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Abstract

Scaling laws are predictable relations between
the performance of AI systems and various scal-
able design choices such as model or dataset
size. In order to keep predictions interpretable,
scaling analysis has traditionally relied on
heavy summarisation of both the system design
and its performance. We argue this summarisa-
tion and aggregation is a major source of predic-
tive inaccuracy and lack of generalisation. With
a synthetic example we show how scaling anal-
ysis needs to be instance-based to accurately
model realistic benchmark behaviour, highlight-
ing the need for richer evaluation datasets and
more complex inferential tools, for which we
outline an actionable proposal.

1 Introduction

Analysing how AI systems scale – how their perfor-
mance is affected by various design choices such as
parameter count or dataset size – has become a fruit-
ful empirical tool: it informs the design of new gen-
erations of (scaled-up) systems (Hoffmann et al.,
2022), uncovers architectural limitations (McKen-
zie et al., 2023), and generally helps both industry
and policy in planning for what the near future
of AI might look like. For example, the concept
of scaling laws (Hestness et al., 2017; Villalobos,
2023) deals with capturing predictable patterns in
the relation between scale and performance into
simple mathematical relations, from which data
driven extrapolations and predictions about next-
generation performance can then be made.

Despite the usefulness of scaling analysis, there
are also several issues. A primary concern is gen-
eralisation. Scaling laws need to be tailored (i.e.
fitted) to different domains, architectures, and often
even to each set of model hyperparameters indepen-
dently. There is no universal ‘scaling law’ (Abnar
et al., 2021; Caballero et al., 2022). Insights that
generalise across tasks and metrics are rare. A
second notable issue is predictive accuracy. For

example, modelling breakpoints – changes in the
behavioural trend – has proven difficult, partly be-
cause of the limited expressivity of the functional
forms (Caballero et al., 2022), but also because
new capabilities seemingly emerge out of the blue
at certain scales (Wei et al., 2022)1.

We argue that oversummarisation is a significant
contributing factor to these issues. Firstly, the di-
mensions of scale and size capture only a small part
of technological innovation, and are a rudimentary
summary of the attributes that define and differen-
tiate AI systems overall. Current methods typically
consider only one or two scalable design choices.
This is the oversummarisation of systems.

Secondly, the empirical aggregate performance
metrics that act as the unit of analysis are, by con-
struction, summary statistics. By not looking at
the actual features of the task instances – like a
researcher might – performance is treated as an
abstract number, devoid of information that could
explain differences. The detection of patterns un-
derlying the relation between task features, sys-
tem features, and performance is off the table from
the start. For example, the aggregate metrics can-
not capture any difference in scaling behaviour
between subsets of the benchmark. This is the
oversummarisation of task performance.

While this heavy summarisation is sensible in the
light of interpretability or data scarcity, it comes
at a cost of generalisation and predictive power.
With major NLP evaluation efforts like BIG-Bench
(Srivastava et al., 2022) and HELM (Liang et al.,
2022) producing huge quantities of instance-level
evaluation results across a plethora of different AI
systems, it is time to capitalise on the available
data, and much like we scale AI itself, to also scale
the inferential tools we use in our analysis of AI.

1Schaeffer et al. (2023) convincingly argue that this is due
to the bluntness of the used metrics.
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Figure 1: Synthetic example of task performance correlating with system scale which cannot be modelled from
aggregate measures, while being completely regular from an instance-level perspective. The plot shows ten synthetic
AI systems, whose synthetic evaluation scores are designed to be dependent on an abstract feature of the system. For
example, system 2 has feature-value 20 (e.g. number of parameters), and has a mean score of about 0.2. The violin
plots, with the quantiles marked, represent the distribution of scores of the respective systems. The red line is a
power law fitted to the mean scores, while the blue line represents the aggregated predictions of a simple multi-layer
perceptron (MLP) that predicts instance level scores. Both are trained/fitted on the smallest seven systems only. The
last three systems then act as a test for the performance predictor.

2 Synthetic Example

To illustrate the challenges outlined earlier and to
lay the foundation for our proposed methodology,
we present a synthetic scenario where the scaling
behaviour cannot be modelled from aggregate mea-
sures. The setup is as follows: we hypothesise ten
AI systems, each of which scales up over the same
(abstract) system feature, e.g. number of model pa-
rameters. We also devise a simple synthetic dataset
consisting of 1000 instances divided into two sub-
populations. The instances of the dataset syntheti-
cally have only one feature: a one-hot coded vector
indicating which of the two different subgroups of
the benchmark the instance belongs to.

To bring this to life, consider the task of senti-
ment classification of English text, whose domain
would naturally contain a blend of English varieties,
e.g. ‘standard English’, acting as subpopulation 1,
and African-American Vernacular English (AAVE),
acting as subpopulation 2. In this scenario, a one-
hot vector indicating the subpopulation would not
be provided explicitly, but actual features of the
English variants would allow identifying the texts
as belonging to different populations.

We now generate synthetic evaluation results,
where we design the scores to be dependent on the
scalable system feature. We simply let the mean
score increase as the system feature scales. We
also make this relation between scale and score
differ between the two subpopulations, e.g. the
sentiment of AVEE might be harder to classify than
that of standard English, for example due to lower
representation in training data. The scores are in
the range [0, 1], representing e.g. the probability
assigned to the correct class.

Figure 1 illustrates the example. Observing only
the mean scores, a conventional scaling analysis
could sensibly only make a linear extrapolation
(in red). On the other hand, an instance-based ap-
proach could discern the distinct subpopulations,
noting that performance must saturate in the first
group while increasing more gradually in the sec-
ond. To exemplify this, we train a simple neural
network2 on the set of synthetic evaluation records3

to predict instance-level scores, that can correctly
extrapolate to larger systems (blue curve).

2A scikit-learn MLPRegressor with default parameters,
with outputs clipped between 0 and 1.

3Tuples ⟨system feature, instance feature, score⟩.
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Figure 2: Example dataset of evaluation records.

While the example is obviously exaggerated and
idealistic, benchmark subgroups are not uncom-
mon (Swayamdipta et al., 2020; Siddiqui et al.,
2022). In a high-dimensional problem space like
NLP, the subgroups are however not as crisp as
in our example, and identifying them is far from
straightforward; this complexity is precisely why
we need more sophisticated statistical methods be-
yond simple aggregate measures. In general, it is
hard to isolate a single capability in benchmark de-
sign (AREA et al., 2014; Hernández-Orallo, 2017),
if that even makes sense for novel kinds of intelli-
gence like LLMs. In reality, there will be a mixture
of (meta-)features of both system and instance that
influence the scores in complicated ways. Exam-
ple instance features that the literature has shown
to be impactful are input length or grammatical
complexity (Graesser et al., 2011; Kazemnejad
et al., 2023); Clever Hans phenomena and gen-
eral confounding (Martínez-Plumed et al., 2022);
mislabelling (Northcutt et al., 2021; Kreutzer et al.,
2022), label disagreement (Aroyo and Welty, 2015;
Pavlick and Kwiatkowski, 2019), or task ambigu-
ity (Liu et al., 2023); or general dependence on
other skills, e.g. for dealing with numeric values
(Amini et al., 2019), negation (She et al., 2023),
or social understanding (Sap et al., 2019). While
these phenomena are also tested for individually,
they are nonetheless confounding factors in most
benchmarks. They influence scaling behaviour in
currently unknown ways and require us to actually
relate scores to instance features, instead of treating
performance as an abstract number.

3 Proposal

Our proposed approach emphasises the integration
of detailed evaluation data. It involves following
three-step process:

1. Collect a dataset of evaluation records,
where each record corresponds to the score
a particular AI system achieved for a par-
ticular task instance. The dataset can in-
corporate multiple tasks and multiple sys-
tems, and preferably does so in order to en-
able cross-system and cross-capability gener-
alisation. While it is unfortunately rare to
make fine-grained evaluation data publicly
available (Burnell et al., 2023), recent eval-
uation efforts such as BIG-Bench (Srivas-
tava et al., 2022) and HELM (Liang et al.,
2022) have made massive amounts of instance-
level scores available that can be adopted
directly. At the same time, one should de-
scribe the systems under examination with
machine-readable features, which can range
from straightforward attributes like model
size to complex architectural characteristics
or whether specific training methods such as
RLHF (Ouyang et al., 2022) were used. Any
design choice that plausibly has significant
impact on performance is useful and needed
information. Figure 2 illustrates an example
of such a dataset.

2. Train an instance-level score predictor.
Hernández-Orallo et al. (2022) introduced as-
sessor models as conditional density estima-
tors p̂(r|π, µ) for doing predictive inference
regarding score r given system features π and
instance µ. Starting from the dataset of evalu-
ation records, the estimator p̂(r|π, µ) can be
constructed as a standard machine learning
system, with π and µ acting as inputs, and
score r acting as the label. For our sentiment
classification for example, it could be a regres-
sion tree trained from tabular system feature
data and embeddings of the textual instances.

3. Predict scores for hypothetical systems.
Equipped with the predictor p̂(r|π, µ), we
can describe a hypothetical system π′ –with
scaled up features– and collect instance-level
score predictions for the instances of exist-
ing benchmarks. To make an overall per-
formance estimation for π′ on a benchmark
dataset D, we simply combine the individ-
ual predictions, for example by averaging
the predicted score for each instance in D:
1/|D|

∑
µ∈D argmaxr p̂(r|π′, µ) – analogous

to how we would compute actual scores.
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The design space for assessor models is large and
the inferential problem is still a challenging extrap-
olating one. But the approach we propose should
be able to – with the right inductive biases – at least
equal the predictive accuracy of current scaling law
methods since the same (and more) information
is used. It can capture nonlinear behaviour before
aggregation, and with appropriate design, generali-
sation and predictive accuracy should improve over
low dimensional methods.

Apart from the pure predictive aspect, this ap-
proach can provide other scaling related insights
as well. For example, one could use feature attri-
bution methods to decouple the influence of var-
ious (scaled-up) design choices, comparing e.g.
influence of scaling human feedback versus scal-
ing the causal next-token training. One could re-
verse engineer the design of GPT-4 (OpenAI, 2023)
by searching for the features that most accurately
match actual GPT-4 performance. And while we
have focused on extrapolation, it is perfectly possi-
ble to ask interpolating questions, e.g. investigating
the performance trade-offs and identifying “sweet
spots” for system design – such as the mix of train-
ing data, the type of optimisation algorithm used,
or the inclusion of certain features – that stick to
more familiar territory.

4 Related Work

Scaling laws in deep learning research focus on em-
pirical relationships between performance metrics
and design choices such as architecture, model size,
or dataset size. Initially driven by findings that test
loss scales with training data size in a power-law
fashion (Hestness et al., 2017), research has diver-
sified to analyse a range of tasks and architectures
(Rosenfeld et al., 2019; Henighan et al., 2020; Ka-
plan et al., 2020) and to theorise scaling exponents
(Sharma and Kaplan, 2020; Hutter, 2021; Bahri
et al., 2021). However, recent work highlights the
non-universal applicability of these laws, particu-
larly in predicting downstream task performance
(Hoffmann et al., 2022; Sorscher et al., 2023; Ca-
ballero et al., 2022), which is further complicated
by the nuances of transfer learning (Abnar et al.,
2021; Tay et al., 2022). In general, we find a crit-
ical gap in current methods: the over-reliance on
aggregated data and limited system characteristics.

Approaches that deal with oversummarization
of systems are proposed by Srinivasan et al. (2022)
and Jain et al. (2023), which learn or meta-learn

from multiple system features and therefore gener-
alise better across systems and tasks, but still work
at the aggregate performance level.

Instance-level score prediction is closely related
to the notion of predictive uncertainty and calibra-
tion in probabilistic systems. Including for LLMs,
it revolves around the idea that these systems can
signal their own confidence by assigning proba-
bilities to potential outcomes, much as we expect
from evaluative models. Predictive uncertainty is
the focus of intense research (Mielke et al., 2022;
Kadavath et al., 2022; Baan et al., 2023; Hu et al.,
2023), but conclusions are often contradictory or
context dependent. The fields of anomaly detec-
tion and confidence estimation (e.g. Corbière et al.,
2019 and Qu et al., 2022) are closely related as well.
As described by (Hernández-Orallo et al., 2022),
these investigations typically assume requirements
that make them differ from the pure ‘performance
prediction’ perspective adopted in our approach,
e.g. by not being anticipative and requiring access
to model outputs or internals, both of which are not
available in the context of scaling laws.

The performance prediction idea also extends
and is influenced by other research areas, such as
Item Response Theory (Martínez-Plumed et al.,
2019; Vania et al., 2021), which predicts success
based on system ability and task difficulty, and tech-
niques such as surrogate evaluation (Sacks et al.,
1989) and Datamodels (Ilyas et al., 2022), which
examine model behaviour in relation to training
data. In addition, methods for detailed error anal-
ysis (Amershi et al., 2015) contribute to the un-
derstanding of model performance by identifying
incorrect predictions and highlighting strengths and
weaknesses.

5 Conclusion

Acknowledging the challenges of scaling analy-
sis, our proposal aims to mitigate them by leverag-
ing a richer dataset and more powerful inferential
tools, i.e. “scaling the scaling laws”. The approach
unlocks various new applications and aspires to
enhance predictive accuracy and generalisation, ul-
timately aiming for a single assessor model doing
inference about scaling behaviour for all tasks and
systems with sufficient evaluation data available.
We invite the research community to contribute to
this endeavour by harnessing instance-level eval-
uations and amplifying the collective progress in
understanding AI performance.
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Limitations

While our approach aims to help remediate the
challenges of scaling analysis, it of course does not
wholly fix the problems of generalisation and pre-
dictive accuracy in such a complex and multidimen-
sional extrapolation setting. Predicting non-linear
performance trends requires careful assumption
making, especially when no trend reversal has been
observed. Feature engineering is also critical, but is
complicated by mixed input types, label imbalance,
unknown variables, inconsistencies and noisy data.
The large design space requires strategic decisions
about model training and data handling, presenting
us with a challenging machine learning problem,
compounded by the conventional perils of scaling
analysis.

Ethics Statement

We acknowledge the ethical responsibilities inher-
ent in predicting AI scalability and are committed
to transparency and the cautious application of our
models. While we aim to inform resource alloca-
tion and research direction, we urge against over-
reliance on predictions for critical decisions and
emphasise the importance of safety, fairness, and
mitigating potential risks as AI systems advance.
Any forecast made by our approach should be in-
terpreted as a rough estimation, not as the definite
path forward.
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