), a state-of-the-art sentence
encoder.

4.1.3 Datasets

In the following, we briefly describe the used
datasets. Table 1 summarizes the relevant statistics
for all datasets. More details about datasets and
corresponding prompts are given in Appendix A.
Cards5 This dataset is primarily used for classi-
fication tasks but contains attributes suitable for
clustering based on the suit and rank of the cards.
Fruits-360 (Mures, an and Oltean, 2018) The
dataset is composed of images that can be clus-
tered by fruit type (citrus, berries, etc.) and color.
NR-Objects (Miklautz et al., 2020) The dataset
contains images of objects (e.g., cubes), which can
be clustered by shape, material, or color.
German Traffic Sign Recognition (GTSRB)
(Houben et al., 2013) This dataset contains traf-
fic signs and can be clustered by color and traffic
sign type.

4Model is available on Hugging Face (https://
huggingface.co/thenlper/gte-large, and is used via the
Sentence-BERT (SBERT) library (Reimers and Gurevych,
2019)

5https://www.kaggle.com/datasets/gpiosenka/
cards-imagedatasetclassification
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Image TF-IDF SBERT TGAICC
Dataset Type k-means orth-1 orth-2 Nr-Kmeans ENRC Avg. Prompt Concatenate Avg. Prompt Concatenate

Fruits-360
fruit

ARI 27.40 31.50 30.80 35.40 26.00 14.80 20.10 15.10 17.20 18.60
AMI 41.30 42.10 42.90 50.60 36.70 24.80 32.20 25.00 28.60 26.90

colour
ARI 33.20 35.40 33.50 40.90 39.70 40.00 54.60 47.40 51.60 54.70
AMI 47.30 53.30 51.70 55.50 54.90 50.70 65.50 56.90 60.80 64.80

GTSRB
type

ARI 41.70 46.80 46.80 22.70 38.20 45.10 61.00 49.70 57.50 58.00
AMI 51.50 55.50 55.50 38.60 72.50 52.40 67.90 55.50 63.20 64.60

colour
ARI 23.00 0.10 0.10 49.00 55.90 79.20 87.40 88.50 90.00 88.00
AMI 33.40 0.10 0.10 43.30 28.30 73.70 82.30 82.70 84.50 83.00

Cards
rank

ARI 30.10 29.70 26.70 35.70 33.10 24.30 24.70 33.00 50.70 34.70
AMI 47.80 47.60 41.70 55.20 52.40 41.30 41.60 50.00 68.40 50.20

suit
ARI 25.90 1.10 3.80 10.60 14.30 19.70 29.60 25.90 28.30 29.70
AMI 34.40 1.20 8.20 16.60 19.80 27.40 37.10 33.60 35.40 38.30

NR-Objects

shape
ARI 95.30 94.40 94.40 76.00 72.70 65.70 94.50 75.90 95.00 100.00
AMI 96.20 95.10 95.10 82.20 82.70 71.30 96.50 79.40 95.80 100.00

material
ARI 0.00 26.70 30.60 30.70 31.60 9.20 1.60 14.80 0.00 9.00
AMI 0.00 25.90 38.80 32.70 39.40 10.10 1.80 15.00 0.00 17.10

colour
ARI 9.70 87.00 75.10 50.40 45.70 66.80 91.10 81.20 83.70 97.80
AMI 21.70 93.00 79.00 65.70 66.00 81.20 95.30 88.30 91.40 97.90

Avg.
ARI 31.81 39.19 37.98 39.04 39.69 40.53 51.62 47.94 52.67 54.50
AMI 41.51 45.98 45.89 48.93 50.30 48.10 57.80 54.04 58.68 60.31

Table 2: Main results table. Best results are in bold, second best results are underlinded.

4.1.4 Baselines
We use multiple image-based alternative cluster-
ing baselines and baselines using the generated
text. It is important to note that the generated text
uses additional information in the form of prompts
provided by a user. While this implies that there
is no exact comparison between image- and text-
based methods, it is also worth noting that it is
not possible to incorporate such information into
image-based methods trivially. The code is imple-
mented using the ClustPy6 library (Leiber et al.,
2023). Additional details are given in Appendix B.

Orth (Cui et al., 2007) iteratively identifies sev-
eral clusterings by first clustering using PCA (keep-
ing 90% of the variance) in combination with k-
means and then creating a new orthogonal feature
space. There are two strategies for orthogonaliza-
tion: orthogonal clustering (orth-1) and clustering
in orthogonal subspaces (orth-2).

Nr-Kmeans (Mautz et al., 2018) simultaneously
optimizes several clusterings by assigning each
clustering result a separate subspace in which k-
means is executed.

ENRC (Miklautz et al., 2020) is a deep cluster-
ing method that assigns multiple clusterings to a
dataset by (soft-)assigning each dimension of the
embeddings space to a clustering.

Avg. Prompt. We measure the performance
of clustering each text generated per prompt and
subsequentially report the average performance.

Concat. by Category. We manually group all

6https://github.com/collinleiber/ClustPy

TF-IDF SBERT
concatenation consensus concatenation consensus
min max min max min max min max

Fruits-360
fruit

ARI 20.80 24.60 17.40 19.50 19.60 17.20 15.80 18.60
AMI 36.60 39.10 29.00 32.90 33.00 30.90 23.20 26.90

colour
ARI 51.80 52.20 51.10 51.90 58.60 57.20 54.30 54.70
AMI 61.70 62.20 60.70 61.40 71.50 66.40 64.90 64.80

GTSRB
type

ARI 52.70 73.20 49.70 54.10 50.80 58.00 51.60 58.00
AMI 60.80 75.40 56.60 60.40 57.80 64.10 60.00 64.60

colour
ARI 74.70 74.00 87.10 87.30 73.10 70.20 88.90 88.00
AMI 70.70 70.10 81.60 81.80 70.20 68.60 83.20 83.00

Cards
rank

ARI 28.60 28.00 27.00 26.90 40.30 56.00 36.30 34.70
AMI 48.30 47.00 47.60 46.20 58.50 72.20 51.30 50.20

suit
ARI 19.40 20.10 21.60 21.10 19.60 19.90 22.40 29.70
AMI 29.30 28.90 23.60 23.70 30.50 27.30 27.40 38.30

NR-Objects

shape
ARI 98.70 98.90 99.30 99.30 100.00 100.00 100.00 100.00
AMI 97.60 97.90 98.90 98.70 100.00 100.00 100.00 100.00

material
ARI 23.10 22.40 0.10 1.00 0.00 0.00 9.00 9.00
AMI 22.70 22.20 0.10 1.80 0.00 0.00 17.10 17.10

colour
ARI 33.30 33.30 80.00 84.10 43.60 43.60 97.80 97.80
AMI 65.20 65.20 87.50 90.10 66.60 66.60 97.90 97.90

Avg.
ARI 44.79 47.41 48.14 49.47 45.07 46.90 52.90 54.50
AMI 54.77 56.44 53.96 55.22 54.23 55.12 58.33 60.31

Table 3: An ablation analysis of TGAICC, where “min”
and “max” refer to the thresholding strategy, and con-
catenation and consensus to the aggregation scheme.
Consensus-max resembles TGAICC. The best results
are in bold, and the second best results are underlined.

prompts together that belong to the same cluster-
ing type (e.g., “rank” or “suit”), concatenate all
generated text, and cluster it using k-means.

4.2 Main Experiments

The results of our main experiments are shown in
Table 2. They reveal that, on average, text-based
methods, including TGAICC, outperform image-
based methods. Further, we observe that TGAICC,
on average, demonstrates superiority over average
prompting and concatenation baselines. In addition,
we can see that clustering by material in the NR-
Objects dataset does not work in the text domain.
See Table 6 for VQA examples. The main take-
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TF-IDF SBERT
Prompt ARI AMI ARI AMI

suit

Can you tell me the suit of the playing card shown in the picture? 25.42 31.25 25.42 31.25
What suit does the playing card in the image belong to? 25.59 33.53 25.59 33.53
Could you identify the suit of the playing card depicted in the photo? 29.29 33.64 29.29 33.64
Can you tell me the suit of the playing card shown in the picture? Answer concisely. 24.25 37.32 24.25 37.32
What suit does the playing card in the image belong to? Answer concisely. 28.97 36.35 28.97 36.35
Could you identify the suit of the playing card depicted in the photo? Answer concisely. 21.85 29.71 21.85 29.71

rank

Can you tell me the rank of the card shown in the picture? 26.76 43.33 26.76 43.33
What is the numerical or face value of the card displayed in the image? 32.06 47.36 32.06 47.36
What level or position does the card in the photo hold? 31.52 47.28 31.52 47.28
Can you tell me the rank of the card shown in the picture? Answer concisely. 37.48 55.42 37.48 55.42
What is the numerical or face value of the card displayed in the image? Answer concisely. 38.79 56.09 38.79 56.09
What level or position does the card in the photo hold? Answer concisely. 31.15 50.44 31.15 50.44

Table 4: Ablation study comparing the clustering performance of individual prompts. Here we show a case study
based on the Cards dataset. The best results are in bold, and the second-best results are underlined.

away is that, in many cases, the VQA model pro-
vides too much information, even information that
should be used for a different clustering, e.g., color
or shape. This highlights a core limitation of our
methodology. If the text generation does not work
sufficiently well, the subsequent clustering can not
work. Nevertheless, TGAICC is model-agnostic
and can be used with any VQA image-to-text sys-
tem. In this way, it can use future advancements in
VQA models.

4.3 Aggregation ablation

In this ablation study, we investigate the aggrega-
tion components of TGAICC. More specifically,
we investigate the impact of the thresholding and
aggregation strategies on clustering performance.

Setup. We ablate the “min” and “max” thresh-
olding strategies, which find the minimum and
maximum threshold such that the number of clus-
tering groups corresponds to the expected num-
ber of alternative clusterings. We experiment
with the consensus-clustering-based aggregation
scheme used in TGAICC and compare it to the sim-
ple “concatenation” baseline, which concatenates
the text of the corresponding clustering groups. Re-
sults are shown in Table 3. Note that TGAICC is
consensus-max.

Results. Our analysis reveals that consensus
clustering outperforms concatenation-based selec-
tion. Furthermore, SBERT-based clustering outper-
forms TF-IDF-based clustering. We observe that
the performance of the ’min’ and the ’max’ strate-
gies are very similar, indicating the stability of the
method w.r.t. the thresholding strategy.

Suit Rank
Truth Top Words Truth Top Words

heart heart ace ace
diamond diamond king king

club club queen queen
spade spade jack jack

5 heart
9 spade
3 rank
4 club
6 diamond
10 10
2 twos
8 8
7 7

Table 5: This table shows how we are able to explain
the datasets by listing the top most used words of the
two final clusterings. For each top word, we show the
ideal ground truth cluster name assignment.

4.4 Individual prompt analysis

TGAICC is based on the aggregation of multiple
clusterings, which in turn are based on generated
texts using different VQA prompts. As known from
other tasks (Sclar et al., 2024), different prompts
potentially result in high-performance variance.

Setup. In Table 4 we analyze the clustering
performance per prompt on the case study of the
Cards dataset. Note that again, we execute k-means
10 times and present the average results.

Results. In the case study, the addition of the
prompt “Answer concisely” mostly yields similar
clustering results to the original version, with a
slight performance advantage when the “Answer
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Material Image Question Generated Text

Rubber What substance is the item in the picture made
of? Answer concisely.

Plastic

What substance is the item in the picture made
of?

The item in the picture appears to be a sphere made of
a smooth, shiny material that could be plastic, metal, or
a similar synthetic material. It’s difficult to determine
the exact material without more information or a closer
inspection.

Metal What substance is the item in the picture made
of? Answer concisely.

The item in the picture is made of metal.

Can you identify the material used in the ob-
ject shown in the image? Answer concisely.

The object in the image appears to be made of a shiny,
reflective material, possibly metal or a metal-like mate-
rial.

What is the composition of the object depicted
in the photo? Answer concisely.

The object in the photo is a 3D rendering of a red cube.

Table 6: Some VQA examples on the NR-Objects dataset. While all answers are reasonable, they often provide too
much information, such as information about the shape, or make statements about the ambiguity of the underlying
material.

concisely” prompt is included. Furthermore, we
note a significant variation in clustering perfor-
mance across different prompts.

4.5 Explainability

Our cluster explainability aims to provide insights
into the different clustering possibilities. This un-
derstanding is essential for interpreting and vali-
dating clustering outcomes. We use a simple word
frequency-based algorithm to explain the data.

Setup. For a specific final clustering of
TGAICC, we concatenate all generated texts be-
longing to the prompts used to obtain this cluster-
ing. The resulting text is changed to lowercase and
made singular. Finally, to explain a final cluster-
ing, we determine the z most frequently occurring
words, where z is the number of clusters of the
respective clustering. For instance, for the suit clus-
tering z = 4. Table 5 shows the resulting words
for the Cards dataset. We reorder the ground truth
cluster names suitably.

Analysis. Notably, the explainability method
effectively identifies the “suits” cluster names, pro-
viding a comprehensive description of this cluster-
ing type, even though clustering performance has
an AMI of less than 40%. Additionally, the fre-
quency analysis exposed many of the card types in
the dataset. However, suit names are also assigned
as cluster names for the expected card ranking clus-
ters (e.g., “heart” as the top word of the “5” cluster).
Figure 6 presents concrete examples demonstrating
that VQA models often provide additional informa-
tion, such as suit, thereby explaining the inclusion
of suits as rank names.

5 Discussion

5.1 Text-driven data interaction
Textual data, as a fundamental form of human com-
munication, offers a natural and intuitive interface
for interacting with complex datasets. Our method
capitalizes on this inherent connection by utilizing
textual prompts for VQA models to guide alter-
native clusterings. This approach aligns with real-
world scenarios where users possess domain knowl-
edge and seek answers to specific questions. We
envision a future where users can explore datasets
from diverse perspectives and test emerging hy-
potheses interactively using text. This research
contributes towards this vision.

5.2 Domain Expertise
Our approach incorporates domain expertise, rec-
ognizing that users often either have specific ques-
tions or some knowledge about their data. This
stands in contrast to the traditional clustering setup,
which typically operates without user input. By
leveraging domain knowledge, our approach aligns
with real-world scenarios and allows for more tar-
geted and insightful data exploration.

6 Conclusion

In conclusion, this research introduces TGAICC
(Text-Guided Alternative Image Consensus Cluster-
ing), a novel approach that leverages prompting to
inject domain knowledge and human intuition into
the clustering process. The experiments on four
common alternative image clustering benchmarks
demonstrate that TGAICC outperforms competi-
tive image- and text-based baselines. Furthermore,
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the inherent explainability of text enables a deeper
understanding of the underlying data cluster forma-
tions.

By utilizing textual prompts, we can explicitly
guide the clustering process from various angles si-
multaneously, aligning with human intuition. This
approach offers a more comprehensive and flexible
way to analyze visual data, revealing insights that
might be missed by traditional clustering methods.
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tary materials to enhance the reader’s understand-
ing. Table 7 shows examples of images from each
dataset. Furthermore, Table 7 provides all prompts
generated by GPT-4, paired with their correspond-
ing ground truth cluster names for each clustering
type. Together, they give a good insight into the
datasets and a textual interaction with them.

B Baselines

In the following, additional details for the baselines
are given. We employ all of the following ones
on the image embedding of the CLIP encoder of
LLaVA-NeXT:

K-means. For all k-means runs, we utilize the k-
means++ initialization strategy and set the number
of initializations to 1. The code was implemented
using scikit-learn (Pedregosa et al., 2011).

Nr-Kmeans. We set a limit of 300 maximum
iterations.

Orth 1/2. We set the explained variance param-
eter to 90%.

ENRC. We try the learning rates lr =
0.001, 0.0001, use NR-Kmeans as initialization, a
batch size of 128, and optimize for 200 epochs.
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Dataset Type Cluster Names Prompts

Fruits-360 fruit apple, banana, cherry, grape What kind of produce is shown in the picture?
Can you identify the type of produce depicted in the image?
What category of produce does the image represent?
What kind of produce is shown in the picture? Answer concisely.
Can you identify the type of produce depicted in the image? Answer concisely.
What category of produce does the image represent? Answer concisely.

colour burgundy, green, red, yellow Can you tell me the color of the fruits and vegetables shown in the picture?
What color is the produce displayed in the photo?
What hue are the items in the picture?
Can you tell me the color of the fruits and vegetables shown in the picture? Answer concisely.
What color is the produce displayed in the photo? Answer concisely.
What hue are the items in the picture? Answer concisely.

GTSRB type 70_limit, dont_overtake, go_right, go_straight What kind of traffic sign is shown in the picture?
Can you identify the category of the traffic sign displayed in the image?
What class of traffic sign is depicted in the photo?
What kind of traffic sign is shown in the picture? Answer concisely.
Can you identify the category of the traffic sign displayed in the image? Answer concisely.
What class of traffic sign is depicted in the photo? Answer concisely.

colour blue, red What color is the traffic sign shown in the picture?
Can you tell me the color of the traffic sign depicted in the image?
What hue is the traffic sign in the photograph?
What color is the traffic sign shown in the picture? Answer concisely.
Can you tell me the color of the traffic sign depicted in the image? Answer concisely.
What hue is the traffic sign in the photograph? Answer concisely.

NR-Objects shape cube, cylinder, sphere Can you identify the form of the object shown in the picture?
What form does the object in the picture take?
Could you tell me the configuration of the object depicted in the image?
Can you identify the form of the object shown in the picture? Answer concisely.
What form does the object in the picture take? Answer concisely.
Could you tell me the configuration of the object depicted in the image? Answer concisely.

material metal, rubber What substance is the item in the picture made of?
Can you identify the material used in the object shown in the image?
What is the composition of the object depicted in the photo?
What substance is the item in the picture made of? Answer concisely.
Can you identify the material used in the object shown in the image? Answer concisely.
What is the composition of the object depicted in the photo? Answer concisely.

colour blue, gray, green, purple, red, yellow What color is the item shown in the picture?
Can you tell me the color of the object depicted in the image?
What hue does the object in the photo have?
What color is the item shown in the picture? Answer concisely.
Can you tell me the color of the object depicted in the image? Answer concisely.
What hue does the object in the photo have? Answer concisely.

Cards rank ace, eight, five, four, jack, king, nine, queen, seven, six, ten, three, two Can you tell me the rank of the card shown in the picture?
What is the numerical or face value of the card displayed in the image?
What level or position does the card in the photo hold?
Can you tell me the rank of the card shown in the picture? Answer concisely.
What is the numerical or face value of the card displayed in the image? Answer concisely.
What level or position does the card in the photo hold? Answer concisely.

suit clubs, diamonds, hearts, spades Can you tell me the suit of the playing card shown in the picture?
What suit does the playing card in the image belong to?
Could you identify the suit of the playing card depicted in the photo?
Can you tell me the suit of the playing card shown in the picture? Answer concisely.
What suit does the playing card in the image belong to? Answer concisely.
Could you identify the suit of the playing card depicted in the photo? Answer concisely.

Table 7: Overview of the datasets, the names of their ground truth clusterings, and all generated prompts.
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dataset Image 1 Image 2 Image 3

Fruits-360

GTSRB

NR-Objects

Cards

Table 8: A few example images for each dataset.
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Abstract

With the advancement of large pretrained lan-
guage models (PLMs), many question answer-
ing (QA) benchmarks have been developed
in order to evaluate the reasoning capabilities
of these models. Augmenting PLMs with ex-
ternal knowledge in the form of Knowledge
Graphs (KGs) has been a popular method to
improve their reasoning capabilities, and a com-
mon method to reason over KGs is to use
Graph Neural Networks (GNNs). As an al-
ternative to GNNs to augment PLMs, we pro-
pose a novel graph reasoning module using
Vector Symbolic Algebra (VSA) graph repre-
sentations and a k-layer MLP. We demonstrate
that our VSA-based model performs as well as
QA-GNN, a model combining a PLM and a
GNN-module, on 3 multiple-choice question
answering (MCQA) datasets. Our model has
a simpler architecture than QA-GNN and also
converges 39% faster during training.

1 Introduction

Models that perform question answering tasks re-
quire some amount of knowledge, whether it is
structured or implicit, about the concepts to be
reasoned over. Modern large pretrained language
models (PLMs), linguistic knowledge is implicit
in the token embeddings that have been learned
using a self-attention mechanism on large text cor-
puses to perform next-token prediction (Vaswani
et al., 2017). With enough model parameters and
training data, these PLMs have been successful in
a wide range of question-answering and reasoning
benchmarks. However, when analyzing deductive
reasoning performance, i.e. the ability to learn
and generalize from logic rules, smaller PLMs like
BERT and RoBERTa demonstrate inconsistent per-
formance (Yuan et al., 2023).

As a result, there have been many studies that
work to integrate external, structured knowledge
and reasoning modules with PLMs to perform more

reliable logical reasoning. One type of knowledge
structure that is commonly used are knowledge
graphs (KG), due to their suitability for symbolic
reasoning (Lan et al., 2021). Graph Neural Net-
works (GNNs) are deep learning networks that
have gained popularity for reasoning over graph-
structured data. Consequently, methods that inte-
grate KGs with PLMs often also use GNNs (Ye
et al., 2022). One recent approach to combin-
ing these techniques is captured by the QA-GNN
(Yasunaga et al., 2021), which is able to answer
multiple-choice questions by scoring the plausibil-
ity of each question answer.

Rather than using GNNs to model structured
data, our model, QAVSA, uses a lesser known
method, Vector Symoblic Algebras (VSAs; also
known as Vector Symbolic Architectures), to rep-
resent and combine high-dimensional concept vec-
tors in a structured way. The integration of PLMs
and VSAs has not been previously proposed, to our
knowledge. As a result, the focus of this paper is
to perform a comparison between our VSA-based
method and the GNN-based method of QA-GNN
for improving reasoning capabilities of PLMs in
the context of multiple-choice question answering.

Specifcally, we compare the performance of
QAVSA and QA-GNN on CommonsenseQA (Tal-
mor et al., 2019), OpenbookQA (Mihaylov et al.,
2018), and MedQA-USMLE (Jin et al., 2021), with
the first two datasets being focused on common-
sense reasoning, and the latter focusing on domain-
specific medical questions.

The main contributions of this paper are: 1) a
novel combination of PLM text encoders and VSAs
that performs as well as an analgous GNN-based
method on three MCQA datasets while training
faster; 2) a comparative evaluation of different
VSAs and PLMs used in the model; 3) a study
on ablation and variations of the model architec-
ture and graph embedding representations; and 4)
a new VSA-specific method of analyzing model
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explainability.

2 Related Work

Many of the top performing models on MCQA
benchmarks involving reasoning are larger 10B or
100B+ parameter PLMs. High performance can
come from fine-tuning on MCQA datasets as has
been shown with UnifiedQA (Khashabi et al., 2020)
and UNICORN Lourie et al. (2021). High perfor-
mance with these models has also been shown to
be achievable with prompting techniques including
few-shot prompting (Anil et al., 2023), Chain-of-
Thought prompting with self-consistency (Huang
et al., 2023a), and ensemble refinement (Singhal
et al., 2023).

More relevant to our research, several ap-
proaches have been proposed to integrate external
knowledge graphs with PLMs in order to make
use of more domain-specific structured knowledge.
These include KEAR (Xu et al., 2022) and DEK-
COR (Xu et al., 2021), which use a PLM and
knowledge retrieved from an external KG and Wik-
tionary to train an attention mechanism on these
external knowledge bases and PLM representations
to improve commonsense reasoning.

Similarly, KagNet (Lin et al., 2019) performs
commonsense reasoning by grounding the con-
cepts within each question-answer (QA) pair of
multiple-choice datasets to extract subgraphs from
an external knowledge graph. KagNet then uses
a combination of Graph Convolutional Networks,
LSTM-based relational path encodings, and a path-
based attention mechanism to identify important
reasoning paths to generate graph vector encod-
ings for each QA pair to subsequently score them.
Adopting similar graph preprocessing to KagNet,
MHGRN (Feng et al., 2020) performs multi-hop,
multi-relation reasoning by using multi-hop mes-
sage passing from Relational Graph Convolutional
Networks, structured relational attention, and node
attention pooling to generate its graph representa-
tions and score QA pairs.

Another family of models that also use the same
graph processing above stem from the QA-GNN
(Yasunaga et al., 2021) model. QA-GNN fuses a
PLM representation of the QA context as a node
into the QA subgraphs. Using a Graph Attention
Network (GAT), QA-GNN updates the subgraph
concept embeddings, including the QA context
node and edge weights. The initial PLM QA con-
text representation, along with the final graph rep-

resentation of the QA context and graph concept
attention pooling is used to score the QA pairs.
This method is refined in GreaseLM (Zhang et al.,
2021) in which the PLM token and graph node
modalities of the QA context are mixed over sev-
eral layers to simultaneously update the PLM and
GNN concept embeddings. Further refinements are
made in DRAGON (Yasunaga et al., 2022a), where
the cross-modal encoder from GreaseLM is pre-
trained in a self-supervised fashion to perform both
masked language modeling and KG link prediction.
Our QAVSA model uses similar pre-processing to
QA-GNN but with a different representation of the
graph. Consequently, most of our direct compar-
isons are to QA-GNN.

There exist other models that use external KGs
but are not GNN-based, such as GSC (Wang et al.,
2022) and MVP-Tuning (Huang et al., 2023b).
GSC uses a simple graph neural counter to reduce
the node and embeddings to one dimension and
performs GNN-like embedding updates on these
single values. MVP-Tuning makes use of semanti-
cally similar QA pairs in the training set to improve
knowledge retrieval and tunes prompt tokens of the
PLM by using the QA context and retrieved KG
triplets as input to the PLM.

3 Vector Symbolic Algebras

Vector Symbolic Algebras (VSAs) are defined by
a set of three vector operations that are useful
for building up structured vector representations.
These include the similarity, bundling (or collect-
ing), and binding operations. There are a wide
variety of possible choices for these operations,
but we consider only two sets of operators, those
for Holographic Reduced Representations (Plate,
1995) and for Vector-derived Transformation Bind-
ings (Gosmann and Eliasmith, 2019).

A similarity operation is necessary to compare
different vectors within the VSA space, and it is of-
ten computed with a normalized vector dot product,
i.e., cosine similarity. For two VSA-encoded vec-
tors x,y ∈ Rd, this is defined as s(x,y) = <x,y>

∥x∥·∥y∥ .
Both HRRs and VTBs use this similarity operator.

A bundling operation is used to represent a set
of objects and is usually defined by element-wise
addition. Thus, the bundling of x,y ∈ Rd can by
defined by S(x,y) = x+ y. In a VSA, this oper-
ation should result in a new vector that is similar
to both x and y, as is the case with element-wise
addition. Both HRRs and VTBs use this bundling
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operator.
A binding operation, is used to combine two

symbols together in a single representation, which
is often used to represent slot-filler pairs. In HRRs,
circular convolution is used as a binding operator,
defined by

(x⃝∗ y)i :=
d∑

j=1

xjy((i−j)modd)+1, i ∈ {1, 2, ..., d}.

A desired property of a binding operator is that the
resulting vector from x⃝∗ y should be dissimilar
to both x and y. Also, an unbinding operation,
or a pseudo-inverse to binding should exist. With
circular convolution, this is done by binding the
pseudo-inverse of the given operand: (x⃝∗ y)⃝∗ −1

y ≈ x⃝∗ y⃝∗ y+ ≈ x. For HRRs the approximate
inverse to y is y+ := (y1, yd, yd−1, ..., y2)

⊤ (Plate,
1995).

Since circular convolution is commutative, there
is no directional relation to two bound vectors in the
HRR VSA. In contrast, VTB has a non-associative
and non-commutative binding operation defined on
vectors x,y ∈ Rd. Specifically, given d

1
2 = d′ ∈

N>0, we have

x⃝∗ y := Vyx =




V
′
y 0 0

0 V
′
y 0

0 0
. . .


x

, where

V
′
y = d

1
4




y1 y2 · · · yd′

yd′+1 yd′+2 · · · y2d′
...

...
. . .

...
yd−d′+1 yd−d′+2 · · · yd


 .

The approximate inverse to y is y+, where the
elements of y are permuted such that Vy+ = V⊤

y .
The VTB binding operation has only right in-

verses and identities, so there exists an alternative
Transposed VTB (TVTB) algebra, with two-sided
inverses and identities with the following binding
operation:

x⃝∗ y := V⊤
y x =




V
′⊤
y 0 0

0 V
′⊤
y 0

0 0
. . .


x

where V
′
y is the same as in VTB.

Plate (1995) initially proposed the HRR VSA
in order to represent complex compositional struc-
tures, specifically ones used for language process-
ing and reasoning, with distributed representations

like neural networks. Jackendoff proposed four
linguistic challenges involving how to neurally rep-
resent the compositional structure and rules of lan-
guage that previously divided linguistic theory and
connectionist cognitive neuroscience. VSAs solve
these four problems (Gayler, 2004), which supports
the idea that VSAs are useful in studying linguis-
tics and reasoning within the context of neural net-
works. For example, VSAs have been used in neu-
ral models to represent lexical relations and recur-
sively structured sentences successfully (Crawford
et al., 2016). The quality of structural representa-
tion and mathematical ability to query information
from these VSA representations naturally lends
this method to QA tasks where representing and
extracting relational information pertaining to a set
of concepts is necessary.

As a simple example, a scene of a dog holding
a stick could be represented with VSAs in a slot-
filler fashion as: scene = subject ⃝∗ dog +
verb ⃝∗ holds + object ⃝∗ stick , given the
slot vectors subject,verb,object ∈ Rd and
filler vectors dog,holds, stick ∈ Rd. One could
then query the subject of the scene with unbinding:
scene⃝∗ subject+ ≈ dog + noise, which can
be cleaned up to the exact dog vector by finding
the VSA vector in the vocabulary with the highest
similarity to the result. We use these techniques for
representing structure to capture concept relations
in a knowledge graph to propose a novel question
answering neural network model.

4 Methods

Given a multiple-choice question q and an answer
option a, as in QA-GNN (Yasunaga et al., 2021),
the purpose of the model is to score the plausibility
of each (q, a) pair from the set of all answer op-
tions by performing joint reasoning using a (q, a)
context, z, generated from a PLM text encoder, and
a working graph Gw that contains relations and
concepts pertaining to each specific (q, a) pair. In
QA-GNN, the graph reasoning portion of the model
consists of a specific type of GNN called a Graph
Attention Network (GAT; Velickovic et al. (2018)).
As a replacement for the GAT in QAVSA, a single
VSA vector representation of the (q, a) graph is
generated. This representation is used as input to a
simple k-layer MLP to realize the graph reasoning
portion of QAVSA. Using this learned MLP along
with the PLM (q, a) context embeddings, the (q, a)
pair is scored, as shown in Figure 1.
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Figure 1: QAVSA model outline. The QA context, [q|a], is inputted to a PLM to generate an LM Encoding for
the context and is also used to generate a KG subgraph. The LM encoded QA context is added to the graph,
and the graph is converted to a single vector using VSA. The VSA representation is feed through a k-layer MLP,
concatenated with the original QA context encoding, and passed through a single FF layer to score the QA pair.

4.1 Graph Data Pre-processing

To generate the working graph Gw, we follow the
exact pre-processing technique described in Lin
et al. (2019). The external domain-specific or world
knowledge relevant to the answer question task is
defined by a knowledge graph G = (V,E) made
up of a set of nodes, V , and a set of directed edges
to capture relations, E ⊆ V ×R× V , connecting
the nodes with relation types from the set R.

The nodes of the working subgraph Gw are se-
lected by first linking the concepts from the ques-
tion, Vq, and from the answer, Va, to nodes in G,
where Vq ∪ Va = Vq,a ⊂ V . All of the nodes on
a 2-hop path between the nodes in Vq,a, i.e., all
nodes in V related to two of the nodes in Vq,a are
also included in the working graph, producing Vw.
Finally, Vw is pruned down to 200 nodes by scoring
the relevance of each node to the (q, a) pair using a
PLM as described in Yasunaga et al. (2021). All of
the edges connecting each pair of nodes in Vw, de-
fined as Ew ⊂ E, are included in the final working
graph, Gw = (Vw, Ew).

Following Yasunaga et al. (2021), the initial
1024-dimensional embeddings of these nodes are
defined by feeding each triple composed of a head,
relation and tail entity, (h, r, t) ∈ Vw × R × Vw,
as a sentence into a PLM text encoder. The repre-
sentations for each concept are pooled using the
corresponding portion of each triple that they ap-
pear in. Computing relation embeddings r in Ya-
sunaga et al. (2021) in this way was unnecessary, as
they represent the relation type as a one-hot vector
for their GNN module. However, in our approach,
each relation is a distributed representation, r, so
we use an initial vector embedding computed in
the same way as each graph concept embedding is

computed.
Feng et al. (2020) provide embeddings computed

for each concept in the graphs used. However, these
embeddings do not include relations. As a result,
we computed all embeddings following the process
defined in Lin et al. (2019).

4.2 Model
Given the working graph for a (q, a) pair,
Gw = (Vw, Ew), and initial concept and rela-
tion embeddings vi, i ∈ [0, 1, . . . , |Vw|], rj, j ∈
[0, 1, . . . , |R|], the VSA representation of a given
triple can be computed as follows. For triple
triplek = (hk, ek, tk), k ∈ [0, 1, . . . , |Ew|], where
hk, ek, tk specifies the type of entity for the head,
relation, and tail of the triple, respectively, we
bind each of the elements together using the bind-
ing operation of the given VSA: triplekvsa =
vhk
⃝∗ rek ⃝∗ vtk . The working graph VSA rep-

resentation can be calculated by adding up all the
triple VSA representations in the graph:

gvsa =

|Ew|∑

k=1

triplekvsa =

|Ew|∑

k=1

vhk
⃝∗ rek ⃝∗ vtk .

Since circular convolution is commutative,
triplekvsa does not contain information on the
direction of the relation, so a specific permutation
σ can be applied to either the head or tail element
of each triple to specify the directionality of the re-
lation. To query this triple for a permuted concept,
σ−1 is applied after unbinding.

Given a QA input for question q and answer
option a, an LM representation of the context
is generated with a pretrained encoder to gen-
erate LM(q|a) = z. We can also integrate z
into gvsa, analogous to Yasunaga et al. (2021),
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by forming new triples that bind z with two
new defined relation SPs, IsAnswerConcept and
IsQuestionConcept, along with the correspond-
ing answer and question concepts in gvsa. These
triples are then added to gvsa like usual.

For example, the question in the CSQA dataset
"What is the primary purpose of cars?" has the
answer options {cost money, slow down, move
people, turn right}, with the correct answer being
"move people". The subgraph for the QA con-
text [What is the primary purpose of cars? move
people] has question concepts Vq = {PURPOSE,
CAR, PRIMARY, CARS}, answer concepts Va =
{PEOPLE, MOVE, MOVE_PEOPLE}, and many
intermediate concepts, along with a set of triples,
E = {(MOVE, ANTONYM, STOP), (CAR, CA-
PABLEOF, GO_FAST), . . . }. The graph VSA vec-
tor is computed as

gvsa =

(MOVE⃝∗ ANTONYM⃝∗ STOP)vsa
+

(CAR⃝∗ CAPABLEOF⃝∗ GO_FAST)vsa
+ . . .

gvsa is then used as the input to a k-layer
MLP with dropout and layer normalization,
MLP (gvsa) = g∗

vsa, and is responsible for learn-
ing to update the VSA representations within the
graph vectors to solve the task (see Figure 1).

A plausibility score, i.e. the probability of an-
swer a being correct, is computed with p(a|q) ∝
exp(FF (z

⊕
g∗
vsa)), where the initial QA context

z is concatenated with the final graph VSA rep-
resentation, g∗

vsa, and is passed through a final
feedforward layer.

During training, the cross entropy between the
plausibility scores of all answer options are com-
puted, and are backpropagated through both the
LM and VSA MLP components of the model.

5 Experiments

In order to perform a comparison to QA-GNN,
we evaluate QAVSA on the same three datasets
that were used to evaluate QA-GNN in Yasunaga
et al. (2021). However, we hyperparameter tune
our model rather than keeping parameters the same
as those used in QA-GNN to maximize accuracy
on the benchmark development splits.

5.1 Datasets

CommonsenseQA (CSQA) (Talmor et al., 2019)
is a 5-way multiple choice commonsense reasoning
task that requires different types of commonsense
knowledge. The dataset has 12,102 questions, and
the inhouse train/dev/test split is adapted from Lin
et al. (2019) as 8500/1221/1241.

OpenbookQA (OBQA) (Mihaylov et al., 2018)
is a 4-way multiple choice dataset aiming to as-
sess human understanding of a subject in an open-
book setting. The dataset consists of a list of
1326 science facts along with 5957 elementary
school science questions with a train/dev/test split
of 4957/500/500.

MedQA-USMLE (MedQA) (Jin et al., 2021)
is a 4-way multiple choice dataset based on ques-
tions from the United States Medical License Ex-
ams (USMLE). The english version of the dataset
has 12,723 questions, with a train/dev/test split of
10178/1272/1273.

For CSQA and OBQA, the external KG used
is ConceptNet (Speer et al., 2017). ConceptNet
consists of 799,273 common words or phrases con-
nected by edges of 17 different merged relation
types, after preprocessing. The method to initialize
the concept and relation embeddings for Concept-
Net are also described in Section 4.1, and uses
PLMs BERT-large or RoBERTa-Large. Following
Yasunaga et al. (2021), RoBERTa-Large is he PLM
used to encode the QA contexts in QAVSA for
CSQA, and AristoRoBERTa (Clark et al., 2020) is
used for the QA contexts for OBQA.

The external KG used for MedQA is the Unified
Medical Language System (UMLS; Bodenreider
(2004)), a popular biomedical knowledge base with
300K nodes, 1M edges, and 98 relation types. The
PLM encoder used to generate concept and relation
vector embeddings is BioLinkBERT, following Ya-
sunaga et al. (2022a), which is a specific version
of LinkBERT that utilizes medical document hy-
perlinks. BioLinkBERT is pretrained on PubMed
with citation links to perform both masked lan-
guage modeling and document relation prediction
(Yasunaga et al., 2022b).

5.2 Implementation and Training Details

Because we had to recompute concept embeddings
for ConceptNet and UMLS, we reproduced results
from QA-GNN with these new embeddings as a
baseline. The LM and MLP learning rates and
learning schedule for QA-GNN are kept to their
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Model IH Dev. Acc. IH Test Acc. (%)
RoBERTa-Large* (w/o KG) 76.27 (±0.45) 70.23 (±0.80)

+QA-GNN* 75.97 (±0.64) 71.88 (±1.11)
+QAVSA 76.61 (±0.54) 70.56 (±0.72)

Table 1: Accuracy and standard deviation on CSQA inhouse dev. and test splits. Reproduced results (*) use
reproduced node embeddings and all results are averaged over 5 different seeds.

Model Dev. Acc. (%) Test Acc. (%)
AristoRoBERTa* (w/o KG) 81.32 (±0.61) 81.00 (±0.65)

+QA-GNN* 81.92 (±0.78) 80.36 (±1.63)
+QAVSA 81.76 (±1.41) 81.92 (±0.88)

Table 2: Test accuracy on OBQA. Reproduced results (*) use reproduced node embeddings and all results are
averaged over 5 different seeds.

original values for all three datasets since their
model training proved to be unstable with the pa-
rameters that were optimized for QAVSA. The
number of training epochs for QA-GNN are 15,
40, and 30 for CSQA, OBQA, and MedQA, re-
spectively, to match the original amount epochs,
whereas QAVSA is trained for 15 epochs on each
dataset. As a baseline to both QA-GNN and
QAVSA model results, we reran our model con-
sisting of only the PLM encoder and final layer
scoring components, with all other parameters re-
maining unchanged.

Hyperparameter tuning was done using a Tree-
structured Parzen Estimater as a sampler for both
OBQA and CSQA. The variables optimized during
tuning and final model parameter values are shown
in Appendix A.1 in Tables 7 and 6, respectively.

Although the QA-context embedding, z, is
added to the graph in Figure 1, the QAVSA re-
sults in Section 6.1 are produced from a version of
QAVSA that uses working graphs without adding
z to them.

6 Results

6.1 Main Results

As shown in Table 1, QAVSA has an improvement
in mean accuracy of 0.34% and 0.61% compared
to QA-GNN and RoBERTa-Large, respectively, on
the CSQA inhouse dev. split. On the inhouse test
split however, QA-GNN outperforms QAVSA by a
difference of 1.32% and improves upon the base-
line by 1.65%.

On the OBQA dataset, QA-GNN has the best
performance on the dev. split with a mean accuracy
of 81.92%, as seen in Table 2. QAVSA is close

Figure 2: Mean accuracy of QA-GNN, QAVSA using
our tuned LR schedule, and QAVSA using the LR sched-
ule of QA-GNN on the CSQA dev. split for each epoch,
averaged over 5 seed runs.

behind with a mean accuracy of 81.76%, which is
a 0.44% increase compared to the AristoRoBERTa
baseline. However, on the test split QAVSA out-
performs QA-GNN by a larger margin with a mean
accuracy of 81.92%, which is a 0.92% improve-
ment on the AristoRoBERTa baseline and a 1.56%
improvement over QA-GNN.

As shown in Table 3, QAVSA outperforms QA-
GNN and the BioLinkBERT baseline on MedQA
by a mean accuracy of 0.37% and 0.61%, respec-
tively, on the dev. split and by 0.42% and 1.16%,
respectively, on the test split.

Also, as shown in Figure 2, QAVSA converges
faster during training. On average, it takes 11.2, 8.8,
and 6.8 epochs to reach within 5% of each run’s
maximum accuracy for QA-GNN, QAVSA (QA-
GNN LR schedule), and QAVSA (our LR sched-
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Model Dev. Acc. (%) Test Acc. (%)
BioLinkBERT* (w/o KG) 43.55 (±0.08) 43.96 (±0.12)

+QA-GNN* 43.79 (±0.31) 44.7 (±0.47)
+QAVSA 44.16 (±0.57) 45.12 (±0.70)

Table 3: Test accuracy and standard deviation on MedQA. Reproduced results are denoted with * and all results are
averaged over 3 runs.

ule), respectively. Demonstrating that QAVSA can
be trained 39% faster than QA-GNN.

Overall, these results suggest that QAVSA per-
forms similarly to QA-GNN, but has a significantly
faster convergence time during training.

6.2 Model Variations and Ablation
Results of several QAVSA model variations on the
OBQA benchmark are shown in Table 4, with all
other architecture parameters in Table 6 kept con-
stant. The QAVSA result in Table 4 corresponds
to the results of one of the five seeds from Table 2.
Including the QA context into the working graph
drops the dev. and test accuracy by ∼ 3%, suggest-
ing that for this parameter configuration, dynami-
cally updating the graph representation in this way
either muddles the original graph representation, or
creates a VSA representation that is more difficult
to learn by the neural network.

Introducing directionality in the VSA triples by
means of permutation on the head or tail entities
in the triple does not improve accuracy, which in-
dicates that binding through circular convolution
stores enough semantic information from the graph
for the task. Furthermore, the HRR VSA is supe-
rior to other non-commutative algebras like VTB
and TVTB with this architecture, with improve-
ments of 1.6% and 2.2% in dev. accuracy and 3.2%
and 1.4% in test accuracy, compared to VTB and
TVTB, respectively.

Applying normalization to the graph VSA vec-
tors only drops performance when the concept vec-
tors are also normalized. This indicates that includ-
ing some type of information of the magnitude of
either the graphs or concepts in the VSA vectors
is useful for question answering. Not normalizing
both graphs and concepts resulted in graph VSA
vectors with too wide of a magnitude range for
stable training.

Also, BERT performs fairly similarly to
RoBERTa in initializing concept and relation em-
beddings (Section 4.1), with a drop in accuracy
only on the dev. split.

Results for an ablation study on the OBQA

benchmark are shown in Table 5. Replacing BERT-
encoded relation embeddings with random unit-
length 1024-D vectors, with a maximum similar-
ity to the concept vocabulary of 0.3, dropped the
test accuracy by 2%. However, the dev. accuracy
remained fairly consistent, suggesting that the dis-
similarity of the relation vectors may be enough to
properly represent the semantics of the graph.

Removing node pruning, so that all the nodes
and respective edges are included subgraph rather
than just the top 200 nodes, dropped test accuracy
the most significantly, which may suggest that the
extra nodes included in the graph vectors did not
add triples useful to reasoning over the question
and answer concepts.

Layer normalization between the VSA MLP lay-
ers also seems to be important for learning over
these graph representations, as seen in the 1.8%
drop in dev. and test accuracy when it is removed.

6.3 Explainable Graph VSA Representations
We can analyze the effectiveness of the MLP por-
tion of QAVSA by computing the similarities of
each triple VSA vector in a graph to the initial
graph vector, gvsa, and the final graph vector,
g∗
vsa = MLP (gvsa) using the similarity opera-

tor defined in Section 3. Such similarities can
be used to determine which triples become the
most prominent in the graph vector through the
MLP transformation. In the top 20 most sim-
ilar triples from the initial graph representation
in Section 4.2, we find triples relating to the con-
cept CAR, such as (CAR, RELATEDTO, DRIVE),
(MOTOR, RELATEDTO, CAR), and (STOP, RE-
LATEDTO, CAR), but it does not contain any
triple relating the answer "move people". After
the MLP, however, in the top 20 most similar
triples to g∗

vsa, the triples (STREET, USEDFOR,
TRANSPORTATION), (TRANSPORTATION, RE-
LATEDTO, CAR), and (STREET, RELATEDTO,
CARS) appear. Given that the concept TRANS-
PORTATION is closely related to the answer "move
people" and does not appear in the most similar ini-
tial triples, we can see that the g∗

vsa attends more to
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Model Version Dev. Acc. (%) Test Acc. (%)
QAVSA 82.6 83.4

+ QA-context 79.8 80.2
+ Permutation (head) 81.8 82.6
+ Permutation (tail) 81.6 83.2

+ Graph norm 81.6 82.4
+ Graph norm - Concept not norm 83.0 82.8

RoBERTa Embeddings 81.0 83.4
VTB 81 80.2

TVTB 80.4 82.0

Table 4: Accuracy of different model variations on dev. and test splits of OBQA.

Model Version Dev. Acc. (%) Test Acc. (%)
QAVSA 82.6 83.4
− BERT rels 82.4 81.4
− Node Pruning 82 80.4
− Layer Norm 80.8 81.6

Table 5: Accuracy on OBQA of ablation study. The
minus sign (−) indicates what was removed.

concepts and reasoning paths necessary for answer-
ing the question. Since the learned graph transfor-
mations are not perfect, some unrelated triples do
appear in g∗

vsa, such as (CHROME, RELATEDTO,
METAL) and (FERRY, RELATEDTO, MOVE).

This method of analysis can also explain in-
correct answers produced by the model. For the
question from the CSQA dev. split, "What do
audiences clap for?", QAVSA predicted the an-
swer to be "hockey game" rather than the cor-
rect label "show". Looking at the 20 most sim-
ilar triples in g∗

vsa for the answer option "show",
there are triples relating to AUDIENCE and SHOW,
like (AUDIENCE, RELATEDTO, THEATRE) and
(PROGRAM, RELATEDTO, SHOW), but there
are no triples related to CLAP. Looking at the 20
most similar triples to g∗

vsa for the answer option
"hockey game", a reasoning path can be drawn with
(SPORT, RELATEDTO, PLAY), (PLAY, RELAT-
EDTO, EVENT), (BEAT, RELATEDTO, EVENT),
and (CLAP, HAS_SUB_EVENT, BEAT). Two dif-
ferent definitions of BEAT are used in the prior
triples, making the reasoning path illogical. The
concept "CLAP" appears in 3 out of the top 20
triples for answer option, thus potentially leading
QAVSA to choose this option as the most correct
answer. With this particular example, this VSA-
style analysis suggests that QAVSA may attend to
multiple meanings of the same concept incorrectly,

which could be useful information for finetuning
the method further or applying it to other tasks.

7 Discussion

On the CSQA and OBQA datasets, there is no
definitive top performer between QA-GNN and
QAVSA due to the fact that both models have the
best performance on one of the dataset splits. The
accuracy of QA-GNN is slightly lower than PLM
baseline for the CSQA inhouse dev. split and the
OBQA test split, and this is most likely due to a
combination of larger variance of model accuracy
between seeds along with the fact that the model
learning rate was not tuned for our recomputed
concept embeddings.

For MedQA however, QAVSA slightly outper-
forms QA-GNN on both the dev. and test splits.
MedQA is a significantly harder than CSQA and
OBQA due to the nature of the in-depth medical
questions asked. This is evidenced by the differ-
ence in accuracy of more than 30% compared to
CSQA and OBQA. This more consistent perfor-
mance increase may suggest that the increased se-
mantic complexity of the concepts and relations in
UMLS benefit more from the structured VSA repre-
sentations generated and reasoned over in QAVSA
rather than using multi-relational GNNs to update
concept embeddings.

Although QAVSA does not consistently outper-
form QA-GNN, the architecture is much simpler
than the Graph Attention Network in QA-GNN as it
feeds VSA vectors into standard MLP layers. There
is no requirement to use node embeddings matri-
ces during computation along with linear and non-
linear transformations on node and relation type
embeddings to perform message passing between
concepts. Also, there is no requirement to use
graph attention layers to create attention weights
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on the relations between concepts. In QAVSA, the
attention on the relational edges within the graph
arises naturally and can be analyzed as shown in
Section 6.3.

Additionally, the QAVSA memory requirements
for its graph representation is constant at the di-
mensionality of the VSA vector, d. This compares
favorable to GNNs that require an N × d node em-
bedding matrix and an N × N adjacency matrix.
For these benchmarks, QA-GNN requires graphs
with exactly 200 nodes for each QA pair. If one
wanted to scale up the number of nodes in the graph
significantly, the memory resources required would
grow quadratically. In contrast, with an increase in
the number of graph nodes and edges, the memory
requirements for QAVSA are constant.

8 Conclusion

We presented QAVSA, a new type of model
that leverages VSA-represented knowledge graphs
along with general linguistic knowledge from
PLMs to perform reasoning on MCQA benchmarks.
Through a direct comparison to the GNN-based
model QA-GNN, we exhibit the ability of QAVSA
to perform similarly to QA-GNN on three datasets,
while using a simpler k-layer MLP reasoning mod-
ule. We also demonstrate faster convergence dur-
ing training than QA-GNN and highlight the ex-
plainability of our model outputs through our VSA
graph representations.

For future study, our method of representing
knowledge graphs with VSAs could be useful in
a wide variety of knowledge graph QA tasks in-
volving information retrieval, like multi-hop rea-
soning (Lan et al., 2021). There are many other
ways that KGs are integrated into LLMs, such as
using them to augment LLM input or using them
as training objectives during LLM pretraining, so
having an efficient VSA representation of these
KGs may be beneficial to these methods (Pan et al.,
2024). GNNs are also widespread for tasks out-
side of natural language processing, such object de-
tection, chemical reaction prediction, and disease
classification, and it is worthwhile to determine if
our VSA-based approach is useful for representing
structures that are not linguistic (Zhou et al., 2020).

Limitations

Our method depends on already constructed knowl-
edge graphs (i.e., ConceptNet, UMLS), and specifi-
cally with these benchmarks, a predefined subgraph

generation process. Thus, the quality of our graph
VSA representations for question answering tasks
is dependent on the quality of the initial graph con-
struction.

Similarly, the quality of the intitial concept
and relation embeddings is of great importance.
If the concept vector embeddings are too low-
dimensional, have large variance in their magni-
tude, or are too similar to each other, the individual
triple or graph VSA representations may not be
able to contain many graph triples.

Ethical Concerns

Our proposed model uses pretrained language mod-
els, and because of this, any biases or stereotypes
in their training data may be reflected in model
outputs.

Broader Impact

The augmentation of PLMs with GNNs is
widespread, so many further studies could be con-
ducted to compare this VSA-based method to any
of these models. Also, this paper encourages the
exploration of augmenting large language models
using VSAs outside the context of KGs and GNNs.
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A Appendix

A.1 Model Parameters
Final model and training parameters are shown in
Table 6. The parameters optimized for OBQA are
also used for MedQA. k specifies how many layers
the MLP will have. LR schedule cycles defines
how many cosine periods are in the LR schedule.
The encoder learning rate (LR) specifies the LR for
whatever PLM is in use to encode the QA context,
and the decoder LR applies to all other components
of the model. The unfreeze epoch defines after how
many epochs do the PLM weights unfreeze. The
ranges for these variables during hyperparameter
tuning are shown in Table 7.

201

https://doi.org/10.1109/72.377968
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.1609/aaai.v31i1.11164
https://doi.org/10.1609/aaai.v31i1.11164
https://doi.org/10.48550/arXiv.1811.00937
https://doi.org/10.48550/arXiv.1811.00937
https://doi.org/10.48550/arXiv.1811.00937
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=hzmQ4wOnSb
https://openreview.net/forum?id=hzmQ4wOnSb
https://doi.org/10.24963/ijcai.2022/383
https://doi.org/10.24963/ijcai.2022/383
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.18653/v1/2023.eacl-main.106
https://doi.org/10.18653/v1/2023.eacl-main.106
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001


Variable CSQA Value OBQA Value MedQA Value
k 5 4 4

Epochs 15 15 15
LR Schedule cosine w/ restarts cosine w/ restarts cosine w/ restarts

LR Schedule Cycles 1 2 1
Warmup Steps 200 200 200

Batch Size 64 64 64
Mini Batch Size 8 8 2

Encoder LR 1.77e-5 4.17e-5 4.17e-5
Decoder LR 3.71e-2 3.41e-2 3.41e-2

Unfreeze epoch 3 3 3
Dropout (VSA MLP) 0.2 0.4 0.4
Dropout (final layer) 0.4 0.8 0.8

Table 6: Model parameter values on all experiment datasets.

Variable Range
k {3, 4, 5}

LR Schedule Cycles {1, 2, 3}
Encoder LR [1e-7, 5e-4]
Decoder LR [1e-5, 5e-2]

Unfreeze epoch {0, 3, 6}
Dropout (VSA MLP) {0.2, 0.4, 0.6, 0.8}
Dropout (final layer) {0.2, 0.4, 0.6, 0.8}

Table 7: Variable ranges for hyperparameter tuning for CSQA and OBQA.
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Abstract

Analyses of transformer-based models have
shown that they encode a variety of linguis-
tic information from their textual input. While
these analyses have shed a light on the rela-
tion between linguistic information on one side,
and internal architecture and parameters on the
other, a question remains unanswered: how is
this linguistic information reflected in sentence
embeddings? Using datasets consisting of sen-
tences with known structure, we test to what
degree information about chunks (in particular
noun, verb or prepositional phrases), such as
grammatical number, or semantic role, can be
localized in sentence embeddings. Our results
show that such information is not distributed
over the entire sentence embedding, but rather
it is encoded in specific regions. Understand-
ing how the information from an input text is
compressed into sentence embeddings helps un-
derstand current transformer models and help
build future explainable neural models.

1 Introduction

In the quest for understanding transformer-based
models, much work has been dedicated to uncover
what kind of information is encoded in the model’s
various layers and parameters. These analyses have
provided several enlightening insights: (i) differ-
ent types of linguistic information – e.g. parts of
speech, syntactic structure, named entities – are
selectively more evident at different layers of the
model (Tenney et al., 2019a; Rogers et al., 2020),
(ii) subnetworks can be identified that seem to en-
code particular linguistic functionalities (Csordás
et al., 2021), and (iii) fine-tuning for specific tasks
can be focused on very small subsets of parameters,
on different parts of a model’s layers (Panigrahi
et al., 2023). While these analyses and probes have
focused on the insides of the models, mostly their
parameters and layers, testing their impact is usu-
ally done by using the output of the model, namely

token or sentence embeddings, to solve specific
tasks. The link between the inside of the model and
its outputs is usually not explicitly investigated.

We ask several facets of this question here: how
are the internally-detected information types and
structures reflected in the model’s output? And how
are arbitrarily long and complex sentences encoded
systematically in a fixed-sized vector?

Understanding what kind of information the sen-
tence embeddings encode, and how, has multiple
benefits: (i) it connects internal changes in the
model parameters and structure with changes in
its outputs; (ii) it contributes to verifying the ro-
bustness of models and whether or not they rely on
shallow or accidental regularities in the data; (iii) it
narrows down the field of search when a language
model produces wrong outputs, and (iv) it helps
maximize the use of training data for developing
more robust models from smaller textual resources.

Transformer-based models usually use a token-
focused learning objective, and have a weaker su-
pervision signal at the sentence level – e.g. a next
sentence prediction (Devlin et al., 2018), or sen-
tence order information (Lan et al., 2019). Despite
this focus, high performance in a variety of tasks
(using raw or fine-tuned sentence embeddings) as
well as direct probing shows that sentence represen-
tations encode a variety of linguistic information
(Conneau et al., 2018). On the other hand, direct
exploration of BERT sentence embeddings has also
shown that they contain mostly shallow informa-
tion, related to sentence length and lexical variation,
and that many of their dimensions are correlated,
indicating that either information is redundantly
encoded, or that not all dimensions encode useful
information (Nikolaev and Padó, 2023). Some of
this preexisting work assumes that sentence embed-
dings encode information in an overt manner, for
example, each principal component dimension is
responsible for encoding some type of information.

We adopt the different view that information in
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sentence embeddings may be encoded in merged
layers, in a manner similar to audio signals being
composed of overlapping signals of different fre-
quencies. We hypothesize that each such layer may
encode different types of information. We aim to
test this hypothesis and check (i) whether we can
separate such layers, and (ii) investigate whether
information about specific chunks in a sentence
–noun,verb, or prepositional phrases– is encoded in
different layers and parts of a sentence embedding.

We perform our investigation in an environment
with data focused on specific grammatical phenom-
ena, while displaying lexical, structural and seman-
tic variation, and a previously developed system
that has been shown to detect the targeted phenom-
ena well (Nastase and Merlo, 2024). The system is
a variational encoder-decoder, with an encoder that
compresses the information in the input into a very
low-dimensional latent vector. Nastase and Merlo
(2024) have shown that the sentence embeddings,
and their compressed representations on the latent
layer, encode information about chunks – noun,
verb, prepositional phrases – and their linguistic
properties.

The current study investigates the general hy-
pothesis indicated above by specifically exploring
two new research questions in this setting:

1. Whether a targeted sparsification of the sys-
tem maintains a high performance on the task,
indicating that information about chunks in
the sentence is localizable.

2. Contingent on the answer to the first question,
we trace back the signal from the latent layer
to the input sentence embeddings, and analyze
how specific differences in chunk properties
– different number of chunks, or chunks that
differ from each other only on one property
(e.g. grammatical number) – are localized and
reflected in the sentence embeddings.

The code and data are available at
https://github.com/CLCL-Geneva/
BLM-SNFDisentangling.

2 Related work

Sentence embeddings Transformer models in-
duce contextual token embeddings by passing the
embedding vectors through successive layers us-
ing multi-head attention that allows for tokens to
influence each other’s representation at each suc-
cessive step (Vaswani et al., 2017). The model

focuses on the token embeddings, as the tokens
expected on the output layer provide the training
signal. There are numerous variations on the BERT
(Devlin et al., 2018) transformer model1, that vary
in the way the models are trained (Liu et al., 2019),
how they combine (or not) the positional and to-
ken embeddings (He et al., 2020), how the input
is presented to the model (Liu et al., 2019; Clark
et al., 2020). With regards to the sentence-level
supervision signal, BERT (Devlin et al., 2018) uses
the next sentence prediction objective, ALBERT
(Lan et al., 2019), aiming to improve coherence,
uses sentence order prediction. It is more common
to further train or fine-tune a pre-trained model to
produce sentence embeddings fitting specific tasks,
such as story continuation (Ippolito et al., 2020) or
sentence similarity (Reimers and Gurevych, 2019).

Electra (Clark et al., 2020) does not have a
sentence-level objective, but it relies on replaced
token detection, which relies on the sentence con-
text to determine whether a (number of) token(s)
in the given sentence were replaced by a generator
sample. This leads to sentence embeddings that
perform well on tasks such as Question Answering,
or detecting verb classes (Yi et al., 2022).

Probing embeddings and models for linguistic
information Most work investigating the kind of
knowledge captured by transformer-based models
have focused on analysing the architecture of the
model (Tenney et al., 2019b; Rogers et al., 2020) to
determine the localization and flow of information
through the model’s layers. There is also much
work on analyzing the induced token embeddings
to determine what kind of linguistic information
they encode, such as sentence structure (Hewitt
and Manning, 2019), predicate argument structure
(Conia et al., 2022), subjecthood and objecthood
(Papadimitriou et al., 2021), among others. Testing
whether sentence representation contain specific
types of linguistic information has been done using
task (or information)-specific classifiers (Adi et al.,
2017; Conneau et al., 2018; Goldberg, 2019; Wil-
son et al., 2023). Opitz and Frank (2022) aim to
map subsets of dimensions of fine-tuned sentence
embeddings to semantic features.

Sparsification Deep learning models have bil-
lions of parameters. This makes them not only
incomprehensible, but also expensive to train. The

1https://huggingface.co/docs/transformers/en/
model_summary
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lottery ticket hypothesis (Frankle and Carbin, 2018)
posits that large networks can be reduced to sub-
networks that encode efficiently the functionality
of the entire network. Detecting functional subnet-
works can be done a posteriori, over a pre-learned
network to investigate the functionality of detected
subnetworks (Csordás et al., 2021), the potential
compositionality of the learned model (Lepori et al.,
2023), or where task-specific skills are encoded in
a fine-tuned model (Panigrahi et al., 2023).

Instead of learning a sparse network over a pre-
learned model, Cao et al. (2021) use a pruning-
based approach to finding subnetworks in a pre-
trained model that performs some linguistic task.
Pruning can be done at several levels of granularity:
weights, neurons, layers. Their analyses confirm
previous investigations of the types of information
encoded in different layers of a transformer (Con-
neau et al., 2018). Conmy et al. (2023) introduce
the Automatic Circuit DisCovery (ACDC) algo-
rithm, which adapts subnetwork probing and head
importance score for pruning to discover circuits
that implement specific linguistic functions.

Sparsification can also be achieved using L0 reg-
ularization, as the pruning would be done directly
during training by encouraging weights to become
exactly zero. Louizos et al. (2018); Savarese et al.
(2020), among others, implement solutions to the
issue that L0 regularization is non-differentiable,
and test it on image classification.

The cited work focuses on the parameters of the
model, and sparsification approaches aiming to de-
tect the subnetworks to which specific skills or
linguistic information can be ascribed. Our focus,
instead, is the output of transformer-based mod-
els, in particular sentence embeddings, which we
investigate using targeted sparsification.

3 Approach overview

We investigate whether we can identify specific
sentence properties in sentence embeddings. Nas-
tase and Merlo (2024) have shown that using
an encoder-decoder architecture, sentence embed-
dings can be compressed into a latent representa-
tion that preserves information about chunks in a
sentence, and their properties necessary to solve a
specific linguistic task.

We first test whether we can sparsify this archi-
tecture in a targeted manner, such that each region
of the sentence embedding contributes a signal to
only one unit of the latent layer. This allows us to

isolate different parts of the sentence embedding.
After establishing that sparsification does not

lead to a dramatic drop in performance, we trace
back the signal from the latent layer to the sentence
embeddings, and test whether we can localize in-
formation about how different numbers of chunks,
or chunks with different properties, are encoded.

In the final step, we use the sparse encoder-
decoder sentence compression system as the first
in a two-layer system used to solve language tasks –
called Blackbird Language Matrices (Merlo, 2023)
– that require chunk and chunk properties informa-
tion. The first layer will compress each sentence
into a very small latent vector, and this represen-
tation is then used on the second layer to solve a
pattern detection problem that relies on information
about chunks in a sentence and their pattern across
a sequence of sentences.

4 Data

We use two data types: (i) a dataset of sentences
with known chunk structure and chunk properties,
(ii) two datasets representing two multiple-choice
problems, whose solution requires understanding
the chunk structure and chunk properties of the
sentences in each instance.

4.1 A dataset of sentences
We start with an artificially-created set of sentences
built from noun, prepositional and verb phrases.
Each sentence has one of the following structures:
NP [PP1 [PP2]] VP , where the parentheses sur-
round optional structure. Each chunk can have
singular or plural form, with agreement between
the first NP (the subject) and the VP. This leads to
14’336 sentences with one of 14 patterns.

The dataset consists of ordered pairs of one input
sentence and N (=7) output sentences, extracted
from the set described above. Only one of the out-
put sentences has the same chunk pattern as the
input sentence, and is considered as the correct
output. We select 4004 instances uniformly dis-
tributed over the 14 patterns, which are split into
train:dev:test – 2576:630:798.

4.2 Multiple Choice Problems: Blackbird
Language Matrices

Blackbird Language Matrices (BLMs) (Merlo,
2023) are language versions of the visual Raven
Progressive Matrices (RPMs). Like the RPMs, they
are multiple-choice problems. The input is a se-
quence of 7 sentences built using specific rules, and
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BLM agreement problem
CONTEXT TEMPLATE

NP-sg PP1-sg VP-sg
NP-pl PP1-sg VP-pl
NP-sg PP1-pl VP-sg
NP-pl PP1-pl VP-pl
NP-sg PP1-sg PP2-sg VP-sg
NP-pl PP1-sg PP2-sg VP-pl
NP-sg PP1-pl PP2-sg VP-sg

ANSWER SET
NP-sg PP1-sg et NP2 VP-sg Coord
NP-pl PP1-pl NP2-sg VP-pl correct
NP-sg PP1-sg VP-sg WNA
NP-pl PP1-pl NP2-pl VP-sg AE_V
NP-pl PP1-sg NP2-pl VP-sg AE_N1
NP-pl PP1-pl NP2-sg VP-sg AE_N2
NP-pl PP1-sg PP1-sg VP-pl WN1
NP-pl PP1-pl PP2-pl VP-pl WN2

BLM verb alternation problem
CONTEXT TEMPLATE

NP-Agent Verb NP-Loc PP-Theme
NP-Theme VerbPass PP-Agent
NP-Theme VerbPass PP-Loc PP-Agent
NP-Theme VerbPass PP-Loc
NP-Loc VerbPass PP-Agent
NP-Loc VerbPass PP-Theme PP-Agent
NP-Loc VerbPass PP-Theme

ANSWER SET
NP-Agent Verb NP-Theme PP-Loc CORRECT
NP-Agent *VerbPass NP-Theme PP-Loc AGENTACT
NP-Agent Verb NP-Theme *NP-Loc ALT1
NP-Agent Verb *PP-Theme PP-Loc ALT2
NP-Agent Verb *[NP-Theme PP-Loc] NOEMB
NP-Agent Verb NP-Theme *PP-Loc LEXPREP
*NP-Theme Verb NP-Agent PP-Loc SSM1
*NP-Loc Verb NP-Agent PP-Theme SSM2
*NP-Theme Verb NP-Loc PP-Agent AASSM

Figure 1: Structure of two BLM problems, in terms of chunks in sentences and sequence structure.

the correct answer fits within the sequence defined
by these rules. The incorrect options are built by
corrupting some of the underlying generating rules
of the input sentence sequence. Solving the prob-
lem requires identifying the entities (the chunks),
their relevant attributes (their morphological or se-
mantic properties) and their connecting operators.

We use two BLM datasets: (i) BLM-AgrF – sub-
ject verb agreement in French (An et al., 2023),
and (ii) BLM-s/lE – the spray-load verb alterna-
tions in English2 (Samo et al., 2023). The structure
of these datasets – in terms of the sentence chunks
and sequence structure – is shown in Figure 1.

Datasets statistics Table 1 shows the datasets
statistics. Each set is split 90:10 into train:test sub-
sets, and then we randomly sample 2000 instances
as train data. 20% of the train data is used for de-
velopment. Types I, II, III correspond to different
amounts of lexical variation within an instance.

Subj.-verb agr. Verb alternations
ALT-ATL ATL-ALT

Type I 2000:252 2000:375 2000:375
Type II 2000:4866 2000:1500 2000:1500
Type III 2000:4869 2000:1500 2000:1500

Table 1: Train:Test statistics for the two BLM problems.

To solve a BLM instance, the system processes
the input sentence sequence and outputs a sentence
representation that will be compared to the repre-
sentation of the sentences in the answer set. The
candidate answer closest to the generated sentence
representation will be considered the correct one.

2Agent-Location-Theme (ALT) – Agent-Theme-Location
(ATL)

We run the experiments on the BLMs for agree-
ment and on the verb alternation BLMs. While the
information necessary to solve the agreement task
is more structural, solving the verb alternation task
requires not only structural information on chunks,
but also semantic information, as syntactically sim-
ilar chunks play different roles in a sentence.

5 Experiments

We present a progression of experiments.

1. Using the dataset of sentences with known
chunk structure, we test whether a sparse vari-
ational encoder-decoder system can distill in-
formation about the chunk structure of a sen-
tence from its embedding.

2. We analyze the sparse model, and trace the
information from the latent layer back to the
sentence embedding to understand where in
the sentence embeddings these differences are
encoded.

3. We combine the sparsified variational encoder-
decoder with another VAE-like layer to solve
the BLM tasks, and test whether the latent
layer sentence encodings maintain informa-
tion useful for the tasks.

All experiments use Electra (Clark et al., 2019)3.
We use as sentence representations the embedding
of the [CLS] token, reshaped as a two dimensional
array with shape 32x24.

3Electra pretrained model: google/electra-base-
discriminator
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The experiments are analyzed through the out-
put of the system, in terms of average F1 score
over three runs. For the investigations of the sen-
tence embeddings, we also analyze the compressed
vectors on the latent layer, to determine whether
chunk patterns are encoded in these vectors. If
these vectors cluster by the chunk pattern of the
corresponding sentences it will indicate that sen-
tence chunk patterns were indeed detected and are
encoded differently in the latent layer.

5.1 Sparsification

Nastase and Merlo (2024) have shown that sentence
embeddings contain information about the chunk
structure and their properties using an encoder-
decoder architecture that compresses the relevant
information into a small latent layer. They build
on Nastase and Merlo (2023) who show that re-
shaping a sentence embedding from the commonly
used one-dimensional array to a two-dimensional
representation allows grammatical information to
become more readily accessible.

We adopt the system of (Nastase and Merlo,
2024), with the same architecture (including num-
ber of CNN channels and kernel size), and sparsify
it, to determine whether specific information can
be localized in sentence embeddings. The encoder
of the system consists of a CNN layer followed by
a FFNN, that compresses the information into a
latent layer, as illustrated in Figure 2.

input convolution
(40 channels)

CNN FFNN

linearized 
output 
of CNN

latent

Encoder architecture

Figure 2: Details of the encoder architecture

The CNN layer in the encoder detects a different
pattern in the sentence representation on each of its
40 channels. The linear layer compresses the lin-
earized output of the CNN into a very small latent
layer (length 5). A vector is sampled from this, and
then decoded into a sentence representation using
a decoder which is a mirror of the encoder.

An instance consists of an input sentence s, and
7 output sentences, only one of which has the same

chunk structure as the input and is considered the
correct one (section 4.1). The aim is to guide
the system to capture information about the chunk
structure of the sentences in the latent layer, by
using a max-margin loss function that assigns a
higher score to the correct option relative to the
others. Formally, if es is the embedding of the in-
put sentence s, ês is the embedding output by the
decoder, ec is the embedding of the correct option
and ei, i = 1, 6 are the embeddings of the other
options, and mm is the maxmargin function, then:

loss(s) = mm(ês, ec, {ei|i = 1, 6}) +KL(zs||N (0, 1))

mm(ês, ec, ei) =

max(0, 1− score(ês, ec) +
∑6

i=1 score(ês, ei)/6)

We want to sparsify this network in a targeted
way: we enforce that each output unit from the
CNN layer will contribute to only one unit in the
latent layer. Figure 3 illustrates the process.

1

2

3

n

A

B

X

1

2

3

n

A

B

X

linearized  
output
of CNN

latent 
latent 

linearized  
output
of CNN

FFNN sparsification

Figure 3: Separating linguistic signals by masking the
one-layer FFNN

To enforce this behaviour, we use an approach
inspired from sparsification (Savarese et al., 2020)
and subnetworking (Lepori et al., 2023). Instead
of considering the output of the CNN as the input
layer of a linear network, we make each CNN out-
put unit the input of a separate linear network, con-
nected to the latent layer. We apply a mask m to the
weights W of this network, and compute a masked
weight matrix Wm = W × softmax(M/τ),
where τ is a temperature parameter used to push
the softmax function towards a one-hot vector.

We use a kernel 15x154 and equal stride (15x15)
to have a very clear separation of the information
flow from the sentence embedding to the latent

4We adopt the size of the kernel from previous work.
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layer. This will ensure our sparsification desidera-
tum, and the learned network will have a particular
configuration: if NCNN is the set of output nodes
from the CNN, and NL are the nodes on the latent
layer, then the sets of CNN output nodes connected
to each of the latent units are disjunct:

∀nl ∈ NL, S
l
CNN = {nc ∈ NCNN |Wm(nl, nc) > 0}

and if i ̸= j then Si
CNN ∩ Sj

CNN = ∅

Sparsification results Despite the fact that this
type of sparsification is very harsh, and channels
the information from the sentence embedding into
very few paths on the way to the latent layer, the
results in terms of average F1-score/standard devi-
ation over three runs without 0.997 (0.0035) and
with sparsification 0.977 (0.0095) are close. While
this difference is rather small, we notice a big-
ger difference in the latent layer. Figure 5 shows
the TSNE projections of the latent layers. As
can be seen, while the full network shows a very
clear and crisp separation of latents that encode
different chunk patterns – with a 0.9928/0.0101
F1 macro-average/standard deviation – when spar-
sifying the information is slightly less crisp in
the 2D TSNE projection, but still high F1 macro-
average/standard deviation (0.9886/0.0038)

5.2 Localizing linguistic information in
sentence embeddings

We approach the isolation of linguistic information
with the following intuition: on each channel, the
CNN discovers different patterns in various regions
of the sentences. Some combination of these pat-
terns – i.e. some combinations of signals from the
CNN output – encode specific properties of the
sentences. These signals eventually reach the la-
tent layer. Previous experiments have shown that
this latent layer contains information about chunks
and their properties. Working backwards from the
latent layer to the sentence embedding – through
the CNN output layer, the different channels and
sentence embedding regions – helps us trace back
where the biggest changes are when the input sen-
tences have different properties.

To verify whether specific linguistic informa-
tion, like different number of chunks, or different
chunk properties, is encoded in different regions of
the sentence embeddings, we analyse the distribu-
tion of values in each network node in the encoder,
namely the CNN output nodes NCNN and the la-
tent nodes NL.

Figure 4: TSNE projection of the latent layer for
encoder-decoder with full network connections.

Figure 5: TSNE projection of the latent layer for sparsi-
fied encoder-decoder.

We denote Sp the set of input sentences that
share the same chunk pattern p (for instance, p =
"NP-s VP-s"). We pass their sentence embeddings
through the learned encoder, and gather the values
in each CNN output node:
V p
CNN = {V p

CNN (nc)|nc ∈ NCNN}
V p
CNN (nc) = {valnc(s)|s ∈ Sp}

and valnc(s) is the value in the CNN output node
nc when the input is the embedding of sentence s.

To check for differences in how sentence with
different patterns are encoded, we will look at sets
of sentences Sp1 and Sp2 where p1 and p2 are pat-
terns that differ minimally. We consider three such
minimal differences:

length one pattern has an extra (or one less) chunk
than the other but are otherwise identical (np-s
vp-s vs. np-s pp1-s vp-s),

grammatical number the two patterns have the
same number of chunks, but one (and only
one) chunk has a different grammatical num-
ber than the other (np-s pp1-s vp-s vs. np-s
pp1-p vp-s),
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subject-verb number alternation the two pat-
terns are identical except in the grammatical
number of the subject and verb (np-s pp1-s
vp-s vs. np-p pp1-s vp-p).

To compare how chunk information is encoded
in sentences that have different patterns p1 and
p2, we compare the sets of values in each CNN
output node nc: V p1

CNN (nc) and V p2
CNN (nc) . If

these value distributions are very different, this is
an indication that the area of a sentence embedding
where the signal to nc is coming from is involved
in encoding the type of information that is different
between p1 and p2.

We perform this analysis in two steps: (i) a fil-
tering step that eliminates from the analysis the
CNN output nodes that do not encode differences
in behaviour between patterns, and (ii) a quantifi-
cation of the differences in the values in the node
for different patterns.

The filtering step is performed using a
two-sample Kolmogorov-Smirnov test (Hodges,
1958),5 which provides information whether two
samples come from the same distribution. As we
are interested in the CNN output nodes where the
value distributions are different when the inputs are
sentences with different patterns, we will filter out
from the analysis the nodes nc where the sets of
values V p

CNN (nc) come from the same distribution
for all patterns p represented in the data.

For the remaining CNN output nodes, we
project the value distributions onto the same set
of bins, and then quantify the difference using
cosine distance. Specifically, we determine the
range of values for V p

CNN for all patterns p –
minVCNN

,maxVCNN
, and split it into 100 bins.

For each CNN output node nc and pattern p we
make a value distribution vector vpnc from the
node’s set of values V p

CNN (nc), w.r.t. the 100 bins.
We then compute a score for every pair of mini-

mally different patterns p1, p2 for each node nc as
the cosine distance:
scorenc(p1, p2) = 1− cos(vp1nc , v

p2
nc)

This score quantifies how different a region of
the sentence embedding is when encoding sen-
tences with different chunk patterns.

Localization results A first clue that informa-
tion related to chunk patterns in a sentence is lo-
calized is the fact that the filtering step using the
two-sample Kolmogorov-Smirnov test leads to the

5We use the ks_2samp test in the scipy Python package

removal of 83 CNN output nodes out of the 240
(34%).

For the remaining nodes where differences in
value distributions between different sentence pat-
terns exist, we compute the cosine distance be-
tween pairs of minimally different patterns with
respect to grammatical number, length and subject-
verb number alternations. Figure 6 shows the
differences in value distributions in each CNN
output nodes from each channel – channels are
reprezented on the y-axis, and the 5 latent units on
the x-axis in different colours. A stronger colour
indicates a stronger effect. More detailed plots are
included in Figure 9 in the appendix.

These plots indicate that there
are few channel-sentence region
combinations that encode differ-
ences in chunk structure in the
input sentences. While in the
figure the sentence areas are il-
lustrated with equal sizes, the re-
gions are presented transposed
for space considerations, and
they have the shapes shown in the adjacent fig-
ure. The chunks and the chunk information seems
to be encoded in the bottom part of the sentence
embedding, and much of it in the bottom 2x24 area.

5.3 BLM tasks

To further test whether task specific information
is robust to sparsification, we use the two-level
variational encoder-decoder depicted in Figure 8.

An instance for a BLM task consists of a tuple,
comprising a sequence of sentences S = {si|i =
1, 7} as input, and an answer set with one correct
answer ac, and several incorrect answers aerr. The
sentence level of the 2-level encoder-decoder com-
presses the sentence embeddings of each of the
sentences in the input sequence into a small latent
vector. The sampled latent representations are then
used as the representations of the sentences in the
input sequence. This sequence representation is
passed as input to the BLM-level encoder-decoder,
it is compressed into a new latent layer, and the
sampled vector is then decoded into a sentence rep-
resentation that best matches the representation of
the correct answer.

BLM task results We evaluate the performance
of the sparsified 2-level VAE on the BLM tasks.
Only the first level of the VAE, the one process-
ing individual sentences, is sparsified as described
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Figure 6: Average cosine distance between value distributions in each CNN output node (i.e. each node correspond-
ing to the application of the kernel from each channel on the sentence embeddings, according to the kernel size and
stride) for sets of sentences with minimally different patters: (left) patterns differ in only one grammatical number
attribute for one chunk, (middle) patterns differ only in length, (right) patterns differ only in the number of the
subject and verb. Each panel corresponds to one region of the sentence embedding the size of the kernel. The y-axis
represents the channels of the CNN. The x-axis represents the latent units in different colours (the stronger the color,
the higher the value, max = 1), and the pairs of compared patterns represented as adjacent rectangles.

Figure 7: Results in term of average F1 scores over 3 runs, for the BLM agreement (1) and verb alternations
ALT-ATL (2) and ATL-ALT (3)

Figure 8: A two-level variational encoder-decoder: the
top level compresses the sentence embeddings into a
latent layer, and the bottom level uses the compressed
sentence representations to solve the BLM tasks.

in section 5.1. Figure 7 shows the performance
of three system variations: (i) a one-level VAE
that processes the input sequence of sentences and
produces a sentence representation, (ii) the two-
level VAE described in more detail in (Nastase and
Merlo, 2024), (iii) the sparsified version of the sen-
tence level VAE in the two-level VAE. As in the
previous experiments, sparsification does not cause
harsh drops in performance for either of the two
BLM tasks. The reason for this is the same rea-
son we chose this particular data for experiments:
solving the task relies on the system having infor-
mation about the chunks in the sentence, and their
properties. As long as that type of information is

preserved, the tasks can be solved successfully.
We note two main changes however. In the agree-

ment task, the sparsified system registers a drop
in performance when trained on maximally lexi-
cally different data (type III). The two-level system
without sparsification also registers such a drop
in comparison with the baseline one-level encoder
decoder. Both these effects may be due to the am-
biguous supervision signal at the sentence level of
the system: while using type I and type II data with
little lexical variation, it is easier for the system
to focus on structural differences between the cor-
rect and incorrect output options. When using type
III data with much lexical variation, it is not clear
for the system what is the relevant dimension of
difference between the output options.

In the verb alternation task, previous results on
predicting the Agent-Theme-Location or the Agent-
Location-Theme alternation produced very similar
results. This is not the case here, but understanding
why this happens requires additional analysis.

6 Conclusions

Our aim was to understand how information is en-
coded in sentence embedding, given that previous
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work has shown that various types of linguistic
information is encoded in a model’s layers and pa-
rameters. We investigated this question using a
dataset of sentences with specific chunk structure,
and two multiple-choice problems that require in-
formation about sentence chunks and their prop-
erties to be solved successfully. We have shown
that using a sparsified encoder-decoder system, the
sentence representations can be compressed into a
latent layer that encodes chunk structure properties.
We then traced back the signal from the latent layer
to the sentence embedding, to detect which areas
of the sentence embeddings change the most when
comparing sentences with different chunk patterns.
This analysis shows that such information is cap-
tured by a small number of channel-sentence area
combinations. Further experiments with the two
multiple-choice tasks have confirmed that chunk
information and their grammatical properties (for
the agreement BLM) and chunk information and
their semantic role properties (for the verb alterna-
tion BLM) are captured by the sparsified sentence
compression level. We envision further analyses to
see where the differences between chunk patterns
that have different semantic roles are encoded, and
get closer to decoding the sentence embeddings.

7 Limitations

We have explored sentence embeddings using an
artificially constructed dataset with simple chunk
structure. To check how this kind of information
is localized, we started from a previously devel-
oped system that showed high performance in dis-
tinguishing the patterns of interest. We have not
changed the system’s parameters (such as the ker-
nel size of the CNNs), and have not performed
additional parameter search to narrow down the
locations to smaller regions. We plan to address
sentence complexity issues and parameters for nar-
rower localization of information in future work.
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Figure 9: Differences between value distributions in each CNN output node (i.e. each node corresponding to
the application of the kernel from each channel on the sentence embeddings, according to the kernel size and
stride) for sets of sentences with minimally different patters: (top) patterns differ in only one grammatical number
attribute for one chunk, (bottom) patterns differ only in length. Each panel corresponds to one region of the sentence
embedding the size of the kernel. The y-axis represents the channels of the CNN. The x-axis represents the latent
units in different colours (the stronger the color, the higher the value, max = 1), and the pairs of compared patterns
represented as adjacent rectangles. The difference between the patterns is written below the x-axis.214
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Abstract

Existing approaches to few-shot learning in
NLP rely on large language models (LLMs)
and/or fine-tuning of these to generalise on out-
of-distribution data. In this work, we propose
a novel few-shot learning approach based on
soft-label prototypes (SLPs) designed to col-
lectively capture the distribution of different
classes across the input domain space. We fo-
cus on learning previously unseen NLP tasks
from very few examples (4, 8, 16) per class and
experimentally demonstrate that our approach
achieves superior performance on the majority
of tested tasks in this data-lean setting while
being highly parameter efficient. We also show
that our few-shot adaptation method can be in-
tegrated into more generalised learning settings,
primarily meta-learning, to yield superior per-
formance against strong baselines.

1 Introduction

Humans have a remarkable ability to adapt knowl-
edge gained in one domain and apply it in another
setting, and to identify or disambiguate objects af-
ter observing only a handful of examples (Lake
et al., 2015). This has inspired research in few-shot
learning that aims to build models that can learn a
new task using only a small number of examples
per class. Early few-shot learning in NLP relied on
interventions at the data level, such as dataset aug-
mentation (Clark et al., 2018) or generation of ad-
versarial examples from few-shot datasets (Miyato
et al., 2016), while more recent approaches (van der
Heijden et al., 2021; Langedijk et al., 2022) utilise
meta-learning (Finn et al., 2017; Snell et al., 2017)
to optimise model parameters such that models
adapt quickly to new tasks using past experience
(Dou et al., 2019; Holla et al., 2020; van der Heij-
den et al., 2021). The advent of large language mod-
els (LLMs) has led to a plethora of further meth-
ods, including fine-tuning on different target tasks
(Sun et al., 2020; Zhou and Srikumar, 2022), cre-

ating prompt-enhanced few-shot datasets for train-
ing (Gao et al., 2020; Schick and Schütze, 2020;
Lester et al., 2021) as well as parameter-efficient
fine-tuning methods for very large language mod-
els, with parameters running into billions (Hu et al.,
2022; Dettmers et al., 2023).

In this paper, we propose a simple and effective
approach to few-shot learning based on soft-label
prototypes (SLPs) that capture the distribution of
different classes across the input domain space, in-
spired by previous work on generating compact
representations of input training data (Sucholutsky
et al., 2021). Our contributions are summarised
as follows: 1) We develop a novel neural frame-
work for few-shot learning via soft-label prototypes
that has a very small computational and memory
footprint, and achieves state-of-the-art results in
limited-resource settings. Our approach (DeepSLP)
does not rely on (expensive) LLM parameter up-
dates or auxiliary training data. 2) We focus on
few-shot learning of new, unseen NLP tasks using
as little as 4 examples per class, and demonstrate
that we outperform strong baselines on the majority
of test tasks. 3) We demonstrate that our approach
can also be effectively adapted (MetaSLP) in high-
resource settings when auxiliary training data is
available for few-shot learning, and performs com-
petitively when compared against strong baselines.
4) We release our code and data to facilitate further
research in the field.1

2 Related work

Early few-shot learning approaches in NLP include
data augmentation and semi-supervised learning;
e.g., augmentation with adversarial examples (Miy-
ato et al., 2016), interpolation of training data into
a learnable higher dimensional embedding space
(Chen et al., 2020), and consistency training to

1https://github.com/avyavkumar/
meta-learned-lines
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make models more resistant to noise (Xie et al.,
2019). Recent research efforts on large-scale pre-
training of language models (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020; Touvron
et al., 2023; BigScience Workshop, 2023; OpenAI,
2024) reduce the amount of data required for their
subsequent fine-tuning or utilisation in a given task.
Instruction tuning and in-context learning (Brown
et al., 2020; Gao et al., 2020; Sanh et al., 2021; Liu
et al., 2021; Min et al., 2022; Sun et al., 2024; Zhou
et al., 2024) show that natural language instructions
or prompts can enhance a model’s few-shot learn-
ing abilities by leveraging the language (instruc-
tion) understanding abilities of the given pretrained
LLM (Zhao et al., 2021; Liu et al., 2022). To fine-
tune extremely large language models (with bil-
lions of parameters) efficiently, a host of parameter-
efficient fine-tuning techniques have also been de-
veloped (Hu et al., 2022; Dettmers et al., 2023),
which leverage pre-trained LLMs and produce su-
perior results on tasks such as question answering,
reasoning, text summarisation, coding, etc. (Kotit-
sas et al., 2024; Jiaramaneepinit et al., 2024; Yang
et al., 2024; Ding et al., 2023).

However, the search space over LLMs, prompt
templates and few-shot learning is so great that
there is yet to be an established standard. Differ-
ent models require different styles of (few-shot)
prompting, and certain prompt templates may work
better with specific LLMs and datasets rather than
universally across the board (e.g., Davis et al.
(2024)). Furthermore, evaluating robustness of
state-of-the-art / generative LLMs on new, unseen
tasks (OOD generalisation) presents a significant
challenge due to their vast and unknown training
data, resulting in artificially inflated performance
as a result of data leakage (Yang et al., 2023).

Previous work has also tackled few-shot learning
within the meta-learning paradigm of “learning to
learn” (Schmidhuber, 1987; Bengio et al., 1990;
Thrun and Pratt, 1998), utilising methods that are
trained to adapt quickly (in a few gradient steps) to
new tasks and from a small number of examples,
using past experience. Meta-learning has emerged
as a promising technique for a range of tasks (Finn
et al., 2017; Koch et al., 2015; Ravi and Larochelle,
2017), including NLP such as natural language
inference, text classification, etc. (Obamuyide and
Vlachos, 2019a,b; Holla et al., 2020; Bansal et al.,
2020b; Nooralahzadeh et al., 2020; Wang et al.,
2020; Langedijk et al., 2022; Mueller et al., 2023).

In a similar spirit to parameter-efficient fine-

tuning (Hu et al., 2022; Dettmers et al., 2023),
our work shifts away from the aforementioned
paradigms that suffer from lack of standardisation
(LLM few-shot prompting) and increased computa-
tional complexity for fine-tuning (e.g., fine-tuning
extremely large language models such as GPT
(OpenAI, 2024). We present a novel, parameter-
efficient few-shot learning framework (DeepSLP)
based on soft-label prototypes (SLPs), which we
show to be effective on a range of tasks in lim-
ited and high-resource settings, while having a
substantially smaller computational and memory
footprint. While DeepSLP does not rely on LLM
fine-tuning or auxiliary training data, we present
a variant (MetaSLP) that can be used for few-shot
learning via auxiliary data and fine-tuned encoders.

We target few-shot learning of new, unseen tasks
(i.e., tasks and classes not previously trained on)
(a) in limited-resource settings, without access to
auxiliary training data, and with frozen model pa-
rameters, and (b) in high-resource settings, with
access to auxiliary training data, which are used
to update model parameters. For the latter, our
work is similar to Bansal et al. (2020a). The au-
thors target few-shot learning of unseen tasks via
meta-learning, utilising auxiliary training data.

3 Approach: few-shot learning with
Soft-Label Prototypes (SLPs)

A soft label is defined as a vector Y representing
a data point’s simultaneous membership to several
classes (Sucholutsky and Schonlau, 2021), essen-
tially denoting a point’s partial association to dif-
ferent classes. Using this definition, a soft-label
prototype (SLP) is defined as (X⃗, Y ), where X⃗ is
a point in input space (e.g., an input feature vector)
and Y is its corresponding soft label. The under-
lying idea in Sucholutsky and Schonlau (2021)’s
work is that a small set of soft-label prototypes can
be used to accurately represent a training set. We
build on this idea and reframe SLPs for the task of
few-shot learning of new, unseen tasks where very
small amounts of data are available per class.

3.1 Generating soft-label prototypes

Soft-label prototypes assign soft labels to every
point in the input domain; therefore, a soft-label
prototype at point X⃗ represents the class distri-
bution (determined from the training data) at X⃗ .
The fundamental idea behind a “soft-label” is that,
unlike hard labels, which are one-hot encoded la-
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Figure 1: Learning soft-label prototypes using two train-
able linear layers (yellow): example for a 3-class proto-
type. Dotted lines indicate backpropagation.

bels, soft-labels contain a distribution of proba-
bilistic label values at a particular point in a high-
dimensional embedding space.

The process of generating soft-label prototypes
from training data can be split into a two step pro-
cess (Sucholutsky et al., 2021): (1) finding lines
that connect the class centroids in the training data,
where each line connects some of the centroids,
and every centroid belongs to one line; and (2) us-
ing linear constraints to derive soft-label prototypes
capturing the class distribution at the ends of each
line. The two steps are presented in detail below.

3.1.1 Finding lines connecting all centroids
Here we seek to find classes that lie on the same
manifold. First, we compute the centroid of each
class in the input training data. Then, we find and fit
class centroids on the minimum number of lines us-
ing recursive regression (Sucholutsky et al., 2021).
This method clusters centroids hierarchically to
group similar (interval) centroids together, and fits
a regression line on the centroids. The similarity of
centroids within a single cluster is judged by how
well all the centroids fit on a regression line. If
the Euclidean distance of a particular centroid is
beyond a pre-defined tolerance threshold ϵ from a
line, it is removed from that cluster and assigned
to another one. We use this method for all our ex-
periments, as we experimentally find (on our dev
data) that it performs well on high-dimensional data
spread across many classes such as the ones we test
here. In Appendix A.1, Figure 3a, we present an
example set of lines connecting all centroids.

3.1.2 Learning soft-label prototypes
Once we find the lines, we use the endpoints of
each line as the location of soft-label prototypes.
Therefore, for l lines fitted on n centroids we have
2l prototypes. Then, we need to find the class dis-
tribution at each end point / soft-label prototype.

We develop and experiment with two different ap-
proaches to finding the class distributions, one
based on constraint optimisation (constraintSLP),
and another based on gradient descent (DeepSLP).

Learning via linear constraints (constraintSLP)
One way in which we can approach this is via
constraint optimisation and, specifically, an opti-
misation problem that consists of two main sets
of constraints (Sucholutsky et al., 2021): (i) the
target class at each centroid has the maximum in-
fluence amongst all classes at certain points along
the line (endpoint of the line and midpoints be-
tween classes); and (ii) the difference between the
influence of the target class and the sum of the
influences of all other classes along the line is max-
imised. In order to make this approach powerful
enough for large, high-dimensional NLP data, we
require an optimiser that scales on such complex
data. To this end, we use the MOSEK solver for
linear programming (MOSEK ApS, 2019) in the
CVXPY library (Diamond and Boyd, 2016) to per-
form the required computations to generate the
soft-label prototype class distributions. The output
of this is then a set of soft-label prototypes which
“sit” at the ends of each line (i.e., X⃗) as shown in
Appendix A.1, Figure 3b.

Learning via gradient descent (DeepSLP)
Rather than use linear constraints to generate soft-
label prototypes, we develop a novel gradient-based
approach to generate soft labels as a function of an
input x by minimising training loss on a few-shot
dataset. After generating lines connecting all class
centroids (Section 3.1.1), we set two soft-label pro-
totypes at the ends of the lines. Each soft-label
prototype pi is denoted by gi(f(x)) where g is a
neural network parameterised by θi and f(x) is
a point in the input space. The neural network
consists of a fixed BERT (Devlin et al., 2019) en-
coder2 given by f(x), and a trainable linear layer
which returns the soft-label probability distribution
at any point x given by gi(x). Figure 1 presents a
visual representation of our model. Compared to
constraintSLP where we find soft-label probability
distributions via linear constraint optimisation, we
now parameterise our soft-label probability distri-
bution with a neural network.

2We use BERT as our encoder given its comparatively
higher computational efficiency, and do not include LLMs
such as Llama and the GPT family as they have already been
pre-trained on our test tasks (found here) and hence suffer
from data contamination.
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Algorithm 1: DeepSLP

1 λ← set of lines connecting all centroids
2 fθl is the network parameterised by θl for

the left-end prototype on a line
3 fθr is the network parameterised by θr for

the right-end prototype on a line
4 J ← loss function
5 D ← training data
6 Require λ ̸= ∅
7 for i ∈ λ do
8 for epoch 1.....N do
9 pil ← location of left prototype

10 pir ← location of right prototype
11 for x ∈ minibatch(D) do
12 d1 ← ||pil − x||
13 d2 ← ||pir − x||
14 pred.append

(
fθil (x)

d1
+

fθir (x)

d2

)

15 end
16 d_loss← J (pred,D)

17 loss1 ← d2
d1+d2

∗ d_loss
18 loss2 ← d1

d1+d2
∗ d_loss

19 θil ← θil − η∇θil loss1
20 θir ← θir − η∇θir loss2
21 end
22 end

Crucially, the encoder parameters are frozen as
we need our input data points to have an unchanged
location in the input space – changing their position
might result in class centroids that were previously
lying on a straight line to no longer lie on the line.
The model is optimised using both soft-label pro-
totypes along a line (see Algorithm 1 below and
Section 3.2, Equation 1). Specifically, a higher dis-
tance between a data point x and a prototype leads
to a correspondingly smaller effect of the prototype
on the final classification; therefore, we want to
penalise the prototype that is closer to x more if
there is an incorrect classification. Each prototype
is therefore assigned a fraction of the total loss that
is proportional to the other prototype’s Euclidean
distance from x. This way, the closer prototype’s
weights are corrected more in case of a misclas-
sification. The complete algorithm can be seen
in Algorithm 1, while an example optimisation is
presented in Figure 2.

We use cross entropy loss which gives a measure
of the difference between the true and predicted
labels. We initialise the weights of g1(x) and g2(x)

Figure 2: Training soft-label prototypes in DeepSLP.
Class centroids are represented with large circles that
lie on a line (Red, Green, Blue), while training set
examples are represented with smaller circles of the
same colour. Dotted lines represent the backpropagation
error, of which the bolded ones represent a larger error
per soft-label prototype. Predictions for x are based on
the prototypes at each end of the line.

using a uniform Xavier initialisation (Glorot and
Bengio, 2010) and use warmup steps to adjust the
learning rate. Epochs vary based on the number
of classes in the classifier head (between 15 and
25; see datasets used in Section 4): preliminary
experiments on the development data show that
more epochs are needed when a higher number of
classes lie along a line.

3.2 Classification with soft-label prototypes
Given M soft-label prototypes representing the
input distribution of N classes, we define S =
(X⃗1, Y1), ..., (X⃗M , YM ) to be our set of prototypes,
where X⃗i is the location of the ith prototype in the
input feature space and Yi is a matrix of dimen-
sion [N × 1] denoting the soft labels. Given a test
datapoint x⃗, we calculate the Euclidean distances
D = (X⃗i, x⃗)i=1,2...M from each prototype to x⃗.
We then sort S in ascending order of distances us-
ing D, weigh the probability distribution of the ith

nearest prototype inversely by its distance to x⃗, and
select the line containing the closest prototype to
get Y ∗ (Sucholutsky et al., 2021):

Y ∗ =
k∑

i=1

Yi

d(X⃗i, x⃗)
(1)

As we consider the two nearest neighbours / pro-
totypes, we set k to 2. x⃗ is then assigned the class
CSLP (x⃗) = argmax

j
Y ∗
j where Y ∗

j is the jth el-

ement of Y ∗. In other words, we sum over the
k-nearest soft-label prototypes (i.e., vectors) to x⃗,
and weigh each prototype inversely proportional
to its distance from x⃗. x⃗ is then assigned the class
with the largest value in the resulting vector (see
Appendix A.1 for a toy classification example).
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3.3 Meta-training DeepSLP (MetaSLP)

We further test the suitability of soft-labels in high-
resource settings, tuning our text encoder using aux-
iliary training data. This is similar to the work of
(Bansal et al., 2020a) that develop a meta-learning
approach for few-shot learning of new, unseen tasks
while utilising auxiliary training data. We employ
a similar approach for rapid generalisation by util-
ising first-order meta-learning algorithms (which
we describe in detail in Appendix A.2). Our model
architecture is similar to DeepSLP – it comprises a
BERT encoder with two linear layers on top. We
train only the last v layers of our encoder to reduce
computational overhead, where v is a hyperparam-
eter (See Appendix A.6). We denote the encoder
by fθ(x), and each soft-label prototype at the end
of a line by g1 and g2, parameterised by θ1 and θ2
respectively. The difference between DeepSLP and
MetaSLP is that MetaSLP is trained using meta-
learning (using auxiliary data described in Section
4), and the encoder fθ(x) in MetaSLP is fine-tuned
(as opposed to being fixed in DeepSLP), following
previous work (Bansal et al., 2020a).

Inner-loop training We optimise the soft-label
prototypes in the same manner as DeepSLP; i.e.,
we use Algorithmn 1 to few-shot train the linear lay-
ers g1(x) and g2(x) parameterised by θ1 and θ2 re-
spectively. However, meta-learning requires a large
set of diverse and balanced meta-learning tasks for
effective learning (Holla et al., 2020). To amelio-
rate this, we split the auxiliary datasets (Section
4) used for meta-learning into multiple pairwise
tasks to meta-train MetaSLP (Bansal et al., 2020a).
This means that, during training, we now consider
a large number of two-class problems, as opposed
to a small number of multi-class problems where
the number of classes n ≥ 2. Such a setting also
enables fine-tuning of our encoder fθ(x). In gen-
eral, allowing the physical location of encodings to
change (in this case via meta-learning’s inner-loop
training process), may result in centroids originally
connected by a line to no longer be connected by
that line (i.e., in the next inner-loop optimisation
step). However, if we only meta-train on tasks that
focus on two classes at a time, this can trivially
ensure that the same line is utilised each time. Our
inner-loop optimisation process is given in Algo-
rithm 3 in Appendix A.4.

Outer-loop training We perform meta-learning
using the updated parameters in the inner-loop

training process. We experiment with both Reptile
(Nichol et al., 2018) and FOMAML (Finn et al.,
2017) as our meta-learning algorithms. Reptile can
be considered a simpler variant to MAML-based
meta-learning algorithms. We present our outer-
loop process in Algorithm 4, Appendix A.4.

Meta-testing We construct lines for the test sets
using the trained MetaSLP model, and fine-tune
them on the few-shot adaptation training data for
each test task. We then use these lines for classifi-
cation as described in Section 3.2.

4 Experimental settings and datasets

Experimental settings We experiment with two
settings in terms of amounts of available data. The
first is a limited-resource setting where we only
train / fine-tune our models in a few-shot manner
on small amounts of training data (i.e., in the ab-
sence of auxiliary training data). The other setting
is a high-resource setting where we assume that
auxiliary training data is available for additional
training / fine-tuning.

Datasets We tackle few-shot learning of pre-
viously unseen tasks (i.e., not seen during
training/fine-tuning), and so our work is similar
to Bansal et al. (2020a). For our high-resource set-
ting, we train and test our models on the same data
as Bansal et al. (2020a) to ensure direct comparabil-
ity. For our limited-resource setting, we test in the
same way but do not utilise any auxiliary training
data; i.e., we only utilise few-shot fine-tuning data
for unseen tasks (i.e., only using a very small set
of training/fine-tuning examples for the test tasks).

High-resource setting auxiliary training data
Similar to Bansal et al. (2020a), we use GLUE
(Wang et al., 2018) to train our models in the high-
resource setting. This dataset consists of a range of
natural language tasks such as entailment, classi-
fication and textual similarity, which are used for
model training and evaluation. We use only the
training split for meta-learning. Similar to Bansal
et al. (2020a), the MNLI (Williams et al., 2018)
and SNLI (Bowman et al., 2015) entailment tasks,
which are three-label classification problems, are
split in a pairwise manner such that they are in-
cluded as multiple two-label datasets during train-
ing. Following Bansal et al. (2020a), we also
train for detecting the sentiment contained within
phrases of a sentence by using the phrase-level an-
notations in SST2 (Wang et al., 2018). We utilise
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the same validation sets – labelled Amazon review
data from music, toys and videos for sentiment clas-
sification (Blitzer et al., 2007). We provide dataset
and training details in Appendix A.5.

Evaluation data We use the same test datasets
and evaluation setting as Bansal et al. (2020a) for
both the high-resource and low-resource settings.
These cover a variety of text classification tasks: (a)
Entity typing – the CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003) and MIT-Restaurant (Liu
et al., 2013) datasets; (b) Review rating classifi-
cation – review ratings from Amazon Reviews
(Blitzer et al., 2007) with a three-way classifica-
tion; (c) Text classification – scraped social media
data from crowdflower comprising sentiment and
emotion classification in a range of domains, as
well as political bias detection; and (d) Natural
language inference in the scientific domain – the
SciTail dataset (Khot et al., 2018). We use the
same data splits, which are publicly available. Dur-
ing evaluation, Bansal et al. (2020a) fine-tune their
models using a small few-shot (support) training
set per test task (using a k-shot setting of 4, 8, 16
examples per class), and then evaluate performance
on each task’s dedicated, unseen test set. As model
performance can be affected by the k examples
chosen for training/fine-tuning, for each task and
for every k, they sample 10 few-shot training sets
and report the mean and standard deviation, which
we also adopt in our experiments.

5 Baselines

Our aim is to determine how well our models –
DeepSLP and MetaSLP – perform in the low and
high-resource setting respectively, compared to
strong baselines when given the same few-shot
adaptation sets. Our focus is on (a) evaluating in an
extreme few-shot learning scenario where no auxil-
iary data is available (using DeepSLP), and (b) eval-
uating in a high-resource setting when additional
(auxiliary) training data is available (MetaSLP).
We use BERT (Devlin et al., 2019) as our text en-
coder throughout to facilitate model comparisons.
We report DeepSLP and MetaSLPREPTILE (i.e., us-
ing Reptile as our meta-learning algorithm) in our
main table of results (given their effectiveness), and
present additional baselines as well as hyperparam-
eters and training details in Appendix A.6.

We use BERT (Devlin et al., 2019) as our en-
coder as it is a text encoder that allows us to get
passage-level encodings, it is computationally light-

weight compared to decoder-based LLMs such as
Llama (Touvron et al., 2023) and GPT (OpenAI,
2024) (and we can carry out full fine-tuning) and,
crucially, it does not suffer from data contamina-
tion as, in contrast to the more recent LLMs, it has
not been pre-trained on our test data3.

5.1 Low-resource setting baselines

BERTfine-tuned We use BERTfine-tuned reported in
Bansal et al. (2020a), which is fine-tuned (all lay-
ers) on the few-shot training set of each test task.

LORABERT LORA (Hu et al., 2022) decomposes
a fine-tuned weight matrix to two low-rank matri-
ces, which – when multiplied and added to the orig-
inal weights – reproduce the fine-tuned weights.
This is advantageous as, instead of fine-tuning all
parameters, we fine-tune these two matrices with a
low computational cost, as they are much smaller
individually compared to fully fine-tuned weights.

constraintSLP We use constraintSLP as a base-
line to evaluate the effectiveness of soft-label pro-
totypes that are based on linear constraints.

5.2 High-resource setting baselines

Reptile We train a meta-learning Reptile (Nichol
et al., 2018) model on our auxiliary data and use
it as another baseline. This allows us to directly
assess the added advantage of utilising SLPs in
MetaSLPREPTILE.

Prototypical Networks We use ProtoNet (Snell
et al., 2017) as another baseline for both the high
and low-resource settings. ProtoNets use Euclidean
distance as a measure of similarity between points
and clusters, which is similar to DeepSLP and
MetaSLP that assign test points to the closest line.

LEOPARD Bansal et al. (2020a) present LEOP-
ARD, a meta-learning algorithm that achieves the
best performance across most test tasks for entity
typing, ratings classification and text classification,
and which we also use.

We do not include HSMLMT (Bansal et al.,
2020b) as a baseline as it is pretrained on semi-
supervised meta-training tasks in addition to su-
pervised learning and therefore it is not directly
comparable.

3https://github.com/iesl/leopard/tree/master/
data/json
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Category (Classes) Shot LORABERT BERTfine-tuned* DeepSLP LEOPARD* Reptile MetaSLPREPTILE

Political Bias (2) 4 52.75 ± 4.33 54.57 ± 5.02 53.251 ± 4.042 60.49 ± 6.66 58.82 ± 4.31 60.96 ± 6.13
8 53.66 ± 4.25 56.15 ± 3.75 58.209 ± 5.198 61.74 ± 6.73 59.43 ± 3.79 63.65 ± 4.57
16 59.21 ± 2.27 60.96 ± 4.25 61.479 ± 2.974 65.08 ± 2.14 62.21 ± 0.72 66.05 ± 1.57

Emotion (13) 4 7.56 ± 2.93 09.20 ± 3.22 9.076 ± 1.108 11.71 ± 2.16 11.65 ± 3.21 11.94 ± 1.95
8 9.02 ± 2.36 08.21 ± 2.12 8.041 ± 2.797 12.90 ± 1.63 10.56 ± 2.85 13.42 ± 1.46
16 10.29 ± 1.67 13.43 ± 2.51 10.919 ± 1.615 13.38 ± 2.20 11.62 ± 3.11 14.03 ± 2.35

Sentiment Books (2) 4 51.27 ± 2.75 54.81 ± 3.75 58.67 ± 4.753 82.54 ± 1.33 76.95 ± 1.03 83.22 ± 0.95
8 58.16 ± 3.3 53.54 ± 5.17 64.78 ± 2.615 83.03 ± 1.28 77.49 ± 1.08 83.8 ± 0.8
16 59.16 ± 2.59 65.56 ± 4.12 67.453 ± 3.085 83.33 ± 0.79 77.88 ± 0.56 83.8 ± 1.59

Rating DVD (3) 4 31.65 ± 4.91 32.22 ± 08.72 39.566 ± 5.086 49.76 ± 9.80 45.91 ± 9.85 45.2 ± 8.91
8 37.69 ± 3.16 36.35 ± 12.50 38.788 ± 4.449 53.28 ± 4.66 47.23 ± 9.22 58.38 ± 2.9
16 38.63 ± 5.52 42.79 ± 10.18 40.53 ± 4.375 53.52 ± 4.77 48.49 ± 8.88 57.41 ± 4.71

Rating Electronics (3) 4 31.66 ± 2.94 39.27 ± 10.15 39.977 ± 5.959 51.71 ± 7.20 44.47 ± 8.25 45.34 ± 7.22
8 38.72 ± 5.95 28.74 ± 08.22 41.926 ± 3.985 54.78 ± 6.48 49.1 ± 6.81 55.10 ± 5.12
16 39.15 ± 6.6 45.48 ± 06.13 44.917 ± 3.164 58.69 ± 2.41 50.68 ± 6.8 59.47 ± 2.29

Rating Kitchen (3) 4 36.63 ± 4.68 34.76 ± 11.20 39.624 ± 6.787 50.21 ± 09.63 45.38 ± 10.96 45.20 ± 8.78
8 39.69 ± 6.22 34.49 ± 08.72 41.081 ± 6.777 53.72 ± 10.31 46.71 ± 9.84 54.53 ± 9.9
16 38.17 ± 7.14 47.94 ± 08.28 45.801 ± 4.562 57.00 ± 08.69 52.87 ± 9.52 58.94 ± 7.58

Political Audience (2) 4 49.75 ± 1.03 51.02 ± 1.72 51.741 ± 2.827 52.60 ± 3.51 52.45 ± 4.26 54.1 ± 3.66
8 54.05 ± 2.54 52.80 ± 2.72 54.506 ± 3.274 54.31 ± 3.95 52.87 ± 4.31 56.01 ± 3.65
16 55.39 ± 3.66 58.45 ± 4.98 56.956 ± 3.045 57.71 ± 3.52 55.6 ± 1.85 58.57 ± 2.04

Sentiment Kitchen (2) 4 53.02 ± 1.54 56.93 ± 7.10 60.76 ± 4.426 78.35 ± 18.36 69.81 ± 14.58 81.96 ± 3.73
8 55.54 ± 3.47 57.13 ± 6.60 65.733 ± 3.198 84.88 ± 1.12 75.76 ± 1.13 83.33 ± 1.99
16 58.59 ± 4.83 68.88 ± 3.39 69.18 ± 2.589 85.27 ± 1.31 76.41 ± 0.66 84.33 ± 1.81

Disaster (2) 4 56.02 ± 6.35 55.73 ± 10.29 54.252 ± 9.843 51.45 ± 4.25 49.76 ± 4.73 55.03 ± 8.73
8 57.46 ± 6.9 56.31 ± 09.57 61.3 ± 7.961 55.96 ± 3.58 52.17 ± 5.17 57.77 ± 6.40
16 65.79 ± 2.03 64.52 ± 08.93 69.28 ± 2.358 61.32 ± 2.83 55.37 ± 4.53 65.18 ± 4.41

Airline (3) 4 24.36 ± 5.42 42.76 ± 13.50 50.987 ± 4.936 54.95 ± 11.81 57.11 ± 14.16 57.39 ± 7.83
8 52.31 ± 7.89 38.00 ± 17.06 55.209 ± 6.049 61.44 ± 03.90 64.37 ± 3.49 65.67 ± 4.82
16 54.1 ± 8.57 58.01 ± 08.23 60.247 ± 4.577 62.15 ± 05.56 66.31 ± 2.55 69.48 ± 2.06

Rating Books (3) 4 34.69 ± 2.12 39.42 ± 07.22 42.116 ± 4.725 54.92 ± 6.18 56.57 ± 8.17 55.79 ± 5.61
8 39.36 ± 6.33 39.55 ± 10.01 42.156 ± 4.608 59.16 ± 4.13 57.33 ± 7.63 65.74 ± 5.58
16 41.23 ± 5.32 43.08 ± 11.78 46.513 ± 3.036 61.02 ± 4.19 63.26 ± 3.59 67.87 ± 3.45

Political Message (9) 4 12.16 ± 1.46 15.64 ± 2.73 14.421 ± 1.095 15.69 ± 1.57 14.58 ± 1.78 18.84 ± 1.82
8 15.71 ± 2.04 13.38 ± 1.74 16.919 ± 1.756 18.02 ± 2.32 15.13 ± 2.16 20.09 ± 2.71
16 15.53 ± 2.55 20.67 ± 3.89 18.319 ± 1.74 18.07 ± 2.41 16.38 ± 2.15 23.22 ± 1.17

Sentiment DVD (2) 4 50.77 ± 0.78 54.98 ± 3.96 55.003 ± 2.936 80.32 ± 1.02 72.03 ± 11.61 80.97 ± 1.21
8 52.24 ± 1.54 55.63 ± 4.34 57.527 ± 3.562 80.85 ± 1.23 75.79 ± 1.62 81.85 ± 1.79
16 52.6 ± 2.09 58.69 ± 6.08 60.76 ± 2.944 81.25 ± 1.41 76.69 ± 0.8 83.48 ± 1.01

Scitail (2) 4 43.36 ± 4.74 58.53 ± 09.74 54.101 ± 3.759 69.50 ± 9.56 59.13 ± 10.58 53.48 ± 5.59
8 54.29 ± 5.25 57.93 ± 10.70 56.341 ± 5.786 75.00 ± 2.42 62.63 ± 10.85 60.79 ± 4.6
16 52.68 ± 3.0 65.66 ± 06.82 59.692 ± 4.227 77.03 ± 1.82 68.03 ± 1.57 61.67 ± 3.61

Restaurant (8) 4 10.56 ± 1.36 49.37 ± 4.28 47.634 ± 5.237 49.84 ± 3.31 13.37 ± 2.25 27.00 ± 2.61
8 20.92 ± 2.4 49.38 ± 7.76 55.912 ± 4.494 62.99 ± 3.28 16.83 ± 3.42 35.66 ± 2.39
16 29.37 ± 4.05 69.24 ± 3.68 61.716 ± 2.208 70.44 ± 2.89 16.0 ± 3.44 37.20 ± 2.68

CoNLL (4) 4 21.48 ± 2.71 50.44 ± 08.57 52.724 ± 5.84 54.16 ± 6.32 31.31 ± 5.32 40.79 ± 3.40
8 29.84 ± 3.28 50.06 ± 11.30 60.374 ± 3.731 67.38 ± 4.33 33.17 ± 5.1 41.25 ± 5.21
16 37.18 ± 3.32 74.47 ± 03.10 67.496 ± 4.551 76.37 ± 3.08 34.04 ± 3.59 45.96 ± 4.75

Table 1: Classification performance (accuracy) of our methods (DeepSLP and MetaSLP) and baselines. * refers to
the baselines as reported in Bansal et al. (2020a). The best performing models for each setting (without and with
auxiliary data) are highlighted in gray and green respectively. Double lines group similar tasks together: the first set
contains intent classification tasks, the second focuses on natural language inference, and the last contains entity
typing tasks.
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6 Results and Discussion

Due to space restrictions, we present and discuss
our best models in Table 1. All other baselines and
results are discussed in Appendix A.7.

Low-resource setting In the low-resource set-
ting with no auxiliary data (left side of Table
1), DeepSLP outperforms all baselines, including
BERTfine-tuned in 31/48 tasks and LORABERT in
45/48 tasks, achieving a new state-of-the-art result.
Our results demonstrate the usefulness of soft-label
prototypes and their superiority over strong base-
lines (i.e., LLM fine-tuning and LORA / low-rank
adaptation) in the low-resource setting.

Unlike BERTfine-tuned, DeepSLP and LORABERT
do not fine-tune the encoder. Specifically, we only
need to fine-tune 1500−10K parameters (based on
the number of classes) for each line with two soft-
label prototypes for DeepSLP, compared to 50K −
100K parameters for LORABERT with rank = 2,
and > 108 parameters for BERTfine-tuned. We also
note that DeepSLP is lightweight and does not re-
quire a GPU. LORABERT mostly achieves accura-
cies within 90% of BERTfine-tuned, in line with pre-
vious work (Hu et al., 2022; Dettmers et al., 2023)
(even outperforming BERTfine-tuned in 15/48 tasks),
except for entity-typing tasks where LORABERT
struggles to generalise and achieves substantially
lower performance compared to BERTfine-tuned.

On the other hand, constraintSLP, a simpler vari-
ant of DeepSLP (see Appendix A.7, Table 5 for
results) is one of the lower performing baselines,
together with ProtoNet. We find that constraintSLP
exhibits a substantial weakness (see further details
in Theorem A.2, Appendix A.3): given Euclidean
distance, constraintSLP does not always select the
nearest class centroid to a test point. This violates
our inductive bias that points located closest to
a class centroid are assigned to that class. If we
consider the case where N = 2, constraintSLP es-
sentially acts as a 1-NN with soft labels trivially
at [1, 0] and [0, 1], with class centroids acting as
the nearest neighbour. However, when general-
ising beyond this setting, the model’s stability is
affected. constraintSLP optimises soft labels using
the geometric properties of a line and does not con-
sider each (training) data point individually – the
soft labels produced by SLP are constants. Deep-
SLP, on the other hand, learns from training data
and produces soft labels as a function of the input;
therefore, it has the ability to output soft labels
based on the location of an input (test) point (with

the location of the prototypes being fixed).

High-resource setting MetaSLPREPTILE has the
highest performance overall in text classification
and entailment tasks (Tasks 1-14), with the best ac-
curacy in 33/42 tasks/settings. LEOPARD, on the
other hand, achieves the highest score in only 8/42.
Interestingly, we find that all models in the high-
resource setting have lower performance for Dis-
aster compared to the models in the low-resource
setting. We surmise this to be due to the auxiliary
data and the fact that the meta-training distribution
differs substantially from the test distribution.

For entity typing tasks (CoNLL and Restau-
rant), LEOPARD outperforms all models, with
MetaSLPREPTILE and Reptile performing compar-
atively poorly, even outperformed by the low-
resource methods (DeepSLP and BERTfine-tuned). It
should be noted that there seems to be little benefit
of meta-learning with auxiliary data when tackling
entity typing tasks, even for LEOPARD, as the dif-
ference between LEOPARD and BERTfine-tuned is
not substantial. We surmise this to be due to the
fact that the meta-training distribution (i.e., GLUE
tasks) is different from the test distribution for en-
tity typing tasks which degrades performance for
the test tasks. Note that we do not meta-train the
entire model (only top 4 layers for Reptile and
MetaSLPREPTILE), unlike LEOPARD.

Overall, MetaSLPREPTILE outperforms all mod-
els and baselines, including Reptile in 42/48
tasks and LEOPARD in 34/48 tasks. Specifically,
MetaSLPREPTILE consistently outperforms Reptile,
demonstrating the effectiveness of our approach
over its meta-learning variant (i.e., Reptile) that
does not use SLPs. In Appendix A.8 we present
detailed analyses of DeepSLP and show that it
displays several desirable properties of ensemble
methods which drive its performance, in addition
to it being a computationally efficient approach that
only utilises a small number of parameters.

7 Conclusion and future work

We presented a novel few-shot learning paradigm
that is based on soft-label prototypes capturing
the simultaneous membership of data points over
several classes, and demonstrated its effectiveness
in low and high-resource settings. We evaluated
our approach on 48 different tasks / settings and
showed that it outperforms a range of strong base-
lines. In the future, we plan to use meta-learning
algorithms such as PACMAML (Ding et al., 2021)
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and Bayesian MAML (Kim et al., 2018) that relax
assumptions with respect to train–test set distribu-
tions and thus alleviate this current limitation in
our work.

8 Ethics

To the best of our knowledge, there are no ethical
concerns involved in this research. We conduct our
work using publicly available English datasets and
tasks, and models pre-trained on English text. Our
results may not generalise to other languages. To
facilitate further research in the field, we release
our source code and models.
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A Appendix

A.1 Deriving soft-label prototypes using
constraintSLP

Finding lines connecting all centroids
In Figure 3a, we present an example set of lines
connecting all class centroids. For further details
on recursive regression, we refer the reader to Su-
cholutsky et al. (2021).

Deriving soft-label prototypes by optimising for
linear constraints
Example soft-label prototypes which are “set” at
the ends of each line are shown in Figure 3b.

Classification with constraintSLP: A toy
example
Figure 4 presents an example classification with
soft-label prototypes. Given the class centroids
for blue, green and yellow are located at (0, 0),
(1.5, 0) and (3, 0) respectively, two soft-label pro-
totypes are defined by a line connecting yellow and
blue, and are thus located at (3, 0) and (0, 0) re-
spectively. The soft labels in Figure 4a contain
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a Computing lines b Generating soft-label prototypes c The decision landscape

Figure 3: Generating and classifying data with soft-label prototypes.

a b

Figure 4: Classification example with constraintSLP
(figure from Sucholutsky and Schonlau (2021)).

the per-class probability distribution derived by
the constraintSLP method; for example, p(x =
blue) = 0.6 and p(x = green) = 0.4 for the
left prototype, and p(x = green) = 0.4 and
p(x = yellow) = 0.6 for the right prototype.
When a new test instance x located at (1.5, 0.8)
is presented, we make predictions as follows: we
find the nearest line to x and consider its distance
from the two prototypes at the ends of the line and
multiply the class distribution of each prototype by
the inverse distance as per Eq. 1.

Since x is equidistant from both prototypes,
the distance between the x and each prototype
is 1.5. Therefore, the values for blue and yel-
low (given both soft-label prototypes) become
soft_label(x = blue) = 0.6

1.5 + 0
1.5 = 0.4 and

soft_label(x = yellow) = 0
1.5 + 0.6

1.5 = 0.4 re-
spectively. In contrast, for green, which is directly
informed by both prototypes (i.e., no zero values
in the numerator), the probability distribution be-
comes soft_label(x = green) = 0.4

1.5 + 0.4
1.5 =

0.53. Therefore x is classified as green. This deci-
sion boundary can be seen in Figure 4b.

A.2 Meta-learning

For encoder-based models, meta-learning has
emerged as a viable methodology for few-shot
learning. In the meta-learning paradigm, the train-
ing and test sets, referred to as Dmeta-train and
Dmeta-test, are split into episodes. Each episode
encompasses a task T i and consists of a support
set D(i)

support and a query set D(i)
query. Meta-

learning algorithms initially fit the model on the
support set of the episode (inner-loop optimisation)
and then achieve generalisation across episodes by
optimising performance on the query sets of the
episodes (outer-loop optimisation). For evaluation,
the model is first fine-tuned on the support set and
then evaluated on the query set for each task T i
∈ Dmeta-test. We describe the process algorithmi-
cally in Algorithm 2 and describe the MetaUpdate
process for different algorithms subsequently.

Algorithm 2: Meta-learning

1 α, β ← learning rates
2 Sample batch of tasks {Ti} ∼ p(T )
3 Initialise θ′i ← θ
4 for Ti ∼ p(T ) do
5 Partition Ti into Ds

i and Dq
i

6 θ′i ← θ − α∇θLsDi
(fθ) for k steps

7 end
8 θ ←MetaUpdate(θi, D

q
i , β)

Model Agnostic Meta-Learning MAML (Finn
et al., 2017) is an optimisation-based meta-
learning approach which incorporates generalis-
ability across tasks in its cost function. The task
loss LqTi is computed on the query examples in
each episode, using this task-specific model. The
initial model parameters θ are then updated so as
to minimize the sum of the losses of all tasks in a
batch, leading to improved generalisation across
tasks. The MetaUpdate step is thus defined as
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θ ← θ − β ∇θ

∑

Ti∼p(T )

LqDi
(fθ′i)

Note that the MetaUpdate expression calculates
the gradients of each θi with respect to θ, thus
necessitating the computation of second-order gra-
dients. To ease computation, we use a first-order
approximation of MAML (FOMAML) wherein the
gradients of each θi are calculated with respect to
θi and reduce the MetaUpdate term to

θ ← θ − β ∇θi

∑

Ti∼p(T )

LqDi
(fθ′i)

LEOPARD Bansal et al. (2020a) employ meta-
learning for diverse NLP tasks in an approach in-
spired from MAML which integrates a text encoder
model with a meta-learned parameter generator to
tailor task-specific initialisations for the classifica-
tion head. Their inner-loop update learns the pa-
rameter generator for the task, adapts task-specific
model parameters and the MetaUpdate step adapts
model parameters as done in MAML. They show
that their method, LEOPARD, outperforms multi-
task trained models as well as a range of other
meta-learning methods.

Reptile This meta-learning algorithm, intro-
duced by Nichol et al. (2018), is computationally
simple compared to MAML and LEOPARD - the
MetaUpdate step simply moves the model parame-
ters towards inner-loop fine-tuned model parame-
ters, thus assuming the form:

θ ← θ + β
1

|{Ti}|
∑

Ti∼p(T )

(θi − θ)

Despite it’s simplicity, it reports strong perfor-
mance on a variety of few-shot learning tasks (Dou
et al., 2019).

Prototypical Networks Unlike optimisation-
driven meta-learning methods, Prototypical Net-
works (Snell et al., 2017) is a metric-based meta-
learning method that uses an embedding function
fθ to encode training support samples and compute
a high-dimensional vector µc that is the arithmetic
mean of the training data points of class c. It then
uses a distance function d to compute the similarity
between a query instance x and the mean vector of

each class to get the class distribution as:

p(y = c|x) = softmax(−d(fθ(x), µc))

=
exp(−d(fθ(x), µc))∑

c′∈C exp(−d(fθ(x), µ′
c))

Model optimisation is done using the loss function
J(θ) = −log(p(y = c∗|x, θ)).

A.3 Analysis of soft-labels derived from linear
constraints: constraintSLP

Theorem A.1. The soft-label value of each class
within a single soft-label prototype generated using
constraintSLP is inversely proportional to its dis-
tance from the soft-label prototype along the line
connecting all classes captured by it.

Proof of Theorem A.1 (Informal) Consider a
line l connecting three class centroids (while we
focus on a three class system, the conclusions gen-
eralise to n > 3 classes too). The class centroids
are represented by A, B and C. The soft-label proto-
types at ends A and C contain the values [a1, a2, a3]
and [c1, c2, c3] respectively. Consider a support ex-
ample x ∈ A at a distance da and db from A and
C respectively. Directly using the constraints in
Algorithm 4 of Sucholutsky et al. (2021), we state
that the influence of A (i.e., the distance-weighted
sum of the soft-labels at x) should be more than
the sum of the influence of the other two classes.
Thus, we need to maximise:

a1
da

+
c1
db

>

(
a2
da

+
c2
db

)
+

(
a3
da

+
c3
db

)
(2)

As we move x further towards A, da → 0 and
the influence of [a1/d1, a2/d2, a3/d3] increases
thus

∑i=3
i=2 ci/db <<<

∑i=3
i=2 ai/da. Therefore

we have the approximation:
a1
da

>
a2
da

+
a3
da

=⇒ a1 > a2 + a3 (3)

If we take a support example x ∈ C, by symmetry
as x is moved towards C, db → 0, we can also
write:

c3
db

>
c2
db

+
c1
db

=⇒ c3 > c2 + c1 (4)

Furthermore, consider a point x in the middle of l
equidistant from A and C (by a distance d) – such a
point will always be classified as x ∈ B. Thus, the
influence of B should be higher than both A and C.
Thus we have:
a2
d

+
c2
d

>
a1
d

+
c1
d

&
a2
d

+
c2
d

>
a3
d

+
c3
d

=⇒ a2 + c2 > a1 + c1 & a2 + c2 > a3 + c3
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From Equation 3 and Equation 4 we can replace a1
and c3 and get:

a2 + c2 > a2 + a3 + c1 =⇒ c2 > c1

a2 + c2 > a3 + c2 + c1 =⇒ a2 > a3

Therefore, we have:

a1 > a2 > a3 & c3 > c2 > c1

This is an intuitive result as the soft-label value of
each class decreases as the distance of the class
centroid increases from the prototype location –
the class nearest to the prototype has the highest
soft-label value and the class furthest away has the
lowest soft-label value.

Recall that
∑3

i=1 ai = 1 and
∑3

i=1 ci = 1 and
ai, ci ≥ 0 ∀i = {1, 2, 3} otherwise the optimisa-
tion problem becomes unbounded. Therefore, the
ranges of values for [a1, a2, a3] and [c1, c2, c3] are:

a3 ∈ [0, a2), a2 ∈ (a3, a1), a1 ∈ (a2, 1]

c3 ∈ (c2, 1], c2 ∈ (c1, c3), c1 ∈ [0, c2)

Using Algorithm 4 in Sucholutsky et al. (2021), we
see that there are multiple constraints for a1 and
a2 which require them to be maximised, but there
are none for a3. Thus, to maximise Equation 3, a3
adjusts to the minimum value it can get:

a3 = min(0, a2) = ϵ ≃ 0

By symmetry, we can also conclude that:

c1 = min(0, c2) = ϵ ≃ 0

These approximations are also generalisable to
multiple classes connected by a line, for example, if
a line connects only two centroids, the soft-labels
at each end are derived as [0, 1] and [1, 0] - the
same as a “hard" label. These findings are sub-
stantiated experimentally in Table 2 where we ex-
amine the soft-labels generated by DeepSLP and
constraintSLP using a few-shot training support
set of the task airline with 8 examples per class –
the constraintSLP soft label corresponding to the
furthest class from the prototype location drops to
almost zero compared to other soft label values. On
the other hand, DeepSLP prevents overfitting on
the nearest classes and produces a more generalised
distribution of soft-labels. This is a trend generally
observed in other tasks and classes as well. We
further use this theorem to prove the main theorem
given by Theorem A.2.
Theorem A.2. The constant soft-labels in con-
straintSLP do not always select the closest class
centroid to a test point.

# constraintSLP DeepSLP(x)
1 5.6422e− 01 9.7887e− 01

4.3577e− 01 2.0995e− 02
9.7973e− 16 1.3500e− 04

2 5.3090e− 13 2.5240e− 02
4.3212e− 01 9.7475e− 01
5.6787e− 01 1.0000e− 05

Table 2: Soft labels derived using constraintSLP and
DeepSLP. # denotes the index of the soft-label proto-
type lying on the line. Soft labels are constant for con-
straintSLP, however, they are a function of input point
x for DeepSLP, thus allowing more flexibility.

Figure 5: Schematic diagram for ascertaining θ with
class centroids A = (−10, 0), B = (5, 0) and C =
(15, 0).

Proof of Theorem A.2 (Informal) Furthermore,
consider a line b perpendicular to l – it intersects l
between A and B. We select θ such that ϕ = π/2.
We denote the complete setup diagrammatically in
Figure 5.

Consider the distance weighted influences at x
for class A. We have the influence as a1sinθ

e +
c1cosθ

e = a1sinθ
e as c1 ≃ 0. Similarly, for class B,

we have the weighted influence as a2sinθ
e + c2cosθ

e .
To calculate values of θ where the weighted influ-
ence of B is more than the weighted influence of A,
we get:

a2sinθ

e
+

c2cosθ

e
>

a1sinθ

e
=⇒ a2sinθ + c2cosθ > a1sinθ

=⇒ c2cosθ − (a1 − a2)sinθ > 0

=⇒ c2cosθ − (a1 − a2)sinθ√
c22 + (a1 − a2)2

> 0

=⇒ cos(θ + α) > 0

where α = tan−1
(
a1−a2

c2

)
. Since cos(θ+α) > 0
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a Denoting the decision boundaries calculated with con-
straintSLP. Green represents points classified as class A, pink
represents the points classified as class B, and brown repre-
sents the points classified as C.

b Zooming in at point x. We can see that it is classified as B.

Figure 6: The soft-labels of the linear constraint sys-
tem at A and C using constraintSLP are calculated as
[0.5963, 0.4036, 0.0001] and [0.0001, 0.4495, 0.5504].
We also get θ = 66.84◦. Using these soft-labels, we
calculate the decision boundaries for points in this area.
We use θ to calculate the coordinates of x. Zooming
in, we can visually inspect that x is classified to class
B. For x, the Euclidean distance of x from A and B is
9.847 and 14.338 respectively. From the figure, we can
see that constraintSLP classifies x as B even though the
Euclidean distance of x from A is shorter.

we have (θ + α) ∈ (−π/2, π/2) and since θ > 0,
thus for θ ∈ [0, π/2− α), the weighted influence
of B is more than the weighted influence of A.

However, it is worth observing the result for θ
derived above can contain points closer to A (using
Euclidean distance) which are actually classified
as B. We can easily demonstrate this with a counter
example explained in Figure 6.

Therefore, for points closer to A compared to
B using an Euclidean measure, constraintSLP can
still return a higher value for the influence at B
compared to A. This adversely affects performance
in classifiers where we rely on selection of the
closest class centroid for classification – such as

Algorithm 3: Inner-loop training of
MetaSLP
1 Ti ← meta-training task
2 L ← line connecting both centroids of a

task
3 α← inner-loop learning rate
4 S ← inner-loop optimisation steps
5 Initialise g1x(x) and g2(x) randomly
6 while s < S do
7 Sample support examples Xs for Ti
8 Calculate locations of each soft-label

prototype in L
9 Use Equation 1 to classify x ∈ Xs

10 Calculate ∇LTi(fθ(x), g1(x), g2(x))
11 Scale∇ϕLTi(g1(x)) and

∇ωLTi(g2(x)) by the distances from
the soft-label prototypes

12 θ′i ← θ − α∇θLTi(fθ(x))
13 θ′1i ← θ1 − α∇ϕLTi(g1(x))
14 θ′2i ← θ2 − α∇ωLTi(g2(x))
15 end

1-NN, Prototypical Networks, and constraintSLP
– and we believe this is the reason behind the poor
performance of constraintSLP for cases where the
total classes is greater than two.

A.4 Training algorithms for MetaSLP

Inner-loop training Our inner-loop training al-
gorithm for MetaSLP is presented in Algorithm 3.
The inner-loop encoder optimisation can be under-
stood as updating the parameters of the encoder to
“push” different classes away from each other and
“pull” points belonging to the same class together;
i.e., increase inter-class distance and decrease intra-
class distance which leads to well-defined clusters
per class. We present this process in Figure 7.

Outer-loop training Our outer-loop training al-
gorithm is presented in Algorithm 4.

A.5 Meta-training details

GLUE (Wang et al., 2018) tasks and their details
are provided in Table 3. These tasks include MNLI
(Williams et al., 2018), SST2 (Socher et al., 2013),
CoLA (Warstadt et al., 2018), MRPC (Dolan and
Brockett, 2005), QQP (Wang et al., 2017), QNLI
(Wang et al., 2018), RTE (Giampiccolo et al., 2008)
and SNLI (Bowman et al., 2015). We employ
the same tasks as Bansal et al. (2020a) to ensure
direct comparability. Note that the datasets and
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Step 1 Step 2 Step n

Figure 7: Inner-loop training – note that inter-class embeddings are pushed further away, and intra-class embeddings
are pushed closer together across n steps. The endpoints of the line mark the location of the soft-label prototypes.

Algorithm 4: Outer-loop training of
MetaSLP
1 T ← batch of meta-training tasks, |T | = n
2 M← batch of distinct inner-loop

optimised models parameterised by θi,
|M| = n

3 β ← outer-loop learning rate
4 for Ti, Mi ∈ T , M do
5 if FOMAML then
6 Sample query examples Xq for Ti,

Xs ∩Xq = Φ
7 Use Equation 1 to classify x ∈ Xq

8 Calculate
∇θ′i
LTi(fθ′i(x), gϕ′

i
(x), hω′

i
(x))

9 Update∇θLTi(fθ(x))+ =
∇θ′i
LTi(fθ′i(x), gϕ′

i
(x), hω′

i
(x))

10 end
11 if Reptile then
12 Update∇θLTi(fθ(x))+ = θ − θi
13 end
14 end
15 Update θ ← θ − β

n

∑n
i=1∇θLTi(fθ(x))

classes in GLUE are completely different from the
datasets used for evaluating the model - thus the
final model fine-tunes on unseen few-shot data and
learns classes it has previously not encountered.

To train our model to detect the sentiment con-
tained within phrases of a sentence by using the an-
notations for phrases within sentences for SST2, we
append a separator token and the annotated phrase
for each sentence at the end of the sentence in the
form “[CLS] <sentence_1> [SEP] <sentence_2>
[SEP]" and obtain the passage level embedding for
training.

Dataset Labels Training
Size

Validation
Size

Test
Size

CoLA 2 8551 1042 -
MRPC 2 3669 409 -
QNLI 2 104744 5464 -
QQP 2 363847 40431 -
RTE 2 2491 278 -
SNLI 3 549368 9843 -
SST-2 2 67350 873 -
MNLI 3 392703 19649 -

Table 3: Details of GLUE tasks used for meta-training.

A.6 Hyperparameters

Generating lines The hyperparameters used to
generate lines are: (a) ϵ, which is a control factor
used to denote the maximum tolerance between a
centroid and the line assigned to it using Euclidean
distance—we use a tolerance value of 1e− 1; and
(b) l, which denotes the maximum number of lines
used to connect all centroids. We experiment with
a range of values (l ∈ {0.25n, 0.5n, 0.75n, n− 1},
where n is the number of centroids), but find l =
⌈n/2⌉ to give the best accuracy on the validation
data with the minimum number of lines required.4

DeepSLP For DeepSLP, we find that more
epochs are needed to train models with a higher
number of soft labels (i.e., a higher number of
classes in the output of the classifier head) - essen-
tially, 3 classes fitted on a line need more epochs
compared to 2 classes fitted on a line. We use
AdamW (Loshchilov and Hutter, 2017a) as our op-
timiser and perform hyperparameter tuning on the
validation set. We only need a few epochs (5 to
10) to generalise well depending on the training
task. We fix a random seed, train our models and
evaluate performance on the test tasks. We repeat

4The right choice of hyperparameters is key as the op-
timisation process fails when it is not possible to connect n
centroids with l lines.
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Parameter Search Space MetaSLPREPTILE MetaSLPFOMAML Reptile
Tunable layers (v) [1, 2, 3, 4] 4 4 4

K-shot [8, 16, 32] 16 16 16

Batch size [8, 16, 32] 16 16 16

Steps [3, 5, 7] 5 5 5

αf [5e− 3, 1e− 3, 1e− 4] 5e− 3 Learnable 1e− 3

αg, αh [5e− 3, 1e− 3, 1e− 4, 1e− 2] 5e− 3 Learnable 1e− 3

Nesterov [True, False] True True True

Momentum [0.5, 0.7, 0.9] 0.9 0.9 True

βinitial [1e− 5, 2e− 5, 5e− 5] 5e− 5 2e− 5 1e− 5

βfinal [1e− 5, 2e− 5, 5e− 6] 2e− 5 2e− 5 1e− 5

Task sampling [square root, uniform] square root square root square root

Table 4: Meta-training hyperparameters.

this process across three different seeds and report
the mean and standard deviation. Hyperparameters
for all baselines in this setting can be found online
in our code repository5.

Meta-training For inner-loop optimisation, we
use SGD as an optimiser with Nesterov and a mo-
mentum factor. We use a cosine annealing learning
rate scheduler (Loshchilov and Hutter, 2017b) on
our outer-loop learning rate to decay the learning
rate from a starting rate to an end rate without
restarts across one epoch for MetaSLPREPTILE. We
use AdamW (Loshchilov and Hutter, 2017a) as our
outer-loop optimiser with AMSGrad (Reddi et al.,
2018). We employ early stopping and stop train-
ing if our model does not improve it’s validation
set accuracy over 100 batches. We use learnable
inner-loop learning rates for MetaSLPFOMAML per
parameter group for better optimisation as indi-
cated by previous literature (Antoniou et al., 2019).
All meta-training hyperparameters can be found in
Appendix A.6, Table 4.

Meta-testing Similar to inner-loop optimisation
at meta-training, we use SGD with Nesterov and
the same optimiser hyperparameters. However, we
decay the learning rate using a cosine scheduler
across all fine-tuning epochs to prevent overfitting
on the few-shot (support) training set per task for
MetaSLPREPTILE.

A.7 Results

The complete set of results of all models and base-
lines can be seen in Table 5 for the low-resource
setting and DeepSLP, and Table 6 for the high-
resource setting and MetaSLP.

5<anon-url>

DeepSLP Our results (Table 5) demonstrate
that DeepSLPBERT outperforms BERTfine-tuned in
31/48 tasks, constraintSLPBERT in 43/48 tasks
and LORABERT in 45/48 tasks, demonstrating
the usefulness of soft-label prototypes and su-
periority over the “standard” LLM fine-tuning
paradigm, as well as the simpler constraintSLP
variant. constraintSLPBERT, on the other hand,
fares worse than BERTfine-tuned and LORA, out-
performing the former in only 19/48 tasks and
the latter in 25/48 tasks, while exhibiting high
standard deviations which can be explained by
Theorem A.2, as constraintSLP can behave errat-
ically and not select the closest point to the class
centroid. Overall, DeepSLP is the best perform-
ing method, demonstrating the highest accuracy
in 31/48 tasks, while being on-par with the sec-
ond best model (BERTfine-tuned) on the remaining
tasks (15/48 tasks). Fine-tuned BERT is, overall,
the next best model with 13/48 tasks while con-
straintSLP achieves the best performance amongst
all methods in only 1/48 tasks. ProtoNet’s com-
paratively lower performance can be explained by
the fact that meta-learning approaches tend to re-
quire a large number of diverse and structured meta-
training tasks for effective learning — thus not
making them readily suited for (extreme) few-shot
learning settings.

MetaSLP In Table 6, MetaSLPREPTILE outper-
forms all baselines achieving the highest per-
formance in 33/48 tasks. LEOPARD is the
next best model with the highest performance
in 11/48 tasks. Interestingly, MetaSLPFOMAML
does not fare as well as MetaSLPREPTILE and
achieves the highest performance in only 1/48
tasks while outperforms LEOPARD in only 6/48
tasks. MetaSLPFOMAML nevertheless outperforms
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MetaSLPREPTILE and Reptile in natural language
inference tasks – demonstrating the usefulness of
learnable inner-loop learning rates across multiple
task distributions while meta-training.

A.8 Ensemble properties of DeepSLP
In this study, we compare and contrast DeepSLP to
ensembles and draw similarities between the two,
shedding further light into the effectiveness of our
approach. Each prediction decision by DeepSLP is
the result of two soft-label prototypes – those that
lie on each end of the line nearest to a test point x.
An analogy can then be drawn between the proto-
types used at prediction time and those individual
(albeit independent) models that are utilised by an
ensemble when producing the final classification.

While DeepSLP prototypes are not independent
but are rather trained jointly (and share the same
encoder), in what follows, we demonstrate that they
display several properties of ensemble methods,
while being computationally efficient and utilising
a small number of parameters. For the analyses
below, we consider the tasks Airline and Disaster
using an 8-shot setting and evaluate on the test data
for each. However, we find the below properties to
generalise across all tasks.

A.8.1 Individual vs joint prediction
In a similar way as an ensemble exhibits superior
performance to the individual models it utilises,
we seek to assess whether the joint utilisation of
prototypes at prediction time is indeed more effec-
tive than utilising each prototype individually. To
evaluate this, we measure the probability distribu-
tion of each setting on the test data using negative
log-likelihood:

NLL(f(x), y) ≜ −log(f (y)(x))
Following Abe et al. (2022), for a strictly convex
function such as NLL, we use Jensen’s inequality:

NLL(F(x), y) ≤ E[NLL(f(x), y)]

where F (x) is the ensemble and f(x) are the con-
stituent models. The idea is that the probability
distribution of the ensemble fits the target distribu-
tion more closely than the corresponding expected
probability distributions of its constituent models.
For joint soft-label prototypes parameterised by g1
and g2 and located at p1 and p2, we have:

NLL

(
softmax

(
g1(f(x))

||f(x)− p1||
) +

g2(f(x))

||f(x)− p2||

)
, y

)

= −
∑

log

(
softmax

(
gy1 (f(x))

||f(x)− p1||
) +

gy2 (f(x))

||f(x)− p2||

))
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Figure 8: NLL(F(x), y) vs. E[NLL(f(x), y)] for Dis-
aster (top) and Airline (bottom). The ith subscript refers
to the ith soft-label prototype.

For the individual soft-label prototypes, weigh-
ing the outputs by distance does not change the final
softmax probability distribution; therefore, we can
define E[NLL(f(x), y)] as their average:

−1

2

∑
log(softmax(gy1 (f(x)) + log(softmax(gy2 (f(x))

We plot the negative log likelihoods for Airline
and Disaster on the test set after fine-tuning each
model on ten subsets of few-shot training data (as
explained before in Section 4) in Figure 8 to assess
whether DeepSLP exhibits this property of ensem-
ble methods. We find that NLL(F(x), y) is much
lower than E[NLL(f(x), y)], which confirms that
the joint utilisation of prototypes results in better
predictions than if they were to be used individually.
Our experiments confirm that this is a general trend
we observe across tasks. In the following sections,
we investigate the reasons behind the high values
observed for E[NLL(f(x), y)], and compare the
jointly trained prototypes against a strong baseline,
the fine-tuned BERT baseline.

A.8.2 Jointly utilised soft-label prototypes
improve diversity

Diversity in ensemble classifications refers to the
difference in the probability distribution on out-of-
distribution (ood) data for classifications between
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Category (Classes) Shot LORABERT ProtoNet constraintSLPBERT BERTfine-tuned* DeepSLPBERT

Political Bias (2) 4 52.75 ± 4.33 51.15 ± 2.454 53.447 ± 3.281 54.57 ± 5.02 53.251 ± 4.042
8 53.66 ± 4.25 56.568 ± 4.228 55.824 ± 3.725 56.15 ± 3.75 58.209 ± 5.198
16 59.21 ± 2.27 59.183 ± 4.706 58.277 ± 4.128 60.96 ± 4.25 61.479 ± 2.974

Emotion (13) 4 7.56 ± 2.93 8.953 ± 2.052 8.662 ± 6.213 09.20 ± 3.22 9.076 ± 1.108
8 9.02 ± 2.36 10.857 ± 3.436 8.16 ± 3.266 08.21 ± 2.12 8.041 ± 2.797
16 10.29 ± 1.67 11.479 ± 2.96 8.115 ± 3.66 13.43 ± 2.51 10.919 ± 1.615

Sentiment Books (2) 4 51.27 ± 2.75 55.53 ± 4.097 59.89 ± 5.385 54.81 ± 3.75 58.67 ± 4.753
8 58.16 ± 3.3 58.97 ± 4.909 64.34 ± 2.565 53.54 ± 5.17 64.78 ± 2.615
16 59.16 ± 2.59 65.5 ± 7.026 66.36 ± 2.183 65.56 ± 4.12 67.453 ± 3.085

Rating DVD (3) 4 31.65 ± 4.91 37.665 ± 7.184 32.298 ± 16.263 32.22 ± 08.72 39.566 ± 5.086
8 37.69 ± 3.16 37.008 ± 5.118 32.644 ± 16.016 36.35 ± 12.50 38.788 ± 4.449
16 38.63 ± 5.52 39.123 ± 6.004 35.587 ± 17.445 42.79 ± 10.18 40.53 ± 4.375

Rating Electronics (3) 4 31.66 ± 2.94 33.696 ± 5.55 35.188 ± 16.211 39.27 ± 10.15 39.977 ± 5.959
8 38.72 ± 5.95 37.297 ± 5.938 29.624 ± 12.876 28.74 ± 08.22 41.926 ± 3.985
16 39.15 ± 6.6 43.825 ± 5.946 29.836 ± 12.753 45.48 ± 06.13 44.917 ± 3.164

Rating Kitchen (3) 4 36.63 ± 4.68 35.914 ± 6.678 28.253 ± 15.907 34.76 ± 11.20 39.624 ± 6.787
8 39.69 ± 6.22 38.46 ± 11.124 24.397 ± 11.961 34.49 ± 08.72 41.081 ± 6.777
16 38.17 ± 7.14 46.546 ± 8.394 31.926 ± 18.29 47.94 ± 08.28 45.801 ± 4.562

Political Audience (2) 4 49.75 ± 1.03 50.976 ± 1.84 51.305 ± 2.68 51.02 ± 1.72 51.741 ± 2.827
8 54.05 ± 2.54 52.022 ± 3.964 53.104 ± 3.669 52.80 ± 2.72 54.506 ± 3.274
16 55.39 ± 3.66 54.024 ± 3.071 53.888 ± 3.305 58.45 ± 4.98 56.956 ± 3.045

Sentiment Kitchen (2) 4 53.02 ± 1.54 55.24 ± 3.427 61.96 ± 4.594 56.93 ± 7.10 60.76 ± 4.426
8 55.54 ± 3.47 62.28 ± 5.103 64.83 ± 3.983 57.13 ± 6.60 65.733 ± 3.198
16 58.59 ± 4.83 66.9 ± 5.441 68.21 ± 3.298 68.88 ± 3.39 69.18 ± 2.589

Disaster (2) 4 56.02 ± 6.35 51.474 ± 8.848 52.77 ± 10.803 55.73 ± 10.29 54.252 ± 9.843
8 57.46 ± 6.9 60.661 ± 4.991 56.888 ± 11.139 56.31 ± 09.57 61.3 ± 7.961
16 65.79 ± 2.03 63.893 ± 6.62 65.907 ± 3.691 64.52 ± 08.93 69.28 ± 2.358

Airline (3) 4 24.36 ± 5.42 44.167 ± 10.752 36.243 ± 22.607 42.76 ± 13.50 50.987 ± 4.936
8 52.31 ± 7.89 50.148 ± 13.429 44.972 ± 22.584 38.00 ± 17.06 55.209 ± 6.049
16 54.1 ± 8.57 54.8 ± 10.49 29.238 ± 17.494 58.01 ± 08.23 60.247 ± 4.577

Rating Books (3) 4 34.69 ± 2.12 37.715 ± 5.801 25.562 ± 15.207 39.42 ± 07.22 42.116 ± 4.725
8 39.36 ± 6.33 38.518 ± 5.327 34.026 ± 14.123 39.55 ± 10.01 42.156 ± 4.608
16 41.23 ± 5.32 44.694 ± 7.797 32.509 ± 16.132 43.08 ± 11.78 46.513 ± 3.036

Political Message (9) 4 12.16 ± 1.46 13.888 ± 2.076 12.438 ± 1.799 15.64 ± 2.73 14.421 ± 1.095
8 15.71 ± 2.04 16.155 ± 2.316 15.08 ± 2.925 13.38 ± 1.74 16.919 ± 1.756
16 15.53 ± 2.55 18.324 ± 2.011 13.121 ± 3.294 20.67 ± 3.89 18.319 ± 1.74

Sentiment DVD (2) 4 50.77 ± 0.78 51.06 ± 3.302 56.06 ± 2.408 54.98 ± 3.96 55.003 ± 2.936
8 52.24 ± 1.54 55.19 ± 3.298 56.98 ± 3.299 55.63 ± 4.34 57.527 ± 3.562
16 52.6 ± 2.09 59.45 ± 3.84 58.95 ± 2.813 58.69 ± 6.08 60.76 ± 2.944

Scitail (2) 4 43.36 ± 4.74 50.227 ± 5.69 52.296 ± 4.366 58.53 ± 09.74 54.101 ± 3.759
8 54.29 ± 5.25 54.196 ± 6.678 55.964 ± 5.705 57.93 ± 10.70 56.341 ± 5.786
16 52.68 ± 3.0 57.744 ± 5.696 59.675 ± 4.033 65.66 ± 06.82 59.692 ± 4.227

Restaurant (8) 4 10.56 ± 1.36 18.161 ± 2.822 24.932 ± 17.102 49.37 ± 4.28 47.634 ± 5.237
8 20.92 ± 2.4 32.146 ± 5.785 29.787 ± 9.573 49.38 ± 7.76 55.912 ± 4.494
16 29.37 ± 4.05 40.435 ± 3.348 29.154 ± 13.537 69.24 ± 3.68 61.716 ± 2.208

CoNLL (4) 4 21.48 ± 2.71 35.438 ± 7.324 27.02 ± 7.346 50.44 ± 08.57 52.724 ± 5.84
8 29.84 ± 3.28 44.259 ± 4.886 31.296 ± 17.487 50.06 ± 11.30 60.374 ± 3.731
16 37.18 ± 3.32 52.116 ± 5.354 22.923 ± 7.933 74.47 ± 03.10 67.496 ± 4.551

Table 5: Classification performance (accuracy) of our methods (constraintSLP and DeepSLP) and baselines in the
low-resource setting. Entries in grey indicate the best model out of all; * refers to the baseline as reported in Bansal
et al. (2020a). Subscripts for constraintSLP and DeepSLP refer to the (non-fine-tuned) encoder used. Each set of
results is separated by a double line. The first set of results contains intent classification tasks, the second set has a
natural language inference task and the last set contains entity typing tasks.
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Category (Classes) Shot ProtoNet LEOPARD* Reptile MetaSLPREPTILE MetaSLPFOMAML

Political Bias (2) 4 56.33 ± 4.37 60.49 ± 6.66 58.82 ± 4.31 60.96 ± 6.13 55.06 ± 5.9
8 58.87 ± 3.79 61.74 ± 6.73 59.43 ± 3.79 63.65 ± 4.57 58.97 ± 5.5
16 57.01 ± 4.44 65.08 ± 2.14 62.21 ± 0.72 66.05 ± 1.57 63.63 ± 4.74

Emotion (13) 4 09.18 ± 3.14 11.71 ± 2.16 11.65 ± 3.21 11.94 ± 1.95 11.03 ± 2.98
8 11.18 ± 2.95 12.90 ± 1.63 10.56 ± 2.85 13.42 ± 1.46 12.38 ± 2.69
16 12.32 ± 3.73 13.38 ± 2.20 11.62 ± 3.11 14.03 ± 2.35 12.32 ± 1.76

Sentiment Books (2) 4 73.15 ± 5.85 82.54 ± 1.33 76.95 ± 1.03 83.22 ± 0.95 74.51 ± 5.25
8 75.46 ± 6.87 83.03 ± 1.28 77.49 ± 1.08 83.8 ± 0.8 79.25 ± 1.97
16 77.26 ± 3.27 83.33 ± 0.79 77.88 ± 0.56 83.8 ± 1.59 78.41 ± 1.08

Rating DVD (3) 4 47.73 ± 6.20 49.76 ± 9.80 45.91 ± 9.85 45.2 ± 8.91 39.64 ± 5.17
8 47.11 ± 4.00 53.28 ± 4.66 47.23 ± 9.22 58.38 ± 2.9 52.35 ± 5.27
16 48.39 ± 3.74 53.52 ± 4.77 48.49 ± 8.88 57.41 ± 4.71 60.4 ± 3.71

Rating Electronics (3) 4 37.40 ± 3.72 51.71 ± 7.20 44.47 ± 8.25 45.34 ± 7.22 39.53 ± 5.76
8 43.64 ± 7.31 54.78 ± 6.48 49.1 ± 6.81 55.10 ± 5.12 47.83 ± 5.94
16 44.83 ± 5.96 58.69 ± 2.41 50.68 ± 6.8 59.47 ± 2.29 56.53 ± 4.36

Rating Kitchen (3) 4 44.72 ± 9.13 50.21 ± 09.63 45.38 ± 10.96 45.20 ± 8.78 39.11 ± 7.16
8 46.03 ± 8.57 53.72 ± 10.31 46.71 ± 9.84 54.53 ± 9.9 50.19 ± 8.36
16 49.85 ± 9.31 57.00 ± 08.69 52.87 ± 9.52 58.94 ± 7.58 57.63 ± 8.37

Political Audience (2) 4 51.47 ± 3.68 52.60 ± 3.51 52.45 ± 4.26 54.1 ± 3.66 52.03 ± 2.73
8 51.83 ± 3.77 54.31 ± 3.95 52.87 ± 4.31 56.01 ± 3.65 52.06 ± 2.27
16 53.53 ± 3.25 57.71 ± 3.52 55.6 ± 1.85 58.57 ± 2.04 54.33 ± 3.14

Sentiment Kitchen (2) 4 62.71 ± 9.53 78.35 ± 18.36 69.81 ± 14.58 81.96 ± 3.73 72.73 ± 7.97
8 70.19 ± 6.42 84.88 ± 1.12 75.76 ± 1.13 83.33 ± 1.99 76.86 ± 4.46
16 71.83 ± 5.94 85.27 ± 1.31 76.41 ± 0.66 84.33 ± 1.81 80.78 ± 4.38

Disaster (2) 4 50.87 ± 1.12 51.45 ± 4.25 49.76 ± 4.73 55.03 ± 8.73 52.62 ± 2.71
8 51.30 ± 2.30 55.96 ± 3.58 52.17 ± 5.17 57.77 ± 6.40 55.04 ± 5.79
16 52.76 ± 2.92 61.32 ± 2.83 55.37 ± 4.53 65.18 ± 4.41 62.27 ± 4.42

Airline (3) 4 40.27 ± 8.19 54.95 ± 11.81 57.11 ± 14.16 57.39 ± 7.83 51.62 ± 10.53
8 51.16 ± 7.60 61.44 ± 03.90 64.37 ± 3.49 65.67 ± 4.82 57.47 ± 9.37
16 48.73 ± 6.79 62.15 ± 05.56 66.31 ± 2.55 69.48 ± 2.06 65.02 ± 5.16

Rating Books (3) 4 48.44 ± 7.43 54.92 ± 6.18 56.57 ± 8.17 55.79 ± 5.61 54.4 ± 5.83
8 52.13 ± 4.79 59.16 ± 4.13 57.33 ± 7.63 65.74 ± 5.58 57.17 ± 6.77
16 57.28 ± 4.57 61.02 ± 4.19 63.26 ± 3.59 67.87 ± 3.45 66.66 ± 3.93

Political Message (9) 4 14.22 ± 1.25 15.69 ± 1.57 14.58 ± 1.78 18.84 ± 1.82 14.96 ± 1.94
8 15.67 ± 1.96 18.02 ± 2.32 15.13 ± 2.16 20.09 ± 2.71 16.09 ± 2.6
16 16.49 ± 1.96 18.07 ± 2.41 16.38 ± 2.15 23.22 ± 1.17 16.62 ± 2.19

Sentiment DVD (2) 4 74.38 ± 2.44 80.32 ± 1.02 72.03 ± 11.61 80.97 ± 1.21 73.08 ± 7.56
8 75.19 ± 2.56 80.85 ± 1.23 75.79 ± 1.62 81.85 ± 1.79 76.55 ± 2.9
16 75.26 ± 1.07 81.25 ± 1.41 76.69 ± 0.8 83.48 ± 1.01 78.19 ± 1.32

Scitail (2) 4 76.27 ± 4.26 69.50 ± 9.56 59.13 ± 10.58 53.48 ± 5.59 61.55 ± 9.11
8 78.27 ± 0.98 75.00 ± 2.42 62.63 ± 10.85 60.79 ± 4.6 68.03 ± 4.54
16 78.59 ± 0.48 77.03 ± 1.82 68.03 ± 1.57 61.67 ± 3.61 68.5 ± 3.7

Restaurant (8) 4 17.36 ± 2.75 49.84 ± 3.31 13.37 ± 2.25 27.00 ± 2.61 20.31 ± 2.97
8 18.70 ± 2.38 62.99 ± 3.28 16.83 ± 3.42 35.66 ± 2.39 27.74 ± 2.29
16 16.41 ± 1.87 70.44 ± 2.89 16.0 ± 3.44 37.20 ± 2.68 28.57 ± 2.41

CoNLL (4) 4 32.23 ± 5.10 54.16 ± 6.32 31.31 ± 5.32 40.79 ± 3.40 36.07 ± 3.25
8 34.49 ± 5.15 67.38 ± 4.33 33.17 ± 5.1 41.25 ± 5.21 40.5 ± 2.16
16 33.75 ± 6.05 76.37 ± 3.08 34.04 ± 3.59 45.96 ± 4.75 43.67 ± 6.92

Table 6: Classification performance (accuracy) of MetaSLP and baselines in the high-resource setting. Entries in
green indicate the best model out of all; * refers to the baseline as reported in Bansal et al. (2020a). Each set of
results is separated by a double line. The first set of results contains intent classification tasks, the second set has a
natural language inference task and the last set contains entity typing tasks.
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Figure 9: Ensemble uncertainty contrasted against the
uncertainty of fine-tuned BERT, where we observe that
DeepSLP’s uncertainty F (x) (given by yellow) is driven
by ensemble diversity, given by JSD(F (x)) in blue.

individual models and the ensemble. We use this
definition to ascertain the diversity of classifica-
tions provided by the jointly utilised soft-label pro-
totypes. Diversity is a desirable property as ensem-
ble predictions are generally more robust due to
diversity between the predictions of their individ-
ual members (Lee et al., 2015).

Existing work (Ashukha et al., 2020; Lakshmi-
narayanan et al., 2017) defines ensemble uncer-
tainty as the sum of ensemble diversity and the
expected average model uncertainty on ood data.
Based on Abe et al. (2022), it is calculated as:

H([y|F (x)] =
−1
C

∑
p(yi|F (x))log(p(yi|F (x)))

If we use the Jenson-Shannon divergence as a di-
versity measure for an ensemble given by

JSDp(f)[y|f(x)] =
1

M

∑
KL[y|f(x)||y|F (x)]

where KL is the average KL divergence between
the output distribution of each soft-label prototype
and the jointly utilised soft-label prototypes, from
Abe et al. (2022), this expression reduces to:

H([y|F (x)] =
ens. diversity

JSDp(f)[y|f(x)] +
avg. model uncert.

Ep(f)[H[y|f(x)]]
We contrast ensemble uncertainty and single

model uncertainty using the fine-tuned BERT
model for the task airline in Figure 9, but note
that similar trends are observed across all tasks.
We note that the uncertainty of jointly utilised soft-
label prototypes is generally higher than that of
the fine-tuned BERT model. As the average model
uncertainty of individual soft-label prototypes is
negligibly low, the uncertainty in the joint case
is driven mainly by the diversity of the ensemble.

This is in line with previous work which attributes
an increase in uncertainty in ensembles due to di-
versity (Lakshminarayanan et al., 2017; Dietterich,
2000; Wilson and Izmailov, 2020). Though not
strictly an ensemble, our approach exhibits similar
properties (higher uncertainty driven by model di-
versity), as well as a general reduction in standard
deviation compared to fine-tuned BERT.

The above provide evidence that our approach as
a whole exhibits desirable properties of ensembles
which drive a higher performance but which do not
lead to higher training time nor compute.

236



Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024), pages 237–244
August 15, 2024 ©2024 Association for Computational Linguistics

Learned Transformer Position Embeddings
Have a Low-Dimensional Structure

Ulme Wennberg
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
ulme@kth.se

Gustav Eje Henter
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
ghe@kth.se

Abstract
Position embeddings have long been essen-
tial for sequence-order encoding in transformer
models, yet their structure is underexplored.
This study uses principal component analysis
(PCA) to quantitatively compare the dimension-
ality of absolute position and word embeddings
in BERT and ALBERT. We find that, unlike
word embeddings, position embeddings occupy
a low-dimensional subspace, typically utilizing
under 10% of the dimensions available. Addi-
tionally, the principal vectors are dominated by
a few low-frequency rotational components, a
structure arising independently across models.

1 Introduction

Transformers, as introduced by Vaswani et al.
(2017), have significantly advanced the field of
natural language processing, excelling in tasks like
machine translation (Lample et al., 2018), question
answering (Yamada et al., 2020), information ex-
traction (Wadden et al., 2019; Lin et al., 2020), and
text generation (Radford et al., 2018; Brown et al.,
2020). The ability to encode positional information
is vital in these models, since the transformer archi-
tecture otherwise does not take order into account.

Despite their widespread use, the structure of
absolute position embeddings in NLP models like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020), and ELEC-
TRA (Clark et al., 2020), as well as vision mod-
els like the vision transformer (Dosovitskiy et al.,
2021) and BEIT (Bao et al., 2022), remains under-
explored. Our research aims to address this gap.

This paper investigates the structure of learned
absolute position embeddings in greater detail than
before. Specifically, we apply principal compo-
nents analysis to the learned position embeddings
across 12 different transformer-based language
models. This yields several novel observations:

• Unlike word embeddings, position embed-
dings occupy a low-dimensional subspace.
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Figure 1: Variance explained by each individual princi-
pal component for position (PE, solid lines) and word
(WE, dashed) embeddings across four ALBERT models.
Each component explains less variance than the previous
one by definition. Unlike word embeddings, position
embeddings occupy a low-dimensional subspace.

• Variation within this subspace takes the shape
of mutually orthogonal periodic components
operating pairwise at different frequencies.

These trends are consistent across different models.
Our findings resemble mechanisms for mathemat-
ical processing recently observed in transformers
and suggest new ways in which sequence order can
be encoded and learned in transformer models.

2 Background

Transformer-based language models, such as those
by Vaswani et al. (2017), have dramatically
changed natural language processing by effectively
integrating information across long distances in
a sequence. Central to the functionality of these
models are position embeddings, which enable the
encoding of sequence order—an essential aspect in
otherwise order-agnostic transformer architectures.

Content embeddings zi in transformers are con-
structed as zi = eW (xi) + eP (i), where xi is the
token at position i, eW represents word embed-
dings, and eP (i) is the position embedding vector
of position i; EP will denote the matrix obtained
by stacking all row-vectors eP . This setup allows
the final representation of tokens in a sequence
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Table 1: Variance in principal components (PCs) of word and position embeddings for twelve different language
models. PCA of sinusoidal position embeddings (Vaswani et al., 2017) is also included for reference.

(a) Position embeddings

Model Tot. PCs Top 3 Top 5 Top 10 N50% (%)
Sinusoidal 128 0.28 0.37 0.52 10 7.8%
albert-base-v1 128 0.50 0.69 0.99 4 3.1%
albert-base-v2 128 0.44 0.67 1.00 4 3.1%
albert-large-v1 128 0.45 0.63 0.95 4 3.1%
albert-large-v2 128 0.40 0.61 0.96 4 3.1%
albert-xlarge-v1 128 0.34 0.51 0.88 5 3.9%
albert-xlarge-v2 128 0.31 0.49 0.89 6 4.7%
albert-xxlarge-v1 128 0.27 0.41 0.68 7 5.5%
albert-xxlarge-v2 128 0.29 0.44 0.72 6 4.7%
bert-base-uncased 512 0.25 0.38 0.62 8 1.6%
bert-base-cased 512 0.28 0.42 0.64 7 1.4%
bert-large-uncased 512 0.23 0.33 0.53 10 2.0%
bert-large-cased 512 0.27 0.41 0.65 7 1.4%

(b) Word embeddings

Model Tot. PCs Top 3 Top 5 Top 10 N50% (%)

albert-base-v1 128 0.07 0.11 0.19 37 28.9%
albert-base-v2 128 0.11 0.15 0.21 39 30.5%
albert-large-v1 128 0.08 0.12 0.20 34 26.6%
albert-large-v2 128 0.09 0.13 0.20 39 30.5%
albert-xlarge-v1 128 0.09 0.13 0.23 27 21.1%
albert-xlarge-v2 128 0.09 0.13 0.21 33 25.8%
albert-xxlarge-v1 128 0.08 0.11 0.18 39 30.5%
albert-xxlarge-v2 128 0.07 0.11 0.18 39 30.5%
bert-base-uncased 768 0.09 0.10 0.12 185 24.1%
bert-base-cased 768 0.05 0.07 0.10 164 21.4%
bert-large-uncased 1024 0.07 0.08 0.10 238 23.2%
bert-large-cased 1024 0.07 0.08 0.11 198 19.3%

to depend on token positions, which is crucial to
adequately model contextual effects in text.

While Vaswani et al. (2017) used a fixed, non-
learnable encoding scheme for position embed-
dings, subsequent work has aimed to enhance the
expressiveness and efficiency of position encod-
ing. BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) used learnable, data-driven posi-
tion embeddings to better capture positional depen-
dencies. ALBERT (Lan et al., 2020) refined this
approach by introducing factorized embedding pa-
rameterizations, reducing model size and complex-
ity while maintaining performance. Research has
shown that varying word embedding sizes based on
frequency can significantly improve computational
efficiency and performance (Grave et al., 2017;
Baevski and Auli, 2019; Dai et al., 2019), but vary-
ing sizes between word and position embeddings
has not been explored, with standard practice being
to use the same dimensionality for both.

Most work on position embeddings examines
their impact on model performance, not their in-
trinsic properties. Existing results show that self-
attention tends to localize in models using absolute
position embeddings (Clark et al., 2019; Htut et al.,
2019) and that these embeddings have translation-
equivariant structure (Wennberg and Henter, 2021).

3 Dimensionality Analysis of Embeddings

We now analyze the dimensionality of word and po-
sition embeddings in transformer-based language
models. A deeper dive into into the structure of
position embeddings is reserved for Sec. 4.

To understand the structural characteristics of po-
sition and word embeddings, we extracted both em-
bedding types from various pre-trained transformer
models, specifically twelve different versions of
ALBERT and BERT provided by Hugging Face

(Wolf et al., 2020). We then applied principal com-
ponent analysis (PCA) to these embeddings, ana-
lyzing each type separately. PCA computes a linear
transformation that decomposes high-dimensional
data into orthogonal vectors representing the pri-
mary axes of variation. Dimensionality reduction is
performed by keeping only the k leading principal
components (PCs).

Table 1 reports on the results of the PCA analysis.
Specifically, it shows how much of the total vari-
ance among embedding vectors of each same type
that can be explained by the top 3, 5, and 10 princi-
pal components, as well as how many components
are needed to explain at least 50% of the variation
between the vectors (denoted N50%). This allows
us to assess and compare the effective dimension-
ality between position and word embeddings.

From the tables, we see that position embed-
dings have a significantly lower-dimensional struc-
ture compared to word embeddings, suggesting
that positional information is encoded more com-
pactly. All ALBERT and BERT models consid-
ered have 50% of their variance in the first 1.4–
5.5% of the principal components or less, while
word embeddings require 19–30% of the PCs to
achieve the same result. Figure 1 graphs the vari-
ance explained by individual principal components
in detail for the ALBERT v2 models, finding that
position-embedding vectors lie almost perfectly on
a subspace of 10 to 20 dimensions, whereas word
embeddings use the entire 128-dimensional space.

4 Analyzing the Principal Components

Having established the low dimensionality of posi-
tion embeddings, we next explore what the uncov-
ered principal components represent and how they
contribute to the embedding structure.

First, we plot (in Figure 2) the leading principal
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Figure 2: Heatmaps visualizing the top 14 PCs of the position-embedding matrices EP of the ALBERT v2 models.
Best viewed in Adobe Acrobat to avoid blurry rendering. The full matrix with all PCs can be found in Figure 7.
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Figure 3: Heatmaps visualizing the matrix P = EPE
T
P of position-embedding inner products in albert-base-v2,

when EP is approximated by its top k PCs. The greater the value of the inner product, the lighter the color.

components of a few models to visually interpret
the dominant patterns in the position embeddings.
This reveals intriguing patterns. In all cases, the
first ten components take the form of smooth, peri-
odic oscillations as a function of position, indica-
tive of simple harmonic structure. Although the
specific ordering and frequencies change between
models, components come in pairs that exhibit sim-
ilar periodic structure, like sine and cosine repre-
senting cyclical motion. For all models except the
largest, the highest components plotted appear flat
and uniform red (i.e., close to zero), reflecting the
limited dimensionality of the position embeddings.

Figure 5 in the appendix demonstrates, through
Fourier analysis, that the sequence of principal
component scores contains only a few dominant
frequencies, which accounts for their periodic ap-
pearance. The peak frequencies observed, such as
those representing 1, 5, 15, and 49 revolutions as i
runs through its full range from 0 to 511 in the case
of albert-base-v2, are relatively low. This finding
is distinct from the sinusoidal position embeddings
described by Vaswani et al. (2017), which utilize
512 sinusoids of equal magnitude. Unlike the prin-
cipal component scores, these sinusoids are not
mutually orthogonal and are designed with differ-
ent objectives for encoding position in a sequence.

By computing the matrix EPE
T
P , which contains

the inner products between all pairs of position em-
beddings, it has been found that learned position

embeddings tend to exhibit translation equivariance
(Wennberg and Henter, 2021). In contrast, classic
sinusoidal position embeddings display weak inner
products between off-diagonal elements, suggest-
ing an absence of such patterns (Wang and Chen,
2020). By repeating this inner-product experiment,
but approximating the position-embedding matrix
EP by its top k principal components, we can see
how translation-equivariant structure (where each
row of the matrix is a translation of the one above
it) is rapidly created using only a few principal com-
ponents for the albert-v2-base model in Figure 3.

Finally, as PCA is a dimensionality-reduction
technique, we can visualize all 512 albert-base-v2
position-embedding vectors in two dimensions by
means of a scatter plot of their two leading principal
components, as shown in Figure 4. We observe a
very clear rotational structure, where as the position
i goes from 0 to 511, the 2D representation of
eP (i) almost completes a full clockwise turn. Other
principal-component pairs show similar patterns,
but complete multiple rotations as i runs through
the full range of position indices.

Figure 4 exhibits two outliers from the circular
pattern, namely vectors 0 and 511 (the first and
last). This is likely due to how the model is trained:
position embeddings are only ever used after being
summed with a word embedding, and the the first
and the last sequence positions are always assigned
the specific tokens “CLS” and “SEP”, respectively.
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Figure 4: Scatter plot of albert-base-v2 position embed-
dings reduced to two dimensions using PCA. For clarity,
every 16th position is annotated.

This means that, unlike at all other positions, these
two vectors are largely arbitrary, e.g., adding any
vector v to eP (0) while subtracting the same vector
from eW (CLS) leads to the exact same z0.

5 Discussion and Implications

We have demonstrated that position embeddings
operate within a significantly lower-dimensional
space compared to word embeddings. This likely
reflects their role in encoding less complex, but
nonetheless essential structural information.

Opportunities for Transformer Models: In-
tuitively, our findings present an opportunity to
streamline embeddings and reduce computational
demands without compromising the model’s ability
to interpret linguistic contexts. For example, one
could utilize factorized embedding parametriza-
tions of different dimensionalities for position em-
beddings versus word embeddings, similar to how
ALBERT mentions the possibility to use different
embedding dimensionalities for different word to-
kens (Lan et al., 2020), although they opted not
to do so. To further refine model inductive biases
based on the patterns we observed, learned posi-
tion embeddings could be initialized or otherwise
incentivized to have rotational structure, e.g., being
parameterized by sines and cosines with a learnable
frequency. This would differ from the rotational
position embeddings (RoPE) of by Su et al. (2024),
whose rotational frequencies are not learnable.

We observed a consistently low-dimensional
structure of position embeddings among a wide
class of transformer models. This supports the
soundness of the heuristic approach for creating
position embeddings used in Longformer (Beltagy

et al., 2020) – where pre-trained RoBERTa posi-
tion embeddings were used as a starting point for
training a new model – and further suggests that
re-using learned position embeddings from older
models may be useful as a general strategy.

Insights into Embedding Ordered Sequences:
Transformers, particularly those like ALBERT
models which have undergone extensive training,
exhibit an intriguing pattern in their position em-
beddings. These models often utilize approxi-
mately 10 principal components—closely aligning
with 29 = 512, the typical maximum sequence
length. This choice of dimensionality suggests that
each dimension may function akin to a binary sys-
tem, with each principal component potentially im-
plementing a sine or cosine curve. Such a structure
effectively splits the data, allowing for a compact
yet robust representation of sequence positions.

This method of embedding sequences as concur-
rent rotations in low-dimensional spaces indicates
a standardized approach to processing sequential
data via embeddings. This geometric encoding
strategy is echoed in findings across several recent
studies. Nanda et al. (2023) noted that transformer
models trained on mathematical tasks often use a
“clock algorithm” in their latent spaces, enabling
modular arithmetic. Similarly, Zhong et al. (2023)
and Wennberg and Henter (2024) observed analo-
gous rotational patterns in numerical embeddings,
whether trained from scratch on mathematical tasks
or using language-modeling techniques.

These observations highlight the potential of us-
ing geometric transformations as a unified method
to encode sequential information across diverse
applications, like time-series analysis, where preci-
sion and optimized data representation are crucial.

6 Conclusions and Future Work

We have found that learned position embeddings in
a range of transformer language models differ from
the behavior of word embeddings, in that position
embeddings are confined to a low-dimensional lin-
ear subspace. We furthermore find evidence that
this subspace takes the form of a few orthogonal
rotational components at different frequencies.

Interesting future directions to explore include
studying position embeddings in other domains,
such as vision, and leveraging our findings to devise
more efficient transformer variants with improved
inductive biases for modeling sequence data.
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Limitations

This study examined a select number of transformer
models, using principal component analysis. PCA
only considers linear subspaces for dimensional-
ity reduction. Consequently, our analysis can only
be interpreted as an upper-bound estimate of the
intrinsic dimensionality of the manifold of which
position embeddings reside, and may overlook non-
linear relationships within the embeddings. In other
words, the actual dimensionality of the position-
embedding manifold may be lower than our esti-
mates, if it is nonlinear.

Our analysis is limited to a set of twelve differ-
ent transformer-based language models that use
learned absolute position embeddings. With our
focus on absolute position embeddings, we did
not study alternative position embeddings such as
RoPE (Su et al., 2024). Although including addi-
tional position-embedding schemes would indeed
be interesting, adapting our analysis methodology
to RoPE is not straightforward, since it implements
positional dependence differently, and in particular
not by summing word embeddings with explicit
postion embedding vectors eP (i). Additionally,
it should be said that even though many recent
language models utilize RoPE, models in other do-
mains such as computer vision (Dosovitskiy et al.,
2021; Bao et al., 2022) still use absolute position
embeddings like the ones analyzed in this paper.

Furthermore, our investigation is confined to the
input embeddings zi of the models we study. This
means that we cannot tell how the structure and
dimensionality of these vectors may change during
processing, as they pass through successive inter-
nal layers of the models and become increasingly
context-dependent.

Finally, our study does not specifically analyze
how the low-dimensional manifolds we uncovered
influence the transformer self-attention. Investi-
gating this might shed light on why these low-
dimensional manifolds emerge in the first place.

Ethics Statement

To the best of our knowledge, this paper, which
focuses on the analysis of learned position embed-
dings in transformer models, does not directly raise
any ethical concerns.
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A Appendix

For the interested reader, this appendix provides
supplementary visual data to complement the anal-
yses discussed in the main sections of the paper.

Figure 5 presents the summed frequency mag-
nitude spectrum of the sequence of the principal
component scores, based on the position embed-
dings from ALBERT base-v2, emphasizing domi-
nant frequencies with a normalized Nyquist limit
of 0.5 and a logarithmic magnitude scale.
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Figure 5: Frequency magnitude spectrum of principal
component scores from albert-base-v2. The plot dis-
plays the sum of Fourier magnitudes across all the prin-
cipal components, thus highlighting dominant frequen-
cies. Frequencies are normalized with 0.5 as the Nyquist
limit, and the plot uses a logarithmic y-axis.

Furthermore, Figure 6 depicts the frequency
magnitude spectrum for each of the top 10 prin-
cipal components in the sequence of the principal
component scores, highlighting the unique spectral
contributions of each principal component.
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Figure 6: Frequency magnitude spectrum for each of
the top 10 principal component scores from albert-base-
v2. The plot displays the Fourier magnitudes for each
principal component, thus highlighting their individual
contributions. Frequencies are normalized with 0.5 as
the Nyquist limit.

Figure 7 presents extended heatmaps represent-
ing the entirety of the principal component scores

analyzed for various ALBERT models. It is easily
noticeable that only the leftmost principal compo-
nents contribute meaningfully to the variability in
the data.
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(a) Heatmap of the principal component scores for albert-base-
v2, visualizing the matrix of all k = 128 principal compo-
nents.
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(b) Heatmap of the principal component scores for albert-
large-v2, visualizing the matrix of all k = 128 principal
components.
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(c) Heatmap of the principal component scores for albert-
xlarge-v2, visualizing the matrix of all k = 128 principal
components.
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(d) Heatmap of the principal component scores for albert-
xxlarge-v2, visualizing the matrix of all k = 128 principal
components.

Figure 7: Extended heatmaps representing the entirety
of the principal component scores analyzed for various
ALBERT models, highlighting the contribution of the
leftmost components to the variability in the data.
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Abstract
The extreme multi-label classification (XMC)
task involves learning a classifier that can pre-
dict from a large label set the most relevant
subset of labels for a data instance. While deep
neural networks (DNNs) have demonstrated re-
markable success in XMC problems, the task
is still challenging because it must deal with
a large number of output labels, which make
the DNN training computationally expensive.
This paper addresses the issue by exploring
the use of random circular vectors, where each
vector component is represented as a complex
amplitude. In our framework, we can develop
an output layer and loss function of DNNs for
XMC by representing the final output layer as
a fully connected layer that directly predicts
a low-dimensional circular vector encoding a
set of labels for a data instance. We conducted
experiments on synthetic datasets to verify that
circular vectors have better label encoding ca-
pacity and retrieval ability than normal real-
valued vectors. Then, we conducted experi-
ments on actual XMC datasets and found that
these appealing properties of circular vectors
contribute to significant improvements in task
performance compared with a previous model
using random real-valued vectors, while reduc-
ing the size of the output layers by up to 99%.

1 Introduction

Extreme multi-label classification (XMC) prob-
lems arise in various domains, such as product
recommendation systems (Jain et al., 2016), label-
ing large encyclopedia (Dekel and Shamir, 2010;
Partalas et al., 2015), instance-level image recog-
nition (Deng et al., 2010; Ridnik et al., 2021) and
natural language generation (Mikolov et al., 2013).
The XMC task involves learning a classifier which
can predict from a large label set the most relevant
subset of labels for a data instance. Recent work
has focused on deep neural network (DNN) mod-
els (Liu et al., 2017; You et al., 2019; Chang et al.,

∗Email: z301067a@gmail.com

2020; Zhang et al., 2021; Dahiya et al., 2023; Jain
et al., 2023) that deliver task performances superior
to those of early approaches using linear predic-
tors (Babbar and Schölkopf, 2017; Prabhu et al.,
2018b).

While DNN models have brought great perfor-
mance improvements, the XMC task still remains
a challenge mainly due to the extremely large out-
put space. Since a large number of output labels
make it difficult to train DNN models efficiently,
various methods for improving training efficiency
have been proposed (Khandagale et al., 2020; Wyd-
much et al., 2018; Jiang et al., 2021; Ganesan et al.,
2021). Among the previous studies, Ganesan et al.
(2021) presented a promising method that employs
random real-valued vectors for reducing the out-
put layer size of DNN models. In this approach, a
high-dimensional output space vector is replaced
with a low-dimensional random vector encoding
the relevant label information for a data instance.
Then, DNN models are trained to predict the label-
encoded vector directly. After the model generates
a vector, it can be checked approximately whether
a label is encoded in it or not through a vector com-
parison using the cosine similarity between the out-
put vector and a vector that the label is assigned to.
The basic idea of the label encoding and retrieval
framework relies on the theory of Holographic Re-
duced Representations (Plate, 1995), which was
developed in the cognitive neuroscience field.

However, random real-valued vectors do not
have sufficient ability for representing data in-
stances that belong to many class concepts. As
our experiments in § 3 show, the label retrieval ac-
curacy decreases markedly as the number of class
labels encoded in a vector increases. To allevi-
ate the issue, this paper presents a novel method
that uses circular vectors instead of real-valued
vectors. Each element of a circular vector takes
a complex amplitude as its value; i.e., the vector
element is represented by an angle ranging from
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−π to π. Since an angle can be represented by a
real value, the memory cost for the circular vec-
tor representation is the same as that for a normal
real-valued vector. In spite of this fact, surprisingly,
circular vectors have better label encoding and re-
trieval capacities than real-valued vectors. One of
the challenges in applying circular vectors to DNN
models is how to adapt the output layer to a circu-
lar vector. In § 4, we describe our neural network
architecture that uses circular vectors in the output
layer. Our experimental results on XMC datasets
show that our method based on circular vectors
significantly outperforms a previous model using
real-valued vectors, while reducing the size of the
output layers by up to 99%.

2 Previous Study: Learning with
Holographic Reduced Representations

Several vector symbolic architectures have
been developed in the field of cognitive neu-
roscience, including Tensor Product Repre-
sentations (Smolensky, 1990), Binary Spatter
Code (Kanerva, 1996), Binary Sparse Distributed
Representations (Rachkovskij, 2001), Multiply-
Add-Permute (Gayler, 2004), and Holographic
Reduced Representations (HRR) (Plate, 1995).
Among them, HRR is a successful architecture
for distributed representations of compositional
structures. To model complex structured prediction
tasks in a vector space that involve key-value
stores, sequences, trees and graphs, many prior
studies have explored how to use HRR in various
machine learning frameworks; Recurrent Neural
Networks (Plate, 1992), Tree Kernels (Zanzotto
and Dell’Arciprete, 2012), Knowledge Graph
Representation Learning (Nickel et al., 2016;
Hayashi and Shimbo, 2017), Long-short Term
Memory Networks (Danihelka et al., 2016),
Transformer Networks (Alam et al., 2023), and
among others. In particular, Ganesan et al. (2021)
presented a general framework based on the HRR
architecture for efficient multi-label learning of
DNN models. To clarify the motivation of our
study, we will review the framework in more detail
in the following subsections.

2.1 Holographic Reduced
Representations (HRR)

In the HRR architecture, terms in a domain are rep-
resented by real-valued vectors. Here, we assume
that each vector is independently sampled from a

Gaussian distributionN (0, Id ·d−1), where d is the
vector dimension size and Id is the d× d identity
matrix. To bind an association of two terms repre-
sented by vectors a and b, respectively, HRR uses
circular convolution, denoted by the mathematical
symbol ⊗:

a⊗ b = F−1(F(a)⊙F(b)) (1)

where ⊙ is element-wise vector multiplication.
Note that the circular convolution can be computed
by using a fast Fourier transform (FFT) F and
inverse FFT F−1, but they requireO(d log d) com-
putation time. Given several associations a ⊗ b,
c ⊗ d and e ⊗ f , the vectors can be superposed
to represent their combination: S = (a ⊗ b) ⊕
(c⊗ d)⊕ (e⊗ f), where the “superposition” oper-
ator ⊕ is just normal vector addition +. The HRR
architecture also provides the inversion operation
†:

a† = F−1(
1

F(a)). (2)

The inversion operation can be used to perform
“unbinding”. For an example, it allows the recon-
struction of a noisy version of d to be recreated
from the memory S and a cue c: S⊗ c† ≈ d. Fi-
nally, the “similarity” operation is defined as the
dot-product aTb. Using the similarity operation,
we can check approximately whether a exists in a
memory S if STa ≈ 1 or not present if STa ≈ 0.

2.2 Multi-label Learning with HRR
Ganesan et al. (2021) introduced a novel method
using HRR for reducing the computational com-
plexity of training DNNs for XMC tasks. Let L be
the number of class labels in an XMC task. The
basic idea behind the approach of (Ganesan et al.,
2021) is quite intuitive; for efficient DNN train-
ing, an L-dimensional output (teacher) vector is
replaced with a d-dimensional real-valued vector
encoding the relevant label information for a data
instance. By assuming d≪ L, we can dramatically
reduce the output layer size of the DNN model.

In this approach, each class label y is assigned
to a d-dimensional vector cy ∈ Rd. Then, the label
information for a data instance x is represented as
a label vector Sx ∈ Rd:

Sx =
⊕

p∈Yx

p⊗ cp (3)

where Yx denotes the set of class labels that x be-
longs to and p ∈ Rd represents the positive class
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concept.1 To train a DNN model f(x) that gener-
ates Ŝx ∈ Rd ≈ Sx, Ganesan et al. (2021) define a
loss function:

loss =
∑

p∈Yx

(1− sim((Ŝx ⊗ p†), cp)). (4)

To prevent the model from maximizing the magni-
tudes of the output vectors, Ganesan et al. (2021)
used the cosine similarity as sim(·, ·), which is a
normalized version of the dot product that ranges
from -1 to 1. In the inference phase, labels can
also be ranked according to the cosine similarity
computed by sim(Ŝx ⊗ p†, cp) for each label p.
Moreover, Ganesan et al. (2021) introduced a novel
vector projection method to reduce the effect of the
variance of the similarity computation:

π(x) = F−1

(
. . . ,

F(x)j
|F(x)j |

, . . .

)
. (5)

Here, each HRR vector x is initialized with x
d
=

π
(
N (0, Id · d−1)

)
, which ensures each element of

the vector in the frequency domain is unitary; i.e.,
the complex magnitude is one.

3 Multi-label Representations with
Circular Vectors

In this section, we show through experiments that
random real-valued vectors actually do not have
sufficient ability for representing data instances
that belong to many classes. The reason is mainly
due to the projection operation in Equation 5. As
described in § 2, the projection operation was pro-
posed as a way to reduce the effect of the variance
of the similarity computation, but each element of
the superposition between two normalized vectors
via the projection is no longer unitary. Thus, the ef-
fect of the projection decreases when a label vector
encodes more class labels. To alleviate the issue,
we developed a simple alternative that forces all
vector elements to be unitary in the complex do-
main even after the superposition operation. We
describe the details in the following subsection.

3.1 HRR with Circular Vectors
Our idea is to use circular vectors instead of real-
valued vectors. Circular vectors have a complex

1We can encode information on negative labels into a label
vector as well as positive ones, but as shown in (Ganesan et al.,
2021), the negative label information does not contribute to
improving XMC task performance. Thus, in this paper, we
will omit discussion on negative labels for notational brevity.

Im

Re

(cosϕ, sinϕ)

1

1

−1

−1

ϕ

Figure 1: The unit circle in the complex plane with
coordinates. The angle ϕ represents an element of the
circular vector ϕ̄.

amplitude (see Figure 1), which can be represented
by a real value ϕ ranging from −π to π. However,
to force all vector elements to be unitary after any
operations, we require a special HRR system for
circular vectors. In this paper, we borrow the con-
cept of a circular HRR (CHRR) system from (Plate,
2003).

Table 1 compares the HRR operations of the
standard and circular systems. For circular vectors,
each element must be sampled from a uniform dis-
tribution U(−π, π) over (−π, π]. The binding ⊗
and inversion † of CHRR are implemented with
the standard vector arithmetic operations like addi-
tion and subtraction. The similarity of two circular
vectors can be simply determined from the sum of
the cosines of the differences between angles. On
the other hand, superposition is somewhat tricky
because in general the sum of unitary complex val-
ues does not lie on the unit circle. For each pair
of elements ϕj and θj of two circular vectors ϕ̄
and θ̄, the result of superposition is ∠(ei·ϕj +ei·θj ).
Here, ∠(v) extracts an angle of a complex value
v and discards the magnitude of v. Since all of
these operations do not affect the unitary property
of circular vectors, we no longer need the projec-
tion normalization process. Our framework also
has an advantage in computational cost; we can
avoid the FFT and inverse FFT operations, which
take O(d log d) computation time.

3.2 Retrieval Accuracy Experiment

We experimentally demonstrated CHRR’s capac-
ity by comparing its retrieval accuracy with that
of HRR. The experiment attempted to verify how
accurately the positive class vector can be retrieved
from a memory vector. For a data instance x, let cp
be a vector for a positive class p to which x belongs,
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Operation Real-valued (Ganesan et al., 2021) Circular
vector x = [x0, . . . , xd−1] ϕ̄ = [ϕ0, . . . , ϕd−1]

random vector x
d
= π

(
N (0, Id · d−1)

)
ϕj

d
= U(−π, π)

binding x⊗ y = F−1(F(x)⊙F(y)) ϕ̄⊗ θ̄ = [(ϕ0 + θ0) mod 2π, . . . , (ϕd−1 + θd−1) mod 2π]
unbinding x⊗ y† = x⊗F−1( 1

F(y)
) ϕ̄⊗ θ̄† = −θ̄ ⊗ ϕ̄

similarity sim(x,y) = xTy sim(ϕ̄, θ̄) = 1
d

∑
j cos(ϕj − θj)

superposition x⊕ y = x+ y ϕ̄⊕ θ̄ = [∠(ei·ϕ0 + ei·θ0), . . . ,∠(ei·ϕd−1 + ei·θd−1)]

Table 1: Comparison of HRR operations on real-valued and circular vectors.

(a) HRR(w/Proj) (b) CHRR

Figure 2: Retrieval accuracies of HRR(w/Proj) and
CHRR. The number of dimensions d was 1, . . . , 1024
and the number of positive classes k was 1, . . . , 50.

and let p be a vector for the positive class concept
label. The binding and superposition operations
allow us to represent all positive classes for x as
R:

R =
⊕

p∈Yx

(p⊗ cp). (6)

In the experiment, we generated a database consist-
ing of N = 1, 000 random d-dimensional vectors
(cj ∈ Rd, for all j ∈ [1, . . . , N ]). Then, to cre-
ate R, we randomly selected k vectors from the
database to be cp and one vector to be p. As shown
in Equation 6, the k associations can be superposed
to represent R. To retrieve cp from R, we used
the unbinding operation to decode a noisy version
of the vector cp from R, as ĉp = R ⊗ p†. For
each j ∈ [1, . . . , N ], we computed the similar-
ity sj = sim(ĉp, cj) between the decoded vector
ĉp and the individual vector cj . After that, we
compiled the top-k label list according to the sim-
ilarity scores sj . To evaluate the retrieval accu-
racy, we measured the percentage of class labels
in the list, whose vectors were encoded into the
memory R. By varying the number of dimen-
sions d = 1, . . . , 1024 and the number of binding
pairs k = 1, . . . , 50, we plotted the accuracies as a
heat-map (Figure 2, where warmer colors indicate
higher accuracy).2 The results clearly show that

2Schlegel et al. (2021) also demonstrated that CHRR has a
higher retrieval capacity compared with HRR. Yet, they used
all distinct vectors: R = (a⊗ b)⊕ (c⊗ d), and did not use

(a) Variance (b) Mean

Figure 3: Variance and mean of the similarities of HRR,
HRR(w/Proj), and CHRR. We fixed the number of di-
mensions d to 400 and varied the number of positive
classes k from 1 to 50.

CHRR has better retrieval accuracies than those of
HRR. Moreover, the larger the number of super-
posed vectors (k) is, the bigger the performance dif-
ference between CHRR and HRR becomes. Hence,
this tendency indicates that CHRR is more suitable
than HRR for encoding many labels.

3.3 Variance Comparison Experiment

In § 3.2, we confirmed that CHRR exhibits supe-
rior retrieval ability to HRR. There is a possibility
that the CHRR’s similarity operation reduces the
variance more than the projection does. The ex-
periment reported below was conducted to check
the numerical stability of the CHRR’s similarity
operation. To create R as Equation 6, we gener-
ated k random vectors cp and p. We extracted a
noisy version of cp from R as ĉp = R⊗ p†. For
each j ∈ [1, . . . , k], we measure the similarity be-
tween ĉp and cj as sj = sim(ĉp, cj). We plotted
the variances and means of the similarities in Fig-
ure 3 (a) and (b), respectively. We fixed the number
of dimensions d to 400 and varied the number of
binding pairs k = 1, . . . , 50. Our experiments
compared three methods, CHRR, HRR proposed
in (Plate, 1995), and HRR with the projection of
(Ganesan et al., 2021) (HRR(w/Proj)).

Figure 3 (a) shows that as k increases, the vari-

a fixed p: R = (p⊗ a)⊕ (p⊗ b). Therefore, we changed
their experimental settings to fit the XMC learning with HRR.
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ances of all methods tend to converge. However,
while the variance converges, the mean also de-
creases near zero, as shown in Figure 3 (b). There-
fore, as the number of superposed vectors k in-
creases, the impact of variance becomes relatively
larger. Regarding the variance, we can see the need
for the projection, since the HRR(w/Proj) is more
suppressed than the original HRR. Yet, we found
that CHRR is most suppressed; that is, CHRR is
more numerically stable than HRR(w/Proj). As for
the mean, the three methods had roughly compara-
ble performances. Although the mean approached
zero as k increased, this is not a problem in using
similarity for compiling a ranking list of labels.

4 Neural Network Architecture

One of the challenges in adapting CHRR to XMC
tasks is how to adapt the output layer of DNN mod-
els to a circular vector because it has a cyclic fea-
ture; i.e., θ = 2πn × θ, where n ∈ Z. To meet
it, we developed a neural network for predicting
angles that considers the cyclic feature during the
training. The key idea was to represent the output
in Cartesian coordinates, which can uniquely rep-
resent a point on a unit circle. Then, we converted
the output into polar coordinates to obtain angles.

4.1 Architecture for Circular Vectors

We used fully connected (FC) networks in all of
the experiments. They were each composed of a F -
dimensional input layer, two h-dimensional hidden
layers with ReLU activation (Agarap, 2018), and a
d′-dimensional output layer. That is, they had the
same architecture except for the output layer.

We selected two baselines from Ganesan et al.
(2021) by using the FC networks. The first baseline
had L output nodes and each node is used to binary
classification (we refer to it below as FC). The
second baseline was the method using HRR as
described in § 2.2. It had d output nodes (we refer
to it below as HRR).

Our network for CHRR represented a pair of
the outputs as a point on a unit circle on Carte-
sian coordinates; i.e., (cosϕ, sinϕ), as shown in
Figure 1. Then we converted the point into po-
lar coordinates (1, ϕ), and used ϕ as an element
of the predicted label vector. Let ŝ ∈ R2d be the
raw output vector, and Ŝ ∈ Cd be the converted
circular vector. We represented d pairs from ŝ in
Cartesian coordinates as ai = (xi, yi). Then, we
normalized them to satisfy ∥ai∥ = 1. Although

there was a similar work for an angle prediction
using a neural network (Heffernan et al., 2015),
they used arctan y

x for the conversion whose range
was limited to

[−π
2 , π2

]
. Instead, we used the atan2

function (Organick, 1966), which can convert a
(x, y) point to a corresponding angle (−π, π]. Fi-
nally, we adapted the atan2 to ai to obtain Ŝi. We
named this method as CHRR.

4.2 Impact of Model Architecture

Because the number of the output nodes of CHRR
(2d) is twice as that of HRR (d), the total model
size of CHRR also increases. Therefore, we con-
ducted two different experiments using the same
model size as HRR (see § 5.4 for the results). The
first experiment changed the network architecture
of CHRR. Figure 4 compares the architectures of
CHRR and the changed model (CHRR-Half) to il-
lustrate the impact of halving the hidden and output
layer sizes on model performance. This adjustment
ensures that CHRR-Half has the same number of
parameters as HRR, allowing for a fair compari-
son. We made CHRR-Half by splitting the second
hidden layer’s nodes and output nodes of CHRR in
half. This resulted in two sets of h

2 hidden nodes
and d output nodes. Then we connected one set
of hidden nodes to one set of output nodes, and
the other set of hidden nodes to the other set of
output nodes. As a result, 2 × (h2 × d) = h × d
parameters were obtained, which equals the num-
ber of parameters between the second hidden layer
and the output layer in HRR. The results of the ex-
periment in § 5.4 showed no significant difference
in performance between CHRR and this model.
Therefore, the increase in the model size is not a
big issue. In the second experiment, to demonstrate
the advantage of the proposed architecture against
naive implementation, we used the same network
architecture as HRR, and mapped the real-valued
outputs to angles with activation functions. We
tried two activation functions, sin and tanh to map
the outputs to [−1, 1]; then the output was multi-
plied by π to obtain (−π, π] outputs. We named
these models as CHRR-sin and CHRR-tanh. Both
showed more modest levels of performance com-
pared with CHRR.

5 Experiment on XMC Datasets

To examine the advantages of circular vectors, we
conducted experiments on several XMC datasets.
Note that achieving the state-of-the-art perfor-
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Figure 4: Comparison of CHRR and CHRR-Half archi-
tectures.

Dataset Ntrain Ntest L L̄

Delicious 12,920 3,185 983 311.61
EURLex-4K 15,539 3,809 3,993 25.73
Wiki10-31K 14,146 6,616 101,938 8.52
Delicious-200K 196,606 100,095 205,443 2.29

Table 2: Details of the datasets from Bhatia et al. (2016).
Here, Ntrain is the number of training samples, Ntest

is the number of test samples, L is the number of labels,
L̄ is the average number of samples per label.

mance on XMC datasets was not the goal of
this study, which focuses on the efficiency of
the learning method with circular vectors. How-
ever, to validate the effectiveness of CHRR in
the XMC task, we compared our method with
several strong baselines. These include tree-
based FastXML (Prabhu and Varma, 2014), Pfas-
treXML (Prabhu et al., 2018a), and deep learning
based XML-CNN (Zhang et al., 2018), in addition
to FC and HRR.

5.1 Datasets
We evaluated our method on the four datasets for
text XMC tasks from Bhatia et al. (2016). Table 2
shows the details of the datasets. The features for
each sample is a bag-of-words of F words.

5.2 Evaluation Metrics
We evaluated each method by using precision at
k (P@k = 1

k

∑
l∈rankk(ŷ) yl) and the propensity

score at k (PSP@k), which are commonly used
metrics in the XMC task. P@k is the proportion of
true labels in the top-k predictions. PSP@k =
1
k

∑
l∈rankk(ŷ)

yl
pl

is a variation of precision that
takes into account the relative frequency of each
label. Here, rankk(ŷ) is the ranking of all labels in

the predicted ŷ and pl is the relative frequency of
the l-th label. We used k = 1, 5, 10, 20 for P@k,
and k = 1, 5, 10, 20 for PSP@k in the experiments
described below.

5.3 Experimental Settings

We compared CHRR to five competitive meth-
ods (FC, HRR, FastXML, PfastreXML, XML-
CNN) over four datasets. For the implementa-
tion of FC and HRR, we used the scripts pro-
vided by Ganesan et al. (2021) available at the
GitHub URL.3 We implemented CHRR by using
PyTorch (Paszke et al., 2019). The training meth-
ods and the model architectures basically followed
the scripts provided by Ganesan et al. (2021). The
learning rate was set to 1, the batch size was 64,
and the number of training epochs was 100. These
hyperparameters were chosen based on preliminary
experiments to balance training time and model per-
formance. For the EURLex-4K and Wiki10-31K
datasets, we also conducted experiments using both
BoW (Bag of Words) and pretrained XLNet em-
beddings (Chang et al., 2020) as features. The
dimensionality of BoW is the same as the dimen-
sionality F of the features shown in Table 2, and
the dimensionality of XLNet as a feature is 1, 024
dimensions. In CHRR, we varied the dimension
of the symbol vectors (d) {100, 400, 800, 1000}.
To investigate the possibility that a larger hidden
layer size h improves the learning effect in FCs
with large output dimensionality, we conducted ex-
periments with three settings of hidden layer size
(h) {768, 1024, 2048}. For main results, we chose
d = 800 and h = 768 for CHRR and h = 2048
for FC. All experiments are conducted with two
hidden layers.

5.4 Results and Discussion

Table 3 lists P@1, P@5, PSP@1, and PSP@5
for the CHRR model, with five standard methods.
CHRR achieves up to 99% output dimension com-
pression and 62% model size reduction compared
to FC, which is comparable or better than other
baselines. CHRR+ϕXLNet with XLNet as a feature
showed higher results than the CHRR case with
BoW. In particular, it showed significant improve-
ment on the Wiki10-31K dataset. Figure 5 shows
the impact of the dimensionality size d of the HRR

3https://github.com/
NeuromorphicComputationResearchProgram/
Learning-with-Holographic-Reduced-
Representations
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Delicious (59%, 19%) Delicious-200K (61%, 80%)

P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5
FastXML 69.6 59.3 32.3 35.4 43.1 36.2 6.5 8.3
PfastreXML 67.1 58.6 34.6 35.9 41.7 35.6 3.2 4.4
FC 70.8 59.2 34.1 36.1 35.1 32.1 5.3 7.4
CHRR 71.2 59.3 34.3 35.9 43.2 37.1 6.6 8.5

EURLex-4K (61%, 99%) Wiki10-31K (62%, 99%)

P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5
FastXML 76.4 52.0 33.2 42.0 83.0 57.8 9.8 10.5
PfastreXML 71.4 50.4 26.6 39.0 83.6 59.1 19.0 18.4
XML-CNN 75.3 49.2 32.4 39.5 81.4 56.1 9.4 10.2
FC 77.4 47.9 33.6 37.3 80.5 46.4 10.5 8.9
FC+ϕXLNet 73.3 48.8 33.0 40.0 84.0 58.9 10.9 11.5
CHRR 75.2 47.8 28.7 34.9 82.2 58.8 10.2 10.9
CHRR+ϕXLNet 77.0 50.0 29.8 37.6 86.8 65.1 11.9 13.0

Table 3: Performance comparisons of CHRR and other competing methods over four benchmark datasets, and the
left number in bold represents the compression ratio

(
1− (F×hC+hC×hC)+(hC×2d+d×L)

(F×hF+hF×hF )+(hF×L)

)
of the CHRR’s model

size for FC’s model size. CHRR is set with d = 800 and hC = 768. And the right number in bold represents
the compression ratio (1 − d

L ) of the CHRR’s output dimensions for FC’s output dimensions. For FC, d is set
at the number of labels in each dataset (L) and h is set at 2048. FC+ϕXLNet and CHRR+ϕXLNet refers to the
results obtained using XLNet as the feature representation. We obtained the results for FastXML, PfastreXML, and
XML-CNN from (You et al., 2019) and (Yu et al., 2022).

and CHRR on performance, in addition to the FC
results. On certain datasets, CHRR outperformed
FC even when it had vectors with lower dimensions.
These results suggest that CHRR has a higher ca-
pacity for learning on datasets with a large number
of labels than FC does.

We also compared CHRR with HRR. As shown
in Figure 5, CHRR was better than HRR in many
cases. In particular, the results for P@20 and
PSP@20, where the value of the evaluation index k
is large, we confirmed that the difference in perfor-
mance is significant. As our theoretical experiment
in § 3.2 showed, CHRR could represent many la-
bels with high accuracy even for low-dimensional
vectors. The results of the theoretical experiments
in § 3.2 and the experiment on real datasets in § 5
suggest that the CHRR is able to represent a larger
number of correct labels.

5.5 Impact of Model Architecture

This section describes the results of the experi-
ments on the impact of the model architectures
in § 4.2. Figure 6 compares the performances of
the CHRR variants (CHRR, CHRR-Half, CHRR-
sin, and CHRR-tanh) on the Wiki10-31K dataset.
As mentioned in § 4.2, there was no significant

difference in performance between CHRR and this
model. CHRR-sin and CHRR-tanh both obtained
similar results that were inferior to those of CHRR
and CHRR-Half. While the sin function in CHRR-
sin seems to consider the cyclic feature, the results
show that it is imperfect at predicting the of the
circular-label vector. In short, our developed net-
work architecture is important for the XMC learn-
ing with circular vectors, while the increase in the
model size is not a big issue.

6 Conclusion

The XMC task still faces challenge of dealing with
a large number of output labels. In this paper, we
attempted to address this issue by using a low di-
mensional circular vector to output directly. In the-
oretical experiments in § 3.2 and § 3.3, we showed
that many labels can be accurately encoded by us-
ing circular vectors (CHRR) rather than normal
real-valued vectors (HRR). Moreover, using actual
XMC datasets, we compared CHRR with baseline
methods in § 5. CHRR reduced the output layer
size by up to 99% compared to FC, while it out-
performed other baselines in most results. Com-
paring HRR and CHRR, CHRR outperformed on
most results. In the future, we will incorporate
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(a) Wiki10-31K P@5 (b) Wiki10-31K P@10 (c) Wiki10-31K P@20

(d) Wiki10-31K PSP@5 (e) Wiki10-31K PSP@10 (f) Wiki10-31K PSP@20

(g) Delicious-200K P@5 (h) Delicious-200K P@10 (i) Delicious-200K P@20

(j) Delicious-200K PSP@5 (k) Delicious-200K PSP@10 (l) Delicious-200K PSP@20
Figure 5: Impact of the number of dimensions (d) on P@5, P@10, P@20, PSP@5, PSP@10, and PSP@20 for
Wiki10-31K and Delicious-200K datasets. We used BoW as features in all models.

(a) P@1 (b) P@10 (c) P@20
Figure 6: Comparison of CHRR variants (CHRR, -Half, -sin, and -tanh) on the Wiki10-31K dataset.

circular vector systems into other DNN models
such as LSTM (Hochreiter and Schmidhuber, 1997)
and Transformer (Vaswani et al., 2017), as well as
Associative LSTM (Danihelka et al., 2016) and
Hrrformer (Alam et al., 2023).
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Limitations

Our study has several limitations that should be
considered in interpreting the results:

1. Model Age and Adaptability: The HRR and
CHRR models utilized in our experiments are
based on established frameworks that may not
incorporate the latest advancements in neural
network architectures (Ganesan et al., 2021).
Newer models or hybrid approaches might
offer improved performance.

2. Comparison with State-of-the-Art XMC
Models: Our study did not include a com-
parison with the latest models in the Ex-
treme Multi-label Classification (XMC) do-
main, such as APLC-XLNet (Ye et al., 2020),
LightXML (Jiang et al., 2021), AttentionXML
(You et al., 2019), and CascadeXML (Khar-
banda et al., 2022). Future research should
consider comparing the performance of HRR,
HRR(w/Proj), and CHRR against these state-
of-the-art models to provide a more compre-
hensive evaluation of their effectiveness in .

3. Comparison with LLM: Our study did not
include a comparison with the Large Lan-
guage Model (LLM) approach, which is cur-
rently the state-of-the-art in various NLP tasks.
Future research should consider comparing
the performance of HRR, HRR(w/Proj), and
CHRR against LLMs to further evaluate the
effectiveness of these models.

These limitations underscore the need for further
research to refine and extend the applicability of
the models proposed in this study.

Ethics Statement

We used the publicly available XMC datasets, De-
licious, EURLex-4K, Wiki10-31K and Delicious-
200K, to train and evaluate DNN models, and there
is no ethical consideration.

Reproducibility Statement

As mentioned in § 5.3, we used the publicly avail-
able code to implement FC, HRR and CHRR.
Our code will be available at https://github.
com/Nishiken1/Circular-HRR.
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Abstract

Accurately aligning contextual representations
in cross-lingual sentence embeddings is key
for effective parallel data mining. A common
strategy for achieving this alignment involves
disentangling semantics and language in sen-
tence embeddings derived from multilingual
pre-trained models. However, we discover
that current disentangled representation learn-
ing methods suffer from semantic leakage—a
term we introduce to describe when a substan-
tial amount of language-specific information
is unintentionally leaked into semantic repre-
sentations. This hinders the effective disentan-
glement of semantic and language representa-
tions, making it difficult to retrieve embeddings
that distinctively represent the meaning of the
sentence. To address this challenge, we pro-
pose a novel training objective, ORthogonAlity
Constraint LEarning (ORACLE), tailored to
enforce orthogonality between semantic and
language embeddings. ORACLE builds upon
two components: intra-class clustering and
inter-class separation. Through experiments on
cross-lingual retrieval and semantic textual sim-
ilarity tasks, we demonstrate that training with
the ORACLE objective effectively reduces se-
mantic leakage and enhances semantic align-
ment within the embedding space.1

1 Introduction

Parallel datasets play a pivotal role in enhancing
neural machine translation (NMT) performance
(Michel and Neubig, 2018). However, acquiring
high-quality parallel texts is challenging, especially
for lower-resourced languages where monolingual
data is more abundant (Niu et al., 2018). In this
context, effective approaches for mining parallel
data are essential for applying NMT in practical
scenarios (Artetxe and Schwenk, 2019a).

*Work done during internship at NAVER Cloud.
1Our code and models will be released at publication.
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(a) Semantic Leakage
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zh (lang)
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(b) ORACLE

Figure 1: Visualization of LaBSE sentence embed-
dings for 1,000 Chinese-English sentence pairs. Figure
1(a) shows substantial overlap between semantic and
language-specific representations. This overlap is effec-
tively mitigated by the proposed ORACLE method, as
shown in Figure 1(b).

Recent approaches to this problem utilize cross-
lingual sentence embeddings (Schwenk and Douze,
2017; Schwenk, 2018) generated by multilingual
pre-trained encoders such as multilingual BERT
(Devlin et al. (2019), mBERT) or XLM-RoBERTa
(Conneau et al. (2020), XLM-R). These embed-
dings aim to align semantically similar sentences
across languages into a unified latent space, fa-
cilitating the extraction of pseudo-parallel pairs
(Wang et al., 2022). However, Tiyajamorn et al.
(2021) and Kuroda et al. (2022) demonstrate that
embeddings of parallel sentences from these en-
coders form clusters by language rather than by
semantics. Building on this, they attempt to disen-
tangle language-specific information from sentence
embeddings, thereby distilling language-agnostic
semantic embeddings.

In order to achieve this, two premises need to be
considered. Given parallel sentence,
(1) How well are the semantic representations

aligned?
(2) How well are the language-specific represen-

tations separated?
Prior works have primarily focused on the former,
leaving the latter question underexplored. Figure
1 illustrates sentence embeddings of a parallel cor-
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Figure 2: ORACLE objective for training semantic and language MLP networks. ORACLE is composed of two
components: (1) Intra-class clustering for bringing related components closer in embedding space, (2) Inter-
class separation for ensuring unrelated components to be distant. s and t represent source and target sentence
input respectively. ŝm: source semantic representation; ŝl: source language representation; t̂m: target semantic
representation; t̂l: target language representation.

pus pair, indicating that while semantics are well-
aligned with previous disentanglement methods,
there is still substantial overlap between language-
specific and semantic information (Figure 1a). We
define this issue as semantic leakage, which un-
dermines the effectiveness of cross-lingual embed-
dings in accurately mining parallel pairs. By con-
straining orthogonality between semantic and lan-
guage representations, we facilitate a clearer sepa-
ration of language-specific information in the em-
bedding space (Figure 1b).

In this work, we introduce ORACLE (ORthog-
onality Constraint LEarning), a training objective
aimed at enforcing orthogonality between semantic
and language-specific representations. Our goal is
to render these two representations independent to
each other, thus ensuring their clear differentiation
in the embedding space (Mitchell and Steedman,
2015). ORACLE consists of two key components:
intra-class clustering and inter-class separation. As
shown in Figure 2, intra-class clustering aligns re-
lated components more closely, while inter-class
separation enforces orthogonality between unre-
lated components. Our method is designed to be
simple and effective, capable of being implemented
atop any disentanglement methods.

We explore a range of pre-trained multilingual
encoders (LASER (Artetxe and Schwenk, 2019b),
InfoXLM (Chi et al., 2021), and LaBSE (Feng

et al., 2022)) to generate initial sentence embed-
dings. Subsequently, we train each semantic and
language multi-layer perceptrons (MLPs) with OR-
ACLE to disentangle the sentence embeddings
into semantics and language-specific information.
Experimental results on both cross-lingual sen-
tence retrieval tasks (Artetxe and Schwenk, 2019b;
Zweigenbaum et al., 2017) and the Semantic Tex-
tual Similarity (STS) task (Cer et al., 2017) demon-
strate higher performance on semantic embeddings
and lower performance on language embeddings
with ORACLE. This suggests that our method not
only resolves semantic leakage but also enhances
semantic alignment (§6). Our analysis further re-
veals that ORACLE leads to robust performance
in challenging scenarios such as code-switching
(§7.1).

To summarize, our contributions are threefold:
(1) We make the first attempt to address the issue
of semantic leakage, wherein a substantial amount
of language-specific information is leaked into se-
mantic representations.
(2) We mitigate semantic leakage with ORACLE,
a simple and effective training objective that im-
proves disentanglement of semantic and language-
specific information.
(3) We show that ORACLE leads to robust mining
in code-switched scenarios.
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2 Related work

2.1 Cross-lingual Sentence Embeddings

Earlier works primarily centered on learning
sentence-level representations for mining pseudo-
parallel pairs. Initial methods utilized neural ma-
chine translation (NMT) systems with a shared
encoder (Schwenk and Douze, 2017; Schwenk,
2018). This approach inspired supervised ap-
proaches which train neural networks with large
parallel datasets. For instance, Lee and Chen
(2017) introduced the multilingual Universal Sen-
tence Encoder (mUSE), a dual-encoder model pre-
trained on parallel corpora in 16 languages. Simi-
larly, LASER (Artetxe and Schwenk, 2019b) is an
encoder-decoder model based on recurrent neural
network. More recently, there has been a shift to-
wards using multilingual sentence encoders such
as mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), and CRISS (Tran et al., 2020), which
are based on single self-attention networks pre-
trained on large monolingual datasets. InfoXLM
(Chi et al., 2021) extends XLM-R by adding a
cross-lingual contrastive pre-training objective to
enhance cross-lingual understanding task perfor-
mance. Subsequently, the Dual Encoder with An-
chor Model (DuEAM) (Goswami et al., 2021) in-
corporates a dual-encoder approach and integrates
the word mover’s distance to better capture seman-
tic similarity between sentences. LaBSE (Feng
et al., 2022) is a state-of-the-art multilingual sen-
tence encoder built upon a dual-encoder framework,
pre-trained with both monolingual and bilingual
corpora. We leverage several of these multilingual
sentence encoders to derive initial cross-lingual
sentence embeddings. For our experiments, we
specifically focus on three open-source baselines:
LASER, InfoXLM, and LaBSE. We investigate the
issue of semantic leakage in these encoders and
effectively address it by integrating ORACLE.

2.2 Disentangled Representation Learning

A high-quality cross-lingual sentence embedding
should effectively align semantically similar sen-
tences from different languages in a shared embed-
ding space (Wang et al., 2022). However, embed-
dings obtained from multilingual sentence encoders
are often highly biased by language-specific infor-
mation (Tiyajamorn et al., 2021). In this context,
previous research has largely focused on learning
disentangled representations to separate language-
specific elements from semantics (Pires et al., 2019;

Decomposer LR LCR LS LL LA

DREAM (Tiyajamorn et al., 2021) ✓ ✓ ✓

MEAT (Kuroda et al., 2022) ✓ ✓ ✓ ✓

Table 1: Comparison of loss components in DREAM
and MEAT. LR: Reconstruction loss, LCR: Cross-
Reconstruction loss, LS : Semantic embedding loss, LL:
Language embedding loss, LA: Adversarial loss.

Libovický et al., 2020; Gong et al., 2021; Zhao
et al., 2021). One prevalent method involves train-
ing semantic and language networks separately,
where the former is responsible for extracting mean-
ing while the latter extracts language-specific in-
formation (Tiyajamorn et al., 2021; Kuroda et al.,
2022; Wu et al., 2022). Specifically, DREAM
(Tiyajamorn et al., 2021) utilize a multi-task train-
ing approach with a combination of reconstruc-
tion, semantic embedding, and language embed-
ding losses, while MEAT (Kuroda et al., 2022)
introduces novel loss combinations for more direct
disentanglement. The distinct loss components of
both methods are outlined in Table 1.

Although disentangled representation learning
has been explored previously, existing methods
have primarily focused on aligning semantics. We
discover that these approaches suffer from semantic
leakage, as evidenced by the high performance of
language-specific representations. Our work is the
first to address this challenge through ORACLE,
which enforces orthogonality between semantic
and language representations.

3 Background

3.1 DREAM

DREAM (Tiyajamorn et al., 2021) employs two
separate multi-layer perceptron (MLP) networks in
an autoencoder setup to learn disentangled seman-
tic and language-specific representations. Given a
parallel corpus C = {(s1, t1), ..., (sn, tn)}, com-
prising pairs of sentences from a source and target
language, each sentence pair (si, ti) is input into a
multilingual pre-trained model (PLM). This gener-
ates original embeddings for the source eis ∈ Rd

and the target sentences eit ∈ Rd, where d rep-
resents the dimension of the input sentence em-
beddings. Semantic and language representations
are then extracted from these embeddings using a
separate semantic MLP network MLPm (denoted
by m to signify “meaning”) and a language MLP
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network MLPl.

ŝim = MLPm(eis) (1)

ŝil = MLPl(e
i
s) (2)

Here, ŝim, ŝil ∈ Rd represent the semantic and lan-
guage representations of the source sentence, re-
spectively, and similarly t̂im, t̂il ∈ Rd for the target
sentence. We repeat this process across the entire
parallel corpus C.

For each language, the extracted semantic and
language representations are element-wise summed
to reconstruct the original sentence embedding as
the final output. DREAM trains the two MLPs in a
multi-task fashion, integrating three loss functions:

LDREAM = LR + LS + LL (3)

where LR is the reconstruction loss for reconstruct-
ing the original sentence embedding using seman-
tic and language representations. LS and LL are
responsible for extracting semantic and language
information, respectively. Furthermore, LL com-
prises both the language embedding loss (LmL )
and the language classification loss (LiL), where
LmL minimizes the distance within language em-
beddings and LiL computes the multi-class cross-
entropy loss for the language classification task.

3.2 MEAT

MEAT (Kuroda et al., 2022) builds upon DREAM
but incorporates more direct supervision to better
disentangle semantic and language representations.
MEAT trains the two MLPs with a new combina-
tion of four losses:

LMEAT = LR + LCR + LL + LA (4)

LCR is the cross-reconstruction loss for recon-
structing the original source embedding using se-
mantic from the target and language embedding
from the source, and vice versa. LA is the adversar-
ial loss designed to reduce language identifiability
in semantic representations.

4 ORACLE

The two key ingredients of ORACLE are intra-
class clustering (§4.1) and inter-class separation
(§4.2). We reformulate the losses originally derived
in DREAM and MEAT and impose additional con-
straints to ensure orthogonality between semantic
and language embeddings. Following the setup

introduced in Section 3.1, ORACLE also uses se-
mantic (MLPm) and language MLP (MLPl) to
extract semantics (̂sim, t̂im) and language-specific
information (̂sil , t̂

i
l) for each language.

4.1 Intra-class clustering (LIC)
LIC aims to bring relevant representations closer
in the multilingual embedding space. As shown
in Figure 1a, we notice that previous methods lack
a constraint to enforce language embeddings to
be clustered within themselves. This causes the
language-specific information to leak into the se-
mantics, making it difficult to capture the underly-
ing semantics of the sentence. We constrain this
by imposing pairwise cosine distances of each lan-
guage embeddings:

LIC =
1

N

N∑

i=1

(
2− ϕ(̂sil, ŝ

j
l )− ϕ(̂til, t̂

j
l )
)
, (5)

where ϕ(·) denotes pairwise cosine similarity.
ϕ(̂sil, ŝ

j
l ) and ϕ(̂til, t̂

j
l ) (i ̸= j) measures the pair-

wise cosine similarity of language embeddings in
source and target language respectively. We sub-
tract from 2 to transition each of the similarity met-
ric into distance metric. By minimizing LIC, we
aim to cluster language-specific representation for
each language.

4.2 Inter-class separation (LIS)
Simultaneously, LIS enforces irrelevant representa-
tions to be clearly separated:

LIS =
1

N

N∑

i=1

max(0, ϕ(̂sim, ŝil) + max(0, ϕ(̂tim, t̂il)) (6)

where ϕ(·) denotes cosine similarity. We impose a
minimum value constraint of 0 to ensure the proper
enforcement of orthogonality, indicative of unre-
latedness, between the source and target language
embeddings. Minimizing LIS effectively disentan-
gles semantics from language-specific representa-
tions by constraining them to be orthogonal in the
embedding space.

Combining with the intra-class clustering objec-
tive we get the final loss as:

LORACLE = LIC + LIS. (7)

We train both MLP networks, MLPm and MLPl,
with the combined loss LORACLE in a multi-task
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learning approach. We integrateLORACLE with the
existing loss functions of DREAM or MEAT. This
is based on our experiments in Section 7.3 where in-
tegrating ORACLE with DREAM or MEAT yields
better performance than using it as a stand-alone
objective.

5 Experimental setup

5.1 Data
We compile a dataset comprising 12 language pairs
sourced from publicly available bilingual corpora2.
English is chosen as the source language for all
pairs. We randomly sample 0.5M sentences for
each language pair, which is later split into 0.45M
for training and 0.05M for testing. In total, we
utilize 6M parallel sentences. We select the lan-
guage pairs based on diversity in language families,
semantic similarity to English, and resource avail-
ability. Additional details for each language pair
are provided in Table 2.

5.2 Baselines
Our study encompasses three open-source multilin-
gual sentence encoders to generate initial sentence
embeddings:

• LASER: Multilingual enc-decoder model trained
on 93 languages (Artetxe and Schwenk, 2019b).

• InfoXLM: XLM-R (Conneau et al., 2020)
trained with masked language modeling (MLM),
translation language modeling (TLM), and cross-
lingual contrastive learning task with monolin-
gual and parallel corpora (Chi et al., 2021).

• LaBSE: A dual-encoder framework trained with
MLM and TLM on both monolingual and bilin-
gual corpora (Feng et al., 2022).

Each multilingual sentence encoder is pre-
trained with different combinations of languages.
Consequently, the list of seen and unseen languages
from our training data varies for each encoder, as
summarized in Appendix Table 6.

5.3 Implementation Details
We train the two MLP layers—a semantic embed-
ding layer and a language embedding layer—to dis-
till semantic and language-specific features while
keeping the backbone sentence encoder frozen.

2Our training corpus is obtained from OPUS (https:
//opus.nlpl.eu/). Details regarding the training corpus
for each language pair are outlined in Appendix A.1.

Language Family ISO Code Similarity Resource level

English Germanic en - high
German Germanic de 0.81 high
Portuguese Romance pt 0.84 high
Italian Romance it 0.85 high
Spanish Romance es 0.86 high
French Romance fr 0.86 high
Chinese Sino-Tibetan zh 0.81 high
Arabic Semitic ar 0.91 high
Japanese Japonic ja 0.69 high
Dutch Germanic nl 0.80 medium
Romanian Romance ro 0.88 medium
Guaraní Tupi-Guaraní gn 0.25 low
Aymara Andean ay 0.18 low

Table 2: Summary of 12 languages used for training.
Similarity refers to the cosine similarity between 1,000
sample of English and target language sentences mea-
sured using LaBSE embeddings.

The output embedding of the [CLS] token is used
for sentence embedding. Further details on training
process is detailed in Appendix A.3.

5.4 Evaluation task

Cross-lingual Sentence Retrieval. We evaluate
our model on two distinct cross-lingual sentence re-
trieval tasks: held-out test set and Tatoeba3 (Artetxe
and Schwenk, 2019b). Given a list of bilingual
sentences, the cross-lingual sentence retrieval task
aims to accurately pair sentences that are in a paral-
lel relationship across languages. The dataset con-
sists of up to 1,000 sentences per language along
with their English translations. We follow the eval-
uation setup proposed by Wang et al. (2022), evalu-
ating accuracy in both Tatoeba-14 and Tatoeba-36
settings, each covering 14 languages from LASER
and 36 languages from the XTREME benchmark
(Hu et al., 2020). We measure retrieval accuracy
using both semantic and language-specific repre-
sentations. Lower language embedding retrieval
results suggest reduced semantic leakage in these
representations, while higher semantic retrieval ac-
curacy indicates improved semantic alignment in
bilingual sentence pairs.

Semantic Textual Similarity. We also report per-
formance on the SemEval-2017 Semantic Textual
Similarity (STS) task (Cer et al., 2017). This task
involves 7 cross-lingual and 3 monolingual sen-
tence pairs. We aim to achieve high Spearman’s
rank correlation coefficients (ρ) with semantic rep-
resentations, indicating better semantic alignment,
while expecting lower coefficients with language
representations, indicating effective separation.

3https://tatoeba.org/
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Figure 3: Cross-lingual sentence retrieval performance using our test set, consisting of 0.5M pairs for each language.
The optimal representations exhibit high semantic retrieval accuracy and low language embedding retrieval accuracy,
aiming for the upper left corner of each plot (indicated by the arrow). ●: vanilla DREAM or MEAT; ▲: with
ORACLE objective. Grey: Average accuracy across 12 language pairs. Top row: DREAM with each multilingual
encoder baselines; Bottom row: MEAT with multilingual encoders. Numerical results are in Appendix B.1.

6 Results

6.1 Cross-lingual Sentence Retrieval
Held-out Test Set. Figure 3 illustrates the per-
formance of cross-lingual sentence retrieval on our
held-out test set, consisting of 0.5M parallel sen-
tences per language pair. We assess retrieval accu-
racy using semantic and language-specific repre-
sentations of these parallel sentences. The optimal
representation entails high semantic accuracy and
low language embedding accuracy. Notably, ap-
plying ORACLE shifts performance towards the
upper left quadrant, indicative of higher semantic
accuracy and reduced language embedding accu-
racy across all encoder baselines. We report de-
tailed numerical results in Appendix Table 8.

Tateoba. We draw similar conclusions from an-
other cross-lingual retrieval task, Tatoeba, as shown
in Table 3. Utilizing disentangled representations
with ORACLE generally yields superior perfor-
mance compared to representations learned by ex-
isting methods such as DREAM and MEAT. One
exception is DREAM with LaBSE sentence embed-
dings, for which the accuracy drops by 0.06 points
after integrating ORACLE.

Furthermore, we observe that models exhibit
stronger performance from English (EN-XX) than
into English (XX-EN) directions. Specifically,
for Tatoeba-14, the semantic accuracy difference
between the two settings of the vanilla model is
smallest for LaBSE at 0.14 points, 0.69 points for

LASER, and 15.6 points for InfoXLM on average.
We notice a similar trend with the application of
ORACLE, with the smallest difference for LaBSE
at 0.08 points, 0.22 points for LASER, and 15.78
points for InfoXLM on average. We attribute this
to EN-XX setting being similar to our training cor-
pus. We present comprehensive results on Tatoeba
in Appendix B.2.
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Figure 4: Spearman’s rank correlation (%) from the STS
task for each multilingual encoder baseline. Length of
the bars reflects the performance gap between semantic
(●) and language-specific (★) representations. Each set
of three bars displays results for LASER, InfoXLM, and
LaBSE. Within each color set, the first bar represents
the vanilla approach, and the second bar denotes the
integration of ORACLE objective.

Seen vs. Unseen. Each multilingual encoder
unsurprisingly show lower performance for their
unseen target languages, as indicated in Table 6.
One exception is the performance of LASER em-
beddings on Aymara (ay), which shows low per-
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Encoder Objective Tatoeba-14 Tatoeba-36

(EN-XX) (XX-EN) (EN-XX) (XX-EN)

Semantic Embedding (↑)

LASER

DREAM 68.68 69.53 59.94 62.01
+ORACLE 68.82 69.66 60.14 62.11
MEAT 88.48 89.00 80.56 79.26
+ORACLE 88.30 87.70 81.06 79.27

InfoXLM

DREAM 42.20 51.40 39.51 47.10
+ORACLE 42.35 51.87 39.73 47.71
MEAT 31.50 53.49 28.21 44.53
+ORACLE 32.79 54.83 29.53 45.63

LaBSE

DREAM 95.57 95.76 95.27 95.09
+ORACLE 95.69 95.75 95.26 95.03
MEAT 95.67 95.76 95.33 95.06
+ORACLE 96.06 96.16 95.58 95.48

Language Embedding (↓)

LASER

DREAM 1.58 1.35 1.44 1.21
+ORACLE 0.17 0.27 0.20 0.26
MEAT 12.52 10.93 10.12 7.86
+ORACLE 0.34 0.36 0.37 0.41

InfoXLM

DREAM 0.31 0.27 0.35 0.37
+ORACLE 0.12 0.12 0.14 0.14
MEAT 0.33 1.92 0.36 2.32
+ORACLE 0.14 0.18 0.17 0.20

LaBSE

DREAM 18.39 18.09 19.33 19.58
+ORACLE 1.26 1.36 1.50 1.70
MEAT 87.35 36.66 86.51 40.61
+ORACLE 8.48 7.00 9.92 8.41

Table 3: Cross-lingual retrieval accuracy with Tatoeba
dataset. We report the accuracy in both directions (from
English and into English). Bold denotes better perfor-
mance than the vanilla approach. All improvements are
statistically significant with p-value ≤ 0.001.

formance despite being a seen language. Addi-
tionally, we note that ORACLE has a greater
impact on the semantic embedding accuracy of
unseen languages compared to seen languages.
When training with ORACLE, the average seman-
tic accuracy of the seen languages increases from
83.32→83.33 for LASER, 84.29→84.63 for In-
foXLM, and 95.43→95.61 for LaBSE. The gap is
more significant for unseen languages, increasing
from 8.73→8.91 for LASER, 1.93→2.43 for In-
foXLM, and 12.51→13.96 for LaBSE. This trend
suggests that ORACLE helps bridge the perfor-
mance gap between seen and unseen languages.

6.2 Semantic Textual Similarity

In Figure 4, we present the average Spearman’s
rank correlation coefficient across 10 STS tasks.
The lengths of the bars indicate the performance
gap between semantic and language-specific repre-
sentations. With ORACLE, we observe a stronger
positive correlation with STS scores for semantics
and a stronger negative correlation for language
representations. The extent of improvement in se-
mantic results differs depending on both the en-

coder and the objective loss function. For DREAM,
the highest gain is observed for LaBSE as +1.2 and
the lowest for LASER as +0.15. Conversely, for
MEAT, the highest gain is observed for InfoXLM
as +1.0 and the lowest for LASER as +0.23.

Monolingual vs Cross-lingual. We categorize
the STS results into two groups of language pairs:
monolingual and cross-lingual. For both DREAM
and MEAT, regardless of integrating ORACLE,
the semantic embedding performance of monolin-
gual language pairs is superior to that of cross-
lingual language pairs. However, while the perfor-
mance gap between monolingual and cross-lingual
language pairs is larger for vanilla DREAM or
MEAT, ORACLE can mitigate this gap. When ap-
plying ORACLE, the performance gap decreases
by approximately 0.73 points for LASER, 1.47
points for InfoXLM, and 0.50 points for LaBSE.
We report detailed results for each monolingual and
cross-lingual language pairs in Appendix B.3.

7 Detailed Analysis

7.1 Code-switching

We manually create a code-switched dataset us-
ing bilingual dictionaries from MUSE (Conneau
et al., 2018). For each language pair, we randomly
replace words in the source sentence with corre-
sponding translations in the target language. Fur-
ther implementation details are provided in Ap-
pendix 7.1. As illustrated in Appendix Table 11,
our results confirm that integrating ORACLE en-
hances both semantic and language embedding ac-
curacy, even in practical and challenging scenarios
likely encountered during parallel mining, such as
code-switching.

7.2 Visualization

In Figure 5, we visualize the LaBSE sentence em-
bedding space using 1,000 English-Chinese sen-
tence pairs from our held-out test set. While previ-
ous methods ((a) and (c)) effectively align semantic
representations, there is still substantial overlap in
the language-specific representations. By applying
ORACLE ((b) and (d)), we aim to mitigate the se-
mantic leakage issue, distancing the language repre-
sentations in parallel sentences while maintaining
semantic alignment. We show that this trend is
consistent across all language pairs through the
visualizations in Appendix D.
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(b) DREAM + ORACLE
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(c) MEAT

en (lang)
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zh (lang)
zh (sem)

(d) MEAT + ORACLE

Figure 5: Visualization of English-Chinese sentence embeddings from our held-out test set. Orange and green denote
language embeddings of English and Chinese respectively. Red and blue represent their semantic counterparts. With
ORACLE, we can preserve the semantic alignment and clearly divide the language-specific representations.

7.3 ORACLE Components

ORACLE is a multi-task learning objective con-
sisting of two components: intra-class clustering
and inter-class separation. Our analysis in Table
4 reveals the distinct impact of each component.
Interestingly, using only the inter-class clustering
loss demonstrates competitive performance, high-
lighting its critical role in the effectiveness of OR-
ACLE. However, employing either intra-class clus-
tering or inter-class separation alone presents trade-
offs. Combining both components yields the most
balanced performance, with highest semantic and
lowest language embedding retrieval accuracy.

Furthermore, we discuss the potential of OR-
ACLE as a stand-alone objective. In Figure 6,
we illustrate the performance gap when ORACLE
is used alone versus alongside DREAM or MEAT
losses. We observe that ORACLE alone effectively
mitigates semantic leakage with low language re-
trieval accuracy. However, this is offset by a de-
crease in semantic alignment compared to its use
with DREAM. Therefore, we opt to integrate OR-
ACLE with previous approaches, making it easily
adaptable to various frameworks.

Figure 6: Performance gap between using ORACLE
with DREAM (left), MEAT (middle) or as a stand-alone
objective (right).

Objective Tatoeba-14 Tatoeba-36 STS

Semantic Embedding (↑)

ORACLE 96.11 95.53 74.21
- LIC 95.89 95.38 74.13
- LIS 96.11 95.54 72.81

Language Embedding (↓)

ORACLE 7.74 9.17 16.47
- LIC 37.78 39.15 30.14
- LIS 8.07 9.59 18.20

Table 4: Performance change when removing each com-
ponent of ORACLE from LaBSE sentence embeddings.
LIC: Intra-class clustering; LIS: Inter-class separation.
Bold denotes best results for each semantic and lan-
guage embedding.

8 Conclusion

We explore the issue of semantic leakage, which
we define as when language-specific information is
leaked into the semantic representations, across var-
ious multilingual encoders and objective functions.
Addressing this issue is crucial for achieving dis-
entangled semantic and language representations,
which is a cornerstone for effective parallel mining.
We introduce ORACLE, a simple and effective
training objective designed to enforce orthogonal-
ity between semantic and language embeddings.
Through comprehensive evaluations, we demon-
strate that integrating ORACLE not only improves
semantic alignment but also ensures clear separa-
tion of language representations, as evidenced by
embedding space visualization. Further, we con-
duct detailed analysis to understand the roles of
the two key components of ORACLE: intra-class
clustering and inter-class separation. While our
study primarily focuses on integrating ORACLE
with DREAM and MEAT, our method is easily
adaptable to various frameworks, offering promis-
ing avenues for future work.
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9 Limitations

Our work highlights the effectiveness of ORACLE
in addressing semantic leakage and improving se-
mantic alignment. While ORACLE demonstrates
competitive performance as a stand-alone objec-
tive, its integration with DREAM or MEAT losses
yields even better results. This limits the usage
of ORACLE to be used alongside other methods.
This opens many questions for future work to fur-
ther explore the optimal combination of existing
approaches and ORACLE.

Moreover, our study assesses the disentangle-
ment of semantic and language representations
in embeddings, focusing on two key aspects: the
alignment of semantics in bilingual sentence pairs
and the separation of language-specific informa-
tion. While ORACLE effectively addresses the
separation of language-specific information, we no-
tice a trade-off in semantic alignment for certain
language pairs. Future works can delve into meth-
ods that more efficiently mitigate semantic leak-
age without compromising semantic representation
quality.

Lastly, our experiments are limited to 12 selected
language pairs for training. To expand the scope of
our study, future work could involve a wider array
of language pairs and a broader range of multilin-
gual encoder baselines.
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A Implementation Details

A.1 Training Corpus

In this section, we discuss the implementation de-
tails of our ORACLE objective. We describe the
specific training corpus utilized for each language
pair in Table 5.

A.2 Seen vs. Unseen Languages

In Table 6, we present the list of seen and unseen
languages for each multilingual sentence encoder
baseline, listed in alphabetical order. Across all
encoders, Guaraní (gn) is categorized as an unseen
language, while Aymara (ay) is classified as an
unseen language for InfoXLM and LaBSE.

A.3 Training Details

Size of each MLP layer is embedding size of the
encoder (1024 for LASER and 768 for XLM-R
and LaBSE) by the number of language pairs (12).
For training, we use Adam optimizer with an ini-
tial learning rate as 1e-5 and a batch size of 512.
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We train the model for 10,000 iterations, evaluat-
ing the model’s performance on the validation set
at the end of each iteration. We implement early
stopping to halt training when there is no improve-
ment over 10 consecutive iterations. We find that
DREAM converges in approximately 250 iterations
and MEAT in 20 iterations.

B Detailed Results

B.1 Held-out Test set
In Table 8, we present detailed results for the cross-
lingual sentence retrieval task using our held-out
test set. The top section shows the performance
of the initial sentence embeddings from LASER,
InfoXLM, and LaBSE. In the middle section, we
detail the accuracy of extracted semantic embed-
dings, while the bottom rows represent the lan-
guage embedding accuracy. ORACLE, particu-
larly for LaBSE, notably reduces language embed-
ding accuracy, indicating a mitigation of semantic
leakage compared to the vanilla DREAM or MEAT
frameworks. Additionally, we observe an improve-
ment in the semantic retrieval accuracy across all
encoder baselines on average.

B.2 Tatoeba
In our analysis of the Tatoeba dataset detailed in
Table 9, we exclude two language pairs (en-ay and
en-gn) as Tatoeba does not support them. We show
that a similar trend is observed: training MLP net-
works with ORACLE not only improves semantic
alignment but also effectively addresses the seman-
tic leakage issue in the vanilla DREAM or MEAT.
Also, we observe that training LaBSE sentence
embeddings with ORACLE yields state-of-the-art
semantic retrieval accuracy compared to previous
methods.

B.3 Semantic Textual Similarity
We present detailed numerical results for the mono-
lingual and cross-lingual STS benchmark in Table
10. The results support our observation from the
cross-lingual retrieval tasks that ORACLE helps
address both semantic alignment and the semantic
leakage issue.

C Code-switching

C.1 Dataset Construction
For our code-switching evaluation, we utilize bilin-
gual dictionaries sourced from MUSE (Conneau
et al., 2018). MUSE provides dictionaries in both

Training corpus Language pair

Europarl en-de, en-es, en-fr, en-it, en-nl, en-pt
Wikimatrix en-ar, en-ja, en-ro, en-zh
Tatoeba en-gn
NLLB en-ay

Table 5: Summary of training corpus for each language
pair.

Encoder Seen Unseen

LASER ar, ay, de, en, es, fr, it, ja, nl, pt, ro, zh gn
InfoXLM ar, de, en, es, fr, it, ja, nl, pt, ro, zh ay, gn
LaBSE ar, de, en, es, fr, it, ja, nl, pt, ro, zh ay, gn

Table 6: Seen and unseen languages for each pre-trained
multilingual encoder. Note that seen refers to languages
used during pre-training.

the to English (XX-EN) and from English (EN-
XX) directions. Specifically, we focus on dictionar-
ies with the XX-EN direction. These dictionaries
comprise root words in the source language paired
with their corresponding translations in the target
language. As noted by Conneau et al. (2018), the
translations are generated using an internal trans-
lation tool, which accounts for word polysemy, re-
sulting in some root words having multiple transla-
tions.

For each language pair listed in Table 3, we ran-
domly substitute words in the source sentences
with their corresponding translations in the target
language, utilizing the dictionaries from MUSE.
We ensure that the selected sentences of our code-
switching evaluation contain at least one code-
switched word. The resulting dataset comprises
1,000 sentences per language pair. We show exam-
ples of the manually created code-switched dataset
in Table 7.

C.2 Results

In Table 11, we present the retrieval accuracy
achieved on our code-switched dataset. Similar
to the trends observed in other tasks, integrating
ORACLE consistently improves both semantic
and language embedding accuracy across all multi-
lingual encoder baselines.

D Visualizations

From Figures 7 to 16, we provide visualizations of
semantic and language embeddings for each lan-
guage pair, complementing the discussion in Sec-
tion 7.2. We use LaBSE to generate the initial sen-
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Language pair Code-switched Example

De-En Source: Wie long should Tom and I hierbleiben?
Target: How long are Tom and I supposed to stay here?

Fr-En Source: Je am here jusqu’à three heures.
Target: I will stay here till three o’clock.

It-En Source: Fadil sparò al dog di Dania.
Target: Fadil shot Dania’s dog.

Ro-En Source: E traditional să gates black la înmormântare.
Target: It is traditional to wear black to a funeral.

Table 7: Examples of code-switched dataset manually created using bilingual dictionaries from MUSE (Conneau
et al., 2018). Italic represent words that are code-switched in the source sentence.

tence embeddings, with 1,000 parallel sentences
sampled from our held-out test set for each lan-
guage pair. When solely using DREAM or MEAT
(depicted in (a) and (c) for each visualization),
we observe a notable amount of overlap in lan-
guage embeddings between the source and target
language, indicating semantic leakage. However,
the integration of ORACLE effectively mitigates
this issue, resulting in clearer separation and re-
duced overlap in language embeddings (depicted
in (b) and (d)). This improvement is consistent
across all language pairs.
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Encoder Objective en-ar en-ay en-de en-es en-fr en-gn en-it en-ja en-nl en-pt en-ro en-zh Avg.

Original Embedding

LASER - 99.87 11.36 96.13 97.88 93.38 5.12 96.78 98.86 96.48 97.83 99.34 99.39 82.70
InfoXLM∗ - 21.24 1.40 25.53 29.31 28.41 0.69 29.07 10.48 14.72 23.80 15.59 13.06 17.78
LaBSE - 99.00 16.33 96.16 97.82 93.37 12.82 96.77 92.30 96.21 97.66 87.60 94.05 81.67

Semantic Embedding (↑)

LASER

DREAM 94.22 7.27 93.85 96.81 92.28 4.33 95.13 82.94 93.46 96.39 77.05 87.10 76.74
+ORACLE 94.10 7.23 93.87 96.79 92.28 4.26 95.13 82.95 93.54 96.39 77.27 87.13 76.75
MEAT 99.58 13.50 95.91 97.71 93.18 8.73 96.29 97.20 95.95 97.54 95.82 98.42 82.49
+ORACLE 99.78 11.11 95.92 97.71 93.21 8.91 96.33 97.57 96.02 97.67 98.16 98.54 82.58

InfoXLM

DREAM 88.74 2.06 88.61 94.89 90.47 1.80 91.14 68.71 87.44 93.06 64.87 74.96 70.56
+ORACLE 89.11 2.89 89.20 95.00 90.50 1.96 91.49 69.21 87.85 93.27 65.23 75.46 70.93
MEAT 35.24 1.87 58.32 84.47 79.28 0.79 66.85 36.85 57.57 77.28 35.81 48.18 48.54
+ORACLE 37.13 1.87 60.09 85.46 80.35 0.87 68.79 38.02 59.00 78.80 36.92 48.96 49.69

LaBSE

DREAM 98.88 14.14 96.20 97.85 93.42 10.87 96.79 91.90 96.50 97.79 92.49 92.52 81.61
+ORACLE 98.87 15.94 96.22 97.84 93.44 11.97 96.86 92.52 96.46 97.80 92.66 93.45 82.00
MEAT 98.75 17.97 96.14 97.83 93.38 13.85 96.71 92.42 96.53 97.77 91.32 93.30 82.16
+ORACLE 99.08 17.18 96.29 97.87 93.41 12.96 96.86 93.17 96.54 97.79 92.95 93.99 82.34

Language Embedding (↓)

LASER

DREAM 1.58 0.24 1.66 6.76 4.02 0.22 1.74 0.45 0.82 5.78 1.87 0.50 2.14
+ORACLE 0.53 0.09 0.08 0.37 0.07 0.04 0.07 0.14 0.04 0.25 0.48 0.15 0.19
MEAT 7.13 0.96 11.83 27.65 16.07 0.38 11.20 3.67 8.61 25.16 9.04 3.95 10.47
+ORACLE 0.76 0.11 0.21 1.26 0.25 0.04 0.18 0.22 0.12 0.86 1.04 0.40 0.45

InfoXLM

DREAM 0.22 0.07 0.00 0.02 0.01 0.08 0.05 0.09 0.03 0.01 0.31 0.11 0.08
+ORACLE 0.03 0.01 0.01 0.01 0.00 0.02 0.05 0.03 0.02 0.01 0.08 0.03 0.03
MEAT 1.30 1.05 0.11 0.18 0.14 0.26 0.20 0.55 0.15 0.17 2.10 0.36 0.55
+ORACLE 0.28 0.30 0.02 0.00 0.00 0.07 0.04 0.14 0.03 0.01 0.47 0.07 0.12

LaBSE

DREAM 7.42 0.66 1.12 2.73 1.68 0.69 2.35 4.65 1.54 1.21 3.15 4.59 2.65
+ORACLE 0.85 0.13 0.04 0.03 0.03 0.08 0.13 0.40 0.10 0.03 0.52 0.26 0.22
MEAT 60.54 6.84 18.34 28.36 21.33 6.27 23.46 54.32 20.33 20.38 44.17 60.28 30.39
+ORACLE 1.98 0.50 0.18 0.22 0.22 0.38 0.31 1.59 0.35 0.16 2.36 1.14 0.78

Table 8: Cross-lingual sentence retrieval accuracy with our test set, comprising 0.5M pairs for each language. We
expect the semantic retrieval accuracy to be higher and lower with language embedding. Bold represents when our
method surpass the vanilla approach and highlight denotes when the average value is higher. vanilla: original
DREAM or MEAT approach; ORACLE: incorporation of our objective. *: We use mean pooling to compute
sentence embedding. All average improvements are statistically significant with p-value ≤ 0.001.
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Encoder Objective en-ar en-de en-es en-fr en-it en-ja en-nl en-pt en-ro en-zh Avg.

Original Embedding

MUSE ❖ - - - 95.40 93.50 94.30 93.80 94.00 94.90 30.00 94.30 86.90
CRISS ♥ - - - 96.30 92.70 92.50 84.80 93.40 - - 85.60 90.20
DuEAM ♠ - - - 93.00 91.50 85.70 84.20 - 91.20 88.50 90.20 87.90
LASER - 91.95 99.05 98.00 95.65 95.30 95.35 96.30 95.15 97.40 95.45 95.96
InfoXLM∗ - 20.95 38.50 30.85 32.35 24.85 28.20 19.85 36.90 30.40 34.05 29.69
LaBSE - 89.75 99.20 98.10 96.05 94.75 96.40 96.90 95.55 97.40 96.20 96.03

Semantic Embedding (↑)

LASER

DREAM 60.35 89.85 83.40 76.55 80.95 71.70 80.10 82.15 80.60 74.20 77.99
+ORACLE 60.30 90.00 83.40 76.65 81.00 72.05 80.35 82.30 80.60 74.60 78.13
MEAT 86.95 96.55 96.00 91.35 91.80 90.65 91.75 93.45 94.80 92.95 92.63
+ORACLE 87.30 98.05 96.65 92.75 92.55 87.95 93.70 94.25 95.40 93.80 93.24

InfoXLM

DREAM 44.05 57.65 68.65 62.80 54.80 56.45 62.70 66.50 58.15 67.10 59.89
+ORACLE 44.80 58.00 68.85 62.65 54.80 57.05 62.30 66.65 57.95 67.20 60.03
MEAT 31.60 67.25 70.75 67.30 63.70 42.05 68.95 74.05 59.05 57.70 60.24
+ORACLE 31.80 69.00 71.60 68.35 64.15 43.10 70.85 75.25 60.45 60.30 61.49

LaBSE

DREAM 89.90 99.10 98.50 95.80 95.05 95.75 97.35 95.45 97.50 95.35 95.98
+ORACLE 89.70 99.15 98.50 95.90 94.85 95.90 97.30 95.50 97.70 95.55 96.01
MEAT 90.30 99.20 98.15 98.90 94.55 96.15 97.30 95.55 97.55 95.50 96.32
+ORACLE 90.95 99.40 98.50 96.30 95.20 96.40 97.40 95.75 97.85 95.80 96.36

Language Embedding (↓)

LASER

DREAM 1.20 1.50 2.95 1.50 4.45 1.15 2.00 3.70 1.85 1.70 2.20
+ORACLE 0.25 0.10 0.30 0.20 0.25 0.10 0.35 0.30 0.20 0.05 0.21
MEAT 19.40 9.75 13.55 6.70 14.30 5.65 9.90 16.15 16.20 10.85 12.25
+ORACLE 0.60 0.20 0.45 0.30 0.55 0.30 0.65 0.40 0.75 0.45 0.47

InfoXLM

DREAM 0.10 0.10 0.25 0.15 0.45 0.20 0.40 0.20 0.15 0.20 0.22
+ORACLE 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
MEAT 0.35 0.55 2.00 0.90 2.75 0.30 3.35 0.85 1.15 0.40 1.26
+ORACLE 0.10 0.15 0.25 0.15 0.10 0.10 0.20 0.20 0.15 0.15 0.16

LaBSE

DREAM 24.50 11.50 18.95 17.85 24.25 11.20 14.20 9.70 12.35 24.70 16.92
+ORACLE 2.15 1.20 1.00 0.30 1.45 1.15 1.30 9.30 0.70 1.00 1.96
MEAT 64.25 55.30 64.10 64.30 64.50 65.45 60.25 58.15 57.60 60.45 61.44
+ORACLE 8.30 7.25 5.05 5.00 8.15 9.70 7.20 3.90 6.75 5.65 6.70

Table 9: Cross-lingual retrieval accuracy with Tatoeba task. For each language pair, we report the average accuracy
of both directions (from English and into English). Bold represents when our method surpass the vanilla approach
and highlight denotes when the average value is higher. ❖: results from Lee and Chen (2017) (supervised) ; ♥:
results from Tran et al. (2020) (weakly supervised); ♠: results from Goswami et al. (2021) (self-supervised). *:
We use mean pooling to compute sentence embedding. All average improvements are statistically significant with
p-value ≤ 0.001.
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Encoder Objective ar-ar en-en es-es en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

Original Embedding

LASER - 68.85 66.55 57.93 77.62 79.68 64.20 71.98 69.05 70.83 68.68 69.54
InfoXLM∗ - 19.11 50.20 36.17 12.89 16.31 24.86 9.10 25.12 28.10 30.55 25.24
mSimCSE - 69.06 74.50 65.71 79.45 80.83 73.85 72.07 76.98 76.98 75.22 74.47

Semantic Embedding (↑)

LASER

DREAM 57.10 53.98 46.36 43.22 41.92 40.60 32.88 48.58 49.94 47.47 46.21
+ORACLE 57.16 54.14 46.64 43.55 42.11 40.67 32.83 48.70 49.98 47.80 46.36
MEAT 66.87 71.95 79.16 62.41 60.44 65.06 54.63 61.94 66.27 63.90 65.26
+ORACLE 67.14 72.69 78.75 63.59 60.03 66.19 55.20 61.38 65.80 63.76 65.45

InfoXLM

DREAM 50.28 56.39 56.16 43.35 39.54 42.71 38.42 48.02 47.80 50.18 47.29
+ORACLE 50.25 56.38 56.16 43.35 49.55 42.61 38.40 47.98 47.82 50.19 48.27
MEAT 35.83 61.23 51.14 11.09 25.58 33.32 20.04 29.38 41.58 37.50 34.67
+ORACLE 35.87 61.40 50.73 11.26 28.15 34.83 21.41 31.55 42.72 38.77 35.67

LaBSE

DREAM 69.84 74.78 79.82 70.97 70.82 71.30 64.22 75.67 76.28 75.56 72.93
+ORACLE 70.65 76.03 81.06 72.37 72.49 73.33 66.18 76.13 76.76 76.29 74.13
MEAT 72.03 80.34 83.66 74.71 75.40 73.59 70.48 77.82 78.18 77.43 76.36
+ORACLE 72.05 80.41 83.86 75.09 75.67 74.56 70.98 77.75 78.57 77.44 76.64

Language Embedding (↓)

LASER

DREAM 45.12 34.87 39.95 18.94 11.89 21.50 17.64 8.29 14.91 10.81 22.39
+ORACLE 21.43 12.77 18.40 20.85 11.65 17.12 15.30 6.14 16.87 11.51 15.20
MEAT 52.51 40.35 55.29 35.78 22.93 27.26 27.89 22.73 30.74 25.99 34.15
+ORACLE 21.26 14.97 21.75 21.48 6.09 15.71 15.51 4.86 15.37 8.49 14.55

InfoXLM

DREAM 39.62 51.03 49.74 3.87 2.66 4.53 12.95 9.94 9.37 12.21 19.59
+ORACLE 24.62 31.07 36.01 -10.84 -7.12 -9.51 2.85 -3.18 -2.06 2.67 6.45
MEAT 33.00 50.01 51.02 -6.10 8.21 -2.50 -1.97 8.44 13.58 10.87 16.46
+ORACLE 33.13 46.96 51.63 -11.63 0.14 -8.14 -7.91 1.57 7.25 3.59 11.66

LaBSE

DREAM 44.32 40.35 50.81 24.12 22.56 28.29 18.76 22.86 20.38 22.02 29.45
+ORACLE 33.10 19.88 28.60 1.59 1.14 17.39 15.57 12.17 8.36 12.53 15.03
MEAT 52.11 68.57 68.18 38.57 28.94 35.87 31.27 28.66 29.40 27.21 40.88
+ORACLE 37.25 27.30 33.61 0.08 0.79 16.94 16.60 10.98 8.01 13.12 16.47

Table 10: Spearman’s rank correlation coefficients (ρ) of monolingual and cross-lingual STS task. Bold

represents when our method surpass the vanilla approach and highlight indicates when the average value is higher.
*: We use mean pooling to compute sentence embedding. All average improvements are statistically significant
with p-value ≤ 0.001.
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Encoder Objective en-ar en-de en-es en-fr en-it en-nl en-pt en-ro Avg.

Original Embedding

LASER - 90.82 98.75 98.26 95.17 94.63 95.22 95.91 98.37 95.89
InfoXLM∗ - 13.71 39.04 37.05 36.20 29.44 29.54 41.44 31.37 32.22
LaBSE - 90.06 99.48 98.49 95.60 93.46 97.02 96.56 98.24 96.11

Semantic Embedding (↑)

LASER

DREAM 59.75 88.58 84.67 73.90 84.46 80.66 82.02 82.43 79.56
+ORACLE 59.62 88.79 85.02 73.90 84.46 80.45 82.24 82.18 79.58
MEAT 84.91 97.82 96.28 92.70 93.34 93.84 95.05 96.86 93.85
+ORACLE 86.54 97.09 97.79 92.59 93.22 92.67 95.26 96.11 93.91

InfoXLM

DREAM 28.05 55.14 58.07 59.72 54.09 53.99 54.90 56.46 52.55
+ORACLE 27.80 56.39 58.19 60.15 54.67 54.84 56.62 56.34 53.13
MEAT 15.35 42.26 60.51 58.22 56.43 56.43 57.70 50.69 49.70
+ORACLE 16.35 42.26 61.32 59.94 58.06 57.17 59.31 52.07 50.81

LaBSE

DREAM 87.78 99.27 97.33 95.38 92.87 96.60 96.45 97.99 95.46
+ORACLE 88.30 99.27 98.14 95.38 93.22 96.81 96.66 98.11 95.74
MEAT 88.43 99.38 98.03 94.95 92.87 96.49 96.12 97.74 95.50
+ORACLE 89.56 99.69 98.37 96.60 93.34 97.13 96.34 98.24 96.16

Language Embedding (↓)

LASER

DREAM 2.01 4.15 7.08 3.01 7.36 6.06 9.36 3.76 5.35
+ORACLE 0.25 0.83 1.39 0.43 0.93 0.85 2.48 0.75 0.99
MEAT 35.72 23.88 35.31 17.72 27.57 31.77 49.62 22.84 30.55
+ORACLE 1.51 1.66 3.02 1.07 2.45 2.34 5.06 1.25 2.30

InfoXLM

DREAM 0.13 0.52 0.93 0.64 0.93 2.34 0.54 0.53 0.82
+ORACLE 0.13 0.10 0.46 0.11 0.23 0.85 0.11 0.13 0.27
MEAT 1.89 10.38 20.44 13.64 20.56 36.03 23.90 15.93 17.85
+ORACLE 0.38 1.04 3.37 1.40 3.15 8.93 3.12 1.76 2.89

LaBSE

DREAM 11.57 14.54 21.24 23.52 27.69 27.21 19.38 17.44 20.32
+ORACLE 1.26 1.25 1.39 2.69 1.99 2.98 0.75 0.88 1.65
MEAT 48.81 37.80 53.31 51.34 56.54 53.35 43.27 34.00 47.30
+ORACLE 6.42 7.06 6.04 7.63 9.11 10.52 6.14 6.40 7.42

Table 11: Retrieval accuracy with our code-switching dataset. Bold represents when our method surpasses the
vanilla approach and highlight denotes when the average value is higher. vanilla: original DREAM or MEAT
approach; ORACLE: incorporation of our objective. *: We use mean pooling to compute sentence embedding. All
average improvements are statistically significant with p-value ≤ 0.001.
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Figure 7: LaBSE sentence embeddings for English-Arabic sentence pair.
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Figure 8: LaBSE sentence embeddings for English-Aymara sentence pair.

de (lang)
de (sem)
en (lang)
en (sem)

(a) DREAM

de (lang)
de (sem)
en (lang)
en (sem)

(b) DREAM + ORACLE

de (lang)
de (sem)
en (lang)
en (sem)

(c) MEAT

de (lang)
de (sem)
en (lang)
en (sem)

(d) MEAT + ORACLE

Figure 9: LaBSE sentence embeddings for English-German sentence pair.
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Figure 10: LaBSE sentence embeddings for English-Spanish sentence pair.
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Figure 11: LaBSE sentence embeddings for English-Guaraní sentence pair.
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Figure 12: LaBSE sentence embeddings for English-Italian sentence pair.
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Figure 13: LaBSE sentence embeddings for English-Japanese sentence pair.
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Figure 14: LaBSE sentence embeddings for English-Dutch sentence pair.

en (lang)
en (sem)
pt (lang)
pt (sem)

(a) DREAM

en (lang)
en (sem)
pt (lang)
pt (sem)

(b) DREAM + ORACLE

en (lang)
en (sem)
pt (lang)
pt (sem)

(c) MEAT

en (lang)
en (sem)
pt (lang)
pt (sem)

(d) MEAT + ORACLE

Figure 15: LaBSE sentence embeddings for English-Portuguese sentence pair.
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Figure 16: LaBSE sentence embeddings for English-Romanian sentence pair.
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Abstract
The recently introduced path-star task is a min-
imal toy task designed to exemplify limitations
to the abilities of language models (Bachmann
and Nagarajan, 2024). It involves a path-star
graph where multiple arms radiate from a single
starting node and each node is unique. Then,
given the start node and a specified target node
which ends one of the arms, the task is to
generate the arm containing that target node.
This is straightforward for a human but surpris-
ingly difficult for a language model, which they
found failed to predict above chance. They hy-
pothesized this is due to a deficiency in teacher-
forcing and next-token prediction paradigm.

In this extended abstract, we demonstrate that
the task is learnable using teacher-forcing in al-
ternative settings and that the issue is (partially)
due to representation. We analyze situations
when the models fail to solve the task which
leads us to introduce a regularization technique
where we pack each training batch with multi-
ple instances of the same graph but with differ-
ing target nodes to prevent overfitting. Initial
results indicate this helps in solving the task.

1 Introduction

Recently, language models (LMs) have become in-
creasingly capable of solving a variety of complex
tasks (Brown et al., 2020; Zoph et al., 2022; Bubeck
et al., 2023). This has led to increased interest in de-
termining why this is and the limits to these abilities
(Chen et al., 2024). Language models can do many
spectacular things, which makes it all the more
shocking when they fail on simple tasks. Recently,
Bachmann and Nagarajan (2024) introduced one
such seemingly simple task designed to showcase
pathological behaviour of causal (decoder-only) au-
toregressive (AR) LMs trained via teacher-forcing.
The task is simple by design and thus failure of
AR models is both surprising and informative. We
begin by describing the task in Sec. 1.1, before
analyzing why it is hard for LMs in Sec. 2.

1.1 The Path-star Task

We need to describe the path-star graph, G, i.e. the
data meant to be manipulated, the problem speci-
fication or question, Q, i.e. the prompt specifying
the desired manipulation, and their tokenization.

Let N be the set of unique nodes forming G. A
path-star graph contains one central starting node
s ∈ N and D radial arms each of length M (inclu-
sive of s), s.t. |N | = D(M − 1) + 1. s has degree
D, all final nodes which end an arm, F ⊂ N s.t.
|F | = D, have a single degree, and all others have
a degree of 2. See Fig. 1 for an example.

Given G, and a task specification, Q, containing
s and a target node t ∈ F , the task is to gener-
ate the unique arm, Rt, as a sequence of nodes
starting from s until t. i.e. Rt = sort({ r ∈
N | ∀f∈F dist(r, t) ≤ dist(r, f)}).1 Let L be the
set of possible leading nodes which are adjacent
to s i.e. L = { l ∈ N |dist(l, s) = 1}. The chal-
lenge of the task is predicting the correct leading
node lt ∈ L ∩ Rt from all other leading nodes.
By design, there is a uniform 1/D chance of this
given only G. Prediction over chance should be
possible by inferring the correct target arm and
thus lt given t in Q. Note, as all nodes are unique,
all non-leading nodes are deterministic given their
preceding neighbour (closer to s).

When generating the dataset, the nodes in a sin-
gle graph are uniformly sampled from a set of possi-
ble nodes, V , without replacement. G is tokenized
as a series of D(M − 1) edges where each edge
is internally ordered by distance to s and marked
by special token ‘|’ so that a given edge, (u, v),
is a three token sequence ‘u v |’. Q is tokenized
as a sequence of four tokens with special tokens
marking the beginning and end of Q as ‘/ s t =’.
Special beginning- and end-of-sequence tokens are
also used, making the final vocabulary size |V |+5.

1‘dist’ is graph distance. We abuse notation by treating Rt

as a set and G and Q as sequences after having been tokenized.
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1

Start
Node,

Target
Node,

Leading 
Nodes,

Arm,

Figure 1: An example path-star graph. D = 3, M = 4,
s is ‘4’, t is ‘7’ Rt is ‘4 8 2 7’, and lt is ‘8’. One possible
tokenization of [V, Q, Rt], where the arms (and not the
edges) are permuted is: ‘BOS 4 9 | 9 1 | 1 3 | 4 8 | 8 2 | 2
7 | 4 5 | 5 10 | 10 6 | / 4 7 = 4 8 2 7 EOS’.

1.2 Autoregressive models and training
A causal or decoder-only AR LM models the joint
probability of a T -length sequence, y, as a factor-
ized product of local probabilities, as in

p(y1, y2, . . . , yT | y0, ) =
∏

p(yj | y<j). (1)

Here, we model the path-star task as

p(r1, . . . , rM | [G, Q]) =
M∏

j=1

p(rj | [G, Q, r<j ]),

(2)
where x = [G, Q, r<j ] is the concatenation of the
tokenized graph and problem specification along
with the partial ground-truth sequence, r<j , form-
ing the given conditioning input to the model. Such
a model is trained by via maximum likelihood train-
ing, generally referred to as ‘teacher-forcing’ in the
context of language models, as the partial ground-
truth sequence is used to condition the model dur-
ing training instead of the model’s own predictions
as done during inference (Williams and Zipser,
1989). We minimize −∑

r∈Rt
log p( . |x). Thus

the loss is only over the target sequence Rt and not
on tokens in the prefix [G, Q]. This is because the
node ids forming G are random and Q necessarily
must be provided, thus both are not predictable and
can only be used to condition the model.

During inference, G and Q are provided. We
consider a non-traditional ‘teacher-forced’ infer-
ence procedure where, instead of generating the
arm autoregressively, it is conditioned on r<j . Thus
inference exactly matches the training procedure
and prevents any potential training-inference bias.

We focus on transformer models (Vaswani et al.,
2017), where the causal parameterization of AR
models is enforced via an attention mask which

prevents the token at any step j from depending
on any token at step > j. This causal restriction
applies across the entire input x. Positional embed-
dings make each token unique. To prevent learning
a trivial answer based on position, as a data prepro-
cessing step, the edges in G are shuffled, which
can be seen as a random permutation applied to
the edge order of tokenization of G.

1.3 Failure to learn: Clever Hans hypothesis
Bachmann and Nagarajan (2024) empirically
demonstrated three different LMs – finetuned
GPT2, a smaller GPT2 trained from scratch, and
a state-space model, Mamaba – all fail to predict
above 1/D chance, even in settings as small as
D = 2 and M = 5 (Radford et al.; Gu and
Dao, 2023). They hypothesized this was caused by
teacher-forcing. The idea being that there are two
possible modes of predictions which the model can
learn. The first is the desired mode which learns to
represent the entire path between s to t. This mode
is necessary for predicting lt. Whereas, the second
mode makes trivial predictions about the next node
in the arm given the previous node. This mode only
needs to lean superficial information about edge
structure but not graph structure and is, by design
of the task, sufficient for predicting all non-leading
nodes given the correct preceding node.

Bachmann and Nagarajan (2024) argued that
teacher forcing will result in learning the second
mode, referred to as the Clever Hans cheat (CHC).
This is because teacher-forcing conditions on the
correct ground-truth, which in this case is the cor-
rect preceding node in the arm. Also, when applied
to AR models, it is restricted to making a single
next-token prediction and hence precludes learn-
ing any long term planning. Then, once the CHC
is learnt, it will discourage learning the desired
mode necessary for predicting lt. Their intuition,
which admittedly is not proven, is that, sequence
modelling relies on the intermediate training steps
across the sequence to form a coherent represen-
tation of the overall sequence. In our case, that
would be a representation of the entire arm struc-
ture, however, here those intermediate steps do not
participate in learning such a structure but are rather
absorbed into learning the trivial CHC, resulting in
a loss of this intermediate training signal.

They presented empirical evidence for the CHC
hypothesis by considering the overall sequence ac-
curacy when provided with the correct preceding
predictions (i.e. teacher-forced generation). Here,
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all non-leading tokens are learnt with 100% accu-
racy and the leading token is only predicted at 1/D
chance, leading to an overall sequence accuracy of
1/D (See their Fig. 3 and our Fig. 3).

Interestingly, a trivial solution to the task exists
if the model can look-ahead M tokens to the end of
the arm as the model just needs to find and match
the correct target token. Once done, it can apply the
CHC in reverse order to determine the arm. This
led them to provide two additional supporting em-
pirical arguments as to why they believe the issue
stems from teacher-forcing. First, they modified
the task to require that the arm be generated in re-
verse order. This makes task trivial as the CHC can
just be applied in reverse order via supervision.

Second, they introduced a ‘teacher-less’ model
(Monea et al., 2023). This works by using M
masked tokens, m, to make make all M predic-
tions in independently of the ground-truths i.e.
x = [G, Q, m1, . . . , mM ]. This completely re-
moves teacher-forcing as it removes all dependen-
cies between target-tokens during prediction. Of
the 15 reported experiments, this method allows
the model to solve the task in 5 instances: for the
D = 2 experiment using the small GPT2, and for
D ∈ {2, 3, 4} (but not D = 5) when using large
GPT2. Thus this method did not work consistently.

Importantly, they establish that, 1), the failure
is not due to the amount of training data, 2), that
the failure is in-distribution, and 3), that it is not
due to any exposure bias or other differences be-
tween the training and inference procedures (Ben-
gio et al., 2015; Ranzato et al., 2016; Arora et al.,
2022). This allows them to disclude these alterna-
tive explanations and conclude that the CHC causes
the learning problem which is itself a consequence
of teacher-forcing and next-token prediction. This
leads to a discussion concerning possible funda-
mental limitations to the next-token prediction
paradigm, with the path-star task being offered
as a counter example to the paradigm being suf-
ficient to learn any task.

2 Methods and Results

We solely focus on the small LM setting under
the belief that such models should be able to learn
such a simple task and that the biases from the
pretrained data and any emergent abilities of LLMs
will just obfuscate the root problem. We implement
our models using Fairseq (Ott et al., 2019). Our
AR model have 6 layers and 200 dim. embeddings.

Each layer has a feed-forward dim. of 800 and 8
heads. We use Adam (Kingma and Ba, 2014) with
a learning rate of 0.0005, a dropout rate of 0.1
and a weight decay of 0.01. We train with 16-bit
precision and a batch size of 1024. Each model is
given a maximum of 100 epochs and stop training
if the validation loss drops below 0.001 (See Fig 2).
Note this is smaller than both GPT2 models used
by Bachmann and Nagarajan (2024) which used 36
and 12 layers with larger embeddings.

Following Bachmann and Nagarajan (2024),
|V | = 100 and M = 5. Each dataset for D ∈
{2, 3, 4, 5} is made up of 2,000,000 training and
20,000 test samples of randomly generated G, Q
pairs without any overlap. Unlike them, we ran-
domly permute G at every epoch instead of just
once in an attempt to prevent overfitting.

We present our work as an investigation over a se-
ries of hypotheses and corresponding experiments
to get at the heart of the path-star mystery. As such,
we report intermediate results and describe new
methodology as it becomes motivated. We try to
present results in order of our findings, however,
we need to give some post-hoc explanations for our
methodology in order for the reader to understand
the contents of Tables (1, 2, 3, 4). First, in our ini-
tial experimentation (using D = 2), we found that
the models would be able to solve the task seem-
ingly at random (under modified task conditions).
This motivated the use of running multiple trials
for each experiment under different random seeds.
For all listed experiments we consider the percent
of trials that correctly succeed in learning the task
across 11 trials. Second, we found it was necessary
to set attention dropout to zero, which makes sense
given the task requires routing node information
across positions. Third, we also found that we re-
quired learned positional embeddings instead of
sinusoidal embeddings. We suspect that the later
results in too strong of a positional bias when ran-
domly permuting the edges in G. As an aside, we
also found that for the decoder-only model, not
using any positional embeddings could also work.
This is because positional information will arise out
of the asymmetry induced by the causal masking.

2.1 A reproduction of empirical results
As the results of Bachmann and Nagarajan (2024)
are surprising, we independently verify them as
an initial step. Experiment (exp.) 1 of Table 1,
confirms that the task is not learnable under the
initial conditions. Exp. 2 confirms that reversing
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ID Perm. Q Tgt./Dir. C. D = 2 D = 3 D = 4 D = 5

1 Edge End Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
2 Edge End Rev. 0 100% 100% 100% 100%
3 Edge End lt-only 0 0% 0% 0% 0% 0% 0% 0% 0%
4 Arm End Fwd. 0 100% 36% 0% 9% 0% 9% 0%
5 Arm Start Fwd. 0 100% 100% 100% 100%
6 Edge Start Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
7 Arm End Fwd. 1 100% 91% 9% 91% 9% 36% 55%

Table 1: Percent of successful trials (n=11) using the AR (decoder-only) model. ‘ID’ is the experiment ID. ‘Perm.’
is the type of random permutation applied to G (Sec. 2.2.2). ‘Q’ is the relative position of Q to G when tokenizing
(Sec. 2.2.3). ‘Tgt./Dir.’ is the type of target we are trying to generate (Sec. 2.2.1). And ‘C.’ is the number of
contrastive samples used (Sec. 2.4). For each experiment in D ∈ {2, 3, 4, 5}, we report the percent of the 11 trials
which succeeded in learning the task to at least a threshold of 95% sequence accuracy (which meant 100% for the
AR models) in the first column. In the second column, we report the percent of unsuccessful trials where the valid
and training loss has not diverged i.e. 0% means all trials have overfit

the arm results in a trivial 100% success rate.

2.2 Simplifying the task
Having confirmed the results in the original task
setting, our method to investigate the issue will be
to simplify the task until it becomes consistently
solvable. We begin by considering the target-side.

2.2.1 Evidence against the CHC hypothesis
Under one interpretation of the CHC hypothesis,
lt is indecipherable due to the model being over-
whelmed by the CHC. As such, we should be able
to learn a simplified version of the task where we
only predict lt directly instead of the entire arm Rt.
Exp. 3 of Table 1, shows this produces the same
negative result as when predicting the entire arm.

The more charitable interpretation of the CHC
hypothesis is that the core issue concerns the fact
that the CHC removes necessary intermediate train-
ing signal for learning the task. Under this interpre-
tation, we have not disproved the core hypothesis,
but have shown that the entire CHC aspect is ir-
relevant to the underlying issue. That is, if lack
of intermediate supervision is the core issue, we
should just explicitly remove it from the task de-
scription and cut out the red-herring of the CHC.

However, we do not believe that lack of inter-
mediate supervision is the real issue and take this
result as a sign that something else is at play. To
solve this task, all the model needs to do is 1) de-
termine the final node, 2) trace back each arm from
the final node to its leading node, and 3) predict
that leading node. Importantly, this requires that
we can correctly represent the arms in the graph.
This motivates us to experiment with simplifying
the source-side of the task instead of the target-side.

2.2.2 Alternative hypothesis: representation
issues due to the permutation of G

Our first hypothesis as to what is preventing learn-
ing the solution is that it is a representation issue
due to randomly permuting the edges of G. This
will corrupt the arm structure with the model seem-
ingly unable to recover the structure. In particular,
when using a causal model, all information can
only be routed forward in ‘time’ and this may in-
duce difficulties when trying to recover and route
information across the arm structure. Not only does
permutation make routing information across the
arms harder, or even impossible, but the difficulty
in learning might also be due to the assumptions
we make when we decompose the joint probability
as in Eq. 1. Specifically, we are parameterizing
the model to a specific decomposition (Yang et al.,
2019; Liao et al., 2020). However, by permuting
the arms, we are forcing the model to learn an
exponential number of possible decompositions.
This may be a challenge, even when using an over-
parameterized model like a transformer and may
explain the difficulty of the task.

Thus we can simplify the task where we retain
the arm structure by only permuting the order of
the arms relative to each other (but not the internal
order of the edges). Refer to this change as Edge-
v.s. Arm-wise permutation. If this is solvable, then
we know that the issue lies in the corruption of the
arm information via permuting the edges. Exp. 4
of Table 1 shows this improves the results, with
D = 2 being consistently solved, but with a dimin-
ishing success-rate as D increases. These partial
improvements lead us to a related hypothesis.
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2.2.3 Alternative hypothesis: representation
issues due to the order of G and Q

If we can only route information into the future,
maybe our representation issue stems from that fact
that we have placed the problem specification after
the graph during tokenanization. That is, we have
placed the information needed to specify what to
do with the data after the actual data. This means
that the latent representation of G formed by the
LM can not depend on Q. Thus instead we form
our input as x = [Q, G, r<j ]. Refer to this as Q’s
position being either Start v.s End. Exp. 5 of Table
1 demonstrates that this consistently solves the task
when combined with permuting the arms only, but
goes back to being completely unsolved when com-
bined with permuting the edges (Exp. 6). While
this shows that the task is solvable, it is unsatisfy-
ing as we require stronger supervisory information
in this setting. This also begs the question as to
why placing Q after G is at times solvable, even if
we understand why it makes the task harder.

As the causal constraint of decoder-only models
potentially induces these issues, we are motivated
to change the model specification to see if abandon-
ing this constraint will solve the task.

2.3 Changing the model parameterization
2.3.1 Encoder-decoder model, or, alternative

hypothesis: it’s the causal constraint
Here we use encoder-decoder model with a 6-layer
encoder with a 3-layer decoder with tied embed-
dings. Removing the causal constraint on the
source-side encoding of [G, Q] makes the relative
position of Q to G irrelevant. If this model can
consistently solve the task, it will demonstrate that
the underlying issue is that the causal constraint
prevents the decoder-only model from recovering
the arm structure with edge-wise permutation.

Exp. 9 in Table 2 demonstrates that using a non-
causal encoder representation does not solve the
problem with edge-wise permutation. This moti-
vates us to revisit the ‘teacher-less’ methodology
as it has been shown to partially work and is an
alternative non-causal methodology.

2.3.2 Non-autoregressive models
Bachmann and Nagarajan (2024) reported that
‘teacher-less’ models where unable to solve the task
in the small LM setting. Here we attempt to im-
prove their results. We begin by modify their their
‘teacher-less’ model as it was designed to modify an
LM post-hoc, which is not applicable here (Monea

et al., 2023). Instead, note this is actually just a
kind of non-autoregressive model (NAR) (Gu et al.,
2018; Wang et al., 2018; Gu and Kong, 2021).

NAR models treat all targets as independent in
order to make multiple predictions in parallel in-
stead of sequentially. This is achieved by removing
the causal constraint i.e. attention mask. In the
case of (fully) NAR models, full independence is
assumed. However, this can lead a poor model as
it limits the ability to learn from dependencies in-
herent in the sequence (Lee et al., 2018; Qian et al.,
2021). This lead to the development of iterative
autoregressive models (IAR)2 which assume partial
dependencies, both during training and inference –
except in the first generation step (Lee et al., 2018;
Ghazvininejad et al., 2019). Importantly, IAR mod-
els assume no order-of-generation. This allows
for the model to potentially learn the reverse order
solution without supervision.

To train an IAR model, an order-permutation of
the sequence is sampled, along with a time-step,
j such that model conditions on the permuted or
‘unmasked’ ground-truths prior to step j. This is
equivalent to the MLM objective with a dynam-
ically sampled masking rate, where the the uni-
form masking is acting as the permutation (Devlin
et al., 2019; Lee et al., 2018; Ghazvininejad et al.,
2019). Thus use teacher-forcing, but it is just ap-
plied to a permuted sequence order. We use CMLM
(Ghazvininejad et al., 2019) for an encoder-decoder
IAR model and an encoder-only model using the
same hyper-parameters as the decoder-only model
(i.e same model but without causal masking).

We evaluated these models both in the NAR and
IAR generation setting using either 1 or M iterative
steps (results not reported). Both settings produced
the same results. That is, once, the model learnt
the solution, it could generate the entire arm in one
step just as well as over M steps. In principle, the
IAR models should be able to first generate t in the
last position, condition on it, and then just generate
the arm in reverse order via CHC – which should
be much easier than learning the true solution. This
did not happen. It should be disconcerting for
practitioners of IAR models that the trivial gen-
eration order does not seem to be found.

We demonstrate that small IAR models are ca-
pable of learning the task in Tables 3 and 4. Exp.
11 and 14 may indicate that IAR models are not as
performative on the task, however, this is not true

2Often called iterative NAR models, which is a misnomer.
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ID Perm. Dir. Ctra. D = 2 D = 3 D = 4 D = 5

8 Arm Fwd. 0 100% 100% 100% 100%
9 Edge Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
10 Arm Fwd. 1 100% 100% 100% 100%

Table 2: Results using the encoder-decoder AR model. Q pos. is ‘End’.

ID Perm. Train Dir. Ctra. D = 2 D = 3 D = 4 D = 5

11 Arm IAR Fwd. 0 100% 100% 82% 0% 82% 0%
12 Edge IAR Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
13 Arm IAR Fwd. 1 100% 100% 100% 100%

Table 3: Results using the CMLM (encoder-encoder) IAR model with IAR training (teacher-forcing).

once contrastive samples are used (Sec 2.4).

2.4 Contrastive samples

Our observations of the failures of the above mod-
els lead us to conclude that, in the instances where
the model failed to solve the task, the model would
overfit. See the top graph of Fig 2 with D = 2.
Here all trials end up successfully learning the task,
which can be seen when the validation accuracy
branches off from chance. However, the last exam-
ple nearly overfits. In the third graph, we see the
same experimental setting but with D = 4. Here
only a single trial succeeded and the rest main-
tained a stagnant validation accuracy at chance
while the training and validation losses diverge.

To prevent this, we experimented with standard
methods to combat overfitting such as lowering
learning rate, increasing batch size or L2 regular-
ization, etc. without success. This lead to devel-
oping an alternative method where we supplement
the training data with multiple instances of G but
with different target nodes, and hence, different Q
and target arms to be generated. This was achieved
via expanding each batch with one or more of these
contrastive samples per original G. These extra
instances should act as interference on any spu-
rious training signal. Note, apart from sampling,
these are treated as independent and are not part
of a contrastive loss. This can be viewed as extra
supervisory information applied at the batch-level.

Results of exp. 7, 13, and 16 show that this
prevents overfitting and leads to improved success
rate across models. The arm-wise decoder-only
exp. 7 shows improved rates at D ∈ {4, 5}. This
can be seen in the first and third plots in Fig 2 in
contrast to their corresponding second and forth
plots where we see the validation loss tracks the
training loss instead of diverging when provided

with contrastive samples. This lead to learning the
solutions in less epochs in the D = 2 case and lead
to 10/11 instead of 1/11 of the trials succeeding in
the D = 4 case.

3 Limitations and Future work

The major limitation to this extended abstract is
that the experiments with contrastive samples are
in progress. We included partial and preliminary
results of this method in order to show the future di-
rection of this work. Despite this, we have already
demonstrated a number of interesting findings: 1)
We independently reproduced the empirical results
of Bachmann and Nagarajan (2024). 2) We show
that the CHC is a red-herring, if the problem is due
to loss of intermediate training signal. 3) We show
that retaining the arm structure leads to improved
results and that combining this with a better order-
ing of Q and G makes the task solvable. We take
this as strong evidence that poor representation is a
key factor in why the task is difficult. 4) We show
that NAR/IAR models can successfully solve the
task in limited settings, and describe a surprising
failing to these models. Finally, 5), we show that
overfitting is a key issue and provide initial positive
results in tackling this.

We set out the hypothesis that trials where the
training and validation losses do not diverge will
succeed given sufficient training time. However,
that has yet to be shown. It is an open question if
contrastive samples will always lead to finding the
solution given sufficient time or if this scales with
D and M . More importantly, it is an open question
as to why the models prefer to overfit instead of
finding the correct solution. On lead we have is that
the task hinges on a single token which determines
the necessary latent representation of G, and this
seems to have large consequences on the behaviour
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Figure 2: Plots 1 and 3 visualize the training of the experiments of row/exp. 4 in Table 1 where D = 2 and D = 4
respectively. Plots 2 and 4 visualize the corresponding experiments in row/exp. 7 when constrictive exampled are
employed. Each plot shows the loss and sequence accuracy across all 11 trials of the given experiment for both
the training and validation partitions. When a trial succeeds in finding the desired solution, the sequence accuracy
spikes to 100% and the validation loss drops to near-zero. The loss is cutoff at 0.75 for visibility.
In plot 1, all trials succeed, however, when D is increased to 4, only 1/11 trials succeed as shown in plot 3. Here we
see that the training and validation losses diverge shortly after epoch 20, resulting in overfitting. In plot 4, the use of
contrastive samples prevents this divergence, leading to 10/11 trials succeeding, with the remaining trial not finding
the solution within the 100 epoch limit.
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ID Perm. Train Dir. Ctra. D = 2 D = 3 D = 4 D = 5

14 Arm IAR Fwd. 0 100% 82% 0% 36% 0% 9% 0%
15 Edge IAR Fwd. 0 36% 0% 0% 0% 0% 0% 0% 0%
16 Arm IAR Fwd. 1 100% 100% 100% 91% 9%

Table 4: Results using the encoder-only IAR model.

of the learning algorithm and the difficulty of learn-
ing a correct solution. This indicates that the issue
may stem from the sensitivity of the task to the
target token (Hahn et al., 2021; Chen et al., 2023;
Chakraborty et al., 2023; Bhattamishra et al., 2023;
Hahn and Rofin, 2024).

A large and important part of the scientific pro-
cess is testing hypotheses and putting forth counter
arguments. If, as we believe, the CHC hypothesis
is incorrect, then the broader discussion of Bach-
mann and Nagarajan (2024) concerning limitations
of next-token prediction is not be supported by their
findings. This is the main contribution of this work,
even if, we do not have a full solution or replace-
ment hypothesis. Even if the CHC hypothesis is
wrong, the path-star task is still a seemingly trivial
but deceptively difficult problem, making it worthy
of study. In addition to questioning the CHC hy-
pothesis, we make headway into the mystery of the
path-start task by demonstrating multiple simpli-
fications or alternatives of the task which make it
(more) solvable. Finally, we introduce a contrastive
method which has early indications of helping to
solve the task, however, open questions remain as
to why this method works and why it is necessary
in the first place.

3.1 Post-submission findings

Between submission and acceptance, new findings
have come to light, which we summarize here.

1) Constrastive samples are necessary but not
sufficient to solve the task consistently. We find
that, as each example is randomly sampled, there
will be |V |D(M−1)+1 × D possible graph-target
pairs to sample from. Thus it is easy to see why
the models would overfit as they can learn to make
many possible spurious correlations between any
unique node or combination of nodes in the source-
side and the targets. Contrastive samples will alle-
viate these spurious correlations by indicating that
the targets depend on a single token only. Above,
we wondered if contrastive samples will always
lead to finding the solution given sufficient time.
We found this is not true. However, we also con-

duct an analysis of the task using RASP (described
below), which lead to a counter-intuitive result that,
even though overfitting is an issue, we need to in-
crease the size of the models to solve the task.

2) The RASP programming language is a for-
mal computation model used to verify if a trans-
former is capable of solving a given symbolic (non-
numerical) task where the existence of a valid
RASP program proves there exists at least one
transformer which can (Weiss et al., 2021; Zhou
et al., 2024). We conduct a RASP analysis which
lead us to find to many new insights to the task.
We can formally prove, via the existence of RASP
programs, that the task is solvable via transform-
ers both using non-causal and causal models. Due
to the graph structure, we find that the simplest
RASP programs which solve the task with edge-
wise permutation require O(M) number of layers
in order to route information about leading nodes
to final nodes (or vise versa). We show aO(logM)
algorithm exists, but conjecture than no O(1) ex-
ists. This would mean that the task will not be
generalizable to higher values of M . However, the
problem is easily solvable with a O(1) algorithm
when using arm-wise permutation, which explains
why the task is solvable under the simpler condi-
tions demonstrated above. We also find that using a
causal decoder makes the task harder as it can only
route information into the future, which requires
different rules depending on if the connecting edge
is before or after a current edge when routing.

3) Given the RASP analysis we increased the
number of layers of each model. This lead to worse
in overfitting in all models, except the encoder-only
model, which then is able to consistently solve the
task. Both this model and the CMLM (enocder-
encoder) model employ the IAR training method.
The fact that it is just the encoder-only model which
works indicates that the reason why it works is not
due to the training method. It is an open mystery
why it is only this model which can consistently
solve the task.

Please look for an updated pre-print (available
soon) or contact arvie@cs.toronto.edu.
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A The Clever Hans Phenomenon

In Fig 3 we show how the CHC appears during
training. Here we see that the first token to fit
to 100% accuracy is the given start node, s. The
next token is the given target node, t. While this
might seem strange as it is generated at the end of
the sequence, this token is actually easily predica-
ble since the model can infer that the target token
should always be placed in the M th position. This
is because there is no requirement that predictions
be generalizable to different arm lengths and hence
the target token is always in the M th position. This
is explicitly done to maintain that the test data is
in-domain with the training data. Next we see that
all other non-leading nodes fit via the CHC. As no
trials succeeded in this experiment, the validation
accuracy of the leading token becomes stagnant at
chance, while the training accuracy improves.
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Abstract

Sentence embedding is a cornerstone in NLP.
Whitening has been claimed to be an effective
operation to improve embedding quality ob-
tained from Large Language Models (LLMs).
However, we find that the efficacy of whiten-
ing is model-dependent and task-dependent. In
particular, whitening degenerates embeddings
for classification tasks. The conclusion is sup-
ported by extensive experiments. A by-product
of our research is embedding evaluation plat-
form for LLMs called SentEval+ 1

1 Introduction

Sentence embedding plays a fundamental role
in NLP (Le and Mikolov, 2014). Despite the
widespread success of Large Language Models
(LLMs) in generative tasks, embeddings obtained
from pre-trained models are not impressive (Li and
Li, 2023). Sometimes, they are not even compet-
itive with traditional word2vec-based approaches
on machine learning tasks such as classification
and Semantic Text Similarity (STS). Consequently,
there has been a flurry of research aimed at improv-
ing the quality of embeddings from pre-trained
models (Gao et al., 2021; Jiang et al., 2022; Li and
Li, 2023).

Among this group of work, whitening has been
shown to be an effective post-processing method
for improving embeddings obtained from LLMs
(Zhuo et al., 2023; Su et al., 2021; Huang et al.,
2021). We find that the efficacy of whitening is
both model-dependent and task-dependent. Al-
though we reproduced the result that whitening
does work for some models on STS tasks, it does
not work for other models. More importantly,
the effectiveness of the whitening operation is
restricted to STS tasks. For classification tasks,
whitening degrades embedding quality consistently
and sometimes with a large margin. The result is

1Here is the link to the Github for SentEval+

supported consistently for all the evaluated mod-
els and all the datasets in SentEval (Conneau and
Kiela, 2018). To further consolidate the surprising
results, we explored a variety of whitening oper-
ations, including Principal Component Analysis
(PCA) (Friedman, 1987), Cholesky matrix decom-
position (Siarohin et al., 2018), and Zero-Phase
Component Analysis (ZCA) (Bell and Sejnowski,
1997). Although some variants of whitening induce
different performances, the overall conclusion re-
mains unchanged.

A by-product of our research is an embedding
evaluation platform for LLMs, which we call
SentEval+, to streamline the evaluation of em-
bedding quality. LLMs are big and costly to run.
SentEval (Conneau and Kiela, 2018) provides a
platform for embedding evaluation on a variety
of models, tasks, and datasets. It works well on
smaller models such as BERT. To facilitate the
evaluation of LLMs on commodity machines, we
provide the embeddings for all sentences in our
evaluation datasets.

There is not much detailed comparison of the
performance of embeddings from OpenAI, maybe
partially due to the cost for API calls. We ob-
serve that embeddings from OpenAI are on par
with LLaMA overall. Another interesting observa-
tion is that LLaMA and LLaMA2 are very close in
terms of embedding performance.

Our work is important for both practitioners and
researchers in LLMs. For LLM providers such
as openAI, various post-processing are commonly
applied to the embeddings they serve. They may
want to serve different types of embeddings for
different tasks, with the understanding of our re-
sult. For researchers in the area, running on a va-
riety of LLMs is prohibitive computationally. Our
SentEval+ makes experiments feasible on commod-
ity machines.
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2 Whitening Transformations

LLM embeddings have the isotropy problem
(Timkey and van Schijndel, 2021; Kovaleva et al.,
2021; Rudman et al., 2022). Whitening is a post-
processing technique that converts spatially corre-
lated, anisotropic feature representations into un-
correlated, isotropic ones (Sasaki et al., 2023; Rud-
man and Eickhoff, 2024). For this purpose, whiten-
ing transforms the feature representations such that
the mean is centred at the origin, covariances are
eliminated, and the variance is normalized to an
identity matrix.

Given N number of sentence embeddings
x1, x2, . . . , xN . Let X = (x1, x2, . . . , xN )T ∈
RN×d, where d is the dimension of the embed-
dings. The covariance matrix for X is Σ =
(X−µ)(X−µ)T , where µ is the mean of {xi}Ni=1.
Whitening transformation is achieved using a ma-
trix W resulting in unit diagonal “white” covariance
var(Z) = I:

Z = W (X − µ) (1)

W =





UΛ− 1
2 PCA

UΛ− 1
2UT ZCA

LT Chol

VΘ− 1
2V T ZCA− Cor

VΘ− 1
2 PCA− Cor

(2)

W in Equation 1 varies as in Equation 2. The most
commonly used whitening operation is called PCA-
whitening, which is also the one used in the first
a few papers on the performance gain of whiten-
ing on LLMs. Since our initial result on PCA-
whitening shows the opposite for classification
tasks, and (Wang and Wu, 2023) reported differ-
ent behaviour of ZCA-whitening, we exhaustively
investigate all variations of whitening operations.

In Equation 2, Λ is the eigenvectors, and U
is the eigenvalues of the covariance matrix, i.e.,
Σ = UΛUT . The matrix L corresponds to the
Cholesky decomposition of the inverse of Σ, such
that LLT = Σ−1. The matrices V and Θ result
from the eigen decomposition of the correlation
matrix P , expressed as P = VΘ− 1

2V T , where V
is the eigenvector matrix and Θ contains the corre-
sponding eigenvalues.

3 Experiments

We experimented with 8 models on classification
and STS tasks. The embeddings are extracted from

Algorithm 1 Whitening Operations

1: Input: Embeddings {xi}Ni=1

2: Output: Transformed embeddings {x̃i}Ni=1

3: Compute the mean µ of {xi}Ni=1

4: Compute the covariance matrix Σ of {xi}Ni=1

5: Compute the correlation matrix P of {xi}Ni=1

6: Let U,Λ, UT = SVD(Σ)
7: Let V,Θ, V T = SVD(P )
8: Perform LLT = Chol(Σ−1)
9: Transform x̃i = (xi − µ)W using Eq. 2

the last layer of the BERT and LLaMA models,
following the practice described in (Reimers and
Gurevych, 2019). We also explored other pooling
strategies and observed similar pattern. Embed-
dings of SBert, AnglE, and SimCSE are generated
using their provided frameworks. While AnglE and
SimCSE typically use the CLS pooling method to
extract embeddings, which involves using the out-
put of the ’CLS’ token from the model to represent
the entire input sequence, SimCSE employs the
mean pooling method instead. For all mentioned
models, we used the original tokenizers. For gener-
ating ChatGPT embeddings, we choose the recent
text-small-3-embeddings.

Next, we employ the SentEval setting to evaluate
the embeddings. The classification setup involves
using an MLP (Multi-Layer Perceptron) classifier
with no hidden layers, utilizing the RMSprop opti-
mizer. We also experimented with other classifiers
including logistic regression, SVM, and Random
Forests. Although the accuracy of the classification
varies, the overall conclusion remains the same.
Following the practice in SentEval, we report ac-
curacy instead of F1 because the datasets are bal-
anced.

3.1 Classification Task
Table 1 and subplot A of Figure 1 summarize our
experiments on classification task. The surprising
result is that whitening transformations lead to de-
teriorated performance on classification tasks for
all models and all the datasets without exception.
What is more surprising is the large gap before and
after the whitening. The delta can be as large as
-11 in LLaMA models on the MR dataset. The gap
grows as the dimension increases–the models are
sorted by their dimension in increasing order.

To understand the whitening behaviour, we visu-
alize the embeddings before and after the whitening
in Figure 2. We can observe that, indeed, whiten-
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(B) STS task. The performance is measured using coefficient of Spearman’s correlation, expressed as a
percentage.

Figure 1: Whitening leads to a deterioration in classification tasks (subplot A), but demonstrates improvements
in STS tasks on some models (subplot B). The performance is the average of five whitenings, with shaded area
indicating the range.

Model Dim. MR CR SUBJ MPQA TREC MRPC SST-F Avg

# Samples 10,664 3,777 10,002 10,608 5,956 1,513 8,544

BERT (Devlin et al., 2019) 768 80.96 86.17 95.21 87.78 86.71 72.73 46.74 79.47
BERTW 78.79 82.21 93.25 85.59 83.67 67.54 42.44 76.28
SBERT (Reimers and Gurevych, 2019) 768 84.88 87.89 94.41 89.91 89.26 75.35 50.00 81.67
SBERTW 82.18 83.33 92.64 87.60 85.55 68.14 43.85 77.61
SimSCE (Gao et al., 2021) 768 82.40 87.90 94.66 89.35 83.59 74.52 48.26 80.10
SimSCEW 79.96 84.04 92.66 87.63 81.44 67.16 43.67 76.65
AnglEBERT (Li and Li, 2023) 768 81.42 88.42 94.17 89.50 82.66 75.52 44.88 79.51
AnglE-BERTW 80.22 84.19 92.50 87.47 82.80 68.28 43.41 76.98
ChatGPT (OpenAI, 2023) 1536 88.94 93.14 96.32 91.17 92.15 74.38 55.02 84.45
ChatGPTW 83.98 83.25 92.89 86.72 84.75 65.18 44.25 77.29
AnglELLaMA (Li and Li, 2023) 4096 90.40 93.00 95.84 91.97 90.66 77.24 51.98 84.30
AnglE-LLaMAW 79.82 72.26 86.88 81.18 67.63 68.79 37.62 70.45
LLaMA (Touvron et al., 2023a) 4096 87.08 90.36 96.55 88.60 90.27 71.95 46.34 81.45
LLaMAW 75.90 60.80 86.67 78.15 60.82 66.81 34.73 66.24
LLaMA2(Touvron et al., 2023b) 4096 87.09 89.24 96.19 88.25 89.30 72.25 47.39 81.39
LLaMA2W 76.02 61.33 86.29 78.26 60.98 66.82 35.11 66.40

Table 1: Classification task results of 8 models on 7 datasets in accuracy. Reported results derived from our
classification experiments based on SentEval settings. All datasets are binary except SST-F, which has 5 class labels.

ing makes features more independent but, at the
same time, makes the classification more difficult.
An interesting pattern is that fine-tuned models,

including SimCSE, SBert, AngleBERT, and An-
gleLLaMA, have a distinctive square shape, while
vanilla LLaMA and BERT models do not have that

287



(A) 8 models embedding vs their whitenings

(B) ChatGPT embedding vs its five whitenings

Figure 2: Visualization of embeddings before and after
whitening. Dimensions are reduced using PCA.
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Figure 3: Improvement in Isotropy measured with
IsoScore due to Whitening on MR dataset.

pattern. That prompts us that ChatGPT may have
fine-tuned their embeddings, probably using the
same training data, i.e. SNLI.

3.2 STS Task

Our experiments reproduced the results that are
reported in (Su et al., 2021; Huang et al., 2021),
i.e., the whitening improves the embedding for
BERT. But that conclusion can not be extrapolated
to LLMs like AngleBERT, AngleLLaMA and Chat-
GPT. Our experiment also echoes the results from
(Zhuo et al., 2023), which shows that whitening
does not work on SimCSE. Not much work has
been done on the evaluation of whitening on Chat-
GPT and LLaMA. We find that it improves LLaMA
embedding while deteriorating ChatGPT embed-
ding. It seems that, overall, whitening does not
work for fine-tuned models.

3.3 Impact of Whitening on Isotoropy

Whitening transformation ensures data isotropy by
making the covariance matrix proportional to the
identity matrix, thus normalizing variance across
dimensions (Rudman and Eickhoff, 2024; Rudman
et al., 2022; Rajaee and Pilehvar, 2021). Traditional
isotropy metrics like average random cosine sim-

ilarity score, partition isotropy score, intrinsic di-
mensionality, and variance explained ratio are often
used in research to evaluate the isotropy of embed-
dings (Rudman et al., 2022). However, IsoScore
suggests these methods do not accurately measure
isotropy. IsoScore, which applies PCA to ensure
dimension independence and then assesses how
the normalized variance deviates from the identity
matrix, ranges from 0 to 1, indicating how uni-
formly data occupies the vector space (Rudman
et al., 2022). This makes IsoScore unique as it is
mean-independent, invariant to scalar changes in
the covariance matrix, and rotation-proof, offering
linear scalability with dimensionality and stability
across distributions with highly isotropic subspaces.
Therefore, we use IsoScore to assess the isotropy
of our embeddings in this study (Rudman et al.,
2022).

Our results demonstrate that whitening signifi-
cantly reduces isotropic bias, as evidenced by the
improved IsoScore depicted in Figure 3. How-
ever, enhancing isotropy does not necessarily trans-
late to improved performance in machine learn-
ing tasks. For instance, as shown in Figure 3, the
IsoScore for the LLaMA2 embeddings increased
to nearly 1 following whitening. This means
that initially, the LLaMA2 embeddings exhibited
a very low IsoScore, close to 0, indicating se-
vere anisotropy. After whitening, the embeddings
achieved a near-perfect isotropic distribution, re-
flected by an IsoScore of 1.

We also observe from Figure 3 that vanilla meth-
ods, such as LLaMA and BERT, experience a
higher degree of improvement in their IsoScore
compared with fine-tuned models such as SBERT
and SimCSE. Suggesting that the low improvement
in IsoScore of ChatGPT embeddings is a result of
fine-tuning on NLI datasets.

4 Conclusion

We show that the performance of whitening is
model-dependent and task-dependent. For clas-
sification tasks, we do not recommend to apply
whitening. For STS tasks, the performance varies
from model to model. We conjecture that it works
only for LLMs before fine-tuning. Also, the tech-
nical details of ChatGPT remain to be a mystery.
Based on its reaction to the whitening operation,
we can infer that it may be fine-tuned, probably
using NLI data. Another contribution of our work
is an embedding evaluation platform for LLMs.
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Abstract

Most currently deployed large language models
(LLMs) undergo continuous training or addi-
tional finetuning. By contrast, most research
into LLMs’ internal mechanisms focuses on
models at one snapshot in time (the end of pre-
training), raising the question of whether their
results generalize to real-world settings. Ex-
isting studies of mechanisms over time focus
on encoder-only or toy models, which differ
significantly from most deployed models. In
this study, we track how model mechanisms,
operationalized as circuits, emerge and evolve
across 300 billion tokens of training in decoder-
only LLMs, in models ranging from 70 million
to 2.8 billion parameters. We find that task abil-
ities and the functional components that sup-
port them emerge consistently at similar token
counts across scale. Moreover, although such
components may be implemented by different
attention heads over time, the overarching al-
gorithm that they implement remains. Surpris-
ingly, both these algorithms and the types of
components involved therein tend to replicate
across model scale. Finally, we find that circuit
size correlates with model size and can fluctu-
ate considerably over time even when the same
algorithm is implemented. These results sug-
gest that circuit analyses conducted on small
models at the end of pre-training can provide
insights that still apply after additional training
and over model scale.

1 Introduction

As LLMs’ capabilities have grown, so has interest
in characterizing their mechanisms. Recent work
in mechanistic interpretability often seeks to do
so via circuits: computational subgraphs that ex-
plain task-solving mechanisms (Wang et al., 2023;
Hanna et al., 2023; Conmy et al., 2023). Circuits
can be found and verified using a variety of meth-
ods, (Conmy et al., 2023; Syed et al., 2023; Hanna
et al., 2024; Kramár et al., 2024; Ferrando and

Voita, 2024) with the aim of reverse-engineering
models’ task-solving algorithms.

Though much circuits research is motivated by
LLMs’ capabilities, the setting in which such re-
search is performed often differs from that of cur-
rently deployed models. Crucially, while most
LLM circuits work (Wang et al., 2023; Hanna et al.,
2023) studies models at the end of pre-training,
currently deployed models often undergo contin-
uous training or are fine-tuned for specific tasks
(Hu et al., 2021). Other subfields of interpretability
have studied model development during training
(Hu et al., 2023; Chang et al., 2023; Warstadt et al.,
2020; Chang and Bergen, 2022), but similar work
on LLM mechanisms is scarce. Existing mech-
anistic work over training has studied syntactic
attention structures and induction heads (Olsson
et al., 2022; Chen et al., 2024; Singh et al., 2024),
but has focused on small encoder or toy models.
Prakash et al. (2024) examines circuits in 7-billion-
parameter models post-finetuning, but the evolution
of circuits during pre-training remains unexplored.
This raises questions about whether circuit analyses
will generalize if the model in question is further
trained or fine-tuned.

We address this issue by exploring when and
how circuits and their components emerge during
training, and their consistency across training and
different model scales. We study circuits in mod-
els from the Pythia suite (Biderman et al., 2023b)
across 300 billion tokens, at scales from 70 million
to 2.8 billion parameters. We supplement this with
additional data from models ranging up to 12 bil-
lion parameters. Our results suggest remarkable
consistency in circuits and their attributes across
scale and training. Our contributions are as follows:

Performance acquisition and functional com-
ponent emergence are similar across scale: Task
ability acquisition rates tend to reach a maximum
at similar token counts across different model sizes.
Functional components like name mover heads,

290



copy suppression heads, and successor heads also
emerge consistently at similar points across scales,
paralleling previous findings that induction heads
emerge at roughly 2B-5B tokens across models of
all scales (Olsson et al., 2022).

Circuit algorithms often remain stable despite
component-level fluctuations: Analysis of the cir-
cuit for indirect object indenetification (IOI; Wang
et al., 2023) across training and scale reveals that
even when individual components change, the over-
all algorithm remains consistent, indicating a level
of algorithmic stability. We also find that the algo-
rithm also tends to be similar for dramatically dif-
ferent model scales, suggesting that some currently-
identified circuits may generalize.

Taken as a whole, our results suggest that
circuit analysis generalizes well over both pre-
training and scale even in the face of component
and circuit size changes. Thus, circuits studied at
the end of training in smaller models can be infor-
mative for larger models, as well as models with
longer training runs. We hope to see this validated
for other circuits, especially more complex ones,
confirming our initial findings.

2 Methods

2.1 Circuits

A circuit (Olah et al., 2020; Elhage et al., 2021;
Wang et al., 2023) is the minimal computational
subgraph of a model that is faithful to its behavior
on a given task. At a high level, this means that
circuits describe the components of a model—e.g.,
attention heads or multi-layer perceptrons (MLPs)—
that the model uses to perform the task. A task,
within the circuits framework, is defined by inputs,
expected outputs, and a (continuous) metric that
measures model performance on the task. For ex-
ample, in the indirect object identification (IOI,
(Wang et al., 2023)) task, the LM receives inputs
like “When John and Mary went to the store, John
gave a drink to”, and is expected to output Mary,
rather than John. We measure the extent to which
the LM fulfills our expectations by measuring the
difference in logits assigned to Mary and John.

Circuits are useful objects of study because we
can verify that are faithful to LM behavior on the
given task. We say that a circuit is faithful if we
can corrupt all nodes and edges outside the circuit
without changing model behavior on the task. Con-
cretely, we test faithfulness by running the model
on normal input, while replacing the activations

corresponding to edges outside our circuit, with
activations from a corrupted input, which elicits
very different model behavior. In the above case,
our corrupted input could instead be “When John
and Mary went to the store, Mary gave a drink to”,
eliciting John over Mary. If the circuit still predicts
Mary, rather than John, it is faithful. As circuits are
often small, including less than 5% of model edges,
this faithfulness test corrupts most of the model,
thus guaranteeing that circuits capture a small set
of task-relevant model mechanisms. For more de-
tails on the circuits framework, see prior work and
surveys (Conmy et al., 2023; Hanna et al., 2024;
Ferrando et al., 2024).

Circuits have a number of advantages over other
interpretability frameworks. As computational sub-
graphs of the model that flow from its inputs to
its outputs, they provide complete explanations for
a model’s mechanisms. Moreover, their faithful-
ness, verified using a causal test, makes them more
reliable explanations. This is in contrast to prob-
ing, which only offers layer-level explanations, and
can be unfaithful, capturing features unused by the
model (Belinkov, 2022). Similarly, input attribu-
tions (Shrikumar et al., 2017) only address which
input tokens are used.

2.2 Circuit Finding
In order to find faithful circuits at scale over many
checkpoints, we use efficient, attribution-based cir-
cuit finding methods. Such methods score the
importance of all edges in a model’s graph in a
fixed number of forward and backward passes, in-
dependent of model size; though other patching-
based circuit-finding methods (Conmy et al., 2023)
are more accurate, they are too slow, requiring a
number of forward passes that grows with model
size. From the many existing attribution methods
(Nanda, 2023; Kramár et al., 2024), we select edge
attribution patching with integrated gradients (EAP-
IG; Hanna et al., 2024) due to its faithful circuit-
finding ability. Like its predecessor, edge attribu-
tion patching (Nanda, 2023), EAP-IG assigns each
edge an importance score using a gradient-based
approximation of the change in loss that would oc-
cur if that edge were corrupted, but EAP-IG yields
more faithful circuits with fewer edges.

After running EAP-IG to score each edge, we de-
fine our circuit by greedily searching for the edges
with the highest absolute score. We search for
the minimal circuit that achieves at least 80% of
the whole model’s performance on the task. We
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do this using binary search over circuit sizes; the
initial search space ranges from 1 edge to 5% of
the model’s edges. The high faithfulness threshold
we set gives us confidence that our circuits cap-
ture most model mechanisms used on the given
task. However, ensuring that a circuit is entirely
complete, containing all relevant model nodes and
edges, is challenging, and no definitive method of
verifying this has emerged.

2.3 Models

We study Biderman et al.’s (2023b) Pythia model
suite, a collection of open-source autoregressive
language models that includes intermediate train-
ing checkpoints. Though we could train our own
language models or use another model suite with
intermediate checkpoints (Sellam et al., 2022; Liu
et al., 2023; Groeneveld et al., 2024), Pythia is
unique in providing checkpoints for models at a
variety of scales and training configurations.1 Each
model in the Pythia suite has 154 checkpoints: 11
of these correspond to the model after 0, 1, 2, 4,
. . . , and 512 steps of training; the remaining 143
correspond to 1000, 2000, . . . , and 143,000 steps.
We find circuits at each of these checkpoints. As
Pythia uses a uniform batch size of 2.1 million to-
kens, these models are trained on far more tokens
(300 billion) than those in existing studies of model
internals over time. We study models of varying
sizes, from 70 million to 12 billion parameters.

2.4 Tasks

We analyze the mechanisms behind four different
tasks taken from the (mechanistic) interpretability
literature. We choose these tasks because they are
simple and feasible for even the smaller models
we study. Moreover, as existing work has already
studied them in other models, we have clues as to
how our models likely perform these tasks; to ver-
ify that our models use similar circuits we briefly
analyze our models’ indirect object identification
and greater-than circuits in Appendix A. The other
task are MLP-dominant and do not involve much
attention head activity; for these circuits, we verify
that this is still the case in Pythia models.

Indirect Object Identification The indirect ob-
ject identification (IOI; Wang et al., 2023) task
feeds models inputs such as “When John and Mary
went to the store, John gave a drink to”; models

1We exclude OLMo from our analysis due to missing
checkpoints at the time of writing.

should prefer Mary over John. Corrupted inputs,
like “When John and Mary went to the store, Mary
gave a drink to”, reverse model preferences. We
measure model behavior via the difference in logits
assigned to the two names (Mary and John). We
use a small dataset of 70 IOI examples created with
Wang et al.’s (2023) generator; larger datasets did
not provide significantly better results, and this size
fit into GPU memory more easily.

Gendered-Pronoun The Gendered-Pronoun task
(Vig et al., 2020; Mathwin et al., 2023) measures
the gender of the pronouns that models produce to
refer to a previously mentioned entity. Prior work
has shown “So Paul is such a good cook, isn’t”,
models prefer the continuation “he” to “she”; we
measure the degree to which this occurs via the
difference in the pronouns’ logits. In the corrupted
case, we replace the “Paul” with “Mary”. We craft
70 examples as in (Mathwin et al., 2023).

Greater-Than The Greater-Than task (Hanna
et al., 2023) measures a model’s ability to com-
plete inputs such as s =“The war lasted from the
year 1732 to the year 17” with a valid year (i.e.
a year > 32). Task performance is measured via
probability difference (prob diff); in this example,
the prob diff is

∑99
y=33 p(y|s)−

∑32
y=00 p(y|s). In

corrupted inputs, the last two digits of the start year
are replaced by “01”, pushing the model to out-
put early (invalid) years that decrease the prob diff.
We create 200 Greater-Than examples with Hanna
et al.’s (2023) generator.

Subject-Verb Agreement Subject-verb agree-
ment (SVA), widely studied within the NLP inter-
pretability literature (Linzen et al., 2016; Newman
et al., 2021; Lasri et al., 2022), tasks models with
predicting verb forms that match a sentence’s sub-
ject. Given input such as “The keys on the cabinet”,
models must predict “are” over “is”; a corrupted
input, “The key on the cabinet” pushes models to-
ward the opposite response. We measure model
performance using prob diff, taking the difference
of probability assigned to verbs that agree with
the subject, and those that do not. We use 200
synthetic SVA example sentences from (Newman
et al., 2021).

3 Circuit Formation

3.1 Behavioral Evaluation
We begin our analysis of LLMs’ task mechanisms
over time by analyzing LLM behavior on these
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Figure 1: Task behavior across models and time (higher indicates a better match with expected behavior). Across
tasks and scales, model abilities tend to develop at the same number of tokens.

tasks; without understanding their task behaviors,
we cannot understand their task mechanisms. We
test these by running each model (Section 2.3) on
each task (Section 2.4). Our results (Figure 1) dis-
play three trends across all tasks. First, all models
but the weakest (Pythia-70m) tend to arrive at the
same task performance at the end of training. This
is consistent with our choice of tasks: they are
simple, learnable even by small models, and scal-
ing does not significantly improve performance.
Second, once models begin learning a task, their
overall performance is generally non-decreasing,
though there are minor fluctuations; Pythia-2.8b’s
logit difference on Gendered Pronouns dips slightly
after it learns the task. In general, though, models
tend not to undergo significant unlearning. The
only marked downward trend (Pythia-70m at the
end of SVA) comes from a weak model.

Finally, for each task we examined, we observed
that there was a model size beyond which addi-
tional scale did not improve the rate of learning,
and sometimes even decreased it; task acquisition
appeared to approach an asymptote. We found this
surprising due to the existence of findings show-
ing the opposite trend for some tasks: (Kaplan
et al., 2020). On some tasks (Gendered Pronouns
and Greater-Than), all models above a certain size
(70M parameters for Gendered Pronouns and 160M
for Greater-Than) learn tasks at roughly the same
rate. On IOI, models from 410M to 2.8B param-
eters learn the task the fastest, but larger models

(6.9B and 12B) have learning curves more like
Pythia-160m. We obtain similar results on more
difficult tasks like SciQ (Welbl et al., 2017); for
these results, see Appendix D.

What drives this last trend, limiting how fast
even large models learn tasks? To understand this,
we must delve into the internal model components
that support these behaviors and trends.

3.2 Component Emergence

Prior work (Olsson et al., 2022; Chen et al., 2024;
Singh et al., 2024) has shown how a model’s abil-
ity to perform a specific task can hinge on the de-
velopment of certain components, i.e. the emer-
gence of attention heads or MLPs with specific,
task-beneficial behaviors. Prior work has also thor-
oughly characterized the components underlying
model abilities in two of our tasks, IOI and Greater-
Than, at the end of training. We thus ask: is it the
development of these components that causes the
task learning trends we saw before? We focus on
four main components, all of which are attention
heads, which we briefly describe here:

Induction Heads (Olsson et al., 2022) activate
on sequences of the form [A][B]. . . [A], attend-
ing to and upweighting [B]. This allow models to
recreate patterns in their input, and supports IOI
and Greater-Than.

Successor Heads (Gould et al., 2023) identify
sequential values in the input (e.g. “11” or “Thurs-
day”) and upweight their successor (e.g. “12” or
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Figure 2: The development of components relevant to IOI and Greater-Than, across models and time. Each line
indicates the strength of component behavior of the selected attention head from that model; higher values imply
stronger component behavior. For each model and component, we plot the head in the relevant circuit (either IOI or
Greater Than) that displays the component behavior the earliest.

“Friday”); this supports Greater-Than behavior.
Copy Suppression Heads (McDougall et al.,

2023) attend to previous words in the input, lower-
ing the output probability of repeated tokens that
are highly predicted in the residual stream input to
the head. In the original IOI circuit, copy suppres-
sion heads hurt performance, downweighting the
correct name. In contrast, we find (Appendix C)
that they contribute positively to the Pythia IOI cir-
cuit by downweighting the incorrect name; this is
possible because both names are already highly pre-
dicted in the input to these heads, and they respond
by downweighting the most repeated one.

Name-Mover Heads (Wang et al., 2023) per-
form the last step of the IOI task, by attending to
and copying the correct name. Unlike the other
heads described so far, this behavior is specific to
IOI-type tasks; their behavior across the entire data
distribution has not yet been characterized.

Because the importance of these components
to IOI and Greater-Than has been established in
other models, but not necessarily in those of the
Pythia suite, we must first confirm their importance
in these models. We do so by finding circuits for
each model at each checkpoint using EAP-IG, as
described in Section 2.2; we omit Pythia-6.9b and
12b from circuit finding for reasons of computa-
tional cost. We find that these component types
indeed appear within the circuits of Pythia models’
tasks circuits; see Appendix A and Appendix B for

details on our methods and findings.
For each component, prior work has developed

a metric to determine whether a model’s attention
head is acting like that component type; see Ap-
pendix C for details on these. Using these metrics,
we score each of our models’ heads at each check-
point, evaluating the degree to which it acts like
one of the four aforementioned heads. We then plot
the earliest arising heads of each type, per model.

Our results (Figure 2) indicate that many of the
hypothesized responsible components do emerge
the same time as model performance increases.
Most models’ induction heads emerge soon after
they have seen 2× 109 tokens, replicating the find-
ings in (Olsson et al., 2022); immediately after this,
Greater-Than behavior emerges. The successor
heads, also involved in Greater-Than, emerge in a
similar timeframe.

For IOI, the name-mover heads emerge at similar
timesteps (2 - 8× 109 tokens) across models, with
a very high strength, during or just before IOI be-
havior appears. Copy suppression heads emerge at
the same timescale, but at varying speeds, and with
varying strengths. Given that these heads are the
main contributors to model performance in each
task’s circuit, and they emerge as or just before
models’ task performance increases, we can be
reasonably sure that they are responsible for the
emergence of performance. This said, we note an
unusual trend: though model performance (Fig-
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Figure 3: The development over time of components relevant to IOI and Greater-Than in Pythia-160m. Each line
indicates the degree to which an attention head, denoted as (layer, head), exhibits a given function; higher values
imply stronger functional behavior. Heads often lose their current function; other heads then take their place.

ure 1) does not decrease over time, the functional
behavior of certain attention heads does. In the
following section, we explain how this occurs.

4 Algorithms in Post-Formation Circuits

We demonstrated in Section 3 that across a vari-
ety of tasks, models with differing sizes learn to
perform the given task after the same amount of
training; this appears to happen because each task
relies on a set of components which develop after
a similar count of training tokens across models.
However, in Figure 2, we observed that attention
heads that had a given function earlier in behavior
can lose their function later in training. This raises
questions: when the heads being used to solve a
task change, does the algorithm implemented by
the model change too? And how do these algo-
rithms generalize across model scale?

4.1 Model Behavior and Circuit Components
Post-Formation

To understand how model component behaviors
change over time, we now zoom in on the com-
ponents in one model, Pythia-160m, and study
them over the course of training; where we ear-
lier plotted only the top component (e.g. the top
successor head), of each model, we now plot the
top 5 of Pythia-160m’s heads that exhibit a given
functional behavior (or fewer, if fewer than 5 ex-
ist). By evaluating components and algorithms

over Pythia-160m’s 300B token training span, we
extend beyond previous work, which studies mod-
els trained on relatively few (≤ 50M) tokens (Chen
et al., 2024; Singh et al., 2024); in such work, com-
ponents and task behaviors appear constant after
component formation.

By contrast, our results (Figure 3) show that
over the longer training period of Pythia models,
the identity of components in each circuit is not
constant. For example, the name-mover head (4,6)
suddenly stops exhibiting this behavior at 3× 1010

tokens, having acquired it after 4×109 tokens. Sim-
ilarly, Pythia-160m’s main successor head (5,9)
loses its successor behavior towards the end of
training; however, (11,0) exhibits more successor
behavior at precisely that time. Such balancing may
lead to the model’s task performance remaining sta-
ble, as we observed in the prior section (Figure 1).

4.2 Circuit Algorithm Stability Over Training

This instability of functional components raises an
important question—when attention heads begin or
cease to participate in a circuit, does the underlying
algorithm change? To answer this, we examined
the IOI circuit, as it is the most thoroughly char-
acterized (Wang et al., 2023) circuit algorithm of
our set of tasks. Our investigation follows a three-
stage approach: first, we analyzed the IOI circuit
at the end of training, reverse-engineering its al-
gorithm; next, we developed a set of metrics to
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quantify whether the model was still performing
that algorithm; finally, we applied these metrics
across checkpoints, to determine if the algorithm
was stable over training.

The first stage of our analysis is to analyze the
IOI circuit at the end of training. Here, we present
only the results of our analysis, but see Appendix B
for details of this process, which follows the origi-
nal analysis (Wang et al., 2023). Figure 4A shows
the circuit that results from our analysis; it involves
three logical “steps,” each of which involves a dif-
ferent set of attention head types. Working back-
wards from the logit predictions, the direct contrib-
utors towards the logit difference are name-mover
heads and copy suppression heads. The former at-
tend to the indirect object in the prompt and copy
it to the last position; the latter attend to and down-
weight tokens that appear earlier in the input. In
the next step, the name-mover heads (but not the
copy-suppression heads) use on token and posi-
tional information output by the S-inhibition heads
to attend to the correct token. Finally, S-inhibition
heads rely on information from induction heads
and duplicate-token heads.

Next, we quantify the extent to which the cir-
cuit depends on each of these three steps, via path
patching (Goldowsky-Dill et al., 2023), a form of
ablation where activations are swapped with those

from counterfactual prompts (see Appendix B for
details). If a step is important, ablating the connec-
tion between the components involved in that step
(e.g. in step 2, between induction / duplicate-token
heads and S-inhibition heads) should have a large
direct effect, and cause a large drop in model per-
formance. For each step, our metric measures this
direct effect, divided by the sum of the direct ef-
fects of ablating each edge with the same endpoint.
Our metrics range from 0-100%; higher is better.

Finally, we compute each of these metrics for
each model from 160M to 2.8B parameters in size.2

We run them on each checkpoint post-circuit emer-
gence (that is, when all component types appear
in the circuit); for Pythia-160m, we test every
checkpoint, and for the larger models we space
out checkpoints to save compute, using approxi-
mately 1/3rd of the available checkpoints). We
find (Figure 4B-D) that the behavior measured by
these metrics is stable once the initial circuit has
formed. Notably, in no model or metric are there
dramatic shifts in algorithm corresponding to func-
tional component shifts within the circuit. More-
over, all scores are relatively high, generally above
50%; the core solvers of the algorithm, copy sup-
pression and name-mover heads, have scores above

2We omit Pythia-70m, as it does not learn the task; due to
computational constraints, we omit Pythia-6.9b/12b.
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70%. This suggests that analyses of circuits in fully
pre-trained models may generalize well to other
model states, rather than being contingent on the
particular checkpoint selected.

Generalization across model scales also seems
promising, as IOI circuit metrics from Pythia-160m
are also high in larger Pythia variants. However,
there is variation: while the name-mover, copy-
suppression, and S-inhibition heads are at work in
all models’ circuits, the Pythia-160m circuit does
not involve duplicate-token heads, while others do.
So small differences exist amid big-picture simi-
larity. Moreover, we stress that these algorithmic
similarities might not hold for more complex tasks,
for which a variety of algorithms could exist.

5 Discussion

Implications for Interpretability Research
While our findings are based on a limited set of cir-
cuits, they hold significant implications for mech-
anistic interpretability research. Our study was
motivated by the fact that most such research does
not study models that vary over time, like currently
deployed models. However, the stability of cir-
cuit algorithms over the course of pre-training sug-
gests that analyses performed on models at a given
point during training may provide valuable insights
into earlier and later phases of pre-training as well.
Moreover, the consistency in the emergence of crit-
ical components and the algorithmic structure of
these circuits across different model scales sug-
gests that studying smaller models can sometimes
provide insights applicable to larger models. This
dual stability across pre-training and scale could
reduce the computational cost of interpretability re-
search and allow for more efficient study of model
mechanisms. However, further research is needed
to confirm these trends across a broader range of
tasks and architectures.

Limitations and Future Work Our analysis was
limited to a narrow range of tasks feasible for small
models. This limits in turn the scope of the claims
that we can make. We believe it to be very possi-
ble that more complex tasks, not solvable by small
models, which permit a larger range of algorithmic
solutions, may show different trends from those
that we discuss here. Such work would be valu-
able, though computationally expensive due to the
model sizes required. Our analysis also studied
models only from one model family, Pythia. It
is thus not possible to tell if our results are lim-

ited to the specific model family we have chosen,
which shares both architecture and training setup
across model scale. Such work is in part ham-
pered by the lack of large-scale model suites such
as Pythia; future work could provide these suites to
enable this sort of analysis. Our work additionally
only studies circuits over the course of training; in
contrast, open-source models are more often fine-
tuned, which could lead to different changes in
mechanisms, though previous small-scale studies
suggest this is not the case (Prakash et al., 2024).
Finally, future work would do well to explore more
complex phenomena, such as the self-repair and
load-balancing mechanisms of LLMs, which en-
sure consistent task performance despite compo-
nent fluctuations.

6 Related Work

Behavioral Interpretability Over Time LLMs’
development over the course of pre-training has
been studied via behavioral interpretability, which
characterizes model behavior without making
claims about its implementation. Such analyses
have studied LLM learning curves and shown that
models of different sizes acquire capabilities in the
same sequence (Chang et al., 2023), examined how
LLMs learn linguistic information (Warstadt et al.,
2020; Chang and Bergen, 2022) and even predicted
LLM behavior later in training (Hu et al., 2023;
Biderman et al., 2023a).

Mechanistic Interpretability We build on pre-
vious work in mechanistic interpretability, which
aims to reverse engineer neural networks. Cir-
cuits are a paradigm of model analysis that has
emerged from this field, originating with vision
models (Olah et al., 2020) and continuing to trans-
former LMs (Meng et al., 2023; Wang et al., 2023;
Hanna et al., 2023). Increasingly, research has tried
to characterize the individual components at work
within circuits, especially attention heads (Olsson
et al., 2022; Chen et al., 2024; Singh et al., 2024;
Gould et al., 2023; McDougall et al., 2023) and
sparse features (Marks et al., 2024). Though mech-
anistic interpretability is a diverse field, it is tied
together by causal methods (Vig et al., 2020; Geiger
et al., 2021), which yield more faithful mechanistic
explanations.
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A Analysis of Task Circuits

A.1 IOI Circuit & Algorithmic Criteria
To determine algorithmic consistency for the IOI
circuit, we apply path patching as described in Ap-
pendix B in addition to using the component scores
described in Appendix C. These are used to set
thresholds for classifying attention heads. Though
component score thresholds can be arbitrary, apply-
ing them consistently across all model checkpoints
allows us to see the degree of similarity involved
with model behavior.

Concretely, we use the following metrics and
thresholds:

Direct-effect heads We initially perform path-
patching on all model attention heads, measuring
their impact on the logit different after the final
layer of the model. We then classify attention
heads as name-mover heads (NMHs), negative
name-mover heads, and copy suppression heads
(CSHs) based on copy score (for NMHs) or CPSA
(for CSHs) of > 10%, which yielded a small set of
heads responsible for most of the direct effect. We
measure the ratio of the absolute direct effect on
logit difference for these heads vs. the total direct
effect of all heads (including several unclassified
heads) to obtain our first value.

Next, we conduct path-patching with NMHs as
the receivers. This yields a set of heads that we
then test for S2-inhibition (S2I) behavior, using
Wang et al.’s (2023) test for the effect of token sig-
nal vs. positional signal: does the ablation of these
positional signal heads A). reduce the logit differ-
ence through the NMHs, B). reduce NMH attention
(which determines what they copy) to the indirect
object token, and C). increase attention to the sub-
ject tokens? If a head meets all of these conditions,
we classify it as an S2I head, as it emits a signal
used by the NMHs to decide what to copy. The
total absolute effect of these heads on the NMHs is

then divided by the total absolute effect of all heads
on the NMHs, producing our second measurement.

Finally, we conduct path-patching with S2I
heads as receivers. Here, we apply a simpler test
since these heads can be quite diffuse throughout
the model: Do the heads involved have above-
average induction or duplicate-token scores? If so,
we classify them as induction heads or duplicate
token heads (confirming via manual examination
of attention patterns and behavior), and divide the
total absolute effect of these heads by the total abso-
lute effect of all heads on the S2I heads, producing
our third measurement.

These three metrics capture the extent to which
known and classifiable model components con-
tribute at each of the three primary levels of the
IOI circuit. If the degree to which unknown or un-
classified components contribute to any part of the
circuit, we will see the corresponding score drop.
As we see that in practice they tend to stay level,
we conclude that there is a high degree of stability
for this circuit.

B Other Circuit-Analysis Methods

Circuit analysis can be conducted via a number of
different methods; the method used to find the orig-
inal IOI circuit (and that we use to verify algorith-
mic consistency in this task) is Wang et al.’s (2023)
path-patching. Path patching is a specialized form
of activation patching, used to isolate and analyze
the influence of individual model components on
a given task. Starting with two datasets (identical
except for the key detail we want to base our circuit
on, such as the correct and incorrect names in the
IOI task), xorig and xaltered, where xaltered is a coun-
terfactual version of xorig, the technique involves a
sender attention head h and a set of receiver nodes
R ⊆ M within the model’s computational graph
M . Initially, activations are recorded from both
datasets. Subsequently, all attention heads except
h are locked to their activations from xorig, while
h is updated with its activation from xaltered. This
configuration allows for a forward pass on xorig,
capturing intermediate activations for nodes r ∈ R.
A final forward pass on xorig then patches R to
these stored values, facilitating the assessment of
h’s impact on the model’s output.

Path patching aims to gauge the significance of
the path h → r by comparing the model’s logit
differences across multiple pairs (xorig, xnew). By
averaging these differences over many pairs, the
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method effectively measures the impact of specific
paths on model performance, providing insights
into the contributions of individual components
to the overall task. The process is iterative, such
that a practitioner would start by observing which
nodes impact the logits directly, and then proceed-
ing backwards to see what nodes affect those first
direct-effect nodes, and so on.

C Component Metrics

In this paper, we follow the metrics from previous
literature in Wang et al. (2023) for name-mover
heads, McDougall et al. (2023) for copy suppres-
sion heads, (Olsson et al., 2022) for induction
heads, and (Gould et al., 2023) for successor heads.

Copy Score Following Wang et al. (2023), we
check if the Name Mover Heads copy over the
names across training time by using the same
metrics- copy score. To validate the Name Mover
Heads, we studied what values are written via the
head’s OV matrix. We take the state of the residual
stream after the first layer of MLP on the specific
name tokens. Then we multiply it with the OV ma-
trix of the given heads, multiplied with the unem-
bedding matrix and also the final layer norm. This
simulates what will happen if the head attended
perfectly to that token. We define copy score as the
proportion of samples that contain the input name
token in the top 5 logits.

CSPA Score McDougall et al. (2023) intro-
duced a novel approach named copy suppression-
preserving ablation (CSPA), designed to ablate all
behaviors of a specified attention head except for
those related to copy suppression. This method
involves two distinct types of ablation: OV abla-
tion and QK ablation. In the OV ablation process,
the output of an attention head at a destination to-
ken D is represented as a weighted sum of result
vectors from source tokens S, with the weights cor-
responding to the attention probabilities from D
to S (Elhage et al., 2021). These vectors are then
projected onto the unembedding vectors of their
respective source tokens S, retaining only their
negative components. Meanwhile, QK ablation in-
volves mean-ablating the result vectors from each
source token S, except for the top 5% of source
tokens that are most likely to be predicted at the
destination token D based on the logit lens. For
instance, in the phrase “All’s fair in love and war,”
if the destination token D is “and” and the token

“love” is a highly predicted follower of D and ap-
pears as a source token S, the result vector from
S is projected onto the unembedding vector for
“love,” and everything else is mean-ablated. This
demonstrates how the attention head in question
suppresses the prediction of “love.” To evaluate the
impact of the ablation, the token distribution output
by the model for a given prompt (π) is compared
with the distribution following an ablation (πAbl)
using KL divergence DKL(π||πAbl). By averag-
ing these values over the OpenWebText dataset,
DCSPA for CSPA and DMA for a mean ablation
baseline are obtained. The proportion of the effect
explained is then calculated as 1 − DCSPA

DMA
, with

KL divergence chosen because a value of 0 indi-
cates that the ablated and clean distributions are
identical, implying that 100% of the head’s effect
is explained by the preserved components.

Previous Token Score The Previous Token
Score measures how effectively each attention head
attends to the immediately preceding token. To
compute this, we use a diagonal extraction on the
attention pattern matrices, offset by one position.
This captures the attention weights directed to the
token that precedes each token in the sequence.
The scores are averaged over all batches and to-
kens, providing a mean score for each attention
head across all layers.

Duplicate Token Score The Duplicate Token
Score evaluates the propensity of each attention
head to focus on duplicate tokens within a sequence.
We achieve this by creating input sequences where
the original tokens are repeated consecutively. The
attention pattern matrices are then examined for
their focus on tokens that are exactly a sequence
length apart, indicating duplicate attention. The
scores are calculated by averaging the attention
weights along the specified diagonal, representing
the attention paid to duplicate tokens.

Induction Head Score Based on the prefix
matching score described by Olsson et al. (2022),
the Induction Head Score is designed to assess the
ability of attention heads to engage in induction,
where they predict the next token in a repeated se-
quence based on previously encountered patterns.
To measure this, we generate sequences where a
segment is repeated and compute the attention pat-
tern matrices. We extract the diagonals offset by
one less than the sequence length, capturing the
attention from the end of the first segment to the
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start of the repeated segment. The mean attention
scores along this diagonal provide the Induction
Head Scores, averaged over all batches and tokens.

Succession Score The succession score (Gould
et al., 2023) measures the degree to which an atten-
tion head performs succession, upweighting “2” in
response to “1”, or “May” given the input “April”.
As Gould et al.’s (2023) code is not publicly avail-
able, we re-implement their successor score as fol-
lows. We create a dataset of successor, consisting
of numbers (in digit and written form), days of the
week, and months. Then, we perform the follow-
ing procedure from (Gould et al., 2023). Letting
WE and WU denote the embedding and unembed-
ding matrices of the model under study, MLP0 de-
note the first (zero-indexed) MLP layer, and WOV

be the OV matrix of the head under study. Then
M = WUWOV MLP0(WE) is a square matrix
whose size is that of the model vocabulary; each
row thereof indicates, for the corresponding word
x in the vocabulary, the degree to which an out-
put word y is upweighted by the head under study,
when x is in the input. For each (x, y) pair in our
dataset (e.g. (3,4) or (Tuesday, Wednesday)) we
verify that M [x][y] > M [x][y′] for all y′ ̸= y in
our dataset; that is, we ensure that the correct an-
swer is more highly upweighted than any of the
other possible answers in our dataset. The succes-
sion score is the proportion of examples in which
that is the case.

D Additional Evidence for
Task-Dependent Learning Ceilings

In addition to evaluations we performed ourselves,
we also re-examined data collected during the
Pythia training runs (Biderman et al., 2023b) on the
SciQ (Welbl et al., 2017), PIQA (Bisk et al., 2019),
WinoGrande (Sakaguchi et al., 2019), and ARC
Easy (Clark et al., 2018) datasets. Each of these
consist of a wide range of questions with multiple-
choice answers, and accuracy was evaluated on the
basis of the top choice logit produced by the model.
We find that performance acquisition rates on these
tasks followed the same pattern we detected with
our simpler task datasets–that is, task learning rate
seemed to approach an asymptote as the models
increased in size. We describe the datasets below
and present the results in Figure 5.

SciQ The Science Questions (SciQ) dataset
(Welbl et al., 2017) consists of 13,679 crowd-
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(c) PIQA Accuracy
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(d) Winogrande Accuracy

Figure 5: Accuracy over training for four different
datasets. Step numbers each represent approximately
2M tokens, so Step 1000 would be 2B tokens. We see
that the rate of capability acquisition tends to approach
an asymptote as models become larger.
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sourced multiple choice science exam questions
ranging across physics, chemistry, biology, earth
science, astronomy, and computer science. The
questions cover a variety of complex reasoning
skills such as causal reasoning, multi-hop infer-
ence, and understanding paragraph descriptions.

PIQA The Physical Interaction Question An-
swering (PIQA) dataset (Bisk et al., 2019) contains
a total of 21k (across different subsets) multiple
choice questions probing reasoning about basic
physical commonsense knowledge. The questions
test intuitive understanding of concepts like mass,
volume, rigid objects, containment, stability, ori-
entation, and more through grounded scenarios.
Answering correctly requires applying physical rea-
soning.

ARC Easy The AI2 Reasoning Challenge (ARC)
dataset (Clark et al., 2018) is a collection of 7,787
multiple choice science exam questions compiled
from various grade-level sources, including a re-
search partner of AI2. The questions cover di-
verse science topics and are structured as text-only
prompts with 4 answer options. The ARC Easy
subset consists of 5,197 of the relatively easier rea-
soning questions.

Winogrande The WinoGrande dataset (Sak-
aguchi et al., 2019) was inspired by the original
Winograd Schema Challenge (WSC) and consists
of 44k problems generated through crowdsourcing
and systematic bias reduction algorithms. Most
of these are relatively easy for humans, but often
difficult for LLMs.

E Compute

Experiments were conducted over two months a
pod of 8 A40 GPUs, each with 50 GB of GPU
RAM. As an upper bound, our experiments would
require all of these GPUs to operate for a month to
run all of our experiments, but in practice we did
not require all GPUs running simultaneously. We
estimate that 0.25 utilization of this pod would be
required in practice to run these experiments.

F Licenses of Artifacts Used

The Pythia model suite is made available with
an Apache 2.0 license. Wang et al.’s (2023) IOI
dataset and Newman et al.’s (2021) SVA dataset
are released under an MIT license. The remaining
datasets (Greater-Than and Gendered-Pronouns)
are released without any license specified.
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