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Abstract

Knowing whether scientific claims are sup-
ported by evidence is fundamental to scholarly
communication and evidence-based decision-
making. We present our approach to
Task 1 of the Context24 Shared Task—
Contextualizing Scientific Figures and Tables
(SDP@ACL2024), which focuses on identify-
ing multimodal evidence from scientific publi-
cations that support claims. We finetune CLIP,
a state-of-the-art model for image-text similar-
ity tasks, to identify and rank figures and tables
in papers that substantiate specific claims. Our
methods focus on text and image preprocess-
ing techniques and augmenting the organizer-
provided training data with labeled examples
from the SciMMIR and MedICaT datasets. Our
best-performing model achieved NDCG@5
and NDCG@10 values of 0.26 and 0.30, re-
spectively, on the Context24 test split. Our
findings underscore the effectiveness of data
augmentation and preprocessing in improving
the model’s ability in evidence matching.

1 Introduction

Scientific claims, essential for communicating find-
ings in literature reviews, research problem for-
mulation, and interpreting conflicting data, require
careful contextualization and verification with sup-
porting empirical evidence and methodological de-
tails. Figures and tables in papers presenting key
results, measures, and sample characteristics are
critical for understanding and validating claims.
However, retrieving such contextual information
from scientific papers is challenging and time-
consuming, particularly when researchers and prac-
titioners encounter claims without direct access to
the source materials.

Recent advancements in multimodal AI models,
which excel at image-text similarity tasks, present
an opportunity to automate the retrieval and contex-
tualization of evidence. However, their application

for evidence identification in scientific literature re-
mains underexplored. Existing research primarily
focuses on text summarization (Zhu et al., 2021;
Li et al., 2020; Rafi and Das, 2023), entity recogni-
tion (Liu et al., 2023; Chen and Feng, 2023), and
information retrieval (Jin et al., 2023; Imhof and
Braschler, 2018), with limited attention to integrat-
ing visual evidence from figures and tables.

This paper presents our approach to Task 1 of
the Context24 Shared Task,1 focusing on evidence
identification for scientific claims. The task in-
volves predicting a ranked list of figures or ta-
bles from a relevant research paper that provides
supporting evidence for a given scientific claim.
We leverage the Contrastive Language–Image Pre-
training (CLIP) model’s image-text similarity capa-
bilities, augment training data with diverse datasets
and augmentation techniques, and employ text-
image pre-processing methods to retrieve and rank
relevant figures and tables from scientific papers.

The contributions of our work are as follows:
• We introduce a comprehensive dataset that com-

bines augmented training data from the shared
task with additional data from SciMMIR (Wu
et al., 2024) and MedICaT (Subramanian et al.,
2020), significantly expanding the scope and di-
versity of the training samples (§3).

• We finetune the CLIP model on this combined
dataset and demonstrate the impact of more train-
ing data, as well as text and image pre-processing
techniques on enhancing the model’s relevancy
matching capabilities (§4; §5).

2 Related Work

Scientific Evidence Identification Early work
on scientific evidence identification focused on
text analysis and argument mining techniques,
like those of Guo et al. (2011), who investigated
weakly-supervised approaches for detecting argu-

1https://sdproc.org/2024/sharedtasks.html#context24
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ment zones in scientific abstracts using features
such as location, word bi-grams, and verb cues.
Building on this, Houngbo and Mercer (2014) fur-
ther explored the identification of rhetorical struc-
tures in biomedical articles; their analysis of the
IMRaD structure (Introduction, Methods, Results,
and Discussion) clarifies how different sections of
a scientific paper contribute to the overall argumen-
tative flow. Later, Faiz and Mercer (2014) devel-
oped techniques to extract “higher order relations”
between biomedical entities, useful in the identifi-
cation of causal links essential for evidence-based
conclusions.

Neural models and machine learning further
transformed capabilities in this domain. Tech-
niques such as Bi-LSTM (Lauscher et al., 2018a,b)
and BiLSTM-CRF (Li et al., 2021b; Achakulvisut
et al., 2019) were adapted to parse and analyze argu-
mentative structures in scientific texts for sentence-
level classification and multi-task learning. These
works enhanced the ability to distinguish between
different types of evidence based on linguistic cues
and discourse patterns. Further, Pinto et al. (2019)
introduced learning-to-rank techniques combined
with metadata features, such as journal impact fac-
tor and citation metrics, to optimize the retrieval
process. Wadden et al. (2020) introduced the task
of scientific claim verification, to select abstracts
from research literature that either support or refute
a given scientific claim; the authors introduced the
SciFact dataset and baseline models, demonstrat-
ing that domain adaptation techniques significantly
improve performance compared to models trained
on Wikipedia or political news. The authors later
extended the SciFact dataset into the open domain
by integrating retrieval in the data curation process
(Wadden et al., 2022).

Image-Text Matching Recent advancements in
vision-language pretraining (VLP) have signifi-
cantly reshaped the landscape of evidence iden-
tification. VLP aims to learn universal and trans-
ferable features from images and text, applicable
across image-text retrieval tasks (Tan and Bansal,
2019; Zhang et al., 2020; Chen et al., 2019; Zhang
et al., 2021; Kim et al., 2021; Jia et al., 2021; Li
et al., 2021a; Wang et al., 2021; Li et al., 2022).
Multimodal models like CLIP (Radford et al.,
2021), BLIP-2 (Li et al., 2023), and Stable Dif-
fusion (Rombach et al., 2021) that have undergone
significant multimodal pretraining, have the poten-
tial to improve the alignment of text-based claims

with image-based evidence.
Our work builds on these advancements by

fine-tuning a model based on the CLIP architec-
ture (Huang et al., 2023) on large-scale scientific
datasets with an image-text matching objective. Ex-
tending beyond the typical focus on biomedical or
computer science domains in prior works (Wang
et al., 2022; Lin et al., 2023; Eslami et al., 2023),
our approach covers a broader range of scientific
disciplines. We leverage these image-text embed-
dings to retrieve and match scientific claims with
their supporting evidence.

3 Datasets

This section describes the Context24 dataset (§3.1)
and outlines our strategies for data enrichment
(§3.2) and external data augmentation (§3.3).

3.1 Context24 Dataset

The Context24 dataset2 comprises 474 scientific
claims used in lab notes and discussions for syn-
thesis and research planning, across domains of
biology, computer science, and the social sciences.
These claims are accompanied by “gold” annota-
tions identifying figures and tables in the full text
of research papers that provide key supporting ev-
idence. We randomly sample 156 claims as the
validation set, representing 34% of the dataset.

3.2 Data Enrichment

We enrich the training dataset with additional con-
text. We leverage GPT-4 (OpenAI, 2023) to ex-
tract sub-captions and references for each of the
associated figures and tables to provide a deeper
contextual understanding for each claim.

Data cleaning Before enrichment, we perform
the following steps:
• We eliminate unnecessary spaces, punctuation,

and non-standard characters that could interfere
with text processing;

• We convert all claims to lowercase to maintain
consistency across the dataset, and correct for-
matting inconsistencies that could affect subse-
quent text parsing;

• We address common textual errors, such as ex-
cessive repetition of characters or patterns, non-
standard characters (e.g., control characters or
invalid Unicode), and executable commands,

2Training dataset: https://github.com/oasisresearchlab/cont-
ext24/blob/main/task1-train-dev-2024-04-25-update.json
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which throw errors when input into the GPT-4
API, by removing or heuristically fixing them.

Sub-caption Extraction Using GPT-4, we parse
figure captions to extract descriptions for each sub-
figure. This extraction is guided by the prompt:
“This is a caption for a figure consisting of multiple
sub-figures. Extract image descriptions for all sub-
figures.” Each extracted sub-caption is aligned with
its corresponding sub-figure.

Reference Extraction Similarly, we extract tex-
tual references to figures and tables from the full
texts of papers using the prompt: “This is the full
text of a scientific paper. Extract only the relevant
details mentioned regarding the figures and tables.”
These references were mapped to the correspond-
ing claims and captions to strengthen the linkage
between textual claims and the paper contexts.

Verification of GPT-4 Responses We manually
review a random sample of extracted sub-captions
and references (N=20) by comparing them with
the original text (captions and full texts) to identify
hallucinations or inaccuracies.

We found that GPT-4 accurately extracted sub-
captions and references in 75% of cases (N=15).
However, hallucinations occurred in 10% of cases
(N=2), where GPT-4 fabricated content not present
in the original text. The remaining 15% (N=3)
contained minor inaccuracies such as incorrect sub-
figure associations or slight misinterpretations of
the text. As a result, we implement a series of
post-processing steps:

• We filter out responses containing phrases like
“Sorry...” or similar, as these often indicate GPT-
4’s inability to provide meaningful content;

• We discard responses with less than three words
to ensure sufficient descriptive content;

• We compare extracted sub-captions and refer-
ences against standard mention formats in sci-
entific papers, e.g., “In Figure X, we...”, to flag
potential extraction errors. By cross-referencing
GPT-4’s outputs with these patterns, we discard
text that deviates from our expectations.

This hybrid approach of automated extraction fol-
lowed by heuristic curation ensures a higher degree
of accuracy and reliability in the enrichment data.
We refer to the resulting data with sub-captions and
references as the augmented training data (ATD).

Dataset Size

Context24 Training Data 456
Context24 References Data 609
Context24 Captions Data 438
Context24 Augmented Cleaned Data 1466
SciMMIR 530975
MedICaT 2118

Total (Combined) 534559

Table 1: Dataset Statistics

3.3 External Data Augmentation
To further augment and diversify our training data,
we integrate two external datasets: SciMMIR (Wu
et al., 2024) and MedICAT (Subramanian et al.,
2020). Statistics for the augmented dataset are
provided in Table 1.

SciMMIR Dataset SciMMIR (Wu et al., 2024)
is a large-scale collection of scientific image-text
pairs extracted from papers published on arXiv be-
tween May-October 2023. This dataset comprises
approximately 530K image-text pairs, categorized
into training (N=498K), validation (N=16.4K), and
test splits (N=16.3K).

MedICaT Dataset MedICaT (Subramanian
et al., 2020) is a collection of 217K medical images
and their captions and references extracted from
131K open-access biomedical articles in PubMed
Central. The dataset includes inline references for
74% of figures, and manually annotated subfigures
and subcaptions for a subset of 2118 figures. For
this study, we use only the subfigure-subcaption
pairs in MedICaT for training.

4 Experiments

We detail the model selection and training process,
and experiments to assess the impact of training
data variation and preprocessing techniques.

4.1 Baseline Model
We select OpenAI’s CLIP model, specifically the
clip-vit-base-patch32 variant from Hugging
Face,3 as our base image and text encoder. CLIP
utilizes a vision transformer architecture (ViT-
B/32) as an image encoder and a masked self-
attention transformer as a text encoder. These en-
coders are trained to maximize the similarity of (im-
age, text) pairs via contrastive loss, making them a
suitable choice for this multimodal retrieval task.

3HuggingFace CLIP base model: https://huggingface.co/
openai/clip-vit-base-patch32
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4.2 Training Details

We train the CLIP model by minimizing the con-
trastive loss between the embeddings for images
and corresponding text (claims, captions, and refer-
ences) on the Context24 and augmented datasets.
We finetune all models on Nvidia A100 GPUs, with
100 epochs and early stopping. We conduct hyper-
parameter tuning to select learning rates (0.00001
to 0.001), batch sizes (16, 32, and 64), and the mar-
gin parameter in the contrastive loss function. The
final training was over 10 epochs, with a batch size
of 32, a learning rate of 0.0001, and a decay rate of
0.01. We chose the Adam optimizer for its adap-
tive learning rate capabilities. Additionally, we
employed 5-fold cross-validation for better model
robustness and generalizability.

4.3 Variation in Training Data

We assess the impact of different dataset config-
urations on the performance of the CLIP model.
Initially, we train the model using only the Con-
text24 training dataset (TD) to establish baseline
performance. To evaluate the effects of data aug-
mentation, we compare three augmented datasets,
one enriched with additional text snippets such
as sub-captions and references (ATD), adding the
SciMMIR dataset, and adding the SciMMIR and
MedICaT datasets.

4.4 Variation in Preprocessing Techniques

We additionally explore how preprocessing tech-
niques affect the CLIP model’s performance.
We apply text transformation techniques such as
Named Entity Recognition (NER) and semantic
role labeling (SRL) to enhance the model’s under-
standing of grammatical structures and relation-
ships between entities within the text. Specifi-
cally, we tag named entities and include SRL labels
alongside the original tokens in the input, providing
richer context and improving the text representation
for the model. Additionally, we implement various
image data augmentation techniques—including
random cropping, rotation, resizing, and color
jittering—during training to improve the model’s
robustness to visual variations.

5 Results

Following the Context24 shared task, we report
Normalized Discounted Cumulative Gain (NDCG)
at 5 and 10 to assess the ranking of the retrieved fig-
ures and tables. Additionally, we report precision

and recall for the top 5 and 10 retrieved images
(i.e., P@5, R@5, P@10, and R@10).

5.1 Results on Validation Split
Table 2 presents the performance differences
achieved through augmenting the training dataset.
No preprocessing is conducted on any of these
model variants. Notably, the addition of data shows
steady improvements in NDCG@5 (0.19 to 0.27),
NDCG@10 (0.21 to 0.29), and P/R@k. P@5 in-
creased from 0.49 with initial training data to 0.76
with the combined dataset (ATD + SciMMIR +
MedICaT). Similarly, R@5 showed substantial im-
provement, from 0.46 to 0.75.

Table 3 highlights the impact of preprocessing
on model performance. Using the model finetuned
on the combined dataset without any preprocessing
techniques as a baseline, the addition of image-text
preprocessing, while leading to minimal gains in
NDCG, led to substantial gains in P/R@k: P@5
increased to 0.86 and R@5 to 0.82.

The results from our experiments on the valida-
tion dataset underscore the significance of dataset
enhancement and image-text preprocessing on the
performance of image-text similarity models like
CLIP in identifying scientific evidence.

5.2 Results on Test Split
We apply our finetuned CLIP model, trained with
the combined dataset and enhanced with image-text
pre-processing techniques, to a test set comprising
111 scientific claims. Before inference, we perform
data cleaning and context enrichment, as detailed
in Section 3.2. The model computes similarity
scores between the textual claims and the asso-
ciated visual evidence (figures or tables). These
scores were used to rank the evidence, and final
rankings were submitted to the eval.ai platform.4

Our team secured third place on the leaderboard,
with NDCG@5 of 0.26 and NDCG@10 of 0.30 on
the test split.

6 Future Work

Our current approach leverages the entire MedI-
CaT subcaption subset and SciMMIR datasets for
training the CLIP model. However, we can poten-
tially improve performance by selecting subsets
of these datasets that more closely align with the
scientific domains or types of claims in the Con-
text24 dataset. This approach might enhance the

4Evaluation platform for Context24: https://eval.ai/web/
challenges/challenge-page/2306/overview
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Training Data Used NDCG@5 NDCG@10 P@5 P@10 R@5 R@10

Training Data (TD) 0.19 0.21 0.49 0.48 0.46 0.46
Augmented TD (ATD) 0.23 0.26 0.56 0.67 0.54 0.61
ATD + MedICAT 0.24 0.27 0.58 0.67 0.55 0.61
ATD + SciMMIR 0.26 0.28 0.75 0.73 0.74 0.65
ATD + SciMMIR + MedICaT 0.27 0.29 0.76 0.73 0.75 0.65

Table 2: Performance metrics for CLIP model finetuned with different datasets (without pre-processing)

Preprocessing Techniques NDCG@5 NDCG@10 P@5 P@10 R@5 R@10

No pre-processing 0.27 0.29 0.76 0.73 0.75 0.65
Image pre-processing 0.27 0.31 0.77 0.75 0.76 0.71
Text-Image pre-processing 0.28 0.32 0.86 0.81 0.82 0.77

Table 3: Performance metrics for CLIP model finetuned on the combined dataset (ATD + SciMMIR + MedICaT)
with different pre-processing techniques

relevance and quality of the training data to the
task. In future work, we will explore using text and
image embedding similarity methods to filter the
augmentation data by domain relevance.

We also acknowledge the challenge presented by
complex figures with multiple sub-figures, which
are not fully described in the captions. While our
method of using GPT-4 to extract corresponding
subcaptions was somewhat effective, the observed
hallucinations and inaccuracies highlight the need
for continuous refinement and validation of au-
tomated methods. To address this, future work
might explore alternative models or techniques for
subcaption-subfigure alignment.

Currently, we use references and captions from
figures and tables as additional image-text pairs
to train the CLIP model. Another potential en-
hancement involves augmenting the claims with
this contextual information before computing simi-
larity scores with the images. This method could
provide a more holistic understanding of the claim
and its context by incorporating essential details di-
rectly alongside the claim text in claim verification.

7 Conclusion

In this paper, we presented our approach to Task
1 of the Context24 Shared Task, which focuses
on identifying multimodal evidence for scientific
claims. We enhanced our training data by inte-
grating sub-captions and inline references as well
as additional data from SciMMIR and MedICaT.
We finetuned the CLIP model on this enriched
dataset, applying image-text preprocessing and aug-
mentation techniques to effectively align scientific
claims with their corresponding figures and tables.
We secured third place on the leaderboard, with

NDCG@5 and NDCG@10 scores of 0.26 and 0.30,
respectively on the test dataset. Our findings under-
score the significance of expanding training data
and employing preprocessing techniques on the
model’s performance.
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