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Abstract

Most adults can complete a sequence of steps to
achieve a certain goal, such as making a sand-
wich or repairing a bicycle tire. In complet-
ing these goal-oriented tasks, or simply tasks
in this paper, one must use sequential reason-
ing to understand the relationship between the
sequence of steps and the goal. LLMs have
shown impressive capabilities across various
natural language understanding tasks. How-
ever, prior work has mainly focused on logical
reasoning tasks (e.g. arithmetic, commonsense
QA); how well LLMs can perform on more
complex reasoning tasks like sequential reason-
ing is not clear. In this paper, we address this
gap and conduct a comprehensive evaluation
of how well LLMs are able to conduct this rea-
soning for tasks and how they scale w.r.t multi-
ple dimensions(e.g. adaptive prompting strate-
gies, number of in-context examples, varying
complexity of the sequential task). Our find-
ings reveal that while Chain of Thought (CoT)
prompting can significantly enhance LLMs’ se-
quential reasoning in certain scenarios, it can
also be detrimental in others, whereas Tree of
Thoughts (ToT) reasoning is less effective for
this type of task. Additionally, we discover
that an increase in model size or in-context ex-
amples does not consistently lead to improved
performance.

1 Introduction

Large Language Models (LLMs) have transformed
natural language processing (NLP), achieving
groundbreaking performance across an array of
tasks, primarily due to their capacity for (in-
context) zero-shot and few-shot learning (Brown
et al., 2020; Chowdhery et al., 2022; Vaswani et al.,
2017). This prowess in task adaptation arises from
their ability to “prompt"—essentially conditioning
the models on limited examples or explicit task de-
scriptions, and responding appropriately (Liu et al.,
2021). The potential for models to adapt to tasks
with limited to no exposure, especially without

requiring extensive fine-tuning, is a testament to
their potential and may be a step towards artificial
general intelligence (Goertzel, 2014).

The ability to logical reasoning is one of the most
intriguing capabilities of LLMs, which has been ex-
plored in various studies, including the evaluation
of their grasp of commonsense knowledge (Davi-
son et al., 2019; Liu et al., 2020; Ma et al., 2021;
Niu et al., 2021; Zhou et al., 2020). Although their
performance on intuitive and single-step tasks is ex-
emplary, their efficacy on tasks requiring multi-step
reasoning, particularly tasks that simulate human
system 21 cognitive functions, has remained a chal-
lenge (Xu et al., 2023; Stanovich and West, 2000;
Rae et al., 2021). This aspect of reasoning is vital,
especially for goal-oriented tasks where the order
and sequence in which actions are taken is crucial
to the successful completion of the task.

Yet, in goal-oriented tasks, understanding and
reasoning about a sequence of steps is critical. A
disruption in the order of these steps can help, com-
plicate or even nullify the task’s objective. For
example, in an effort to minimize speed in a cer-
tain task, such as preparing a soup in the kitchen,
one must consider whether reordering certain steps
is acceptable or by doing so the recipe (the goal)
would be damaged. In the soup-making exam-
ple, this could mean measuring, chopping and do-
ing all preparation work—mise-en-place—before
any cooking actually begins, which, oddly enough
few recipes actually include as an explicit step but
seems to not only speed up the overall cooking
experience but lead to fewer later-step errors that
would have otherwise resulted from inadequate
inter-step time.

We are hence drawn to consider how well the
recent advances in LLMs translate to the System 2-

1The term system 2 cognitive functions was coined by
Kahneman (2011) and refers to the slow, analytical, reasoning-
oriented thought processes, which are in contrast to system
1 cognitive functions that are instantaneous, subconscious
reactions to stimuli.
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type of reasoning, which we call sequential reason-
ing, necessary working with goal-oriented tasks.

Recent innovations, like the Chain of Thought
prompting (CoT) (Wei et al., 2022; Wang et al.,
2022), provide a promising solution to this rea-
soning challenge. Instead of relying on stan-
dard question-answer exchanges, CoT feeds LLMs
with sequential reasoning examples, facilitating
the model to map out a logical reasoning path.
Alongside CoT there is an emerging technique
known as Tree of Thoughts (ToT) prompting (Yao
et al., 2023). ToT extends CoT’s linear reason-
ing by allowing LLMs to explore multiple reason-
ing paths simultaneously, forming a tree of po-
tential thoughts. This approach enables deliber-
ate planning and exploration in problem-solving,
where each thought is generated or solved inde-
pendently. Moreover, there is an emerging interest
in their inherent zero-shot reasoning skills (Brown
et al., 2020). Novel approaches, such as Zero-shot-
CoT (Liu et al., 2021), have demonstrated that by
simply prompting models with an instruction like
"Let’s think step by step", LLMs can autonomously
derive a plausible reasoning pathway and arrive at
logical conclusions. Such findings not only under-
line the untapped potential of LLMs but also under-
score their ability to mimic higher-level cognitive
functions like generic logical reasoning (Chollet,
2019).

This is the first study that pushes this inquiry
further, to evaluate LLMs’ potential as logical rea-
soners for goal-oriented tasks, and investigate if
the aforementioned claims for enhanced capabil-
ity under certain prompting strategies hold true
when used under the framework of sequential rea-
soning. Using adapted versions of the YouCook2
dataset (Zhou et al., 2018) and the CrossTask
dataset (Zhukov et al., 2019) with varied sequence
permutations, we probe the extent to which LLMs
can discern and reason about the logical continuity
of steps, especially when disruptions in their order
are introduced (Fig. 1).

2 Methodology

Sequential tasks can be largely divided based on
their properties, complexity, and dependence on
previous steps. In this study, we focus on goal-
oriented tasks - tasks that are directed towards
achieving a particular objective, often encapsulated
within a sequence of actions that must be executed
in a specific order.

Figure 1: Illustration showcasing a permuted goal-
oriented task, specifically for preparing miso soup. On
the left, the original recipe sequence is displayed, and on
the right, the same recipe steps are shown in a permuted
order. The example is from the YouCook2 dataset.

2.1 Properties of Goal-Oriented Tasks
Goal-oriented tasks share the following identifying
properties.
Sequential Nature These tasks have steps; the
steps are executed in a sequence. Although in
practice two steps can be conducted at the same
time—for example, two cooks in the kitchen can
simultaneously measure out different ingredients—
we assume only one step can be executed at one
time. Steps may be repeated. For example, when
preparing a peanut-butter-and-jelly sandwich, one
must clean the knife after the peanut butter and
then again clean it after the jelly.

Atomicity Each task in the sequence is atomic in
nature, i.e., it represents a single, indivisable ac-
tion. For instance, in cooking, “chopping an onion"
could be considered an atomic action. The reso-
lution of this atomicity is arbitrary and set by the
experiment engineers or the dataset creators; we do
not study the semantics of task-step resolution in
this paper.

Dependency Later tasks in the sequence often de-
pend on the completion and correctness of earlier
tasks. For example, you cannot bake a cake without
first mixing the ingredients.

Variability in Completeness While some steps
are absolutely crucial, others might offer some le-
niency in terms of order or even necessity.

These properties yield the following situations
regarding the success or failure to achieve the goal
of a task. There is one or more prescribed ordering
of the steps that are likely to lead to success; when
one executes each step properly, it is expected to
yield a successful outcome. We call this a “likely-
success". However, one may still have not achieved
the goal if certain steps are improperly executed.
For the N ! possible orderings of tasks with N steps,
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a subset lead to a likely-success and the rest lead
to failure.

2.2 Dataset Manipulation

The sequence in which goal-oriented tasks are car-
ried out is pivotal. Yet, available goal-oriented
datasets like YouCook2 (Zhou et al., 2018),
HowTo100M (Miech et al., 2019) and COIN (Tang
et al., 2019) do not contain permutations of task-
steps that lead to failure; after all, they are instruc-
tional goal-oriented datasets. Therefore, for the
sake of our study, we augment existing instruc-
tional, goal-oriented datasets to deliberately violate
this order by introducing step permutations of dif-
ferent ratios, namely 1/2 and 1/3. By permutation
ratio, we mean the ratio of the steps whose order
has been modified.

Each of these permutations serves to disrupt the
inherent flow of the goal-oriented task, leading to
possible errors or alternative paths to reaching the
goal.

We work with two datasets in this
study, YouCook2 (Zhou et al., 2018) and
CrossTask (Zhukov et al., 2019). We selected
these two for their rich content that captures the
complexity and sequential nature of goal-oriented
tasks. We adapted a subset of these two datasets
using a two-step process to optimally evaluate how
disruptions in sequence can influence the outcome
of these goal-oriented tasks and how LLMs can
reason about this task structure. More details are
in section 3.1.

2.3 Analysis Framework

Building on the goal-oriented task principles,
our methodology critically assesses the capabil-
ity of LLMs to reason about perturbed sequences.
Acknowledging the atomicity of task steps and
their inherent dependencies, we designed a set of
prompts. When presented alongside permuted task
sequences, these prompts task the LLMs with dis-
cerning the logical progression and determining the
viability of the altered sequence.

To formulate our study, we present the two main
analytical dimensions that our work is based on:
Assessment of Stepwise Transitions Our objec-
tive is to ascertain the proficiency of LLMs in
understanding the logical coherence of task steps,
even when perturbed.

Below we provide the input provided to the models,
as well as the output that we expect.

<input>: Original goal-oriented task and its shuf-
fled counterpart.

<output>: Step to step transition categorization into
three types: (1) Correct: Step transitions with steps
that retain their original sequential position; (2)
Mistake: Disrupted sequences where the transition
between the steps lacks logical or temporal coher-
ence; (3) Variation: Step transitions that, despite
being out of their original order, still maintain a
logical flow that could conceivably be followed
without detriment to the task.

Determining Task Viability On a macro scale,
we aim to analyze the overall viability of the shuf-
fled task. This entails identifying critical junctures,
termed "Breaking Points", where modifications in
sequence jeopardize the successful completion of a
given task.

Below we provide the input provided to the models,
as well as the output that we expect.

<input>: Original goal-oriented task and its shuf-
fled counterpart.

<output>: Step transition that "breaks" the recipe.
In future sections we refer to the Assessment of
Stepwise Transitions task as Task A and to the
Determining Task Viability task as Task B.

Our prompt reasoning selection rationale is de-
vised to span the entire logical reasoning spectrum,
ensuring an in-depth and multi-faceted assessment
of how LLMs understand goal-oriented tasks, and
how they scale under different strategies.

2.4 Reasoning Strategies

We analyze model performance over three main
pillars of in-context reasoning: Standard, Chain of
Thought (CoT) and Tree of Thought (ToT) prompt-
ing.

For Standard Prompting, we directly ask for an
answer. Specifically, we prompt with a question
alone or a question and one or two 〈input, output〉
exemplars to potentially solve our task through
direct explicit "reasoning".

For CoT Prompting, we provide zero, one or
two examples of “chain of thought”, which are
intermediate natural language reasoning steps, in
the prompt to LLMs. Specifically, for zero-shot
prompting we follow Kojima et al. (2022) and sim-
ply prompt LLMs with the phrase “Let’s think step
by step” after the input, in order to elicit reasoning
without the need for few-shot demonstrations. For
one-shot and two-shot CoT prompting, we replace
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Figure 2: ToT design for Task A. We simulate the
involvement of three experts analyzing our goal-oriented
tasks, where each one explores at most 3×N solution
paths. Green arrows indicate paths chosen by an expert
on each step transition. Red arrows indicate the other
two possible paths not chosen by the expert for each
step transition.

〈input, output〉 demonstrations with 〈input, chain
of thought, output〉 triples.

To incorporate ToT in our study, we developed
intricate prompts that simulate the involvement
of three experts analyzing our goal-oriented tasks,
such as evaluating the logical sequence of culinary
steps in a shuffled recipe (as shown in Fig. 2).
Each expert deliberately plans and reasons over the
given task independently, exploring different solu-
tion paths. In the end, all experts reach a consensus
solution.

In Task A, the experts deliberate after evaluat-
ing each step transition. If an expert finds their
analysis to be incorrect, they withdraw from the
discussion. After thoroughly analyzing and reason-
ing through the entire task’s sequence, all experts
agree on a final consensus solution. Specifically, as
shown in Fig. 2, for each transition between steps,
provided they have not exited the discussion, each
expert explores 3 solution paths individually, one
for each possible label "Correct", "Mistake", "Vari-
ation". This results in a total of 3 × N potential
solution paths, with N representing the number of
step transitions.

In Task B, a similar approach is followed, but
here each expert is asked to reason over the whole

task sequence, exploring individually N solution
paths (worst-case). The ToT prompting arguably
takes the form of self-consistency CoT here, since
although the experts are prompted to reason step by
step to find the breaking point, they follow single
chain reasoning instead of a tree. Nevertheless, we
will continue referring to it as ToT for Task B as
well.

3 Experiments

3.1 Datasets
We use two datasets for our analysis. Both are goal-
oriented datasets, primarily instructional datasets.

The first dataset is YouCook2 (Zhou et al., 2018),
a large-scale video dataset focusing on instructional
cooking activities. Each one of 2000 videos is
annotated with one of 89 recipe names and step-
by-step instructions. Within the framework of this
paper, they correspond to the concept of "goal" and
"sequence" separately.

To adapt YouCook2 to our study, we further en-
gage in a two-stage annotation process.
• First, we enhanced the annotation of several

videos to include more nuanced labels that cap-
ture the complex progression of the recipes. Be-
fore this refinement, the videos typically had
an average of 7.72 steps describing them. Post-
refinement, this rose to an average of 12.06 steps.
Our aim in this re-annotation was to segment
the goal-oriented tasks such that each step repre-
sented a singular atomic action. This approach
emphasizes the inherent sequential flow of these
tasks.

• Second, we created two permuted versions of
the re-annotated dataset (with ratios 1/2 and 1/3)
and then performed a second round of annota-
tions. Precisely, we annotated the stepwise tran-
sitions within the videos where we judged the
correctness, variation or mistake in the logical
and temporal order of the permuted version of the
videos. These annotations assess the transition’s
fidelity to the original sequence and its logical
and temporal validity.
The second dataset we use is CrossTask

(Zhukov et al., 2019). It contains 18 primary-tasks
and 65 related- tasks, a total of 4.7K videos. It
covers a more diverse set of goal-oriented tasks,
including tire changing, cooking, and furniture as-
sembly. For our study:
• We evaluate only on the 18 primary task cate-

gories since they come with a full set annota-
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tion of temporal boundaries and step descriptions.
The tasks have an average of 7.41 steps in se-
quence to fulfill a goal.

• Following the same procedure applied to the pre-
vious dataset, we create a permuted version of
the CrossTask dataset (with ratio 1/2) and then
proceed to annotate the stepwise transitions of
each video based on their correctness, variation,
or mistake.

• Noticeably, CrossTask has several tasks where
repeated steps are performed to fulfill an ultimate
goal. This detail adds an extra element of com-
plexity that could affect the reasoning of LLMs
about the logical continuity of steps.
The annotation process of stepwise transitions

was carried out by 3 individuals to ensure accuracy
and mitigate ambiguity.

The enhanced versions of these two datasets
serve as the foundation for our experimental evalu-
ation. In Table 1, we provide the statistics for both
datasets.

Stepwise
Transitions

YouCook2 CrossTask

1/2 1/3 1/2

Correct 25.8% 51.0% 46.9%
Mistake 49.0% 29.6% 34.2%
Variation 25.2% 19.4% 18.9%

Table 1: Stepwise transition statistics (%) for our two
datasets, YouCook2 (with 1/2 and 1/3 permutation ratio)
and CrossTask.

3.2 Results
For our initial evaluation, we use OpenAI’s GPT
3.5-turbo and GPT-4 models,.

The measure we choose to evaluate models
is accuracy. Precisely, for Task A we evaluate
the correct step transitions per goal-oriented task
in our datasets and then we average over all of
them: Acc = 1

Ntasks

∑Ntasks
i=1 Acci, where Acci =∑

Correct Step Transitions
NTotal Steps

is the accuracy for task i.
For Task B, we evaluate the if the breaking point

of each task has been chosen correctly or not, and
then we average over all tasks. We again calculate
Acc = 1

Ntasks

∑Ntasks
i=1 Acci, where now

Acci =

{
1 if breaking point for task i is correct
0 otherwise

for task i.

3.2.1 CoT and ToT Prompting Effect
To analyze the impact from applying CoT and ToT,
we compute % point differences between CoT and
Standard Prompting: AccCoT − AccStandard, as
well as ToT and Standard Prompting: AccToT −
AccStandard. In our analysis, we use arrows to indi-
cate ↑positive and ↓negative CoT and ToT effects.

Task A Our experiments reveal that CoT and ToT
prompting significantly enhances the capability of
both GPT-4 and GPT-3.5-turbo models in reason-
ing over goal-oriented tasks, with CoT generally
showing more consistent improvements (Table 2).

When evaluating GPT-4, both CoT and ToT
show a consistent trend of improvement over stan-
dard prompting methods across different shot sce-
narios. For instance, in the YouCook2 dataset, zero-
shot performance sees a notable increase with CoT
(↑2.3%) and even more with ToT (↑3.3%). This
pattern persists in one-shot and two-shot scenar-
ios as well, though the benefits seem slightly more
pronounced in the CoT approach. Interestingly,
in some cases like the two-shot scenario in the
CrossTask dataset, ToT shows a minor decrement
(↓4.3%) compared to standard prompting.

GPT-3.5-turbo presents a different picture albeit
with similar trends in terms of CoT and ToT im-
provements. Remarkably, GPT-3.5-turbo while
able to understand the task under the zero-shot
prompting strategy, when provided with examples
under standard prompting, paradoxically it is un-
able to do so. This suggests that the provision of
fully labeled examples of step transition sequences,
rather than aiding the model, acts as a distractor,
leading to repetitive, non-task-focused responses
(e.g.repeating the examples in the answer). When
prompted under CoT and ToT reasoning GPT-3.5-
turbo was able to overcome this issue. Addition-
ally, ToT seems to work exceptionally well for the
CrossTask dataset but only similar to CoT for the
YouCook2 dataset.

When using permutation ratio 1/3 the results are
similar. However, the accuracy numbers are higher
for all models, leading us to believe that LLMs can
understand goal-oriented tasks better when there
are less perturbations from the original sequence,
and the logical coherence of the tasks is preserved.

Task B For this task, we specifically evaluate
zero-shot capabilities, quantifying out-of-the-box
performance. Models are sensitive to few-shot ex-
emplars as seen from our results on Task A (table
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Figure 3: GPT-4’s output when prompted with "Let’s think step by step". The model is distracted from the
task’s core objective—to evaluate the logical sequence of steps based on the original and permuted order. It states
that sugar should be added before pasta, even though our recipe in its original order calls for adding pasta before
sugar.

2) but also from the community (Zhao et al., 2021;
Perez et al., 2021), so we want to avoid the vari-
ability that comes with them.

We observe a drop in performance when "Let’s
think step by step" prompting is applied. For GPT-
4, when evaluating the YouCook2 dataset the ac-
curacy declines from 64.6% to 54.2% (↓10.4%)
for the 1/2 permutation, and from 72.9% to 57.1%
(↓15.8%) for the 1/3 permutation. Similarly, in
the CrossTask dataset with a 1/2 permutation ra-
tio, GPT-4 experiences a decrease in performance,
albeit a smaller one (↓1.9%). Likewise, GPT-3.5-
turbo exhibits a decline, slightly more pronounced,
in these scenarios.

The paradoxical phenomenon that arises in this
task aligns with observations in the wider research
community regarding the biases and background
knowledge embedded in LLMs (Petroni et al.,
2019). These biases can stem from the data on
which they were trained, which can influence the
performance of these models on tasks that require
reasoning under narrow preconditions, like our per-
muted task sequence understanding. Essentially,
the models may bring in their own "understand-
ing" based on patterns they have learned, leading

to accurate yet contextually irrelevant inferences,
as seen in our experiment. For instance, GPT-4 pro-
vides factually correct statements regarding cook-
ing procedures, such as sugar dissolving in liquid
before mixing with solids to ensure flavor consis-
tency (as illustrated in Fig. 3). However, it over-
looks the task’s core objective—to evaluate the
logical sequence of steps based on the original and
permuted order.

Looking at the ToT results we can see that having
three paths with step-by-step zero-shot reasoning
and taking the consensus solution from them causes
a cascaded result and magnifies the zero-shot CoT
issue. Each expert in their own path is carrying
the model’s bias in their decision attenuating the
performance even further.

3.3 Scaling Behaviour

Chain of Thought (CoT) and Tree of Thought (ToT)
are emergent behaviors typically associated with
larger model scales. However, examining smaller
models is crucial for understanding the scalabil-
ity and potential limitations of these prompting
strategies and their impact on sequential reason-
ing. We choose Llama-2-13b-chat-hf (Touvron
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GPT-4 GPT-3.5-turbo

Dataset N-shot Standard CoT ToT Standard CoT ToT

YouCook2 Zero-shot 62.2% ↑2.3 64.5% ↑3.3 65.5% 46.6% ↑0.2 46.8% ↑0.5 47.1%
One-shot 66.0% ↑3.8 69.8% ↑0.7 66.7% 0.0% ↑47.0 47.0% ↑47.8 47.8%
Two-shot 67.1% ↑3.3 70.4% ↓1.7 65.4% 0.0% ↑50.6 50.6% ↑46.8 46.8%

CrossTask Zero-shot 69.5% ↑1.4 70.9% ↑0.4 69.9% 47.0% ↑0.3 47.3% ↑11.0 58.0%
One-shot 71.3% ↑2.2 73.5% ↓1.4 69.9% 0.0% ↑48.4 48.4% ↑57.6 57.6%
Two-shot 74.4% ↑3.2 77.6% ↓4.3 70.1% 0.0% ↑52.8 52.8% ↑57.9 57.9%

Table 2: Performance comparison (%) of GPT-4 and GPT-3.5-turbo models under different reasoning
strategies across zero-shot, one-shot and two-shot scenarios for the YouCook2 (1/2 permutation ratio) and CrossTask
datasets, for assessing stepwise transitions (Task A). Arrows indicate ↑positive or ↓negative impact of CoT and
ToT compared to standard prompting.

Dataset Ratio Standard CoT ToT

GPT-4

YouCook2 1/2 64.6% ↓10.4 54.2% ↓14.3 50.3%
1/3 72.9% ↓15.8 57.1% ↓26.9 46.0%

CrossTask 1/2 52.9% ↓1.9 51.0% ↑1.1 54.0%

GPT-3.5-turbo

YouCook2 1/2 20.8% ↓2.0 18.8% ↓2.8 18.0%
1/3 36.7% ↓8.1 28.6% ↓19.6 17.1%

CrossTask 1/2 23.5% ↓3.9 19.6% ↓3.3 20.2%

Table 3: Performance comparison (%) of GPT-4 and
GPT-3.5-turbo models under standard, CoT and ToT
zero-shot prompting for determining overall task
viability (Task B) on the YouCook2 dataset with 1/2 and
1/3 permutation ratios and the CrossTask dataset with
a 1/2 permutation ratio. Arrows indicate ↑positive or
↓negative impact of CoT and ToT compared to standard
prompting.

et al., 2023) which we will refer to as Llama-2-
13b and zephyr-7b-beta (Tunstall et al., 2023)
which we will refer to as Zephyr-7B-β. Llama-
2-13b is the medium sized open source Language
Model of its family of models and ideal size-wise
for our scaling experiments. Zephyr-7B-β is even
smaller, and was selected, over other models of
the same size (like Llama-2-7b), to evaluate the
performance of models trained using knowledge
distillation techniques, where a smaller "student"
model is trained based on the patterns learned by a
larger "teacher" model. While distillation has been
shown to improve smaller models, a gap compared
to teacher models often still exists. Assessing an
open distilled model allows us to directly test if the
reported performance gains (Tunstall et al., 2023)
hold across complex reasoning tasks.

We focus on the zero-shot scenario to avoid vari-

ability in experiments, and assess scalability pat-
terns more reliably.

Task A For all datasets we observe that perfor-
mance increases monotonically across scale (Fig.
5), with the exception of Zephyr-7B-β which out-
performs the larger Llama-2-13b across different
conditions. We hesitate to claim a "U-shaped" scal-
ability pattern despite Zephyr-7B-β having fewer
parameters than Llama-2-13b, as its training in-
volves a larger model as a teacher, complicating di-
rect comparisons based solely on parameter count.
However, the strong performance of Zephyr-7B-β
indicates that with proper training techniques, even
relatively small models can achieve competitive
results on complex reasoning tasks.

As far as scaling w.r.t prompting strategies, the
analysis of the performance between CoT and ToT
compared to the standard reasoning approach re-
veals a generally positive impact across models and
datasets, with some exceptions.

In the YouCook2-1/2 dataset, both CoT and ToT
techniques generally improve performance across
all models. Notably, under ToT, GPT-4 shows a
significant improvement with an increase of ↑3.3%
points. Similarly, in CoT, Zephyr-7B-β and GPT-
4 both exhibit an increase of ↑2.3% points each,
indicating a consistent positive impact of these rea-
soning techniques.

Moving to the YouCook2-1/3 dataset, the trend
largely continues. Under CoT, GPT-4 again demon-
strates an increase, this time of ↑1.8% points. How-
ever, a slight deviation is observed with Llama-2-
13b, which shows a small decrease of ↓0.6% points
under CoT. Despite this, the overall trend remains
positive. Interestingly, in the ToT approach, GPT-4
experiences a marginal decrease of ↓0.5% points,
suggesting a more nuanced interaction in this par-
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Figure 4: Scaling Results for Task A across models of different parameters for our benchmark datasets. Monotonic
scaling behaviour is observed, even though Zephyr-7b-β outperforms Llama-2-13b in most cases.

Figure 5: Scaling Results for Task B across models of different parameters for our benchmark datasets. "U-shaped"
scaling behaviour is observed, as Zephyr-7B-β and Llama-2-13b outperform GPT-3.5-turbo.

ticular dataset.
The CrossTask dataset further illustrates the gen-

erally positive impact of CoT and ToT, with a stand-
out increase in GPT-3.5-turbo’s performance un-
der ToT, showing a substantial improvement of
↑11.0% points. This is a significant observation,
highlighting a particularly effective synergy be-
tween the ToT technique and the GPT-3.5-turbo
model in this context. On the other hand, Llama-2-
13b shows a decrease in both CoT (↓1.5% points)
and ToT (↓1.3% points), marking it as an exception
to the generally positive trend.

Overall, these findings suggest that while CoT
and ToT reasoning techniques generally lead to im-
proved performance over the standard approach,
the extent of this improvement and its consistency
can vary depending on the specific model and
dataset.

Task B Across the YouCook2 and CrossTask
datasets, we observe a "U-shaped" scalability pat-
tern: where both Zephyr-7B-β and Llama-2-13b
despite having significantly fewer parameters per-
form better than their larger counterpart, until GPT-
4 overakes them in performance, indicating a crit-
ical threshold of model scale. In the CrossTask
dataset, Zephyr-7B-β and Llama-2-13b, outper-

2This number is reported by Singh et al. (2023) but it is
not confirmed.

3This number is rumored but not officially released.

form GPT-3.5-turbo in both zero-shot standard
(by ↑4.5% and ↑11.8% respectively) and zero-
shot CoT prompting (by ↑16.4% and ↑7.8% re-
spectively). For the YouCook2 dataset and the
1/2 condition, Zephyr-7B-β and Llama-2-13b out-
perform GPT-3.5-turbo in zero-shot standard (by
↑9.2% and ↑18.8% respectively) and CoT prompt-
ing (by ↑9.2% and ↑6.2% respectively). However,
in the 1/3 condition, Zephyr-7B-β and Llama-2-
13b underperform compared to GPT-3.5-turbo in
zero-shot standard (by ↓10.7% and ↓9.6% respec-
tively) and zero-shot CoT prompting (by ↓6.6%
and ↓4.1% respectively), while again showcasing
superior performance for ToT prompting.

4 Conclusion

In this work, we adapted and utilized the YouCook2
and CrossTask goal-oriented datasets to contain var-
ied levels of step sequence permutations in order
to analyze how Large Language Models respond
to disruptions of logical order. We discover that
CoT prompting strategies can significantly aug-
ment models’ sequential reasoning capacities in
some cases. However, it also unexpectedly harms
reasoning performance under certain conditions.
Moreover, ToT reasoning approaches prove less
effective on perturbed goal-oriented tasks, while
increases in provided in-context examples seems to
improve model outcomes, but not across all cases.
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We also discover a "U-shaped" scaling behaviour,
where LLMs with significantly less parameters per-
form better than one of their larger counterpart, in
one of our tasks.

In total, while recent strategies can bolster goal-
oriented reasoning, the models seem to have a frag-
ile understanding of the complex dependencies in
multi-step procedures, frequently overlooking logi-
cal flaws in permuted sequences. However, perfor-
mance gains under simpler permutations indicates
reasoning capability may rapidly improve along-
side advances in scale and prompting.

Our analysis provides a methodology for con-
tinued investigation as models evolve on this chal-
lenging reasoning frontier. This study contributes
to a deeper understanding of the scalability and
adaptability of LLMs in complex reasoning tasks.

5 Limitations

Systematically exploring more reasoning strate-
gies Our work uses different reasoning strategies,
adapted for our tasks. However, small variations
to the prompt structure could yield dramatically
different results. Structuring ToT differently is one
direction that could be explored. For task B, we
focus on the zero-shot CoT prompting structure in-
spired by Kojima et al. (2022), and its extension to
ToT. We need to expand our efforts by considering
more prompting dimensions like adding in context
exemplars in order to fully understand the cause
of the performance drop and observe if the pattern
persists.

Limitations of Sequential Reasoning Bench-
marks Benchmarks often have varied interpre-
tations of bias, leading to inconsistent outcomes
(Delobelle et al., 2022; Cao et al., 2022). We in-
troduce 2 separate benchmarks and evaluate LLMs
reasoning on goal-oriented tasks across them. We
believe our refined annotations and careful selec-
tion of the datasets to adapt are enough to mitigate
the flaws of each individual benchmark, However,
it’s essential to carefully consider the inherent limi-
tations and specific objectives of each benchmark
when analyzing the results.

6 Ethics

This work involves experimentation with Large
Language Models (LLMs) on goal-oriented reason-
ing tasks. As with any research involving LLMs,
there are important ethical considerations.

Bias and Fairness Benchmarks can have inher-
ent biases which can propagate to model evalua-
tions. We aimed to mitigate this by using multi-
ple datasets, but underlying biases may still exist.
More broadly, the goal-oriented datasets likely con-
tain some societal biases and future work should
examine the extent of this.

Broader Societal Impact LLMs have potential
benefits but also risks if deployed improperly. Our
work aims to critically analyze these models, but
downstream applications should carefully assess
societal impact. If deployed to provide sequential
guidance in real-world assistive systems, the re-
liability and safety of goal-oriented models is of
utmost importance. Understanding model capabili-
ties and limitations is crucial for avoiding potential
harms from erroneous system behaviors.

Throughout this work, we attempted to conduct
rigorous scientific exploration to further knowledge
and understanding around the reasoning robustness.
We believe this has value for enabling responsi-
ble applications in future, but also that researchers
have an ethical duty to acknowledge risks and unin-
tended consequences as language models continue
advancing.
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