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Abstract

Generative AI, as it becomes increasingly inte-
grated into our lives, has brought convenience,
though some concerns have arisen regarding its
potential impact on the rigor and authenticity
of scientific research. To encourage the devel-
opment of robust and reliable automatically-
generated scientific text detection systems, the
"DAGPap24: Detecting Automatically Gener-
ated Scientific Papers" competition was held
and shared the same task with the 4th Workshop
on Scholarly Document Processing (SDP 2024)
to be held at ACL 2024. In the DAGPap24
competition, participants were tasked with con-
structing a generative text detection model that
could accurately distinguish between the hu-
man written fragment, the synonym replace-
ment fragment, the ChatGPT rewrite fragment,
and the generated summary fragment of a pa-
per. In this competition, we first conducted a
comprehensive analysis of the training set to
build a generative paper detection model. Then
we tried various language models, including
SciBERT, ALBERT, DeBERTa, RoBERTa, etc.
After that, we introduced an Anomalous La-
bel Smoothing (ALS) method and a majority
voting method to improve the final results. Fi-
nally, we achieved 0.9948 and 0.9944 F1 scores
during the development and testing phases re-
spectively, and we achieved second place in the
competition.

1 Introduction

With the rapid development of NLP technology,
especially with the emergence of ChatGPT1, there
is an increasing amount of text generated by non-
human entities. However, machine-generated text
may sometimes contain errors that are not eas-
ily discernible by humans, leading to a decline
in the rigor and credibility of scientific papers.
Current NLP generation technology has nearly
reached parity with human writing, which poses

1https://chatgpt.com/

the challenge of distinguishing them (Zhang et al.,
2023). In response to this issue, Mitchell et al.
(2023) propose a detection method that does not
require training a classifier or collecting additional
datasets. They argue that model-generated text
is more sensitive to minor rewriting perturbations
than human-written text. To further distinguish the
sentences with various lengths, researchers in (Tian
et al., 2023) propose a length-sensitive Multiscale
positive-unlabeled Loss that can improve the abil-
ity of detection of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). To further understand
the achievements, this survey (Tang et al., 2024)
provides an overview of existing techniques for
detecting LLM-generated text.

In this paper, we mainly detail our work dur-
ing the shared task DAGPap2024. We are tasked
with detecting automatically generated papers. We
can abstract this task into a token-level multi-
classification problem. There are three challenges
in this task. 1) Difficulty in efficiently bridging the
gap between word-level tokenization and subword-
level tokenization more rationally. The dataset pro-
vided in the competition is tokenized in word-level,
while most of the existing language models using
the subword-level tokenization method. If the two
tokenized methods are not accurately mapped, it
will not only lead to a waste of useful information
but may also lead to misalignment of the prediction
results and the test set. 2) Difficulty in ensuring
that the distribution of the generated prediction re-
sults is consistent with the label distribution of the
training set. We found that only relying on the
model’s predictions will lead to inconsistency in
the distribution between the training set and test
set. For example, there will be several other labels
predicted in the middle of a continuous text. It
leads to inconsistency in the distribution between
training set and development set. 3) Difficulty in
determining which model performs best on token-
level classification tasks. Different models, each
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with unique training parameters, yield varying pre-
dictions for this task, resulting in different label
prediction outcomes for the same token. The selec-
tion of the final result directly impacts the F1 score.
To overcome the aforementioned challenges and
enhance our performance in the competition, we
propose the following solutions:

• Based on our analysis, we adopted two ways
to divide the data into sub-sentences. One is to
divide the data into sub-sentences according
to the token length of 240, and the other is to
divide the tokenized data into sub-sentences
with a max length of 500. These two tok-
enization ways can ensure that the prediction
results can correspond back to the original text
without the loss of information.

• Then, we fine-tuned DeBERTaV3large(He
et al., 2023), DeBERTaV2xxlarge(He et al.,
2021) and ALBERTV2xxlarge(Lan et al., 2020)
using token-level classification. We proposed
an Anomalous Label Smoothing method
(ALS) to guarantee the predicted results
and the label distribution of the training set.
Specifically, by scanning under different win-
dow lengths, we smooth out predicted anoma-
lous labels, ensuring that there are no anoma-
lous labels within the window.

• Finally, to take full advantage of different
models, we used a majority voting method to
ensemble the predictions of multiple models.
By ensembling the results from the models,
we attained F1 scores of 0.9948 and 0.9944
in the development and testing phases, respec-
tively.

2 Task Overview

To enforce the reliability of scientific papers, we
focus on detecting automatically generated scien-
tific papers. We should distinguish human-written
fragments, synonym-replaced fragments, ChatGPT-
generated fragments, and summarized fragments,
which can be abstracted as a token-level classifi-
cation task. Fig. 1 provides a visualization of the
fragments extracted from the training set.

2.1 Data

The original dataset is selected from scientific pa-
pers, consisting of 5,000 training samples, 5,000 de-
velopment samples, and 20,000 test samples. Each
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Figure 1: Visualization result of different types of frag-
ments in a training sample.

sample may consist of fragments from the four cat-
egories mentioned above, appearing in different
sequences and frequencies. The summarized frag-
ments are obtained via a deep learning model, the
synonym replacement fragments are obtained by
substituting the original words with the synonyms
from NLTK, and the ChatGPT fragments are ob-
tained by rewriting the original fragments using
ChatGPT. As Fig. 1 shows, the number of labels in
this fragment is three. We statistically analyzed the
number of the sequence of continuously labeled
identical fragments and found that they were iden-
tically distributed in the training set, validation set
and test set.

We processed the training set according to
subword-level tokenization to avoid the loss of
useful information (e.g., the information involved
in the truncated sentences) and ensure the consis-
tency of prediction results with the test set. We
conducted a statistical analysis on the length of to-
kenized fragments for each category in the training
set. The statistical results are shown in Table 1.
The column "1%" denotes that, upon arranging all
fragment lengths into ascending order, 1% of the
fragments have lengths equal to or under the spec-
ified value. Columns like "50%" and "75%" are
similarly conveyed in the same manner.

Category 0.5% 50% 75% Mean
human 35.00 1204.00 2234.75 1640.87

synonym 29.00 587.00 672.50 612.20
ChatGPT 21.00 382.00 476.00 397.32
summary 22.84 359.00 413.00 381.25

Table 1: Statistics on the length of the fragments of each
category in the training set.

3 Our Work

In this section, we will provide a detailed descrip-
tion of our work, which includes data analysis,
data processing, models, and the anomalous label
smoothing method. Our work is illustrated in the
structural flowchart as shown in Fig. 2.
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Figure 2: Overall architecture of our work.

3.1 Data Analysis and Data Processing

Initially, through analyzing the raw data, we discov-
ered several key issues. The first was that sentences
split according to the length of the word sequence
may exceed the maximum length of the BERT se-
quence after word segmentation. This results in
some training data being wasted since the informa-
tion involved in the truncated sentences may be lost.
It is difficult for the predicted label to correctly cor-
respond to the test text. The second was that the
99.5% of continuous label lengths exceed 20.

During data pre-processing, we followed the
method suggested by the given example and di-
vided the raw train data into two parts, including
the training set and the validation set. Based on
the data analysis mentioned above, two data prepro-
cessing methods were adopted. One method named
TokV1 was to divide the sentences in the training
set and Validation set into sub-sentences with a to-
ken list of length 240. The other one named TokV2
was to perform word tokenization before segmen-
tation and then ensure that each sub-sentence after
word tokenization was a tokenized text with a max
of 500 tokens. This ensured that tokenized sen-
tences would hardly exceed the maximum length
of the pre-trained model, allowing the model to
achieve the best training effect.

3.2 Models

For the token-level classification task, it is nec-
essary to perceive the contextual relationships of
the tokens. The models with a bidirectional at-
tention mechanism might be a good choice, thus,
we used models with an encoder structure, in-

0000 0 00 001 1 0000 0 02

0000 0 00 000 0 0000 0 00

Model

output

ALS

Figure 3: The process of Anomalous Label Smoothing
to correct labels.

cluding DeBERTaV2xxlarge, DeBERTaV3large, and
ALBERTV2xxlarge and conducted a series of experi-
ments on these models. The details of these models
are presented in Table 2.

Model Parameter Hidden Size
SciBERT 110M 768
RoBERTa 355M 1024

ALBERTV2xxlarge 223M 4096
DeBERTaV2xxlarge 1.5B 1536
DeBERTaV3large 304M 1024

Table 2: The configuration of the chosen models.

3.3 Anomalous Label Smoothing

We conducted data analysis on the models’ out-
puts and discovered that within a sequence of con-
tinuously labeled identical data, there were dis-
crete labels of other categories intermixed, which
is different from our analysis results mentioned
above. Thus, we designed a post-processing
method named Anomalous Label Smoothing(ALS),
which is similar to a Conditional Random Field
(CRF) (Lafferty et al., 2001) in filtering out unrea-
sonable labels. ALS method corrects label frag-
ments smaller than the window size to the label of
its left or right fragment by setting a window size
and iterating through the prediction results. Ini-
tially select the label on the right, and for the rest,
select the label of the fragment on the left. The
size of the window is determined in specific exper-
iments, based on the second key point from our
previous data analysis. As shown in Fig. 3, through
the ALS method, we have corrected the labels of
other categories interspersed within a sequence of
continuously identical labels.

Model Score
SciBERT 0.8637
RoBERTa 0.8814

DeBERTaV3large 0.8971
DeBERTaV2large+TokV2 0.9892

ALBERTV2xxlarge+TokV1+ALS10,20 0.9885
DeBERTaV2xxlarge+TokV1+ALS10,20 0.9887
DeBERTaV3large+TokV1+ALS10,20 0.9844

ALBERTV2xxlarge+TokV2+ALS10,20,30 0.9897
DeBERTaV2xxlarge+TokV2+ALS10,20,30 0.9910
DeBERTaV3large+TokV2+ALS10,20,30 0.9919

Table 3: The F1 scores on the development set.
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Ensembled Base Model Dev Test

V1

DeBERTaV3large
+TokV1+ALS10,20

DeBERTaV2xxlarge
+TokV1+ALS10,20

ALBERTV2xxlarge
+TokV1+ALS10,20

0.9908 N/A

V2

EnsembledV1
DeBERTaV2large

+TokV2
ALBERTV2xxlarge

+TokV2+ALS10,20,30

DeBERTaV2xxlarge
+TokV2+ALS10,20,30

DeBERTaV3large
+TokV2+ALS10,20,30

0.9948 0.9943

V2ALS5

EnsembledV1
DeBERTaV2large

+TokV2
ALBERTV2xxlarge

+TokV2+ALS10,20,30

DeBERTaV2xxlarge
+TokV2+ALS10,20,30

DeBERTaV3large
+TokV2+ALS10,20,30

N/A 0.9944

Table 4: The F1 scores of the ensemble models.

3.4 Majority Voting
We performed majority voting on the prediction
results from multiple models to enhance the ro-
bustness and accuracy of the overall outcome. We
assume that the label corresponding to the token
at position is l1, l2...li...ln, li ∈ L = {0, 1, 2, 3},
where n represents the number of models. The fre-
quency for each label is denoted as feq(li). Thus,
the voting rule is as Eq. 1.

f(l) = argmax(feq(li)), i ∈ L (1)

At the same time, we observed that when deter-
mining the final labels through majority voting, if
there is a disagreement among the opinions of each
model participating in the vote, i.e., the frequency
of any label is same, then the final result cannot be
determined through voting. Therefore, based on Eq.
1, we optimized the voting rules. We selected the
relatively better model output lT to serve as a final
result for such inconclusive situation, as depicted
in Eq. 2.

g(l) =

{
lT feq(l1) = feq(l2)... = feq(ln)

f(l) others
(2)

4 Experiments

During the modeling process, we tried differ-
ent state-of-the-art models, including SciBERT,
RoBERTa, DeBERTaV2xxlarge, DeBERTaV3large,
ALBERTV2xxlarge. ALS10,20,30 was used to denote
the length of Anomalous Label Smoothing, i.e., the
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Figure 4: The process of our experiments.

smoothing windows were 10, 20, 30 respectively.
We conducted numerous parameter tuning experi-
ments and applied various training techniques, such
as early stopping (Prechelt, 2002), n-fold valida-
tion (Raschka, 2018), and so on. The learning
rate for DeBERTaV3large, ALBERTV2xxlarge, and
DeBERTaV2xxlarge were set to 5e-5, 2e-5 and 5e-
6 respectively. Due to space constraints, we list
representative experimental results in Table 3.

Firstly, we finetuned some base models fol-
lowing the given settings, among which the
DeBERTaV3large model performed best. The rea-
son might be that the DeBERTaV3large model in-
troduces the absolute word position embeddings,
which can contribute to distinguishing between vo-
cabulary usage in human language and machine-
generated text. As analyzed in 3.1, differences in
text tokenization methods, or inconsistencies of la-
bel distributions, would both decrease the F1 scores.
Thus, we introduced two types of tokenization
methods, which are named TokV 1 and TokV 2 to
ensure that the length of tokenized input texts does
not exceed the maximum length of the pre-trained
model. Furthermore, we developed an Anomalous
Label Smoothing method, referred to as ALS, to
refine the predicted results, aiming to align the final
results as closely as possible with the label distribu-
tion of the training set. We ultimately acquired sev-
eral fine-tuned models base on DeBERTaV2large,
DeBERTaV2xxlarge and DeBERTaV3large models,
all of which achieved F1 scores exceeding 0.98 on
the development set. Finally, we employed model
fusion to integrate the results of the models in Ta-
ble 3. In that case, we can further improve the
model’s performance. Table 4 shows the results of
the model fusion experiments.

5 Conclusion

In this paper, we mainly introduce the automat-
ically generated papers detection and detail our
solution for the DAGPap2024 competition. Firstly,
based on the analysis of the data, we adopted two
different tokenization ways to ensure that the pre-
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dicted results can accurately correspond to the orig-
inal text set. Then, we introduced an Anomalous
Label Smoothing method to ensure that the dis-
tribution of predicted results is consistent with the
label distribution of the training data set without the
loss of information. Finally, we used model fusion
to maximize the performance of different models.
The above efforts ensured that we achieved a high
F1 result in this competition, which was 0.9948
and 0.9944 on F1 score during the development
and testing phases, and we achieved second place
in the competition.
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