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Abstract

In the natural sciences, a common form of
scholarly document is a physical sample record,
which provides categorical and textual meta-
data for specimens collected and analyzed for
scientific research. Physical sample archives
like museums and repositories publish these
records in data repositories to support repro-
ducible science and enable the discovery of
physical samples. However, the success of re-
source discovery in such interfaces depends on
the completeness of the sample records. We
investigate approaches for automatically com-
pleting the scientific metadata fields of sam-
ple records. We apply large language models
in zero and few-shot settings and incorporate
the hierarchical structure of the taxonomy. We
show that a combination of record summariza-
tion, bottom-up taxonomy traversal, and few-
shot prompting yield an F1 score as high as
0.928 on metadata completion in the Earth sci-
ence domain.

1 Introduction

Not all scholarly documents are formal scientific
articles. In the natural sciences (e.g. Earth science,
biodiversity science, archaeology), a common form
of scholarly document is a physical sample record.
Also called catalog records or specimen records,
sample records are documents written by scientists
that describe samples (for instance, fossils, soil
samples, sediment cores, etc.) collected and ana-
lyzed for scientific research. Since the 1980s, mil-
lions of dollars of grant funds have been dedicated
to projects digitizing and sharing physical sample
records through online data repositories (Nelson
and Ellis, 2018; com, 2020). The specific contents
of records varies by domain, but they typically con-
tain metadata describing the type, material, and
provenance of samples. Sample records are needed
to find and reuse physical samples, and, when ag-
gregated, can be treated as a scientific dataset in and

Figure 1: An illustration of our automatic metadata
assignment workflow utilizing text classification with
LLMs. The example record MATERIAL metadata field
is predicted as result of tree traversal done on the taxon-
omy in a bottom-up manner.

of themselves. For instance, aggregated biodiver-
sity sample records are frequently used for studies
of global change biology (Heberling et al., 2021).
Thus, the quality of these scholarly documents is
crucial.

Sample record metadata may be incomplete for
a variety of reasons, including data entry issues
or schema mismatches when sample records are
aggregated across different repositories. For ex-
ample, among the sample records that describe
the resources registered in the System for Earth
Sample Registration (SESAR2) data repository1

(Fig 2), 78% of the records, totaling 3,565,478

1https://www.geosamples.org/
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records, exhibited missing values in the MATERIAL

metadata field. Automatic metadata assignment
has consequently emerged as a critical task in the
processing of sample records and other metadata
aggregations. For instance, some data repositories
automatically assign geocoordinates and higher ge-
ographic classifications based on text-based locality
descriptions using rules-based workflows (Chap-
man and Wieczorek, 2020). Other approaches to
inferring missing categorical fields often represent
metadata fields as vectors and utilized classifiers to
fill in missing values from a controlled vocabulary
(Han et al., 2003; Paynter, 2005).

Figure 2: An example of a physical sample record from
SESAR2.

Often sample records contain many text fields
that can be used to predict or infer missing values;
thus, we approach automatic metadata assignment
as a taxonomy-driven text classification problem.
We propose a solution for metadata assignment
based on large language models (LLMs) (fig. 1).

Our contributions are as follows:

• We compare zero and few-shot LLM formu-
lations of the problem with competitive base-
lines like fine-tuning RoBERTa.

• We study different strategies to incorporate the

taxonomy’s hierarchy and show that a bottom-
up approach is especially effective.

• We demonstrate that prompting LLMs to first
summarize the sample record and then classify
using the summary can sometimes outperform
prompting LLMs to classify directly from the
sample record.

Our evaluation focuses on sample records from
the Earth science domain, though our approaches
are general enough to be applied to many other
domains. Our findings suggest that LLMs could
provide a viable solution for digital libraries or
aggregations facing missing metadata issues.

2 Related Work

Metadata Enhancement in Digital Libraries A
common challenge in digital libraries or meta-
data aggregations is the “missing data” problem
(Dushay and Hillmann, 2003). To tackle this is-
sue, various automatic metadata assignment ap-
proaches including machine learning techniques
have been employed. Paynter (2005); Tonkin and
Muller (2008) used classification methods to auto-
matically assign metadata values. Unlike these su-
pervised learning methods, our approach employs
LLMs with zero or few-shot samples to offer a
more domain-agnostic solution.

LLMs for Text Classification With the advance-
ment of larger-scale pre-trained language models
trained on vast unlabeled corpora, approaches that
utilize language models with instructions (zero-
shot) and task-related examples directly in the
prompt (few-shot) have been used. Prompting
methods (Kojima et al., 2022; Wei et al., 2022)
and domain-specific LLMs (Singhal et al., 2022;
Taylor et al., 2022) have been investigated for text
classification. Our work explores text classification
with LLMs to assign metadata values.

Hierarchical Multi-Label Text Classification
The task of assigning multiple hierarchically struc-
tured categories to a text is known as hierarchi-
cal multi-label text classification. Various meth-
ods have been explored to encode the hierarchi-
cal nature of the label space, including level-wise
attention-based recurrent networks (Huang et al.,
2019), graph convolutional networks (Xu et al.,
2021), and LLMs with tree search strategies (Boyle
et al., 2023). We also apply tree search strategies
to LLMs, exploring both top-down and bottom-up
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approaches, which we find to be much more suc-
cessful in our data.

3 Dataset

We are working with physical sample records from
the Internet of Samples (iSamples) project, which
aggregates physical sample metadata records from
data repositories within the domains of Earth sci-
ence, bioscience, and archaeology (Davies et al.,
2021). To aggregate these records, iSamples devel-
oped a common metadata schema and controlled
vocabularies for the MATERIAL and OBJECT TYPE

fields of each sample record (Richard et al., 2024),
to which each repository’s records are crosswalked.
This makes it possible to easily search across a
diverse range of records within the iSamples inter-
face. The MATERIAL and OBJECT TYPE fields are
used as two primary facets in the search interface.

Here, we focus on records from SESAR2, which
describe specimens from the Earth science domain,
encompassing rocks, fossils, fluids, and other ma-
terials registered. A substantial portion of these
records contains missing values in the MATERIAL

field, which negatively impacts the discoverability
within both iSamples and SESAR2. However, the
records contain other metadata which can be used
to infer the MATERIAL type.

To frame this as a text classification dataset, for
each sample record, we construct the output from
the metadata field to be predicted, and construct the
input from all other available metadata fields. In
section 4 we explore various ways of concatenating
the many metadata fields into a single text for input,
but in all cases, we include the following text in the
text classification prompt:

You are a scientist. Your task is
to analyze the description of a material
sample and determine the kind of material
that constitutes it after <<<>>> into one
of the predefined material types:
{taxonomy}
You will only respond with the material
type. Do not include the word Material
type. Do not provide explanations or
notes.
###
<<<
Description: {text}
Material type:
>>>

where the taxonomy is a list of possible labels in
the taxonomy to predict and the text is the input
constructed from metadata fields. For the output,
we use a multi-label formulation that includes all

appropriate labels within the taxonomy. For exam-
ple, if a sample should be labeled as BASALT, then
it should also be labeled as ROCK since BASALT

is a type of ROCK in the iSamples taxonomy (Fig-
ure 3). For evaluation on this multi-label dataset,
we use the macro F1 score.

For our training and testing purposes, we utilized
the 988,426 (22%) of records that contained the
MATERIAL field value. Due to the dataset’s highly
imbalanced nature, we randomly selected and dis-
carded sample records such that the maximum oc-
currence of a label could be 10,000, while ensuring
that each label appeared at least 10 times in the
entire dataset. As a result, the training dataset con-
tained 294,420 records, the development dataset
contained 63,090 records, and the test dataset con-
tained 63,091 records. For the test dataset, we
focused solely on labels that appeared at least 10
times and records that was annotated up to the leaf
level to estimate performance of our experiments.
The number of tokens in fields of these records is
listed in Appendix A.

4 Experiments

We explore three LLMs for our multi-label text clas-
sification formulation of the metadata assignment
problem: Llama-2-7B-chat-hf, Mistral-7B-Instruct,
and Mistral-7B-OpenOrca. Using these models,
we explore the following research questions:

1. How do different record-to-text conversions
affect performance?

2. Is it useful to have an LLM summarize the
record text?

3. Is top-down or bottom-up search better for
incorporating the label hierarchy?

4. How much can few-shot prompting improve
over zero-shot prompting?

To address each of these questions, we utilize the
test dataset for evaluation purposes. Our findings
indicate that the bottom-up search approach is the
most effective for integrating the label hierarchy,
and thus, we apply this method when conducting
experiments for the first two questions. The follow-
ing sections detail the experiments conducted to
answer each of these research questions.
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Figure 3: iSamples MATERIAL type taxonomy

Selected values Input

Metadata field values long cylindrical cores, Ship, Lamont-Doherty Core Repository at Columbia
University (LDCR), ...

Metadata field name and value description_sampleType is long cylindrical cores, descrip-
tion_supplementMetadata_platformType is Ship, descrip-
tion_supplementMetadata_currentArchive is Lamont-Doherty Core
Repository at Columbia University (LDCR), ...

Metadata field description and value The object type of sample is long cylindrical cores, The type of platform for
the cruise is Ship, The name of institution, museum, or repository where the
sample is currently stored is Lamont-Doherty Core Repository at Columbia
University (LDCR), ...

Table 1: An example of different methods to generate the input for the language model.

4.1 How do different record-to-text
conversions affect performance?

There are many possible ways to transform a sam-
ple record into an input for text classification. We
compare the following approaches to create the
input text, with examples of each shown in table 1.

Field value: We include only the values of the
metadata fields.

Field name and value: For each metadata field,
we include the field name, then the string “ is
”, then the field value.

Field description and value: The same as Field
name and value, but instead of the field name,
we include the description of the field name
obtained from the SESAR collection website.

Table 2 shows the results of varying the text
conversion strategy. We observe that using the
metadata field description and value is the most
effective across all three LLMs. This suggests that
LLMs are more effective text classifiers when given
a more verbose input that looks more like natural
language text.
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Model Selected values F1

Llama-7B-chat-hf Field values 0.342
Llama-7B-chat-hf Field name and value 0.365
Llama-7B-chat-hf Field description and value 0.370

Mistral-7B-Instruct Field values 0.377
Mistral-7B-Instruct Field name and value 0.374
Mistral-7B-Instruct Field description and value 0.379

Mistral-7B-OpenOrca Field values 0.397
Mistral-7B-OpenOrca Field name and value 0.427
Mistral-7B-OpenOrca Field description and value 0.405

Table 2: Comparison of different methods to generate
the text used as input for text classification applied to
the Bottom-Up Tree Search with Zero-Shot Learning.
Best performing method is in bold. Macro F1 is used
for evaluation.

4.2 Is it useful to have an LLM summarize the
record text?

We also explore an alternative approach to formu-
late the input to the LLM, by considering the LLM
as a summarizer with noisy knowledge. In this
approach, given the description and value of the
metadata fields of the sample record, we instruct
the LLM to generate a summary with a focus on
the text portion relevant to the metadata field that
is to be predicted. As the sample record may con-
tain metadata fields with domain-specific terms, we
also instruct the LLM to provide explanations for
these metadata fields. The prompt that is used to
generate the summary is as follows:

You are a scientist. User will give you a
description of a material sample it
sampled from the nature. You must generate
a summarized description of the sample.
Your task is to give a brief one sentence
summary of the given description , focusing
on the parts that are helpful in determining
the type of material that constitutes it.
###
<<<
Description: {text}
>>>

This summary is enriched with the explanation
of metadata fields that is generated by the following
prompt:

You are a scientist. User will give you
a term that indicates {metdata field
description}. You must generate a short
description of the term. Your task is to
give a brief one sentence description of
the given {metadata field} of the sample.
###
<<<
Term:{term}
>>>

Model Model Input F1

Llama-7B-chat-hf Original description 0.370
Llama-7B-chat-hf Summary + Explanation 0.428

Mistral-7B-Instruct Original description 0.379
Mistral-7B-Instruct Summary + Explanation 0.385

Mistral-7B-OpenOrca Original description 0.405
Mistral-7B-OpenOrca Summary + Explanation 0.439

Table 3: Result of Zero-Shot Classification with Sum-
marize&Explain applied to the Bottom-up Tree Search.
Macro F1 is used for evaluation.

This enriched summary is then used as the input to
the LLM text classification prompt.

Table 3 shows the results of this experiment.
We see that summarizing and explaining the sam-
ple record improves performance for all models,
though it benefits Llama the most. This suggests
that allowing the LLM to discard redundant or ir-
relevant metadata fields and provide an explanation
of domain specific terms can make the text classifi-
cation task easier for the LLM.

4.3 Is top-down or bottom-up search better
for incorporating the label hierarchy?

We explored different approaches to utilizing the
hierarchical label space:

Flat Disregard the hierarchy and treat the task as
a flat multi-label classification problem. We
include the entire label space in the prompt,
expecting the model to return multiple labels
for each physical sample record.

Top-Down Tree Search Follow the approach of
Boyle et al. (2023), where predictions are
made starting from the root of the hierarchy
and recursively making new predictions over
the children at each level of the hierarchical
tree. The label space at each level is restricted
to the children of the current node. The recur-
sive process continues until the leaf level is
reached.

Bottom-Up Tree Search Predictions are made
starting from the leaf level, predict higher-
level labels only if no valid prediction is
found.

Table 4 shows the results of varying the strategy
for handling hierarchical labels. We see that apply-
ing Bottom-Up Tree Search is effective across all
LLMs. At the same time, Top-Down Tree Search
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Model Tree Search Strategy F1

Majority Baseline - 0.123

Llama-7B-chat-hf Flat 0.154
Llama-7B-chat-hf Top-Down Tree Search 0.114
Llama-7B-chat-hf Bottom-Up Tree Search 0.370

Mistral-7B-Instruct Flat 0.167
Mistral-7B-Instruct Top-Down Tree Search 0.175
Mistral-7B-Instruct Bottom-Up Tree Search 0.379

Mistral-7B-OpenOrca Flat 0.241
Mistral-7B-OpenOrca Top-Down Tree Search 0.238
Mistral-7B-OpenOrca Bottom-Up Tree Search 0.405

Table 4: Result of Zero-Shot Classification with dif-
ferent Tree search strategies. Flat treats the task as a
multi-label classification problem without considering
label hierarchy. Macro F1 is used for evaluation.

performs similarly to Flat, contradicting the pre-
vious results of Boyle et al. (2023), where using
LLM-guided tree-search traversal in a top-down
manner achieved state-of-the-art performance in
the task of assigning diagnostic ICD codes. We
suspect the failure of Top-Down Tree Search on
our data is due to the terms in the top-level vocab-
ulary, such as “any anthropogenic material” and
“biogenic non-organic material”, which can be dif-
ficult for the LLM to understand as they are low-
frequency highly specialized terms that the LLM
may not have large exposure to.

4.4 How much can few-shot prompting
improve over zero-shot prompting?

We also conduct few-shot learning by including a
sample of examples in the prompt to the model. We
include the examples in the prompt as follows:
You are a scientist. Your task is
to analyze the description of a material
sample and determine the kind of material
that constitutes it after <<<>>> into one
of the predefined material types:
{taxonomy}
You will only respond with the material
type. Do not include the word Material
type. Do not provide explanations or
notes.
###
Here are some examples:
{examples}
###
<<<
Description: {text}
Material type:
>>>

For the selection of examples, we utilize a k-
nearest neighbor (kNN) search methodology pro-
posed by Khandelwal et al. (2019), wherein we
select the k most similar examples from the train-

Figure 4: Sample Pool Size Impact for Few-Shot Learn-
ing with flat integration of hierarchy.

ing dataset for each test record. To determine the
similarity between records, we represent the text
of the record using a Sentence-BERT model which
was trained to estimate the similarity of scientific
publications (allenai-specter) (Cohan et al., 2020).
The few-shot samples are ordered from least to
most cosine similarity to the given test record ac-
cording to the methodology proposed by Sun et al.
(2023). Due to constraints on input context, Llama
used 3-shot examples, while Mistral and Mistral-
OpenOrca used 5-shot examples. The number of
samples (k) was chosen as mentioned above, as we
observed lower performance with larger k values.

Since the k examples are drawn from the train-
ing data, it is important to determine how large of a
pool of training examples are needed for successful
few-shot prompting. Figure 4 shows experiments
with subsets of the training dataset, randomly se-
lecting n = 100, 1000, and 10,000 records for each
MATERIAL type. From the results, we see larger
training dataset size enhances the performance as
the probability of retrieving relevant in-context ex-
amples increases, which is consistent with prior
research by Liu et al. (2021).

We compare few-shot prompting to both zero-
shot prompting and the following baselines:

Most common label Predict the most common la-
bel, which is the ROCK label.

Multinomial Naive Bayes Applies a multinomial
naive bayes classifier that represents the text
metadata fields as TF-IDF vectors.

RoBERTA-Large-MNLI Applies a RoBERTa
model that has been pre-trained on textual
entailment data, is fine-tuned on the entire

150



Model Model Input Prompt Hierarchy F1

Most common label - - Flat 0.123
Multinomial Naive Bayes Field values - Flat 0.652
RoBERTA-Large-MNLI Original description - Flat 0.721
kNN Original description - [See text] 0.844

Llama-7B-chat-hf Original description Few-Shot Flat 0.331
Llama-7B-chat-hf Original description Few-Shot Bottom Up 0.504
Llama-7B-chat-hf Summary + Explanation Few-Shot Bottom Up 0.501

Mistral-7B-Instruct Original description Few-Shot Flat 0.565
Mistral-7B-Instruct Original description Few-Shot Bottom Up 0.772
Mistral-7B-Instruct Summary + Explanation Few-Shot Bottom Up 0.669

Mistral-7B-OpenOrca Original description Few-Shot Flat 0.779
Mistral-7B-OpenOrca Original description Few-Shot Bottom Up 0.880
Mistral-7B-OpenOrca Summary + Explanation Few-Shot Bottom Up 0.928

Mistral-7B-OpenOrca (best zero-shot) Summary + Explanation Zero-Shot Bottom Up 0.439

Table 5: Result of Few Shot Learning with Bottom-Up Tree Search and Summarize&Explain Approach with the
entire training dataset used as sample pool. Best performing few-shot approach is in bold. Macro F1 is used for
evaluation.

training data, and is used to classify text fol-
lowing Yin et al. (2019); Pàmies et al. (2023).
Early stopping was used to prevent overfitting.
Other hyperparameters used for fine-tuning
are listed in Appendix B.

kNN Utilizing the same Sentence-BERT model
employed in few-shot learning, we create em-
beddings representing each sample record,
and label new sample records with the most
common label from their 5-nearest neighbors.
The most common label is determined by pri-
oritizing the label that holds the deepest po-
sition within the taxonomy hierarchy and is
most frequently observed among the neigh-
boring labels.

Table 5 compares few-shot prompting to the best
zero-shot prompting model and these baselines.
The best few-shot setting is the same as the best
zero-shot setting: Mistral-7B-OpenOrca, summa-
rize and explain the input, and use the bottom up
search strategy. But the best few-shot setting sub-
stantially outperforms the best zero-shot setting,
0.928 F1 to 0.439 F1. It also outperforms all the
baselines, including those that are fine-tuned over
the entire training data. The closest baseline is the
k-nearest neighbors, achieving 0.844 F1, which in-
dicates that selecting relevant training examples for
few-shot prompting is driving a large part of the

performance, but the knowledge embedded in the
LLM provides extra power beyond those few-shot
examples.

One difference that can be observed between the
zero-shot and few-shot models is that the Summa-
rize and Explain approach did not help Llama and
hurt Mistral, while that approach benefited both
models in the zero-shot setting (see table 3). This
suggests that almost any summary helps without
any training examples in the prompt, but as soon
as the prompt contains relevant training examples,
only the best summaries are helpful. A deeper
analysis of the quality of summaries coming out
of each model would help to confirm or deny this
hypothesis.

5 Analysis

Given that sample records that were registered in
the same institution often share similar character-
istics, we investigate whether this introduces bias
into our few-shot learning. Out of the 102 unique
institutions in the test dataset, we filtered out the
records of 50 institutions from the training dataset.
We then used this dataset to create three models:

RoBERTA-Large-MNLI Applies the same ap-
proach as RoBERTA-Large-MNLI above, but
fine-tuned on only the filtered training data.

kNN Applies the same approach as kNN above,
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Model Unseen Seen Both

RoBERTA-Large-MNLI 0.477 0.513 0.497
kNN 0.168 0.861 0.331
Mistral-7B-OpenOrca-Best 0.426 0.915 0.555

Mistral-7B-OpenOrca-Robust 0.491 0.878 0.620

Table 6: Different few shot approaches. Unseen stands
for test records that come from institutions that have
not been seen during training, and seen stands for test
records that come from institutions that have been seen
during training. Macro F1 is used for evaluation.

but neighbors are drawn only from the filtered
training data.

Mistral-7B-OpenOrca-Best Applies the same ap-
proach as the best performing Mistral-7B-
OpenOrca model but with few shot examples
drawn only from the filtered training data.

Table 6 shows that all three models see a drop
in performance when evaluated on institutions not
present in the training data. The k-nearest neighbor
model suffers the most severe drop, but the Mistral-
7B-OpenOrca-Best also suffers a large drop, yield-
ing 0.426 F1 on sample records from unseen insti-
tutions, lower than the 0.477 F1 of the RoBERTA
model. These results suggest that few-shot learn-
ing will be substantially more effective when there
exist sample records from the same institution in
the training data that is used for example retrieval.

In an attempt to mitigate some of this bias, we
conducted experiments by reducing the number
of few-shot samples to k=3 and placing greater
emphasis on the analysis of the given test record’s
description by adding the following to the prompt:
Answer what is the material type of the
sample by going through each sentence of
the given description and analyzing.
Choose from {taxonomy} the material type
that constitutes the given description.

This model, Mistral-7B-OpenOrca-Robust, was
able to reduce the existing bias as we can see im-
provement in test records that originate from un-
seen institutions. We plan to further investigate to
find a way to improve the robustness most effec-
tively in future research.

6 Conclusion

Physical sample records, a form of scholarly doc-
ument created by natural scientists, play a crucial
role in ensuring the reproducibility and reusability
of sample-based scientific knowledge; additionally,

they are often used as scientific datasets in and of
themselves. However, they are often incomplete,
thereby impacting their usability and the usability
of the data repositories that store them. In this re-
search, we explore various methodologies aimed at
leveraging recent developments in LLMs to address
this issue.

To transform a sample record into an input suit-
able for text classification by LLMs, we find that
maximizing verbosity by using descriptions of
metadata field names and their corresponding val-
ues is beneficial. Additionally, we demonstrate
that harnessing the LLM’s inherent knowledge and
summarization capabilities enhances the compre-
hensibility of inputs for text classification tasks.

Our results also reveal the effectiveness of inte-
grating taxonomy hierarchies through bottom-up
tree search, which we expect to be particularly ben-
eficial for domain-specific taxonomies with which
the LLM has limited exposure. Furthermore, incor-
porating few-shot examples into the prompt leads
to substantial improvements. Notably, the best few-
shot learning performance surpasses that of a fine-
tuned RoBERTA textual entailment classifier, indi-
cating a promising approach for embedding train-
ing data with minimal computational resources, ap-
plicable across diverse domains of sample records.

Overall, our experimental results suggest that
LLMs hold potential as a solution for digital li-
braries and aggregations grappling with metadata
quality issues, particularly in domain-specific cases.
Our approach offers promise for addressing meta-
data quality challenges stemming from incomplete
records across various domains.

7 Limitations

In this paper, our exploration was confined to a
single data repository and taxonomy. To assess the
applicability of the identified methods across differ-
ent contexts and validate their effectiveness, further
experimentation involving diverse data repositories
is necessary.

Additionally, our study utilized a non-domain-
specific LLM with a modest size of 7 billion param-
eters. Considering recent advancements in LLMs,
leveraging larger-scale models or domain-specific
models such as Galactica (Taylor et al., 2022), or
using fine-tuned LLMs could lead to further im-
provements in performance.
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A Average number of tokens in the
dataset

Metadata field Avg. # Token

supplementMetadata_province 1.26
sampleType 2.32
supplementMetadata_city 1.62
supplementMetadata_primaryLocationType 1.52
collectionMethodDescr 2.89
supplementMetadata_purpose 4.52
supplementMetadata_country 1.77
supplementMetadata_geologicalAge 1.49
supplementMetadata_geoUnit 2.82
supplementMetadata_primaryLocationType 1.52
supplementMetadata_locality 2.9
supplementMetadata_localityDescription 4.98
description 10.58
supplementMetadata_locationDescription 64.94
supplementMetadata_platformType 1.19
supplementMetadata_platformDescr 2.56
collectionMethodDescr 2.89
supplementMetadata_sampleComment 11.56
supplementMetadata_county 0.793
supplementMetadata_classificationComment 1.25
supplementMetadata_originalArchive 10.13
supplementMetadata_currentArchive 8.42
supplementMetadata_sampleComment 11.56
supplementMetadata_fieldName 2.55
supplementMetadata_cruiseFieldPrgrm 3.23
supplementMetadata_publicationUrl_description 8.38

Table 7: Average number of tokens of metadata fields
in the dataset.

B Hyperparameters for finetuning

Hyperparameter Value

Batch size 16, 32, 64
Learning rate 1e-5, 2e-5, 5e-05
Weight decay 0.01
Epochs 3

Table 8: Hyperparameters used for fine-tuning a
RoBERTA-Large-MNLI. Grid search was used for
choosing the optimal hyperparameter values.
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