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Abstract

Constructing researcher representations is cru-
cial for search and recommendation in aca-
demic databases. While recent studies pre-
sented methods based on knowledge graph em-
beddings, obtaining a complete graph of aca-
demic entities might be sometimes challenging
due to the lack of linked data. By contrast, the
textual list of publications of each researcher,
which represents their research interests and
expertise, is usually easy to obtain. Therefore,
this study focuses on creating researcher rep-
resentations based on textual embeddings of
their publication titles and assesses their prac-
ticality. We aggregate embeddings of each re-
searcher’s multiple publications into a single
vector and apply it to research field classifica-
tion and similar researcher search tasks. We ex-
perimented with multiple language models and
embedding aggregation methods to compare
their performance. From the model perspec-
tive, we confirmed the effectiveness of using
sentence embedding models and a simple aver-
aging approach.

1 Introduction

Academic databases equipped with search and
recommendation functions have supported re-
searchers’ activities. Traditional search approaches
primarily involve users inputting specific keywords
and then retrieving corresponding papers and au-
thors (Wu et al., 2019; Fricke, 2018). However, in
actual research scenarios, researchers often need
to efficiently find papers to read based on their
previous interests or discover individuals in other
fields with similar research interests. To address
these requirements, methods for constructing re-
searcher representations in a feature space have
been actively studied in recent years (Chaiwanarom
and Lursinsap, 2015; Katsurai et al., 2016; Ganesh
et al., 2016; Färber et al., 2023). In particular,
with the development of academic graphs such as

Microsoft Academic Graph (MAG)1, there have
been presented several methods based on knowl-
edge graph embeddings to construct researchers’
vector representations (Priem et al., 2022; Fär-
ber et al., 2023). However, these studies assume
well-organized graph databases as input resources,
making it difficult to apply these methods to
databases lacking sufficient linked data. For exam-
ple, Grant-in-Aid for Scientific Research database
(KAKEN), one of typical academic databases in
Japan, comprises records of research accomplish-
ments of grant projects but does not link them to
their authors and presentation venues. Using such
databases would first require data linking to con-
struct a graph structure before applying graph em-
bedding methods.

Compared with obtaining a complete graph struc-
ture, the textual list of publications of each re-
searcher is more accessible. Recent development of
language models pre-trained using large-scale text
data (Devlin et al., 2019; Feng et al., 2022; Wang
et al., 2022) has significantly improved several re-
trieval and recommendation tasks, and academic-
specific language models were released for certain
languages (Beltagy et al., 2019; Labrak et al., 2023;
Yamauchi et al., 2022). Under such background,
this study attempts to construct researcher repre-
sentations solely from the textual publication in-
formation using pre-trained language models. The
usefulness of these representations is then exam-
ined through experiments on two practical applica-
tion tasks: research field classification and similar
researcher search.

2 Related Work

Researcher representations have been studied using
a variety of methods, such as topic models (Chaiwa-
narom and Lursinsap, 2015; Katsurai et al., 2016)

1https://www.microsoft.com/en-us/research/
project/microsoft-academic-graph/
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and document embeddings (Ganesh et al., 2016).
Recent methods focused on the graph structure of
academic entities and calculated the node features
using graph embedding methods. MAG was a typi-
cal example of a large-scale academic graph, and its
successor project, OpenAlex (Priem et al., 2022),
has recently been used. Färber et al. (2023) con-
structed an RDF-based knowledge graph platform
called SemOpenAlex and experimentally evaluated
the embedding methods for various nodes such as
researchers and papers on the graph. Such knowl-
edge graph-derived researcher representations are
used to solve academic tasks such as author name
disambiguation (Santini et al., 2022).

On the other hand, the newly emerging pre-
trained language models have substantially pro-
moted the development of text processing for in-
formation retrieval and recommendation, and we
can expect their effectiveness on researcher em-
beddings. It is known that a certain domain task
often benefits from a language model pre-trained
using text in the target domain. However, in sci-
entific domains, we observed cases where general
domain models are sufficient (Zheng et al., 2022;
Brokman and Kavuluru, 2024). Taking into ac-
count the above matters, this paper includes an ex-
periment that compares the performance between
general language models and domain-specific mod-
els in a single language embedding setting.

3 Methodology

Our method aims to construct a researcher’s repre-
sentation using a comprehensive list of publication
titles related to their research grant project. Since
most researchers in Japan use both English and
Japanese languages to present their research, we
investigate in experiments whether we should em-
bed both the two languages’ text to calculate the
researchers’ representations.

3.1 Text Embedding Based on Pre-trained
Language Models

To acquire semantic information from the text of
each publication title, we exploit the BERT archi-
tecture (Devlin et al., 2019) as a pre-trained text
encoder. First, the given text is divided into sub-
words by the tokenizer associated with the model.
These subwords are then input into the model to
obtain embedding representations at the subword
level. Next, pooling operations are applied to the
obtained token representations to derive the pub-

Language Count

Japanese 3,122,244
English 3,283,871
Others 779

Table 1: Statistics of languages used in KAKEN
projects.

lication text embeddings. There are two choices
for pooling: CLS pooling, which uses the repre-
sentation of the special initial token, and mean
pooling, which averages the representations of all
tokens. Based on a conventional study (Reimers
and Gurevych, 2019), we use mean pooling.2

3.2 Aggregating Publication Text Embeddings

The interests of researchers are diverse, and it is not
clear how to best aggregate publication titles’ em-
beddings. The first method is arithmetic averaging
(hereafter referred to simply as averaging), com-
monly used for pooling word representations into
sentence representations. However, researchers do
not necessarily contribute equally to all their publi-
cations. For example, contributions are generally
more distributed in co-authored papers compared
to single-authored papers. Therefore, as the second
method, we consider weighted averaging using
the inverse of the number of authors as weights.
This assumes that the fewer the authors, the greater
the individual contribution to the publication. This
method is inspired by author evaluation metrics
like the h-index, which takes into account the in-
fluence of the number of authors (Abramo et al.,
2013). In subsequent experiments, we compare the
performance of these two methods.

4 Experiments

We used the KAKEN API3 to collect KAKEN
projects as of October 2023 and the publication
titles linked to the projects’ members. We explain
details about the KAKEN API in Appendix A. Ta-
ble 1 shows the distribution of languages in the
publication titles. As shown in Table 1, Japanese
researchers usually publish papers in Japanese and
English. “Other” category included languages such
as Russian and Mongolian. We exploited multi-
lingual models to embed Japanese and English

2Actually, in downstream tasks mentioned later, mean pool-
ing outperformed CLS pooling in all tasks.

3https://support.nii.ac.jp/en/kaken/api/api_
outline
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Category Research field name Count

A arts 26,170
B algebra 5,812
C strength of materials 7,451
D materials engineering 4,477
E organic/inorganic chemistry 3,295
F agriculture 5,372
G biology 3,177
H pharmacy 3,876
I internal/social medicine 27,165
J information science 3,591
K environmental analysis 1,675

Table 2: Large categories of research fields in KAKEN.

Large Medium Small
Model F1 F1 F1

mE5 (avg) 0.606 0.514 0.396
mE5 (weighted) 0.604 0.510 0.361
mBERT 0.582 0.455 0.311
LaBSE 0.607 0.504 0.367

Table 3: Results of research field classification.

publication titles into the same space. Specifi-
cally, we adopted the following three models: Mul-
tilingual BERT (mBERT)4 (Devlin et al., 2019),
Multilingual E5 (mE5)5 (Wang et al., 2022), and
LaBSE6 (Feng et al., 2022); each model had 110
million parameters. Among these, mE5 and LaBSE
are so called sentence embedding models. We aim
to find out whether such models are suitable for
embedding publication titles.

To verify the effectiveness of the constructed
researcher representations, we conducted two prac-
tical application tasks: research field classification
(see Section 4.1) and similar researcher search (see
Section 4.2). Since there is no multilingual pre-
trained model in the scientific domain, we also in-
vestigate the performance of domain-specific mod-
els in single language embedding setting (see Sec-
tion 4.3).

4https://huggingface.co/
bert-base-multilingual-cased

5https://huggingface.co/intfloat/
multilingual-e5-base

6https://huggingface.co/sentence-transformers/
LaBSE

4.1 Research Field Classification

Research field classification is a task to identify
the main research fields of a researcher based on
their representation. The ground-truth labels were
determined based on area categories7 of the re-
search projects associated with each researcher.
Each research project was manually classified by
its representative researcher in terms of three lev-
els: large, medium, and small categories. These
levels have 11, 65, and 305 categories, respectively.
Table 2 shows area category names and number of
researchers for only large categories due to space
constraints. We provided three-level labels for each
researcher using their project labels. Appendix B
describes the labeling procedure. We obtained a
dataset of 92,061 researchers who have at least
three publication titles. All data was split into train-
ing, validation, and test sets in an 8:1:1 ratio, keep-
ing the original label distribution. At the training
stage, we added a linear layer as a classifier. Specif-
ically, we froze the weights of the text encoder and
trained only the linear layer. We used a scheduler
that increases the learning rate until a certain point
and then fixes it. We set the period of time until the
learning rate was fixed to one epoch.

Table 3 shows the F1 scores of classification
results. In Appendix B, we also evaluate the accu-
racy. The model “avg” denotes aggregation using
the averaging, while “weighted” represents aggre-
gation using the weighted averaging. Notably, ag-
gregation using the averaging exhibited superior
performance, indicating that weighting by the in-
verse of the number of authors did not enhance
performance. Hereafter, references to each model
refer to the case where aggregation using the aver-
aging was employed. Focusing on different mod-
els, mE5 and LaBSE demonstrated similar perfor-
mance. Conversely, mBERT exhibited a significant
performance gap compared to mE5, with 5% lower
F1 scores in the middle sections and 8% lower in
the small sections, although no significant perfor-
mance difference was observed in the large cate-
gory classification.

4.2 Similar Researcher Search

This experiment defined positive and negative ex-
amples for a query researcher. We ranked the com-

7Because category names are reviewed and updated at
a few years intervals, we focused on the category hierar-
chy introduced in 2018 fiscal year. Details are available
in https://www.jsps.go.jp/j-grantsinaid/02_koubo/
shinsakubun.html.
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Model MAP NDCG

mE5 (avg) 0.783 0.856
mE5 (weighted) 0.758 0.839
mBERT 0.711 0.805
LaBSE 0.765 0.843

Table 4: Results of researcher search based on research
content similarity.

Language Model MAP NDCG
Multi mE5 0.783 0.856
English mE5 0.740 0.815

SciBERT 0.701 0.785
BERT 0.650 0.747

Japanese mE5 0.777 0.851
AcRoBERTa 0.576 0.696
RoBERTa 0.514 0.645

Table 5: Comparison among different language re-
sources in the researcher search task.

bined set of researchers using the similarity be-
tween the researcher representations and evaluated
whether the positive examples were ranked higher.
For each query, we defined co-investigators of re-
search projects as positive examples, and randomly
selected other researchers as negative examples.
From the 92,061 researchers, we extracted up to 10
queries per small research category, totaling 2,980
queries, where each query had at least 5 positive
examples. We used cosine similarity as the mea-
sure of similarity between the researcher represen-
tations. We set the maximum number of positive
examples to 10, and if there were more than 10
positive examples, we preferentially selected those
associated with more research projects. We set the
number of negative examples to 50.

Table 4 shows the MAP and NDCG of results
obtained by each model’s similarity measure. As
shown, mE5 achieved the best performance, fol-
lowed by LaBSE and mBERT. Similar to research
field classification, there was no significant perfor-
mance disparity between mE5 and LaBSE, while a
noticeable 7% difference in MAP was noted com-
pared to mBERT. Combined with the results in
section 4.1, we observed that the sentence embed-
ding models positively influenced the embedding
of paper titles and their subsequent aggregation.

4.3 Influence of Input Language

In the researcher search task, we further investi-
gated the influence of multilingualism and domain
adaptation, which can be used as future guidelines
for designing a multilingual model specialized in
the academic domain. We considered the following
three settings: (i) embedding only Japanese titles,
(ii) embedding only English titles, and (iii) embed-
ding both Japanese and English titles. All settings
used mE5 as a multilingual model, which was the
best performing model in the previous experiments.
The first setting used Academic RoBERTa (Ya-
mauchi et al., 2022) (hereafter, AcRoBERTa), a
model specific to the Japanese academic domain,
and normal RoBERTa8. The second setting used
SciBERT (Beltagy et al., 2019), a model specific to
the English academic domain, and normal BERT.
The third setting used only mE5 and no additional
models.

Table 5 shows the results of different models for
each setting. Focusing on mE5, using multilingual
inputs resulted in higher performance than using
only Japanese or only English inputs. This suggests
that better feature representations are obtained by
aggregating embeddings of publications in both
Japanese and English titles of researchers. On
the other hand, comparing the results for only En-
glish inputs, mE5, which is not specialized, showed
higher performance than the domain-specific SciB-
ERT. This observation was also noted when the
input was only Japanese. Since AcRoBERTa has a
very small training corpus compared to other mod-
els, it is considered that models trained on large
corpora are advantageous for obtaining researcher
representations in all fields. In conclusion, at least
for inputs such as publication titles that are rela-
tively short texts, it is suggested that the influence
of adaptation to sentence embeddings is more im-
portant than the effect of domain adaptation.

5 Conclusion

In this paper, we focused on the titles of researchers’
publications in academic databases and constructed
researcher representations by aggregating their text
embeddings. We then evaluated the performance
of these representations in two practical tasks. The
results of the experiments showed that the perfor-
mance of each task improved with sentence em-
bedding models. Additionally, inputting publica-

8https://huggingface.co/nlp-waseda/roberta-base-
japanese
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tions in multiple languages was more effective than
in a single language. However, there were prac-
tical challenges with domain-specific models, as
general-domain models outperformed them. These
results suggest the need for the development of
new multilingual models that are robust in sentence
representation and have domain knowledge.

Acknowledgments

This research was partly supported by JSPS KAK-
ENHI Grant Number JP20H04484.

References
Giovanni Abramo, Ciriaco Andrea D’Angelo, and Ful-

vio Viel. 2013. Assessing the accuracy of the h-and
g-indexes for measuring researchers’ productivity.
Journal of the American Society for Information Sci-
ence and Technology, 64(6):1224–1234.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Aviv Brokman and Ramakanth Kavuluru. 2024. How
important is domain specificity in language models
and instruction finetuning for biomedical relation
extraction? arXiv preprint arXiv:2402.13470.

Paweena Chaiwanarom and Chidchanok Lursinsap.
2015. Collaborator recommendation in interdisci-
plinary computer science using degrees of collabora-
tive forces, temporal evolution of research interest,
and comparative seniority status. Knowledge-Based
Systems, 75:161–172.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Michael Färber, David Lamprecht, Johan Krause, Linn
Aung, and Peter Haase. 2023. Semopenalex: The
scientific landscape in 26 billion rdf triples. In The
Semantic Web – ISWC 2023, pages 94–112, Cham.
Springer Nature Switzerland.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

878–891, Dublin, Ireland. Association for Computa-
tional Linguistics.

Suzanne Fricke. 2018. Semantic scholar. Journal of the
Medical Library Association: JMLA, 106(1):145.

J Ganesh, Soumyajit Ganguly, Manish Gupta, Vasudeva
Varma, and Vikram Pudi. 2016. Author2vec: Learn-
ing author representations by combining content and
link information. In WWW (Companion volume),
pages 49–50.

Marie Katsurai, Ikki Ohmukai, and Hideaki Takeda.
2016. Topic representation of researchers’ interests
in a large-scale academic database and its application
to author disambiguation. IEICE Transactions on
Information and Systems, 99(4):1010–1018.

Yanis Labrak, Adrien Bazoge, Richard Dufour, Mick-
ael Rouvier, Emmanuel Morin, Béatrice Daille, and
Pierre-Antoine Gourraud. 2023. DrBERT: A robust
pre-trained model in French for biomedical and clini-
cal domains. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 16207–16221,
Toronto, Canada. Association for Computational Lin-
guistics.

Jason Priem, Heather Piwowar, and Richard Orr. 2022.
Openalex: A fully-open index of scholarly works,
authors, venues, institutions, and concepts. arXiv
preprint arXiv:2205.01833.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Cristian Santini, Genet Asefa Gesese, Silvio Peroni,
Aldo Gangemi, Harald Sack, and Mehwish Alam.
2022. A knowledge graph embeddings based ap-
proach for author name disambiguation using literals.
Scientometrics, 127(8):4887–4912.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Jian Wu, Kunho Kim, and C. Lee Giles. 2019. Citeseerx:
20 years of service to scholarly big data. In Proceed-
ings of the Conference on Artificial Intelligence for
Data Discovery and Reuse, AIDR ’19, New York,
NY, USA. Association for Computing Machinery.

Hiroki Yamauchi, Tomoyuki Kajiwara, Marie Katsurai,
Ikki Ohmukai, and Takashi Ninomiya. 2022. A
Japanese masked language model for academic do-
main. In Proceedings of the Third Workshop on
Scholarly Document Processing, pages 152–157.

281

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1016/j.knosys.2014.11.029
https://doi.org/10.1016/j.knosys.2014.11.029
https://doi.org/10.1016/j.knosys.2014.11.029
https://doi.org/10.1016/j.knosys.2014.11.029
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2023.acl-long.896
https://doi.org/10.18653/v1/2023.acl-long.896
https://doi.org/10.18653/v1/2023.acl-long.896
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1145/3359115.3359119
https://doi.org/10.1145/3359115.3359119
https://aclanthology.org/2022.sdp-1.16
https://aclanthology.org/2022.sdp-1.16
https://aclanthology.org/2022.sdp-1.16


Researcher
ID
Name
Affiliation
Research projects

ID
Title
Research category
Members
Keywords

Publications
ID
Title
Authors (unparsed)
Organizer (unparsed)
Publication date

Figure 1: Researcher data that can be obtained using the
KAKEN API.

Zhe Zheng, Xin-Zheng Lu, Ke-Yin Chen, Yu-Cheng
Zhou, and Jia-Rui Lin. 2022. Pretrained domain-
specific language model for general information re-
trieval tasks in the aec domain. arXiv preprint
arXiv:2203.04729.

A Use of KAKEN API

KAKEN is a public database that includes informa-
tion regarding projects supported by KAKENHI, a
grant program provided by the Japan Society for
the Promotion of Science. The program supports re-
search projects in diverse research fields, including
natural sciences, engineering, social sciences, and
humanities, for researchers affiliated with Japanese
institutions. KAKEN provides an API that allows a
search of KAKENHI projects using several types of
queries (e.g., research periods, researcher names).
Figure 1 shows items that can be obtained for each
researcher through the KAKEN API.

B Labeling Procedure for Research Field
Classification

We determined a unique field in each category level
for a researcher using the following method. We
first extracted the research projects with explicitly
defined small categories from the set of research
projects held by the researcher, and assigned the
most frequent small category as the ground-truth
one. Next, we listed the large, medium pairs to
which the small research category belongs in the
category hierachy defined in KAKEN. If the pair

Large Medium Small
Model Acc Acc Acc

mE5 (avg) 0.759 0.588 0.475
mE5 (weighted) 0.757 0.586 0.468
mBERT 0.744 0.530 0.398
LaBSE 0.756 0.580 0.473

Table 6: Results of research field classification.

was uniquely determined, the process was com-
pleted. Finally, for each listed pair, we calculated
the sum of the frequencies of the large and medium
sections from the set of research projects. The pair
with the highest frequency was then determined.

C Accuracy of Research Field
Classificaiton

At the training stage, we searched for the maximum
learning rate in the range of 1e-5, 3e-5, 5e-5, 1e-4
and adopted the evaluation value of the trial with
the highest performance on the validation set. Ta-
ble 6 shows accuracy of research field classification.
As described in Section 4.1, in terms of the aggre-
gation method, the averaging was slightly higher
than the weighting by the inverse of the number
of authors. In the comparison between models, as
with the F1 Score, a notable difference in perfor-
mance was observed between mE5 and mBERT. In
the comparison between the models, the difference
in performance between mE5 and mBERT was 8%
in the small section, which is as significant as in
the F1 Score.
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