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Abstract
We address the challenge of interpreting and
reasoning over scientific tables with Large
Language Models (LLMs), a crucial aspect
of scholarly documents. Despite significant
progress in natural language processing, the in-
tegration of tabular data into scientific LLMs
remains limited. We propose an innovative
approach leveraging intermediate task pre-
training on table question-answering datasets,
followed by model adaptation to comprehend
tables in computer science literature. Our find-
ings reveal that incorporating table understand-
ing substantially improves the performance of
LLMs on scientific literature understanding
tasks, which we showcase in peer-review score
prediction. This improvement underscores the
importance of utilizing tabular data in the train-
ing of scientific language models. The code
and models are publicly available.1

1 Introduction

Large Language Models (LLMs) have experienced
significant advancements in recent years and have
been adapted to numerous natural language under-
standing and generation tasks (Zhao et al., 2023).
Particularly in the scientific community, they have
received increasing attention with their applica-
tions to scientific literature understanding tasks
such as citation prediction (Cohan et al., 2020),
paper classification (Zhang et al., 2023d), scien-
tific literature search (Faggioli et al., 2023; Lála
et al., 2023) and paper recommendation (Kanakia
et al., 2019) to accelerate scientific discovery. In
addition, domain-specialized research assistant lan-
guage models have been developed (Beltagy et al.,
2019; Luo et al., 2022; Taylor et al., 2022; Azer-
bayev et al., 2024).

Although these specialized models on scientific
texts demonstrate success in the scientific litera-
ture understanding benchmarks such as MAPLE

1https://github.com/buseskorkmaz/
Integrating-Table-Representations-into-LLMs

(Zhang et al., 2023d) and SciRepEval (Singh et al.,
2023), the benchmarks and the corpora used in the
training of these scientific language models pre-
dominantly focus on textual data. A critical com-
ponent - and the focus of this study - often remains
overlooked, which is tables. Tables encapsulate key
findings, offering a condensed view of the research
outcomes. In this work, contrary to the existing
approaches, we hypothesize that understanding ta-
bles can significantly enhance the performance of
LLMs on scientific literature tasks by providing a
more holistic understanding of research papers.

We first tackle the challenge of interpreting ta-
bles and reasoning over them to answer questions
requiring arithmetic operations and choosing in-
formation from specific cells through intermedi-
ate task pre-training. Then, we adapt our trained
model to comprehend scientific tables in published
computer science papers. This training process is
designed to enable the models to reason with sci-
entific table data. The scientific tables dataset we
use is fundamentally different from the datasets
used in intermediate task pre-training for table
question-answering, incorporating more extensive
summaries of scientific tables. Finally, we demon-
strate that utilizing table representations extracted
from fine-tuned LLMs with our approach improves
the prediction of peer-review scores.

Overall, we develop a pipeline that allows LLMs
to incorporate scientific knowledge from tables.
The main contributions of this work are: (i) we ap-
ply an intermediate task pre-training approach that
allows LLMs to understand tables, (ii) we do a de-
tailed comparison of scientific table understanding
by different models with different sizes, architec-
tures, and under various settings, and (iii) we show
how learning to represent scientific tables improves
the understanding of scholarly documents, using
the peer-review score prediction as a case study.
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2 Related Work

2.1 Scientific language models

The majority of pre-training datasets for scientific
LLMs consist primarily of textual data, with a no-
table absence of tables. Widely used datasets in
pre-training such as MAPLE (Zhang et al., 2023d),
SciFact (Wadden et al., 2020), SciERC (Luan et al.,
2018), ACL-ARC (Bird et al., 2008), SciCite (Co-
han et al., 2019), GENIA (Kim et al., 2003), and
BC5CDR (Li et al., 2016) include only titles, ab-
stracts, references, or citations. The S2ORC (Lo
et al., 2020) dataset includes full texts with parsed
tables, yet its potential for enhancing table under-
standing in LLMs remains largely under-explored.

Models such as SciBERT (Beltagy et al., 2019)
have been trained exclusively on words and sen-
tences from scientific texts. Similarly, SPECTER
(Cohan et al., 2020) focuses on titles, abstracts, and
citations, without incorporating table data into its
training process. BioMedGPT (Zhang et al., 2023a)
acknowledges the significance of tabular data un-
derstanding but leaves it as a future task. Even
recently developed models such as SciMult (Zhang
et al., 2023c) and SciNCL (Ostendorff et al., 2022),
which includes the S2ORC (Lo et al., 2020) dataset
in its training mix, fail to leverage table data effec-
tively. SciMult is trained on datasets of MAPLE,
SciFact, and SciRepEval (Singh et al., 2023), which
do not include tabular data, and SciNCL, despite
its access to a dataset with parsed scientific tables
(S2ORC) does not utilize table data in the training.

2.2 Table understanding

Recent advancements in table understanding have
seen significant contributions. Pasupat and Liang
(2015) introduced a compositional semantic pars-
ing approach, which established the WikiTQ
dataset for benchmarking. TAPAS by Herzig et al.
(2020), leveraged the BERT architecture (Devlin
et al., 2019), and advanced table parsing by identi-
fying operations through a classification layer for
answer generation. Eisenschlos et al. (2020) fo-
cused on enhancing table entailment through pre-
training on open-source tables, aligning closely
with our approach in Section 3.2. Hegselmann
et al. (2023) explored the application of LLMs for
few-shot classification of tabular data. Li et al.
(2023) recognized the value of information in ta-
bles and developed a scientific information extrac-
tion pipeline to improve data availability for tabular
content within scientific papers.

Moreover, improvements in table understanding
have enhanced adjacent tasks such as table-based
fact verification, as seen with the TabFact dataset
(Chen et al., 2020), and extended to specialized
fields such as finance, demonstrated by the TAT-
QA benchmark (Zhu et al., 2021). Zhang et al.
(2023b) developed a generalist table understand-
ing model, TableLlama based on LLaMA-2 (7B)
(Touvron et al., 2023) using fine-tuned 1.24M ta-
bles for 8 different table-based tasks such as table
interpretation, augmentation and QA. We evaluate
their model for the scientific table understanding
task to investigate the capabilities of a generalist
model in a scientific domain.

2.3 Peer-review prediction
The utilization of language models in predicting
peer review outcomes, as highlighted by Rogers
and Augenstein (2020), reflects their potential to
understand the scientific literature. Accurately pre-
dicting the quality of scientific research through
models could address the subjectivity, biases, and
inefficiencies identified in the peer review process
(Shah, 2022).

The PeerRead dataset (Kang et al., 2018) serves
as a foundational dataset for peer-review predic-
tion research, covering acceptance outcomes and
review helpfulness. The availability of public peer-
review datasets has accelerated the expansion of
peer-review research, including studies on review
content and decision outcomes (Gao et al., 2019),
the introduction of innovative approaches to publi-
cation representation (Muangkammuen et al., 2023)
and the development of predictive models for re-
view scores.

In peer-review prediction, the accurate construc-
tion of scholarly document representations is im-
portant to learn the correct relationship between the
documents and their peer reviews. The PeerRead
dataset (Kang et al., 2018) includes comprehensive
details of document bodies and associated peer re-
views along with outcomes. Despite the dataset’s
richness, the predominant methodology focuses on
utilizing only the textual components of documents
for representation. For example, peer-review pre-
diction models DeepSentiPeer (Ghosal et al., 2019)
and PeerAssist (Bharti et al., 2021) rely on the
Science Parse library by AllenAI for extracting in-
formation from scholarly documents in PeerRead.
Unfortunately, this library does not parse tables.
This is a limitation if we are to capture the full
scope of a scholarly document for peer review pre-
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Figure 1: Overview of the training methodology for enhancing large language models with scientific table under-
standing. The training process begins with intermediate task pre-training using the WikiTQ and SQA datasets to
build foundational table reasoning skills. This is followed by fine-tuning on the SciGen dataset to adapt the model
specifically for scientific tables. The final model effectively integrates structured table data into text, improving
performance on scientific literature tasks such as peer-review score prediction.

diction, as findings in result tables can substantially
influence review outcomes.

3 Methodology

3.1 Datasets

WikiTableQuestions (WikiTQ) (Pasupat and
Liang, 2015) WikiTQ is a benchmark dataset de-
signed for evaluating the ability of models to per-
form question-answering (QA) over complex tables
sourced from Wikipedia. This dataset challenges
models to understand and interpret tabular data in
context, requiring both a semantic understanding
of questions and the ability to extract and reason
relevant information from structured data. The
inclusion of WikiTQ in our intermediate task pre-
training regimen aims to enhance the model’s profi-
ciency in handling structured data and improve its
capability to reason over tables, an essential skill
for understanding scientific tables.
SQA (Iyyer et al., 2017) The SQA dataset extends
the complexity of QA by introducing a sequen-
tial aspect, where answers to follow-up questions
depend on the context established by previous in-
teractions. However, our end use case is to describe
scientific tables that do not have a conversational
nature. Hence, we use a portion of the SQA dataset
including the first questions in the sequence of ques-
tions over a given table. This dataset enables our
model to further improve fundamental table under-
standing by adding diversity to the set of questions.
SciGen (Moosavi et al., 2021) SciGen stands out
for its focus on generating coherent and contextu-
ally accurate textual descriptions from scientific
tables, primarily containing numerical data. The
ability of arithmetic reasoning to interpret tables in
scientific papers and generate appropriate textual

Figure 2: An example of parsing tables for use with
large language models. The table (Guu et al., 2017)
structure is encoded using special tokens, with rows
represented by <R>, columns by <C>, and associated
captions by <CAP> as in (Moosavi et al., 2021).

narratives presents the main challenge we aim to ad-
dress. Thus, we subsequently fine-tune our model
to adapt scientific tables on the SciGen dataset fol-
lowing pre-training on WikiTQ and SQA datasets.

3.2 Experimental Setup

Pre-trained LLMs We use FlanT5 (Chung et al.,
2022) and LLaMA-2 (Touvron et al., 2023) as pre-
trained language models. Our task requires learn-
ing representations from structured tables. To com-
pare how different architectures adapt to tabular
data representation in our problem, we choose T5
(Roberts et al., 2019) and FlanT5 (Chung et al.,
2022) to represent encoder-decoder architecture,
and LLaMA-2 as a representative of decoder-only
architectures.
Data pre-processing Following Moosavi et al.
(2021), we denote rows with <R>, columns <C> and
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Test Dataset Setting Model Parameters METEOR ROUGE-1 BertS

Test (C&L) Zero T5-base* 0.22B 0.04 n/a 0.76
T5-large* 0.77B 0.06 n/a 0.76
FlanT5-small 0.08B 0.06 0.09 0.79
FlanT5-base 0.25B 0.04 0.06 0.74
FlanT5-large 0.78B 0.10 0.12 0.79
FlanT5-xl 3B 0.08 0.10 0.78
LLaMA2-7B-chat-hf 7B 0.08 0.07 0.70
TableLlama 7B 0.13 0.14 0.77

Test (Other) Zero T5-base* 0.22B 0.04 n/a 0.76
T5-large* 0.77B 0.06 n/a 0.76
FlanT5-small 0.08B 0.06 0.08 0.79
FlanT5-base 0.25B 0.05 0.07 0.74
FlanT5-large 0.78B 0.11 0.12 0.79
FlanT5-xl 3B 0.08 0.09 0.78
LLaMA2-7B-chat-hf 7B 0.08 0.07 0.70
TableLlama 7B 0.13 0.13 0.77

Table 1: The evaluation of pre-trained models (zero-shot referring to not fine-tuned) on the test datasets. The scores
of the models with * are taken from the SciGen (Moosavi et al., 2021), except ROUGE-1 since it is not reported.

associated caption from scientific tables as <CAP>.
Figure 2 demonstrates an example of this parsing
operation. For LLaMA-2, we also see the benefit
of using a special token for instructions [INST].
We also share the results reported in (Moosavi
et al., 2021) over the SciGen dataset for T5 models
(Roberts et al., 2019) in our result tables denoted
with an asterisk (*) to benchmark our approach.

Intermediate task pre-training Our main goal
is interpreting scientific tables to incorporate the
learned representations into scientific language
models and achieve better results over scientific
literature tasks through a more comprehensive un-
derstanding of scholarly articles. As an initial ex-
periment, we analyze the capabilities of the chosen
LLMs on the SciGen test dataset and report results
in Table 1 as a baseline to improve upon during
intermediate task pre-training and fine-tuning. This
test dataset includes further two subsets focusing
on publications from Computational and Linguis-
tics (Test C&L in Table 2) fields and a wide range
of subfields of computer science (Test Other). The
qualitative examination of generated texts from pre-
trained language models (red-coloured zero-shot
example in Figure 3) concludes that the models
are not capable of understanding table structure
represented with tokens <R> and <C>.

To address this first challenge, we employ an
intermediate task pre-training approach, similarly

(Eisenschlos et al., 2020). We use WikiTQ and
SQA datasets to pre-train language models before
fine-tuning them on scientific articles in the SciGen
dataset. This intermediate step helps the language
models to (1) capture the semantic relationships in
the tables via our special tokens to represent them,
(2) reason over tables to be able to answer questions
requires arithmetic operations such as finding the
maximum, and minimum values or selecting an
answer from a specific cell.

Fine-tuning on scientific tables After the mod-
els gain the capability of understanding tables, we
move to the next step to obtain specialized language
models for scientific tables. At this stage, we utilize
the large training dataset under SciGen. We use the
provided “text” for each table as a reference and
we expect the fine-tuned language model to pro-
duce similar text for a given table for the prompt of
“Explain the given table”. Further implementation
details are given in Appendix A. Figure 1 depicts
the end-to-end training methodology explained in
this section.

Evaluation metrics Following the evaluations
in previous work on SciGen (Moosavi et al., 2021),
we use a subset of their metrics in our evaluation
such as METEOR (Denkowski and Lavie, 2014),
and BertScore (BertS) (Zhang et al., 2019). Con-
sidering our generations for scientific tables are
expected to be similar to the reference text, we
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Setting Model METEOR ROUGE-1 BertS

Test (C&L)
SciGen-Large T5-base* 0.13(+0.11) n/a 0.79(+0.06)

T5-large* 0.16(+0.12) n/a 0.81(+0.07)
FlanT5-small 0.04(-0.02) 0.05(-0.04) 0.82(+0.03)
FlanT5-base 0.03(-0.01) 0.07(+0.01) 0.82(+0.08)
FlanT5-large 0.08(-0.02) 0.14(+0.02) 0.79
FlanT5-xl 0.14(+0.06) 0.23(+0.13) 0.85(+0.07)
LLaMA2-7B-chat-hf 0.15(+0.07) 0.17(+0.10) 0.78(+0.08)

WikiTQ FlanT5-xl 0.08 0.12(+0.02) 0.81(+0.03)
WikiTQ + SQA FlanT5-xl 0.08 0.10 0.79(+0.01)
WikiTQ + SciGen FlanT5-xl 0.14(+0.06) 0.23(+0.13) 0.85(+0.07)
WikiTQ + SQA + SciGen FlanT5-xl 0.15(+0.07) 0.24(+0.14) 0.85(+0.07)

Test (Other)
SciGen-Large T5-base* 0.13(+0.10) n/a 0.79(+0.05)

T5-large* 0.16(+0.11) n/a 0.81(+0.06)
FlanT5-small 0.03(-0.03) 0.04(-0.02) 0.82(+0.03)
FlanT5-base 0.03(-0.02) 0.07 0.82(+0.08)
FlanT5-large 0.07(-0.04) 0.12 0.77(-0.02)
FlanT5-xl 0.13(+0.05) 0.23(+0.14) 0.85(+0.07)
LLaMA2-7B-chat-hf 0.15(+0.07) 0.17(+0.10) 0.78(+0.08)

WikiTQ FlanT5-xl 0.07(-0.01) 0.10(+0.01) 0.81(+0.03)
WikiTQ + SQA FlanT5-xl 0.08 0.09 0.79(+0.01)
WikiTQ + SciGen FlanT5-xl 0.13(+0.05) 0.23(+0.14) 0.85(+0.07)
WikiTQ + SQA + SciGen FlanT5-xl 0.14(+0.06) 0.23(+0.14) 0.85(+0.07)

Table 2: The change in the scores compared to before applying the corresponding settings for each model is given
in the parenthesis. We obtain the best results after applying intermediate task pre-training on WikiTQ and SQA
to improve the reasoning capability of the model and subsequent fine-tuning on SciGen to adapt scientific table
understanding.

also add the ROUGE (Lin, 2004) score into our
evaluation metrics set.

4 Understanding Scientific Tables

4.1 Zero-shot Evaluation

We share the evaluation of models in zero-shot
task (without fine-tuning or intermediate task pre-
training) results in Table 1. These results serve
as a baseline for the comparison in Table 2. We
can see that while LLaMA-2 is the largest model
(with 7B parameters) in the table, the ROUGE
and BERTScore of this model are lower than the
FlanT5-large (0.78B) and FlanT5-xl (3B). Con-
sidering the increasing computational demand in
training associated with larger model sizes, we
chose to use FlanT5-xl in our detailed experiments
under different settings. It is worth noting that,
the fine-tuning of SciGen dataset results in Ta-
ble 2 demonstrates substantial improvement for

LLaMA-2. This indicates that LLaMA-2 could also
be adapted to scientific tables, although not with
the same capacity as encoder-decoder architecture-
based models.

The zero-shot evaluation results for TableLlama
Zhang et al. (2023b) further validate the importance
of adaptation to the scientific domain since being
trained on a large training dataset and a variety of
tasks, its performance on SciGen is still close to
other language models which are not trained on
table specific tasks.

4.2 Quantitative results

In Table 2, we report the scores obtained in each
setting and model. When we compare the scores
by model size, we can see that the largest model
of FlanT5 family (Chung et al., 2022), FlanT5-xl
(3B parameters) achieves the best scores on both
test datasets introduced in (Moosavi et al., 2021).
The scores of METEOR, ROUGE-1 and BertS also
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Figure 3: Generations from different models for the sample table. The original caption of the table is “The Mean and
Std of Malytics and the baselines for Dex Share Dataset”. We find the green-coloured generation of our proposed
approach (WikiTQ+SQA+SciGen) is a more descriptive and helpful summary for literature understanding.

show an increasing trend by model size.

Considering the FlanT5-xl is the most promi-
nent model in our benchmarking set, we conduct
the intermediate task pre-training step using differ-
ent datasets with this model. During the interme-
diate task pre-training, we use WikiTQ and SQA
datasets introduced in Section 3.1. The largest
increase in the scores happens when we use the
SciGen dataset. It is an expected result since this
dataset focuses on scientific tables and has a struc-
ture similar to the test datasets. We also see the
benefit of WikiTQ in intermediate task pre-training
with the increase in scores. Interestingly, when we
move to the intermediate task pre-training on SQA
after WikiTQ, the scores do not improve. We hy-
pothesize that the difference between the structure
of scientific tables and table QA tasks becomes
more pronounced after two subsequent pre-training
on table QA datasets without fine-tuning on sci-
entific tables. As a final step of our training, we
fine-tune the model, which is trained on both Wik-
iTQ and SQA previously, on scientific tables which
achieves the highest scores in our comparison of
different settings. Consequently, our experiments
demonstrate the essential advantage of leveraging
intermediate task pre-training on table QA datasets,
substantially improving LLMs’ understanding and
analysis of scientific tables.

4.3 Qualitative results
We share examples generated under different set-
tings in Figure 3 for a sample table in the Test
(Other) dataset, taken from (Yousefi-Azar et al.,
2018). The table structure is encoded in the model
input by using the tokens mentioned in Section 3.2.
The dataset includes a reference text that assists
us in quantifying the quality of our generations.
The colourful texts in Figure 3 are the generations
of the models. The red-coloured text is generated
by FlanT5-xl without applying any intermediate
task pre-training or fine-tuning. The generated text
is non-sensible and indicates the model needs to
adapt our table structure to understand the given
information and produce a coherent text.

The generation of SciGen further demonstrates
our motivation for intermediate task pre-training.
Even though the generation is relatively high qual-
ity compared to the zero setting and factually cor-
rect for the given table sample, it is too generic
and it is hard to extract tangible information using
this generation. Thus, we find this kind of gener-
ation is not helpful for scientific literature under-
standing tasks. Comparing the SciGen generation,
WikiTQ+SciGen output seems to contain more con-
crete information, however, some of the generated
information is not factually correct when checking
the table. Finally, the green-coloured generation
is produced by the model pre-trained on WikiTQ
and SQA, and fine-tuned on SciGen. We see the
improvement in the generation quality as the output
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Setting Data MSE F1-score

Zero Title + Abstract + Introduction + Table captions 6.54 0.14
Title + Abstract + Introduction + Table representations 5.60 0.17

SciGen Title + Abstract + Introduction + Table captions 3.02 0.24
Title + Abstract + Introduction + Table representations 2.63 0.30

WikiTQ Title + Abstract + Introduction + Table captions 5.49 0.23
Title + Abstract + Introduction + Table representations 5.21 0.23

WikiTQ+SciGen Title + Abstract + Introduction + Table captions 3.11 0.16
Title + Abstract + Introduction + Table representations 6.05 0.24

WikiTQ+SQA+SciGen Title + Abstract + Introduction + Table captions 2.61 0.28
Title + Abstract + Introduction + Table representations 2.30 0.38

Table 3: Peer-review score prediction results using FlanT5-xl under different training settings. The model is
evaluated on a subset of the PeerRead dataset, with embeddings generated from the title, abstract, introduction, and
table captions or representations. The best results are obtained when the model is pre-trained on the WikiTQ and
SQA datasets, followed by fine-tuning on the SciGen dataset (WikiTQ+SQA+SciGen setting). This demonstrates
the promising potential of improved table understanding for scholarly document-based tasks.

is more concise, factually correct, and closer to the
given reference. This conclusion aligns with our
quantitative analysis findings in Section 4.2.

5 Peer Review Score Prediction

5.1 Experiments

To demonstrate the potential benefit of learning
representations from tabular data in scientific ar-
ticles, we incorporate tables into the peer-review
score prediction task. We use the intersection of
PeerRead (Kang et al., 2018) and SciGen (Moosavi
et al., 2021) datasets, 55 publications across ICLR
2017, ACL 2017, and CoNLL 2016 as source data.
Utilizing the entire content of the publications for
peer-review prediction is impractical due to the
context window length limitation of language mod-
els. Thus, previous approaches develop peer review
predictive models using metadata, abstract and in-
troduction sections of the paper (Singh et al., 2023).

In this section, we conduct experiments with ta-
ble captions or representations generated by the
models in addition to the title, abstract, and intro-
duction to evaluate how table comprehension influ-
ences the accuracy of peer review score predictions,
aligning them more closely with human reviewers’
evaluations. We employ FlanT5-xl, identified in
Section 4 as the most effective model, to create
summaries of the tables. The summaries’ embed-
dings serve as input for the prediction model, and
we use XGBoost (Chen and Guestrin, 2016) for
regression and classification. We then predict rec-

ommendation scores using embeddings from the
FlanT5-xl model, which is fine-tuned under dif-
ferent settings. We evaluate our predictions using
Mean Squared Error (MSE) and F1-score, defined
as follows:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (1)

where n is the number of samples, yi is the true
peer-review score, and ŷi is the predicted value.

F1-score = 2 · precision · recall
precision + recall

(2)

where precision = TP
TP+FP and recall = TP

TP+FN ,
with TP being true positives, FP being false posi-
tives, and FN being false negatives. We share our
findings in Table 3.

5.2 Results
The MSE and F1-scores in Table 3 show improve-
ments in all settings when the table representations
are used in peer-review prediction, except Wik-
iTQ+SciGen. This finding validates our hypoth-
esis that scientific language models could benefit
from learning tabular data to fully interpret scien-
tific literature. We only see a drop in the MSE
score of WikiTQ+SciGen generations. We sus-
pect the model in this setting hallucinates more
as in the given sample Figure 3 and it misleads
the XGBoost algorithm in peer review score pre-
diction. Lastly, we obtain the lowest MSE and
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highest F1-score using the embeddings from the
WikiTQ+SQA+SciGen setting. This conclusion
reinforces the findings in Section 4 and shows the
effectiveness of our proposed approach.

6 Conclusions

Scientific language model development and docu-
ment comprehension have accelerated progress in
recent years parallel to advancements in large lan-
guage models. However, their ability to effectively
understand and reason over tabular data in scien-
tific literature has remained under-explored. In this
work, we addressed this issue by proposing an ap-
proach that combines intermediate task pre-training
on table question-answering datasets with model
adaptation to comprehend tables in computer sci-
ence literature.

Our experiments demonstrated that by under-
standing tables better, LLMs can achieve higher
performance in scientific literature understanding
tasks. We validated this claim through a case
study on peer-review score prediction, where our
best-performing model, pre-trained on WikiTQ
and SQA datasets and fine-tuned on the SciGen
dataset, outperformed other settings in terms of
mean squared error and F1-score. These results
emphasize the importance of integrating tabular
data into the training process of scientific language
models.

Moreover, our qualitative analysis showed that
the proposed approach generates more informa-
tive and contextually relevant summaries of scien-
tific tables compared to generalist table models and
models without intermediate task pre-training or
fine-tuning. This finding suggests that our method
can enhance the comprehension of scientific liter-
ature by providing more accurate and descriptive
table representations. Future research directions
could include extending our approach to other sci-
entific domains, exploring the integration of table
representations with other elements of scientific
papers (e.g., figures and equations), and develop-
ing more sophisticated table encoding techniques.
Additionally, incorporating larger and more diverse
datasets for pre-training and fine-tuning could fur-
ther improve the performance of LLMs on scien-
tific literature tasks.
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A Implementation Details

We use cross-entropy as a loss function, Adam
(Kingma and Ba, 2015) as an optimizer with a fixed
learning rate of 1e-6 in all iterations of intermedi-
ate task pre-training and fine-tuning. We experi-
ment with larger learning rates but the best results
are obtained with 1e-6. We train our models with
an early-stopping approach with a maximum of 5
epochs using an A100 GPU for FlanT5 variants and
3 A100 GPUs for LLaMA-2-chat-hf. While tok-
enizing the tables, the maximum length is chosen as
512. The batch size for FlanT5-xl is 2 and LLaMA-
2 is 1. Our longest training takes 30 hours for
the full pipeline with the WikiTQ+SQA+SciGen
setting for FlanT5-xl.

B Additional Examples

We share more examples of different samples from
the test dataset in this section.
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Figure 4: The original caption of the table is “Randomized beam search. All listed models use gradient weight
qMML and Tokens to represent execution history.”. Taken from (Guu et al., 2017).

Figure 5: The original caption of the table is “Test errors (%) and computational time of the proposed method
(AdaptiveNet) and the Bayesian optimization (BO) with different budgets in the experiment of adaptation of
stochastic network. The mean values over 30 trials are reported in the proposed method, and the value in parentheses
denotes the standard deviation. For the Bayesian optimization, the result of a single run is reported.”. Taken from
(Shirakawa et al., 2018).
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Figure 6: The original caption of the table is “The performances of the IM2LATEX-100K Bi-LSTM model. We
discover that the look-ahead improves the model from the greedy search method—noted that LA is more directly
comparable to the greedy search because of their same beam size. We also show the scores of the beam search for
the reference”. Taken from (Wang et al., 2020).
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