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Abstract
Tables in scientific papers contain crucial in-
formation, such as experimental results. Entity
Linking (EL) is a promising task that analyses
tables and associates them with a knowledge
base. EL for table cells requires identifying
the referent concept of each cell while under-
standing the context relevant to each cell in
the paper. However, extracting the relevant
context from the paper is challenging because
the relevant parts are scattered in the main text
and captions. This study defines a rule-based
method for extracting broad context from the
main text, including table captions and sen-
tences that mention the table. Furthermore,
we propose synthetic context as a more refined
context generated by large language models
(LLMs). In a synthetic context, contexts from
the entire paper are refined by summarizing,
injecting supplemental knowledge, and clari-
fying the referent concept. We observe this
approach improves accuracy for EL by more
than 10 points on the S2abEL dataset, and our
qualitative analysis suggests potential future
works.

1 Introduction

Information analysis of scientific papers has numer-
ous applications in accelerating science, such as
paper retrieval, reading assistance, and automatic
knowledge base construction. In particular in infor-
mation science, crucial information, such as exper-
imental results, evaluation datasets, tasks, and eval-
uation metrics, is often recorded in tables within
the papers. Thus, the analysis of table information
is an important research field.

For table analysis, entity linking (EL) that asso-
ciates table cells in scientific papers with a knowl-
edge base (KB) is an important task, and various
methods and datasets have been proposed for this
purpose (Kardas et al., 2020; Yang et al., 2022;
Lou et al., 2023). S2abEL (Lou et al., 2023) is a
large-scale evaluation dataset for EL targeting ta-
bles in papers for the machine learning field. In

Table Cell

Cell Context from the Paper

CoLA The Corpus of Linguistic
Acceptability is
a binary  [...]
Table 1: GLUE Test results, scored
by the evaluation server [...]

Entity Linking

dataset/cola
Name: CoLA
Full Name:
  Corpus of Linguistic ...
Description:
  The Corpus of Linguistic           
  Acceptability (CoLA) consists ...
Modalities: ...

Figure 1: Example of entity linking for table cells in
Devlin et al. (2019). Given a target table cell (e.g.,
“CoLA”), a model seeks to link it to the corresponding
entity (e.g., “/dataset/cola”) in Papers with Code by
considering the contexts in the paper related to the cell.

the dataset, each table cell is linked to an entity
defined in Papers With Code (PwC)1, a free and
open KB in the scientific domain, as illustrated
in Figure 1. To correctly link the target table cell
“CoLA” to the corresponding entity “/dataset/cola”
in PwC, a model needs to understand the concept
of CoLA from the contexts scattered in the main
text, captions, and references.

However, extracting such contexts relevant to
each cell from a paper has three technical chal-
lenges. (i) Relevant contexts for a cell text are
scattered in an entire paper, and mentions are of-
ten abbreviated or paraphrased, (ii) The context or
explanation for a referent concept of a cell can be
insufficient, and (iii) General words such as “Ours,”
“Baseline,” and “All” are often used in cell texts,
and the referent is ambiguous. An example for the
first, in the paper of The Evolved Transformer (So
et al., 2019), a cell text “ET PERP” is interpreted
as “the perplexity achieved by the Evolved Trans-
former”, although the term “ET PERP” does not
appear in the main text of the paper. Second, ex-
planations for well-known methods such as LSTM
are often omitted, and thus, sufficient contexts are

1https://paperswithcode.com/
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unavailable in the paper itself. Third, the cell text
“All” stands for the entire dataset. Identifying the
dataset requires understanding the context of the
main text. However, the word “All” is general and
frequently used in irrelevant contexts in the paper.

To address these challenges, we propose a
data synthesis method for providing an EL model
with supplemental contexts for table cells by us-
ing large language models (LLMs) such as Chat-
GPT (OpenAI, 2023) and LLaMa2 (Touvron et al.,
2023). LLMs, acquiring specialized knowledge
through pre-training, can be utilized as knowledge
bases (Taylor et al., 2022). They also demonstrate
high performance in a zero-shot setting for abbre-
viation expansion (Gorman et al., 2021) and coref-
erence resolution (Wei et al., 2022). Therefore,
we expect that they can generate additional infor-
mation for table cells, which was not mined by
previous methods.

In experiments, we use context data for EL ob-
tained by our refined rule-based method and LLM-
based method and confirm consistent improve-
ments by both methods over the baseline proposed
in S2abEL, including a 10-point improvement in ac-
curacy for EL. Furthermore, by utilizing synthetic
context, we improved the accuracy of a subtask
that extracts relevant papers for a given table cell
by more than 12 points in terms of top-5 accuracy.
This result demonstrates the effectiveness of our
approach in linking table cells to entities without
relying on existing knowledge bases. Our qualita-
tive analysis also reveals that synthetic context data
captures better supplemental information through
context completion and knowledge completion by
LLMs2.

2 Related Work

2.1 Entity Linking in Scientific Table
Table analysis is crucial for extracting experimen-
tal information and results in information extrac-
tion from scientific papers. For instance, Ax-
cell (Kardas et al., 2020) extracts tables from the
LATEXsource of papers and performs linking of ta-
ble cells to entities in a knowledge base. Similarly,
S2abEL (Lou et al., 2023) constructs a dataset an-
notated with entities linked to cells, along with the
type of information and the source references for
that information, for comparable tasks. Axcell and
S2abEL use features representing table cells, such

2We will release our code and data to reproduce the exper-
iments.

as the cell’s positional information and text from
the main body that matches the cell’s text. SciREX
(Jain et al., 2020) and CitationIE (Viswanathan
et al., 2021) aim to extract information from the en-
tire paper, not only tables. Kostić et al. (2021) and
Zhuang et al. (2022) perform entity extraction and
relation extraction from both the text and tables. In
these works, the entire document is converted into a
feature. However, relevant descriptions of specific
table cells are scattered throughout the document.
Therefore, it is necessary to efficiently extract the
contexts of the cells from the document.

2.2 Data Augmentation/Synthetic Data
Data augmentation and synthesis using LLMs are
employed in various tasks. Lai et al. (2022) demon-
strate the effectiveness of information completion
using generative models, while Chen et al. (2023)
show that information summarization is beneficial
for entity linking. This study aims to generate
sufficient and necessary information for linking by
simultaneously performing information completion
and summarization within the full context of pa-
pers. On the other hand, some studies leverage the
asymmetry in task difficulty, where inverse prob-
lems are easier to solve than forward problems, to
generate training data by solving inverse problems
using LLMs. Wang et al. (2021) employ few-shot
learning to create training data from labels, and
Josifoski et al. (2023) generate synthetic training
data for the general information extraction task. Al-
though these are effective methods for problems
that are difficult to solve directly with LLM’s zero-
shot or few-shot capabilities, synthesizing tables
or papers from entities to be linked is challenging.
Therefore, this study aims to enhance the learning
efficiency of existing human-annotated data using
synthetic data generated with LLMs.

3 Entity Linking in Scientific Tables

EL for scientific tables aims to map each table
cell within a paper to an entity in a KB (PwC in
our experiments) or “OutKB” if no corresponding
entity is found in the KB. The baseline method
S2abEL is proposed by Lou et al. (2023). They
divide this task into the following subtasks:

1. Attributed Source Matching (ASM): Identi-
fying the attributed source(s) for a table cell
within a paper. The attributed source(s) is the
reference paper that originally proposed or in-
troduced the concept that a target cell refers
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Target Table Cell

Title

Abstruct

Table Caption

Table Mentioning Sentences

Text Matched Sentences

Synthetic
Context

LLMCell Type

Raw Context

Figure 2: Generation of synthetic context: Sentences related to a particular cell (raw context) are provided to a
Large Language Model (LLM). By having the LLM explain the content of the target cell, contextual information
related to the target cell is extracted from the raw context.

to. This step aims to distinguish similar sur-
face forms to find the correct referent entities
in the subsequent subtasks. e.g., the paper
by Warstadt et al. (2019) is identified as the
attributed source of “CoLA”.

2. Entity Disambiguation (ED): Retrieving can-
didate entities from the KB that are likely to
be linked to a target cell. Then, selecting the
referent entity from the candidates for a given
cell (or assign OutKB if none of them is ap-
propriate). e.g., The entities associated with
the paper by Warstadt et al. (2019) in PwC
are added to the candidates for “CoLA” and
“/dataset/cola” is selected from among them.

Note that Lou et al. (2023) perform cell type clas-
sification before the pipeline3. However, the clas-
sification of cell types has already exceeded the
accuracy 90% in previous research, and replacing
it with the correct types contributes less than a 1%
improvement in the final EL accuracy. Therefore,
we use the correct cell types to proceed to the sub-
sequent subtasks.

4 Method

In this study, we aim to improve the overall ac-
curacy of EL by enhancing the context of cells,
which is the most important feature for both ASM
and ED tasks in the baseline method. To this end,
we first improve the rule-based context extraction
method and then generate synthetic data to refine
the context.

4.1 Supplementing Context Information
Meticulous cell context extraction: For EL, a
model needs to interpret the concept that a cell

3The cell types are Method, Dataset, Metrics,
Dataset&Metrics, and Other.

text represents and extract appropriate contexts for
it from the paper. As context information of a
target cell, the prior research has utilized various
features, including sentences retrieved by BM25
(Robertson and Zaragoza, 2009), the cell’s position
in the table, and the surrounding cells. However,
the retrieval method can miss relevant sentences or
extract irrelevant sentences due to text fluctuation
(e.g., abbreviation, paraphrasing) or the use of gen-
eral words, resulting in insufficient and erroneous
information sourced from the main text. To alle-
viate this, we first collect text fragments covering
broader contexts. Specifically, we use the follow-
ing features as the contexts for a target cell: (i) The
cell’s text. (ii) The cell type. (iii) The table caption.
(iv) Sentences referring to the table: Sentences that
explicitly contain references to the table, such as
“Table 1.” (v) Sentences containing the cell’s text.
We refer to a set of the features as the raw context
for a target cell.

For example, the raw context of a cell in the
paper by Devlin et al. (2019) illustrated in Figure 1
is as follows: (i) CoLA. (ii) dataset. (iii) “Table 1:
GLUE Test results, scored by the evaluation server
[...]”. (iv) “Results are presented in Table 1”. (v)

“CoLA The Corpus of Linguistic Acceptability is a
binary single-sentence [...]”.

Synthetic context generation: To focus on es-
sential information in a raw context and supplement
it by injecting external knowledge, we employ an
LLM to generate a description for a cell based on
the corresponding raw context. We refer to a de-
scription generated by an LLM as a synthetic con-
text. The process of synthetic context generation in
this study is illustrated in Figure 2. In this research,
we employ OpenAI’s GPT-4 Turbo (1106) as the
LLM.
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For example, the synthetic context generated by
the LLM for the example shown in Figure 1 is

“CoLA stands for Corpus of Linguistic Acceptability.
It is a dataset used for a binary single-sentence
classification task in natural language processing.
[...]”. This exhibits the LLM’s capabilities of pro-
viding a synthetic context that summarizes ade-
quate information for EL.

4.2 Subtasks of Entity Linking

We integrate the improved context extrac-
tion/generation methods into each subtask in the
baseline pipeline as follows.

Attributed Source Matching: We follow the ap-
proach of S2abEL (Lou et al., 2023) for ASM. The
potential attributed sources for a cell are all cited
papers and the current document itself. Including
the document itself is necessary for the case where
the cell’s referent concept is newly proposed in the
document. To find the attributed source from the
potential source, we calculate the relevance scores
between the cell and each potential source. As
features for a scoring model, we concatenate the
title and abstract of a potential source and the cell’s
context. As the scoring model, S2abEL adopts
SciBERT (Reimers and Gurevych, 2019). In this
research, we employ SciBERT with raw context
and GPT-2 (Radford et al., 2019) with synthetic
context4. A scoring model is trained with binary
cross-entropy loss.

Entity Disambiguation: To collect candidate en-
tities for a target cell, we sort the attributed sources
by the ASM score and then retrieve entities from
the KB for each attributed source until we obtain k
candidates for the cell. To select the most promis-
ing entity from the candidates, following the prior
work, we employ a model to calculate a score for
each entity candidate by feeding the concatenation
of the entity name, its description, and the cell
context into the model. We adopt SciBERT for
the scoring model and train it with binary cross-
entropy loss. The highest-scoring entity is linked
to the cell when the score is greater than a pre-
defined threshold. Otherwise, OutKB is assigned
to the cell, representing being out of KB. We set
the threshold to 0.5, the same as prior research.

4As the token length of synthetic contexts often exceeds
the input token limit of SciBERT (512), we did not employ
SciBERT with synthetic context.

5 Experiments

The experiments follow the setup of S2abEL,
where training, validation, and test data are cre-
ated from different topics. The results below rep-
resent the cross-validation average on the topics in
S2abEL. This allows us to compare the generaliza-
tion performance of the models without overfitting
to specific topics.

5.1 End-to-end Entity Linking

In EL experiments, as explained in §3, the cell
types are determined using the ground truth data.

5.1.1 Experimental Settings
In end-to-end entity linking experiments, we com-
pare raw context and synthetic context against
S2abEL (Lou et al., 2023) as the baseline. The
baseline additionally leverages dense retrieval (DR)
for ED to retrieve entity candidates from the KB
directly, but we do not use it to see the sole effect
when using raw context and synthetic context5. We
apply the same context to both ASM and ED. We
report three metrics: InKB accuracy, OutKB F1,
and overall accuracy. InKB hit@1 accuracy shows
the hit rate at the top when an entity to be linked
is present. For OutKB entities, we report F1 score.
The overall accuracy is determined as follows6:

1. For OutKB mentions: A cell is considered
correct if predicted as an OutKB mention.

2. For InKB mentions: A cell is considered cor-
rect if ranked as the top prediction (@top1
hit).

The number of entity candidates k retrieved is set
to k = 50 (the same as prior work) and k = 20.
Training details are displayed in Appendix D.

5.1.2 Result
Table 1 shows that the raw context and synthetic
context conditions have improved overall accuracy
by over 10 points compared to the S2abEL base-
line when k = 50. This indicates that the necessary
context information for the EL task has been suc-
cessfully extracted from the main text in the raw
context. When comparing synthetic context to raw
context, there is a slight improvement in overall

5The experimental results in S2abEL reported that the
ASM-based retrieval method without using DR achieves over
90% recall when k ≥ 30.

6In the S2abEL dataset, 42.8% cells are marked as OutKB
mentions.
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Method
Overall

acc.
OutKB

F1
InKB
hit@1

k = 50

S2abEL
(Lou et al., 2023)

58.2 71.4 33.4

S2abEL w/o DR 60.8 71.7 27.1
Raw Context 69.9 76.5 47.1
Synthetic Context 70.5 76.4 53.1

k = 20

S2abEL w/o DR 60.2 70.3 25.3
Raw Context 68.9 75.5 44.7
Synthetic Context 70.8 76.6 52.2

Table 1: Result of End-to-end Entity Linking
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Figure 3: Evaluation of different Contexts on variation
number of candidate entity.

accuracy and a 6-point increase in the InKB hit@1.
This demonstrates that synthetic context effectively
captures the appropriate information from raw con-
text and is supplemented by the LLM.

In the results with smaller entity candidates
k = 20, the difference between raw context and
synthetic context has become more pronounced.
This suggests that in the case of k = 50, there is
almost no difference in the entity candidates ex-
tracted by raw context and synthetic context. We
observe that the overall accuracy for synthetic con-
text does not much degrade for smaller k < 30,
compared with other conditions in Figure 3. In the
synthetic context setting, the proposed EL pipeline
achieves better accuracy with 20 candidates than
with 50 candidates. This might be because, when

the correct entity is successfully retrieved within
the top 20 candidates (k = 20), increasing the num-
ber to 50 (k = 50) introduces noise, which leads to
a decrease in accuracy.

5.2 Evaluating Method Combinations for
ASM and ED in Entity Linking Tasks

5.2.1 Experimental Settings
To observe the effects of the proposed raw/synthetic
contexts in ASM and ED subtasks, we compare
the accuracy of EL with exhaustive combinations
of contexts and subtasks7. The number of entity
candidates is k = 20 since the difference of entity
candidates is small in larger k.

5.2.2 Result
Table 2 shows that using either raw or synthetic
context for only ASM or ED improves accuracy
compared to using the context defined in S2abEL.
When used only for ASM, the improvement in ac-
curacy is about 1 or 2 points, while for ED, the
improvement is around 6 to 7 points. When com-
paring the two proposed methods applied to ASM,
it is observed that synthetic context improves the
overall accuracy by 1 point, indicating that syn-
thetic context is capable of enhancing ASM. When
raw or synthetic context is applied only to ED,
the improvements in InKB hit@1 are larger than
when applied only to ASM. In any conditions, syn-
thetic context consistently achieves higher accuracy
than raw and S2abEL contexts. These results sug-
gest that both raw context and synthetic context
are effective for both ASM and ED tasks and that
synthetic context is capable of representing more
effective contexts than raw context.

5.3 Evaluating the Impact of Context in ASM

To directly observe the effect of the improved con-
text, we evaluate using the precision of the ASM.
This experiment is evaluated only on cells with
attributed source papers. In the S2abEL dataset,
some cells do not have an attributed source, and
we filtered out these cells in this experiment. Fur-
thermore, unlike when used as a subtask of EL, it
is evaluated based on the accuracy of selecting the
attributed source paper rather than the entity. The
results are evaluated based on the accuracy of the
top 1 and top 5 ranked by the score.

7To investigate the effects of context refinement solely,
we do not use dense retrieval for collecting candidates in the
pipeline.
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ASM Method ED Method
Overall

acc.
OutKB

F1
InKB
hit@1

S2abEL S2abEL 60.2 70.3 25.3
Raw Context S2abEL 61.0 70.8 27.2
Synthetic Context S2abEL 62.2 72.0 28.8
S2abEL Raw Context 66.8 73.8 41.4
S2abEL Synthetic Context 67.4 73.3 46.7
Raw Context Raw Context 68.9 75.5 44.7
Synthetic Context Synthetic Context 70.8 76.6 52.2

Table 2: Performance Comparison of ASM and ED Method Combinations in Entity Linking Tasks

5.3.1 Variation of Context and Scoring model
In the ASM task, we calculate scores for all cited
references and the target paper to select the at-
tributed source for the cell. The scoring model
is given the cell’s context and the title and abstract
of each attributed source candidate. We compare
variations of this scoring model and the cell con-
text.

GPT4 Zeroshot We leverage GPT4-Turbo
(1106) to ASM in a zero-shot setting. The raw
contexts, along with the titles and abstracts of all
cited references, are given to GPT4-Turbo, and
it infers the attributed source paper directly. For
GPT4 Zeroshot, the evaluation is based solely on
the top 1 accuracy since it directly selects the cited
reference without scoring.

Cell Context Three types of context are to be
compared. S2abEL is the context defined in
S2abEL paper (Lou et al., 2023), raw context, and
synthetic context.

Scoring Model SciBERT and GPT2 are trained
with each context. The cell context can be longer
than the maximum input token length of BERT
(512). Hence, GPT2, which allows more input
tokens (1024), is used to capture all context. The
detailed statistics of the token number of contexts
are provided in Appendix C.

5.3.2 Result
Table 3 shows that the model fine-tuned with
synthetic context demonstrates the highest perfor-
mance in both @top1 and @top5 metrics compared
to other conditions. The performance of GPT4
Turbo in zero-shot learning is lower than those of
other fine-tuned models. When using the raw con-
text with SciBERT, the @top1 accuracy is lower

than the S2abEL, but the @top5 accuracy outper-
forms it. To compare SciBERT and GPT2 with
raw context, GPT2 performs worse than SciBERT
despite having larger parameters.

5.3.3 Error Analysis and Discussion

GPT4 zero-shot A drastic tendency was ob-
served when GPT4 Turbo was prompted in a zero-
shot manner to simultaneously choose attributed
sources from both the cited references and the tar-
get papers. Depending on the prompt text, the
GPT4 Turbo chooses them only from the target pa-
pers or only from cited references. To mitigate this
issue, the prompt text was adjusted to choose the
attributed source from the cited references first and
then determine whether the concept was newly pro-
posed. If the model determines it as a new concept,
the attributed source from cited references is dis-
carded, and the target paper is selected. Concrete
examples of each are provided in Appendix B.

SciBERT vs GPT2 The raw context aims to
extract sufficient information from the main text,
which may include sentences with little relevance
to the cell. This may explain why GPT2, which can
use all the context, did not contribute to accuracy.

Synthetic Context Analysis The comparison of
synthetic and raw context revealed that employing
synthetic context improved accuracy in two ways:
context completion and knowledge completion.

Context Completion Only the abbreviated
name of a method or dataset is mentioned in the
cell, but the full name and description are provided
in the main text. For instance, a cell in a table is
“ET Perp,” and it refers to the “Perplexity achieved
by the Evolved Transformer.” However, the ex-
pression does not appear in the main text. Thus,
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accuracy@top1 accuracy@top5
Cell Context Scoring Model all method dataset all method dataset

GPT4 Turbo zero-shot None 22.3 30.0 1.0 - - -
S2abEL (Lou et al., 2023) SciBERT 49.3 55.3 29.8 63.2 64.9 53.7
Raw Context SciBERT 45.0 45.3 44.7 67.3 65.6 69.1
Raw Context GPT2 41.1 43.8 35.4 62.8 63.3 60.7
Synthetic Context GPT2 55.6 56.5 51.8 75.7 75.7 70.8

Table 3: ASM Result of varying Cell Contexts and Scoring Model

Context Completion

Knowledge Completion

ET PERP = Perplexity achieved by Evolved Transformer
Complementing Contexts of Ellipsis and Paraphrasing

LSTM = Long Short-Term Memory
Supplementing Knowledge Not Described in the Paper

Cell Content Entity

ET PERP

LSTM Long Short-Term Memory

Transformer

Information Complemented in Synthetic Context

All →  entire dataset of TriviaQA
Clarify the Referent of the Cell TextAll TriviaQA

Figure 4: Completions in the synthetic contexts: There are two types of completions in synthetic contexts. Context
Completion: LLM understands that the cell context is the abbreviated name and explains it in the synthetic context.
Clarify the referent of the cell when the referent is ambiguous. Knowledge Completion: If the cell’s content is not
explained in the paper, LLM adds supplemental information.

baseline methods failed to link the cell to the Trans-
former correctly. In the synthetic context, the ab-
breviation context is explained by the LLM, and
the cell is successfully linked to the correct entity.

We found that when the referent of a cell is am-
biguous on its own, such as “baseline” and “All”,
the context supplements this by clarifying the ref-
erent in the synthetic context. Table 3 in the paper
of Clark and Gardner (2018) contains a cell named
“All.” The synthetic context for this cell is “[...]the
term ’All’ likely refers to the entire dataset of Trivi-
aQA, which [...]”, making the referent of the word
“All” clear.

Knowledge Completion There may not be
sufficient descriptions for well-known methods or
datasets in the main text. For example, the concept
of cell content “LSTM” might not be adequately
explained despite many mentions of LSTM in the
main text. Hence, previous methods misinterpret
LSTM as a new concept. In the synthetic con-
text data, LLM complemented the fact that LSTM
stands for Long Short-Term Memory. And it allows
the cell to successfully associate with the correct

entity.

Errors in Synthetic Context On the other
hand, errors were observed due to the misunder-
standing injected in synthetic contexts. Specifically,
in the paper of Bauer et al. (2018), the cell labeled

“Dev” in Table 3 refers to a development set for eval-
uation. However, it is identified as a person name

“Devi Parikh,” by LLM. The name is the author of
a reference and included in the raw context but un-
related to the experiments in Table 3. This implies
the raw context is not sufficient to identify essential
information accurately.

5.4 Experimental Investigation of LLM for
Synthetic Context

In this experiment, we measure the impact on task
scores by various LLMs that generate synthetic
contexts.

5.4.1 Experimental Settings
In previous experiments, GPT4 Turbo was used
as the LLM. The quality of the synthetic context
is believed to be influenced by the language com-
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accuracy@top1 accuracy@top5
Generation Model all method dataset all method dataset

GPT4 Turbo 55.6 56.5 51.8 75.7 75.7 70.8
GPT3.5-16k 51.4 54.3 44.8 71.3 73.4 66.7

TULU v2 70B+DPO 54.0 55.8 49.2 74.5 74.6 72.9

Table 4: ASM Result of varying LLM models for synthetic context generation

prehension ability and specialized knowledge of
relevant the domain of the LLMs. Therefore, in
this experiment, we evaluate synthetic contexts
generated by the following two models in addi-
tion to GPT4 Turbo. GPT3.5 Turbo: The train-
ing data of GPT3.5 Turbo is assumed to be sim-
ilar to GPT4 Turbo. However, as the parameter
size of it is smaller than GPT4-turbo, it has lower
language comprehension and language refinement
abilities. TULU2 70B+DPO (Ivison et al., 2023):
An open-sourced model that continues learning
from LLAMA2 70B using the instruction dataset
and the direct preference optimization (DPO) al-
gorithm (Rafailov et al., 2023). It demonstrates
performance equivalent to GPT3.5-turbo in MT-
Bench and AlpacaEval. Scientific documents in
the machine learning field are included in the train-
ing dataset, such as SciERC (Luan et al., 2018) and
Qasper (Dasigi et al., 2021). As a result, we expect
it to have enough knowledge to perform knowledge
completion.

5.4.2 Result
Table 4 shows that TULU v2 70B+DPO demon-
strates higher accuracy than GPT3.5-16k and ex-
hibits competitive performance with GPT4-Turbo.
Regardless of the type of LLM, there is a consistent
trend that method type cells have higher accuracy
than dataset type cells. However, this trend is more
pronounced in GPT3.5-16k.

5.4.3 Error Analysis and Discussion
We confirmed that TULU2 70B+DPO has knowl-
edge about famous methods, datasets, and eval-
uation metrics and performs appropriate knowl-
edge completion. This indicates that when the pre-
training dataset for an LLM includes data related
to the domain, knowledge completion can be ex-
pected to be effective in supplementing concepts,
which are often abbreviated or omitted in a paper.
Although an LLM used in our pipeline needs to
be updated to learn newly introduced methods and
concepts, frequent updates would not be necessar-

ily required, as it takes some time for such concepts
to become prevalent. We expect the knowledge up-
date for LLMs can be partly resolved with retrieval-
augmented generation.

Although we confirmed the knowledge of LLMs
is effective for entity linking, we observed the out-
puts that are not based on facts, known as halluci-
nations (Ji et al., 2023). For example, a table cell
in the paper of Zhong et al. (2019) is “CFC (ours)”,
and its attributed source is the paper itself. How-
ever, a part of the synthetic context generated by
TULU2 70B+DPO is
“The term “CFC (ours)” in the context of the sci-
entific paper titled “modelname for Multi-evidence
Question Answering” refers to a new question an-
swering model[...]”, which refers to a non-existent
paper title. Suppressing such hallucinations while
leveraging the knowledge of LLMs is a challenge
for future work.

6 Conclusion

In this study, we proposed new context extraction
methods from the main text for entity linking of
table cells of scientific papers. First, we propose a
rule-based context extraction method (raw context)
to collect broad context from a paper. Then, we in-
troduce the synthesized data using an LLM to refine
the raw context (synthetic context). By employing
raw context and synthetic context, we improved the
accuracy of entity linking by more than 10 points.
In the qualitative analysis, we observe the LLM
refines raw context by supplementing context and
completing information.

7 Limitations

Application scope. Our entity linking method
in this work depends on an existing KB. Thus, it
cannot be applied to fields where KB does not exist.
However, the @top1 accuracy for ASM tasks in
section 5.3 can be considered linking table cells to
papers, which allows linking to unknown concepts
without depending on an existing KB. Therefore,
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there is potential for application as the automatic
construction of knowledge bases in domains where
organized KB does not exist yet.

Practicality. Our proposed method outperforms
the existing method and achieves 53.1% @top1
accuracy in EL, 55.6% for @top1, and 75.7% for
@top5 in ASM. These results suggest that fully
automating the linking of table cells in papers is
still challenging; however, it could potentially be
used to assist manual annotation for table cells.

Model bias. Synthetic context depends on LLMs’
generative capabilities and knowledge, making it
susceptible to the model’s bias. This study tar-
gets only English-language papers in the machine
learning domain, which may limit generalization
to other languages and fields.

Model availability. The experiments in this
study were conducted using OpenAI’s GPT4 Turbo
1106, GPT3.5 16k, and TULU2 70B+DPO. GPT4
Turbo and GPT3.5 are accessible via the OpenAI
API, but access may be lost in the future due to
model version updates. Currently, these models are
supported by the Azure OpenAI API.
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A Prompt for Synthetic Context
generation

Generate Synthetic Context as a summarization
task in a zero-shot setting with an LLM. Syn-
thetic context data generation was performed
using GPT4-Turbo-1106-preview, GPT3.5-turbo-
16k, and TULU2-70B DPO. The parameters dur-
ing generation, temperature, and top-k were set
to 0 to stabilize the generation. The input
to the GPT4-Turbo-1106-preview and GPT3.5-
turbo-16k models follows a format that embeds
the text of the cell (CELL_CONTENT), the
paper title (PAPER_TITLE), the abstract (PA-
PER_ABSTRACT), and the paper context infor-
mation (PAPER_CONTEXT). The total number
of prompt tokens to generate all synthetic context
is 1182k, and for completion tokens, it is 1695k.
Hence, generating all synthetic context with GPT4-
Turbo 1106 costs about $170.

prompts� �
system_prompt : You are a researcher in
the field of machine learning. You are provided
with a word that appears in a certain paper
and information in the paper related to that
word. Please explain the word based on the
information provided.
user_prompt : Please explain the word
{CELL_CONTENT}. The title of the pa-
per in which this word appears is “{PA-
PER_TITLE}”, and the abstract is “{PA-
PER_ABSTRUCT}”. The category of this
word is {CELL_TYPE}. The relevant de-
scriptions in the text are written below. {PA-
PER_CONTEXT} Please provide your answer
as concisely as possible.� �

B GPT4 Turbo zero shot-learning prompt

In §5.3.1 of the experiment, GPT4 Turbo was eval-
uated directly in a zero-shot setting for Attributed
Source Matching. Specifically, the main text in-
formation of the paper and the titles and abstracts
of all cited references were embedded into the fol-
lowing template as input. As output, the ID of the
cited reference that serves as the source and a flag
indicating whether it represents a novel concept
proposed in the paper were obtained. If it is deter-
mined that the flag represents a concept proposed
in the paper, the source is cited as SourcePaper
without using the cited reference ID.

prompts� �
system prompt : You are tasked with iden-
tifying the source reference of the concept in-
dicated by the cell text in a table within a ma-
chine learning academic paper. This paper is
referred to as the “Source Paper” and its cited
literature as “Reference Papers”. The concept
indicated by the cell text in the table is either
a dataset or a method, which was proposed
either in the cited literature. Your task is to
estimate the paper in which this concept was
proposed. For making your estimation, you
will be provided with the cell text of the table,
the type of concept that the cell text of the ta-
ble is indicating, the caption of the respective
table, and descriptions in the “SourcePaper”
that are relevant to the respective table. You
will also be presented with potential choices
which include the title and abstract each of the
cited literature. Please make a selection from
these options. Your response should be in the
following JSON format: { "estimate_result":
"ID of a ReferencePaper", "is_source": "True
or False" } Please input that ReferencePa-
per’s ID into the estimate_result field. Also, if
you believe that the content indicated by the
cell text in the table is something newly pro-
posed in the SourcePaper, please enter True in
the is_source field.� �

C Cell Contexts Statistics

We compare the statistics of the number of tokens
for the input to the model used in S2abEL and
the raw context and synthetic context used in this
study. Table 5 shows the mean, standard deviation,
maximum, and minimum number of tokens for the
entire data and the mean and standard deviation of
the number of tokens when the Cell type is method
or dataset. Comparing the features of S2abEL and
raw context, the raw context tends to have a smaller
average number of tokens and a larger standard de-
viation. This is because, in S2abEL, information
about the position of the table and surrounding cells
was used as input. In contrast, in the raw context
of this study, sentences that mention the table or
cells in the captions or main text are added. As a
result, the number of tokens varies significantly de-
pending on the mention in the main text, leading to
a larger standard deviation. The synthetic context
summarizes and complements the raw context and

212



all method dataset
Name average std max min average std average std

S2abEL 522.6 221.1 1292 49 569.2 220.9 434.1 192.6
Raw Context 510.2 282.7 5044 29 499.4 268.8 530.9 306.5
Synthetic Context 385.6 98.6 2121 65 394.1 98.2 369.3 97.2

Table 5: Cell Contexts Token number Statistics

consistently has fewer tokens. Furthermore, when
there are many mentions in the main text, only nec-
essary information is extracted, and when there are
no mentions, information is supplemented, leading
to a significantly smaller standard deviation.

D Training Details

We trained all models using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with linear
decay warm-up. All models were trained using a
single 48Gb NVIDIA A6000 GPU. To train GPT-
2 for ASM, We added a short prompt before cell
contexts. The prompt is “Given a table cell text
from an academic paper in the field of Machine
Learning, classify whether the information in the
cell originates from provided cited literature or
other. The reference information is”. For evalua-
tion, cross-validation is conducted on 10 paper cat-
egories within the S2abEL dataset. From S2abEL
dataset, a category is selected for testing, another
category is randomly selected for validation, and
other categories are used for training.

parameter GPT-2 SciBERT

learning rate 2e-5 2e-5
batch size 16 32
max token length 1024 512
epoch size 2 2
warm-up ratio 10% 10%

Table 6: Training Hyperparameters

E Detailed Entity Linking Result

Cross-validation is conducted on 10 categories of
paper within the S2abEL dataset in the Entity Link-
ing experiments. The results across all folds are
presented.
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Test fold
Overall

acc.
OutKB

F1
InKB
hit@1

Overall
acc.

OutKB
F1

InKB
hit@1

Overall
acc.

OutKB
F1

InKB
hit@1

img_gen 48.3 55.6 26.7 53.8 57.1 37.4 48.6 46.9 43.1
misc 71.3 83.2 1.2 80.1 87.8 37.8 86.5 92.0 74.4
mt 49.2 60.6 22.5 50.0 59.9 21.2 62.2 68.8 39.4
nli 61.4 73.4 26.6 66.4 76.9 36.6 64.8 72.7 52.3
object_det 31.2 36.8 15.8 64.7 60.5 58.7 65.1 73.6 59.5
pose_estim 65.8 77.3 29.6 84.2 95.8 67.6 70.7 82.7 41.7
qa 73.7 84.4 22.6 82.3 90.2 52.2 82.5 89.6 51.7
sem_seg 63.2 73.3 49.5 67.7 66.3 55.0 76.7 73.7 68.8
speech_rec 69.0 79.3 28.1 67.2 78.0 35.7 76.9 83.0 50.2
text_class 68.8 79.0 30.6 73.0 82.6 45.1 73.8 83.0 41.4

average 60.2 70.3 25.3 68.9 75.5 44.7 70.8 76.6 52.2
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