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Abstract

In scientific publications, automatic represen-
tations of figures and their captions can be
used in NLP, computer vision, and informa-
tion retrieval tasks. Contrastive learning has
proven effective for creating such joint repre-
sentations for natural scenes, but its application
to scientific imagery and descriptions remains
under-explored. Recent open-access publica-
tion datasets provide an opportunity to under-
stand the effectiveness of this technique as well
as evaluate the usefulness of additional meta-
data, which are available only in the scientific
context. Here, we introduce MISTI, a novel
model that uses contrastive learning to simulta-
neously learn the representation of figures, cap-
tions, and metadata, such as a paper’s title, sec-
tions, and curated concepts from the PubMed
Open Access Subset. We evaluate our model on
multiple information retrieval tasks, showing
substantial improvements over baseline mod-
els. Notably, incorporating metadata doubled
retrieval performance, achieving a Recall@1
of 30% on a 70K-item caption retrieval task.
We qualitatively explore how metadata can be
used to strategically retrieve distinctive repre-
sentations of the same concept but for different
sections, such as introduction and results. Ad-
ditionally, we show that our model seamlessly
handles out-of-domain tasks related to image
segmentation. We share our dataset and meth-
ods (https://github.com/Khempawin/scientific-
image-caption-pair/tree/section-attr) and out-
line future research directions.

1 Introduction

The famous saying "a picture is worth a thousand
words" takes on a new meaning in the context of
scientific publications. Scientific articles are filled
with textual descriptions paired with images, di-
agrams, and figures that are essential for under-
standing the results presented. Previous work on
natural images, such as CLIP (Radford et al., 2021),
has shown that contrastive learning can be used to

jointly represent text and images. Relative to tradi-
tionally available natural image datasets, scientific
images are unique in two ways. First, they have pre-
cise textual descriptions, known as captions, which
provide additional context and information. Sec-
ond, they have metadata, such as a paper’s title,
sections, and curated concepts, that enable us to
contextualize an image. New open access reposi-
tories (e.g., Wang et al. (2020); Lin et al. (2023))
allow us to take advantage of these unique charac-
teristics. In this article, we propose and evaluate a
novel model that uses contrastive learning to jointly
represent text and images in scientific publications
enriched with such metadata information.

Scientific images are often accompanied by cap-
tions that provide additional context and informa-
tion (Li et al., 2018). For example, a caption might
describe the experimental setup, the results of an
experiment, or the conclusions drawn from the re-
sults. Captions are essential for understanding the
research presented in scientific articles, but they
are sometimes overlooked in image retrieval tasks.
Recent work has shown the potential of multimodal
models (Yin et al., 2023), and their application to
science is yet to be explored. In addition to cap-
tions, scientific images are often associated with
metadata such as the paper’s title, sections, and
curated concepts. This metadata provides valuable
information about the context in which the image
appears and can be used to enhance the representa-
tion learned by the model. For example, the section
of an article potentially provides information about
the type of image (e.g., experimental setup, results,
discussion) while the title can provide information
about the general topic of the research. Although
previous work has explored this line of research
(Wei et al., 2023; Eslami et al., 2023), there is still
much more to be done to fully leverage the range
of metadata available in science.

Understanding the content of scientific diagrams
and images and producing descriptions for them
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are challenging tasks. For instance, a diagram
might contain multiple components with a specific
function or meaning. Captions provide additional
context and information about the diagram but are
often brief and may not fully explain its content.
Conversely, writing captions for scientific diagrams
is challenging, requiring concisely conveying com-
plex information. These challenges become appar-
ent during information retrieval, where we want to
retrieve figures based on a textual description or
vice versa. Building on the concepts of the CLIP
model (Radford et al., 2021), we aim to build a
vision text dual encoder model to facilitate scien-
tific article generation. Similar to what happened to
CLIP, the model can be used for other downstream
tasks, such as image segmentation or zero-shot clas-
sification.

There are many image-caption datasets such as
Flickr8k, Flickr30k (Wang et al., 2018), MSCOCO
(Chen et al., 2015), RSICD (Lu et al., 2017), Medi-
cat (Sanjay Subramanian and Hajishirzi, 2020) and
other adaptations of image classification datasets
namely CIFAR-10, and CIFAR-100 (Krizhevsky,
2009). These datasets are exceptional for their spe-
cific purposes, but the models do not generalize
well into the scientific context. For instance, the
captions and images in MSCOCO are mostly de-
scriptions of everyday objects in everyday scenes.
RSICD is a specialized dataset with captions of
satellite images. Medicat is a specialized dataset
with captions in the medical domain. On the other
hand, captions in scientific articles are domain-
specific for a particular field, with complex images
representing diagrams, charts, or graphs. Apart
from these datasets, there are image-caption scien-
tific datasets with a diverse fields such as SciCap
(Hsu et al., 2021), SciMMIR (Wu et al., 2024) and
SCI-3000 (Darmanovic, 2022). Although these
datasets are diverse but they lack the metadata as-
sociated with each image-caption pair which limits
the context they belong to. Another aspect that
is limited is the size of these datasets which will
affect the representations learned.

To harness the richness found in images, we pro-
pose creating a new vision text dual encoder model
to improve the performance of image retrieval tasks
in scientific publications. We develop a dataset of
scientific image captions based on open-access ar-
ticles from PubMed Open Access Subset (National
Library of Medicine, 2003). This dataset contains
images and captions extracted from scientific arti-

cles and metadata such as a paper’s title, sections,
and curated concepts. We evaluate the usefulness
of our model and dataset on various tasks. In sum,
the contributions of our work are as follows:

• Develop a dataset of image captions de-
rived from open-access scientific articles on
PubMed.

• Implement a caption-enhancement technique
to improve learned representations.

• Make the trained model and dataset publicly
available to the scientific community.

• Present a variety of new tasks to assess the
efficacy of contrastive learning within the sci-
entific domain.

2 Related Work

2.1 Contrastive Representation Learning

Contrastive Learning is when we learn to tell apart
objects by comparing the similarities between two
or more similar objects and the differences between
those objects and dissimilar ones. The goal is to
make similar samples close in embedding space,
and dissimilar samples far apart (Zimmermann
et al., 2021). Recently, there has been a surge in
the popularity of using such techniques to achieve
better model performances (Yuan et al., 2022; Ciga
et al., 2022; Wang et al., 2021). The performance
improvements include the learning speed of the
models, relevance in information retrieval or rec-
ommendation tasks, and reduced effort in dataset
creation (Jaiswal et al., 2020). Even when we do
not have access to supervised data, we can use
contrastive learning effectively in a self-supervised
setting (Falcon and Cho, 2020). In this paradigm,
contrastive learning has thrived the most, especially
in multi-modal tasks (Radford et al., 2021).

2.2 Dataset Enhancement in Deep
Representation Learning

There are three key generalization factors for
self-supervised contrastive learning (Huang et al.,
2021): alignment of positive samples, divergence
of class centers, and concentration of augmented
data. The first key factor is related to the model’s
architecture, where the difference between the pos-
itive samples from the same class is minimized.
The second key factor is related to the informa-
tion behind the dataset: different classes should
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be significantly different; otherwise, we might en-
counter a "feature collapse," where the representa-
tions learned cannot distinguish between distinct
classes. The third key factor is related to the density
of positive samples, which adds more signal for the
model to learn from. The work of (Wei et al., 2023)
applied these principles to learn a joint represen-
tation of a text and an image. In their work, the
captions were too generic and thus were enhanced
with dictionary definitions. This approach used the
exact architecture as proposed in (Radford et al.,
2021). With such augmentation, there was a signif-
icant improvement in both zero-shot classification
and zero-shot retrieval.

2.3 Scientific Article Metadata

Recent datasets have made available open access
publications, including their full text and figures,
such as the PubMed Open Access Subset (National
Library of Medicine, 2003). Datasets of scientific
publications can give us access to metadata in an
easy-to-use format. For example, OpenAlex (Priem
et al., 2022) contains indexes and metadata for a
large number of articles spanning almost all human
knowledge. These metadata include the publishing
journals of each article, the fields associated with
that journal, the concepts associated with each ar-
ticle, the authors associated with each article, and
many more.

2.4 Scientific Vocabulary Embeddings

To process the text, we need to transform it into
embeddings. The original CLIP model is based on
ROBERTA. As demonstrated in MIREAD (Raz-
daibiedina and Brechalov, 2023), SCIBERT (Belt-
agy et al., 2019), and SPECTER2 (Cohan et al.,
2020), the vocabulary used to process text plays
a great deal of importance in the performance of
text encoding in the scientific domain. Therefore,
other text encoders should be used for specific do-
mains. These representations can be used as a start-
ing point for the text encoding aspect of text-image
contrastive learning methods.

3 Dataset and Methodology

This work focuses on enhancing the representa-
tion learning of scientific texts and images through
metadata-informed embeddings. Our approach
leverages scientific publications’ unique vocabu-
lary and metadata, such as concepts, keywords, and
field-specific terminologies. To this end, we in-

troduce a novel method that directly incorporates
metadata into the training process of the contrastive
learning models, and a specialized tokenizer to han-
dle scientific metadata. This approach aims to im-
prove the performance of embedding models on
tasks such as zero-shot classification, information
retrieval, and recommendation systems in the sci-
entific domain.

This section will describe the model architec-
ture of contrastive learning with a dual vision-text
encoder, the information retrieval system, the pro-
cess of building the dataset, the training param-
eters, and the evaluation metrics for information
retrieval. The process includes extracting image-
caption pairs from articles and metadata from Ope-
nAlex.

3.1 A Scientific Image-Caption dataset
To build a new scientific image-caption dataset, we
have analyzed over 4 million scientific articles from
PubMed Open Access Subset (National Library of
Medicine, 2003). A sample of a scientific article
in XML format and the location of image-captions
can be seen in figure 1A. This resulted in around
12 million image-caption pairs. Note that apart
from the 12 million image-caption pairs, we have
filtered out approximately 8 million image-caption
pairs that were not found under a section in the
articles. Among 12 million image-caption pairs,
9.78 million were used as the training dataset, 1.1
million as the validation set, and 1.1 million as the
test set. One extra process was adding metadata
from OpenAlex to each image caption based on
the document’s DOI. This led to an image-caption
dataset that included the title of the related article,
the related concept keywords, and the authors.

3.2 Model Architecture
The contrastive learning model architecture pri-
marily consists of two components (Figure 1B).
The first component, known as the text encoder,
handles the tokenization and encoding of text
into a 512-dimensional vector. A key subcompo-
nent of the text encoder is the language embed-
ding or vocabulary. To address this, we experi-
ment with ROBERTA, MIREAD, SCIBERT, and
SPECTER2. ROBERTA is the only language em-
bedding that was not trained on scientific text. The
second component, the image encoder, is respon-
sible for encoding images into a 512-dimensional
vector. The model used for this component is the
pre-trained Vision Transformer from CLIP (Rad-

157



ford et al., 2021), which takes 32 by 32 patches of
the image and outputs a 512-dimensional vector.
Training is performed by evaluating each batch sep-
arately. For each batch, all texts are encoded with
the text encoder, and all images are encoded with
the image encoder. We then maximize the cosine
similarity between the paired encoded texts and
images while minimizing the difference between
non-paired images and texts. This process is illus-
trated in Figure 1B, where the green cells indicate
the values to be maximized, and the white cells
indicate the values to be minimized.

3.3 Information retrieval pipeline

The process of retrieving captions involves three
steps. The first step is to encode all the reference
captions, which we refer to as the dictionary. The
second step is to encode the query image. The
third step involves comparing the encoded query
image with all the encoded captions. The outcome
is a ranking of captions based on the similarity
between the encoding of the query image and the
captions. In information retrieval tasks, we typ-
ically define a parameter k, which specifies the
number of samples to be returned. In this instance,
we will use k equal to 1 to assess the model recall,
formally known as Recall@1. We use Recall@1
due to each image having only 1 caption associ-
ated with it. Therefore, there is only 1 caption that
is perfectly relevant for each image. Increasing
k for Recall@5 or Recall@10 will only increase
the evaluation score since there is a higher prob-
ability where the original caption will be in the
top n rankings. On the other hand, there are other
metrics that are commonly used such as ROUGE-
n (Chin-Yew, 2004), BERTScore and BLEU. The
reason we are not using such scores is that we are
evaluating the representations not the output cap-
tions. Due to this, ROUGE-n which compares the
matching n-gram between the original caption and
the retrieved caption does not give us significant
information regarding the representations learned.
For BLEU, the score is used to evaluate the quality
of the text compared to multiple reference captions.
Since we only have 1 reference caption, it is essen-
tially comparing only the retrieved caption to the
single reference caption. This might result in the
illusion that the retrieved caption is good in cases
where both captions are similar in words but mean
different things. Therefore, BLEU is not suitable
in this case. For BERTScore, such metric is inher-

ently used due to the ranking of captions based on
the similarity between encodings.

3.4 Model training

The model was trained on a machine with 64 vC-
PUs and a NVIDIA A100. The vision encoder
was a pre-trained Vision Transformer from Ope-
nAI that takes in 32 by 32 patches of the image. As
mentioned in Section 2.4, we systematically var-
ied the language embedding model and the type
of caption augmentation. This resulted in 16 vari-
ations, which comprise four language embedding
models (MIREAD, ROBERTA, SCIBERT and
SPECTER2) and four types of caption augmenta-
tions (no augmentation, augmenting with section,
augmenting with section and metadata, and aug-
mentation with operationalized metadata). Opera-
tionalized metadata means introducing special to-
kens representing these sections (see below). Since
one training session spans 6 days, we created a
subset of the full training data. This subset had a
size of 700k image-caption pairs. These 16 models
were trained on a batch size of 64 over 3 epochs
with a learning rate of 0.00005 and a weight decay
of 0.1.

Once the performance was measured, we se-
lected the best validation variation to train on the
rest of the training dataset. We increased the batch
size to 192 and compared it to the equivalent model
with textual metadata to demonstrate the effects of
tokenizing the metadata.

3.5 Augmenting captions with additional
metadata

We used three variations of augmentation on each
caption: augmenting with sections, metadata, and
metadata with separator tokens. The metadata com-
prises the article title, related concepts, and the
location of the image caption within the article
(i.e., section). The sections of the article are "In-
troduction," "Methods," "Results and Discussion,"
"Conclusion," and "Other." "Other" is used when
the section title does not fit any known pattern.

Augmenting with section Enhancing the caption
with the section is done by concatenating the sec-
tion at the beginning of the caption. For example, a
caption such as "western blot of protein nurturing"
that appears in the "result and discussion" section
will have an enhanced caption such as "result and
discussion western blot of protein nurturing." The
template is "<section> <caption>".
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Figure 1: A) A sample scientific article and the XML representation depicting how images appear in scientific
articles. B) A dual vision-text encoder architecture for contrastive learning between images and captions. It also
illustrates how additional metadata are operationalized to enhance the captions during training. C) An illustration of
text retrieval where each caption is pre-encoded with the text encoder. The query image is encoded and compared to
each encoded caption. During retrieval, the image is encoded and compared to each encoded caption. D) A sample
task such as image segmentation is performed by the learned representation. In this image, segments colored purple
are classified as "Western Blot," and segments colored red are classified as "Bar Chart"
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Figure 2: Statistics of scientific articles and training
dataset. A) The extracted data was from 2.54 million
articles. Most of the articles were published in the year
2016 to 2023. B) Distribution of the sections where each
article’s image captions are located. Most of the image-
caption pairs were found in the result and discussion
sections. C) Distribution of concepts related to each
image-caption pair. Note that each image-caption pair
might have more than one concept related to them.

Augmenting with section and metadata En-
hancing the caption with metadata is similar to
enhancing with only the section but includes more
metadata about the caption which are the article
title and the concepts of the article. For example, a
caption as "structural integrity of ..." which appears
in the "Methods" section in an article "Novel mate-
rials for..." with the related concepts as "Material
Science, Tensile Strength" will have the enhanced
caption as "Novel materials for... Material Science,
Tensile Strength Methods structural integrity of ...".
In this sense, the template we use is "<title> <con-
cepts> <section> <caption>"

Augmenting with operationalized metadata To
help the model distinguish text for each type of
metadata and the caption, we enhanced the cap-
tion further by adding a special separating to-
ken for the title, concept, and section. The tem-
plate we use is "[START-TITLE] <title> [END-
TITLE] [START-CONCEPT] <concepts> [END-
CONCEPT] [START-SECTION] <section> [END-
SECTION] <caption>". We will call this type of
augmentation as MISTI.
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3.6 Relevance of Information Retrieval
Sample

Information retrieval was used to evaluate the mod-
els. The query is an image, and the expected result
is a caption. One key factor of information retrieval
is defining the method of measuring relevance be-
tween the query and the retrieved sample. To ad-
dress this, we used 3 metrics. The first metric is
called identity metric, where the retrieved sample is
only considered relevant if it matches the original
caption paired with the query image. The second
metric is called section metric, where the retrieved
sample is only considered relevant if the section
associated with the retrieved sample matches the
section associated with the query image. The third
metric is called concept metric, where we used the
Jaccard Similarity index (Fletcher et al., 2018) to
compute the overlap between the set of concepts
associated with the retrieved caption and the set of
concepts associated with the query image.

4 Results

4.1 Caption Retrieval
The performance of all models is shown in Table
1, where we illustrate the identity, section, and con-
cept metric. We have included an average score
across all three metrics to compare these models
effectively. The baseline models had a Recall@1
of 0 on the identity metric. After fine-tuning the
model on our scientific dataset, we see an increase
in performance across all 3 metrics. The identity
metric increased from 0 to around 0.06 with the
original captions and captions augmented with sec-
tions. For the augmentation with Textual Meta
and MIST, the score increased from 0 to around
0.05. Regarding the section metric, the scores in-
creased to around 0.7 across all adaptations, and
the concepts increased from 0.04 to 0.15. Overall,
the ROBERTA adaptation saw the least improve-
ment for the identity, section, and concept metric.
Finally, the SPECTER2 MISTI + large batch per-
formed the best with an average score of 0.4940.
To summarize, all the baseline models performed
sub-optimally. Fine-tuning the models on the sci-
entific dataset improved the performance of the
models. This indicates that the models have the
potential to adapt to the dataset (Information in
the dataset is not present in the pre-trained model).
Lastly, all caption augmentations improved the per-
formance of the model. However, each type of
caption augmentations have different magnitudes

of improvements on the models.

4.2 Qualitative Analysis of Information
Retrieval

The results shown in Figure 3A and Figure 3B
are for accurate and non-accurate retrieval, respec-
tively. All the images associated with the retrieved
caption are line charts that resemble the query im-
age (Figure 3A). The images associated with the
rank 0 and rank 1 caption resemble geographical
plots, which align with the query image (Figure
3B). Conversely, images in rank 2 and 3 differ
greatly from the query image, where rank 2 is a
line chart and rank 3 is a stacked bar chart. To
summarize, all the images for accurate retrieval
are similar in nature but for non-accurate retrieval
some retrieved results do not resemble the query
image.

4.3 Retrieving images with different article
sections

Figure 3C shows the images in different sections re-
trieval results. In such a task, we used the caption as
"bar chart" and varied the section as "introduction,"
"method", "results and discussion", "conclusion",
and "other". The results are the top 4 most simi-
lar images starting from rank 0, 1, 2, and 3. The
"Other" section is used for section names that do
not fit a standard keyword criterion. The results
show that all section types, excluding "results and
discussion," have matching rank 0 results but differ
in the subsequent ranks. All retrieved images are
bar charts, indicating that the retrieval results are
qualitatively relevant to the queried caption.

4.4 Classification on Different parts of an
image

Figure 4 shows a simple classification of image seg-
ments between the caption "bar charts" and "west-
ern blot". This task was done by encoding each
textual category as a reference encodings. The im-
age segments are then encoded and compared to
each encoded textual category. The textual cate-
gory that is the most similar to each encoded image
segment is considered the output classification for
those image segments. The result shows that image
segments that resemble a "bar chart" are classified
as a bar chart, and the image segments that resem-
ble a "western blot" are classified as a western blot.
Some segments are misclassified due to the seg-
ment being similar to both "bar chart" and "western
blot." Additionally, some segments lack apparent
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Recall@1
Model Base + Adaptation Identity Section Concepts Average

Baseline MIREAD 0.0000 0.5744 0.0465 0.2070
(Radford et al., 2021) ROBERTA 0.0000 0.6175 0.0380 0.2185

SCIBERT 0.0000 0.2842 0.0423 0.1088
SPECTER2 0.0001 0.4971 0.0428 0.1800

Text Model Finetuned MIREAD 0.0602 0.7157 0.1497 0.3085
Caption ROBERTA 0.0490 0.7091 0.1374 0.2985

SCIBERT 0.0595 0.7156 0.1484 0.3078
SPECTER2 0.0595 0.7150 0.1485 0.3077

Caption + Section MIREAD 0.0601 0.7220 0.1495 0.3105
ROBERTA 0.0506 0.7197 0.1384 0.3029
SCIBERT 0.0609 0.7193 0.1499 0.3100

SPECTER2 0.0603 0.7187 0.1501 0.3097
Caption + Section + Textual Meta MIREAD 0.0549 0.7253 0.1497 0.3100

ROBERTA 0.0366 0.7112 0.1333 0.2937
SCIBERT 0.0539 0.7193 0.1489 0.3074

SPECTER2 0.0565 0.7231 0.1505 0.3100
SPECTER2 + large batch 0.1717 0.7780 0.2826 0.4108

MISTI (Text Model Finetuned MIREAD 0.0500 0.7163 0.1448 0.3037
+ Tokenized Meta) ROBERTA 0.0347 0.7128 0.1326 0.2934

SCIBERT 0.0518 0.7208 0.1462 0.3063
SPECTER2 0.0527 0.7217 0.1485 0.3076

SPECTER2 + large batch 0.3000 0.7932 0.3889 0.4940

Table 1: Table summarizes Recall@1 for caption retrieval across various models using a 70k-caption dictionary,
evaluated on identity, section, and concepts metrics, alongside an overall average. Models are categorized into
baseline (not finetuned), text model finetuned (subdivided into no augmentation, section augmentation, and section
plus metadata augmentation), and text model finetuned with tokenized meta. The top performer, SPECTER2 large
batch on text model finetuned with tokenized meta, is highlighted in bold.

features, such as the 4 segments at the bottom right
corner.

5 Discussion

5.1 The effects of caption augmentation

Our analyses point out that the sub-optimal per-
formance of the baseline model was due to the
embedding of each sample being extremely close
to each other. This closeness does not allow the
model to distinguish between samples. This sug-
gests that the representations of scientific contexts
are even more densely packed, creating such bad
performance. This trend of results applies to other
tasks such as text to image retrieval where text to
image and image to text retrieval performance are
identical when varying the dictionary size. This
aligns with how contrastive learning works in gen-
eral (e.g., see Radford et al. (2021); Zimmermann
et al. (2021); Yuan et al. (2022); Ciga et al. (2022);
Wang et al. (2021)). Such a hypothesis is con-
firmed with the inclusion of the fine-tuned models,
as performance increases due to the dispersion of
samples. Moreover, augmenting the captions with
Textual Metadata also increases the performance
when compared to the baseline models. The degree
of improvement is slightly lower than that of the

model without the additional metadata on the iden-
tity metric, but the average performance is higher.
In other words, the improvement on the section
and concepts metric combined was higher than the
delta of the identity metric. We understand that this
is due to the additional metadata acting as a signal
for the model to group samples with similar sec-
tions and concepts closer in the embedding space.
This phenomenon correlates with adding dictio-
nary definitions for vague captions as observed in
(Wei et al., 2023). The metadata leads the model
to create regions for each section/concept in the
embedding space. Consequently, this leads to im-
provements in the performance of the section and
concept metric. We tokenized the metadata with a
special separator token to improve distinguishable
abilities, increasing the model’s performance. We
see a substantial difference between 0.1717 for tex-
tual and 0.3 for tokenized metadata. The results
of these new tokens led to the model capable of
producing a substantial differentiation of samples,
ultimately resulting in better representations, sim-
ilar to what is described in (Huang et al., 2021).
Thus, our caption augmentation task demonstrates
how important it is to develop specialized scientific
representations to tell samples apart.
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Figure 3: Caption retrieval with corresponding im-
ages A) Shows the top 4 captions that are retrieved
when the top 1 caption retrieved is originally paired to
the query image in the dataset. It also shows the original
corresponding image pair for each retrieved caption. B)
Shows the top 4 captions that are retrieved when the
top 1 caption retrieved is not the originally paired to the
query image in the dataset. It also shows the original
corresponding image pair for each retrieved caption. C)
Shows the retrieved image with different sections.

Figure 4: Image Segment classification on "bar
chart" and "western blot". The image on the left
is the input image. The images on the right are seg-
ments of the image overlayed with colors to illustrate
whether that segment is a "bar chart" or a "western blot".
Green is for western blot and Red is for bar chart.

5.2 Qualitative Analysis of Information
Retrieval

One hypothesis regarding the low performance on
caption retrieval is that the model was retrieving
results similar to the query but not the original pair
(Wei et al., 2023). Based on the result in 4.2, ac-
curate retrievals have similar images even though
the images were never compared during training.
This aligns with the findings of learning the im-
age representation via text supervision (Radford
et al., 2021). Simultaneously, we see the same be-
havior with non-accurate retrievals, but only the
top 2 ranks are relevant. This implies that while
quantitatively, we have a low recall, the retrieved
information is still qualitatively relevant.

5.3 Retrieving Images with different article
sections

According to the results in 4.3, the sections do
affect the embedding, but the caption dominates
in the end. This is interpreted from the result in
rank 0 being the same but the subsequent ranks
being different (Li et al., 2018). In other words, the
results demonstrate how sections are essentially a
style and can be applied to an image to adjust the
visual details while conveying the original meaning
of the caption. Similar results were studied for
applying styles on images for fashion generative
models (Baldrati et al., 2022; Sain et al., 2021).

5.4 Classification on image croppings
Classification of image segments to classes is one
of the long-standing tasks for classification as seen
in ResNet50 (Targ et al., 2016), VGG (Kaur and
Gandhi, 2019) and Fast-R-CNN (Girshick, 2015).
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These works performed well but were limited to
fixed classes. Essentially, the final output layer of
these models is a representation of the images com-
pared to the predetermined classes. Therefore, it is
understandable that our model can perform the clas-
sification tasks given the classes can be described
in text form. Interestingly, our model performs on
par with such dedicated models. However, predic-
tion results can sometimes be incorrect when the
similarity scores between the image and each pos-
sible class are extremely close to each other. This
task showcases the potential of using our model on
the downstream tasks in a zero-shot fashion.

5.5 Summary

In conclusion, our results show the important role
of metadata augmentation in enhancing model per-
formance in the scientific context. Our systematic
incorporation of fine-tuning and specialized tok-
enization techniques shows that metadata improves
contrastive learning substantially by helping the
model distinguish between samples. The findings
underline the potential of targeted data augmenta-
tion strategies in advancing the capabilities of NLP
models, suggesting promising avenues for future
research.

6 Conclusion

The goal of this project was to create representa-
tions of images and captions in scientific images
based on the simultaneous learning of their rela-
tionship using contrastive learning. This represen-
tation can be applied to multiple tasks, such as
improving the understanding of figures and textual
descriptions of scientific concepts and helping gen-
erate better images and captions. Our zero-shot
segmentation example demonstrates the numerous
downstream tasks where our model can be applied.
The substantial performance differences between
the generic image-text models and our metadata-
informed model show that more work is needed in
the scientific domain. For future work, additional
metadata such as authors, publication venues, and
citations might be explored further to augment the
data.
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