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Abstract

To appropriately interpret and use scientific
claims for sensemaking and decision-making,
it is critical to contextualize them, not just with
textual evidence that the claim was in fact as-
serted, but also with key supporting empiri-
cal evidence, such as a figure that describes
a key result, and methodological details, such
as the methods of data collection. Retrieving
this contextual information when encounter-
ing claims in isolation, away from their source
papers, is difficult and time-consuming for hu-
mans. Scholarly document processing models
could help to contextualize scientific claims,
but there is a lack of datasets designed for this
task. Thus, we contribute a dataset of 585 scien-
tific claims with gold annotations for support-
ing figures and tables, and gold text snippets of
methodological details, that ground the key re-
sults behind each claim and run the Context24
shared task to encourage model development
for this task. This report describes details of
our dataset construction process, summarizes
results from the shared task conducted at the
4th Workshop on Scholarly Document Process-
ing (SDP), and discusses future research direc-
tions in this space. To support further research,
we also publicly release the dataset on Hug-
gingFace.

1 Introduction

People read and use scientific claims both within
the scientific process (e.g., in literature reviews,
problem formulation, making sense of conflict-
ing data) and outside of science (e.g., evidence-
informed deliberation). To appropriately interpret,
appraise, and ultimately use claims for sensemak-
ing and decision-making, it is critical to contextual-
ize claims with key supporting empirical evidence
(e.g., figures presenting key results) and method-
ological details (e.g., measures, sample).
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The goal of contextualizing claims with empir-
ical evidence differs slightly from other evidence
identification tasks, in that it is aimed at retrieving
very targeted (down to the sub-figure) multimodal
evidence (i.e., figures or tables grounding a scien-
tific claim), rather than simply a set of text snip-
pets, as is common in claim verification tasks and
datasets (Vladika and Matthes, 2023).

This distinction between empirical — vs. gen-
eral textual — evidence for a claim is crucial for
sensemaking and decision-making: knowing that
a scientific claim has been asserted in a paper is
significantly different from knowing that a scien-
tific claim is associated with empirical evidence
(or not) that can be further assessed. Without a
clear distinction between these forms of evidence,
downstream sensemaking and synthesis may be
compromised by the spread of “ghost claims” that
lack empirical evidence but are asserted as if they
do have evidential weight. In a striking illustration
of this, (Harzing, 1995) found that a widely circu-
lated claim about high failure rates for expatriates
who are sent abroad to work was based on mis-
quotations from three articles, only one of which
contained solid empirical evidence that was in fact
contrary to the focal claim. Therefore, despite the
increased difficulty, linking claims to empirical ev-
idence is crucial for the scientific process.

However, scientific claims are often encountered
and used in settings far removed from the source
materials and data, such as in brief citation state-
ments in research papers, or conversations in dis-
cussion threads or on social media. In such cases,
retrieving needed contextual information in the
moment can be difficult and time-consuming for
humans. Scholarly document processing models
trained for scientific claim verification and fact
checking (Vladika and Matthes, 2023), figure cap-
tioning (Hsu et al., 2021), and data extraction for
systematic reviews (Schmidt et al., 2023) could
potentially assist with the task of contextualizing
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scientific claims in these settings. However, the
community currently lacks datasets specifically for-
mulated for this task.

We bridge this gap by contributing a dataset of
585 scientific claims actually in use in lab notes
and discussions for synthesis and research planning,
across the domains of biology, computer science,
and the social sciences. For each claim, the dataset
includes gold annotations for figures/tables that
ground the key empirical evidence for the claim
(Track 1); for a subset of these claims, the dataset
also includes gold examples of text snippets that
describe the key methodological details that ground
each claim (Track 2). As part of the 4th Workshop
on Scholarly Document Processing (SDP) at ACL
2024, we ran a shared task with this dataset, with
official submissions from a total of 6 teams for
Track 1, and 2 teams for Track 2. In this report,
we describe the details of the dataset construction,
summarize the results from the shared task, and
discuss implications and future research directions
in this space. To support further research on this
task, our full dataset (including gold test data) is
available on HuggingFace 1.

2 Related Work

The task of contextualizing scientific claims can be
formulated similarly to tasks like claim verification
and fact checking. Additionally, modeling tech-
niques used for this task have parallels in work on
figure captioning and data extraction from scientific
literature.

2.1 Claim Verification

Claim verification is typically formulated as the
task of predicting support/refute relationships be-
tween claims and snippets of source texts, such
as research abstracts (Vladika and Matthes, 2023).
There are several datasets for scientific claim ver-
ification, but most widely used ones like SciFact
(Wadden et al., 2020), SciFact-Open (Wadden et al.,
2022), COVID-Fact (Saakyan et al., 2021), and
HealthVER (Sarrouti et al., 2021) focus on pairing
claims with textual evidence.

There are, however, a few more specific datasets
that focus on verifying scientific claims against fig-
ures or tables. For instance, MuLMS-Img (Tarsi
et al., 2024) includes 78 queries (and their corre-
sponding figures) over materials science figures,

1https://huggingface.co/datasets/joelchan/
contextualizing-scientific-claims

sourced from domain experts, while SCITAB (Lu
et al., 2023) includes 1.2k expert-annotated claims
associated with tables from a corpus of computer
science papers. Our work extends these datasets in
terms of size (7x more queries than MulMS-Img),
and breadth of scientific domains included (social
sciences, HCI, and cell biology vs. materials sci-
ence or computer science specifically).

2.2 Scientific Figure Captioning
There is a substantial body of work on figure cap-
tioning and alt-text generation, supported by many
figure captioning datasets, such as SciCap (Hsu
et al., 2021), SciOL (Tarsi et al., 2024), MedICaT
(Subramanian et al., 2020), PMC-OA (Lin et al.,
2023), and Multimodal ArXiv (Li et al., 2024).

The task of generating text describing a figure
can be viewed as the inverse of the task of re-
trieving a figure that matches a scientific claim,
thus these datasets and models built using them
can be leveraged to build better techniques for our
task. Some dataset, such as MedICaT (Subrama-
nian et al., 2020) and PMC-OA (Lin et al., 2023),
focus not just on overall figure captioning, but also
sub-figure and sub-caption alignment. Thus, to
the extent that these figures describe empirical ev-
idence, subsets from these datasets can be as ad-
ditional weak supervision for our task. However,
figure captioning datasets at present do not focus
solely on empirical evidence subsets, which can be
hard to filter. Another complication to using these
datasets directly for our task is that the quality and
descriptiveness of figure captions in scientific texts
can vary widely (Chintalapati et al., 2022).

2.3 Data Extraction from Scientific Literature
The subtask of retrieving methodological details
relevant to a claim is analogous to the task of
data extraction in systematic reviews, which has
a long history in biomedical informatics and NLP
(Schmidt et al., 2023). There are, however, lim-
ited public datasets for this task. EBM-NLP (Nye
et al., 2018) is the primary public dataset avail-
able for use: it consists of 5k medical abstracts
annotated with Population, Intervention (collapsed
with Comparator), and Outcome elements from
the PICO framework (Richardson et al., 1995),
which is widely used to structure systematic re-
views in evidence-based medicine, often focusing
specifically on randomized controlled trials (RCTs).
PubMed PICO (Jin and Szolovits, 2018) is a much
larger dataset with 24k RCT abstracts, but PIO
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annotations are automatically assigned based on
structured abstract section headings. There are also
smaller, disease-specific datasets with PICO anno-
tations (Hu et al., 2023), though these are not pub-
licly available, and datasets with more fine-grained
experimental findings annotated (Naik et al., 2024).
Beyond medical abstracts, some datasets focus on
information extraction and question answering over
other scientific domains like computer science (Jain
et al., 2020; Dasigi et al., 2021).

We extend this body of work by focusing on
scientific claims from a wider range of scientific
domains, and with a more specific focus on extract-
ing methodological details.

3 Shared Task Tracks

3.1 Track 1: Evidence Identification
Task formulation. Given a scientific claim c, and
a set of figures (F = {f1, ..., fn}) and tables (T =
{t1, ..., tn}) from the paper that contains the claim,
models must produce a ranking of all items in F∪T ,
based on whether they provide supporting evidence
for the claim c. Therefore, this task can be modeled
as an image-text retrieval task. Figure 1 shows
an example supporting figure for a claim in our
dataset.

Evaluation. We use standard retrieval metrics
to assess model performance — normalized dis-
counted cumulative gain (nDCG) at 5 and 10. An
issue that complicates relevance computation in
our case is that many figures are compound figures,
with one or more sub-figures providing supporting
evidence for a claim in place of the entire figure.
This was especially true for biology-related claims
in our dataset (see Table 2). For instance, in Fig-
ure 1, the claim is supported by sub-figure (C) but
a model might produce a ranking like Figure 1, Fig-
ure 1(C). In this case, the top-ranked prediction is
a parent of the gold figure, and could be consid-
ered partially correct. We tackle this by assigning
a partial relevance score of 0.5 to the top-ranked
figures/tables that were parent or sub-figures of a
gold figure/table.

3.2 Track 2: Grounding Context
Identification

Task formulation. Given a scientific claim c, and
the full-text of the research paper that contains the
claim, models must return a set of text snippets
S = {s1, ..., sn} that describe key methodological
details for the experiments that provide empirical

evidence supporting the claim. Therefore, this task
can be modeled as query-based extractive summa-
rization.

Evaluation. We use automated summarization
evaluation metrics to assess model performance
— ROUGE (Lin, 2004) and BERTScore (Zhang
et al., 2020). Specifically, predicted text snippets
are mapped to their best-match gold snippets based
on highest ROUGE/BERT scores, which are then
averaged to produce the final score.

4 Dataset Collection and Preprocessing

Our dataset curation process consists of three
stages: (i) claim construction, (ii) collecting an-
notations for evidence and grounding context iden-
tification, and (iii) sourcing supplementary data
(e.g., extracted figures/tables, paper full-texts, etc.)
to ease model development for participants.

4.1 Claim Construction

The claims used in this shared task were created in
the course of naturalistic synthesis work across a
range of real-world research contexts listed below:
• akamatsulab: Literature review and research

planning in a cell biology lab.
• megacoglab: Literature review and research

planning in a human-computer interaction lab.
• BIOL403: Synthesis activities in a microbiology

seminar.
• social-media: Focused interdisciplinary sys-

tematic review of effects of social media on po-
larization.

A total of 585 claims were created across all con-
texts, split into sets of 474 and 111 claims, sourced
from 229 and 46 unique research papers, for train-
ing and testing respectively. The mean number of
figures and tables in each paper was approximately
6 and 2, though with a considerable range (up to
24 and 18 figures per paper in train and test, and
19 and 14 tables in train and test).

4.2 Annotation Process

Track 1. The annotation process for track 1 re-
quires identifying key figures and tables that pro-
vide supporting evidence for a claim. These figures
and tables were captured as screenshots from pa-
per PDFs, alongside figure/table numbers, using a
note-taking tool called Roam Research.2 Because
all claims were created in the course of ongoing

2https://roamresearch.com/
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Figure 1: Example claim with figures/tables (Track 1) and methods snippets (Track 2) that contextualize the
empirical evidence behind the claim. Relevant figures are often subsets of compound figures, and methods snippets
are often distributed throughout source texts.

Dataset Domain(s) Train Test

akamatsulab Cell biology 213 51
BIOL403 Cell biology 60
social-media Social sciences (po-

litical science, eco-
nomics, HCI)

78

megacoglab Various (HCI, psy-
chology, economics,
public health)

123 60

Total 474 111

Table 1: Number and source of scientific claims for
training and test splits in Track 1.

synthesis work, all screenshots and labels were cap-
tured by researchers with relevant domain knowl-
edge. To further ensure accuracy, the first and third
authors, who are PIs of each research group (Chan
for social-media and megacoglab; Akamatsu for
akamatsulab and BIOL403) either personally cap-
tured the relevant screenshots and labels, or verified
screenshots and labels captured by students or re-
search assistants. Notes from Roam were exported
to markdown and figure/table labels were parsed
out using a Python script. The first author again
manually verified each figure label for accuracy.
These labels were collected for all 474 training
claims and 111 test claims. The breakdown of the

Dataset Figure Table Subfigure

Training split
akamatsulab 205 4 165
BIOL403 60 0 49
social-media 57 26 2
megacoglab 51 89 5

Test split
akamastulab 51 0 50
megacoglab 37 41 2

Table 2: Number of claims contextualized by figures,
tables, and/or subfigures, by dataset.

number of claims in training and test splits for track
1 across various research contexts is shown in Table
1. Also, the breakdown of type of context (figure,
table, and/or subfigure) is shown in Table 2). Note
that subfigures are very common n the biology-
focused subset of the data, while tables as context
are more common in the social-science/HCI subset
o the data.

Track 2. The annotation process for track 2 re-
quires identifying all methodological details for
experiments that support a claim. Since our claims
covered a range of disciplines and methodologies,
including experimental studies, biological compu-
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Dataset Domain(s) Dev Test

akamatsulab Cell biology 28 49
megacoglab Various (HCI, psy-

chology, economics,
public health)

14 60

Total 42 109

Table 3: Number and source of scientific claims for dev
and test splits in Track 2.

tational simulations, observational studies, and so
on, we conceptualized a generalized schema for
defining three aspects of methodological context
that are needed to interpret and appraise the empiri-
cal evidence for a claim (see Figure 1 for examples
from our data):
• What observable measures/data were collected

• How (with what methods, analyses, etc.) from

• Who(m) (which participants, what dataset, what
population, etc.)
This annotation schema was primarily shaped by

the expressed information needs of the researchers
who wrote and use the claims in this dataset, and
informed in part by other schemas for synthesis,
such as the PICO framework for medical system-
atic reviews (Richardson et al., 1995), which also
focus on the who (population), how (intervention
and comparator), and what (outcome). While this
schema enabled us to reliably identify all method-
ological details researchers needed across the range
of disciplines and methodologies in our data, in
practice it was often difficult to cleanly distinguish
between some of the schema categories. For in-
stance, in observational studies, data collection
and preparation details could either be classified as
what data were used in analysis or how data was ob-
tained; this separation between data collection and
analysis is somewhat cleaner in experimental stud-
ies, where there are substantially more details on
procedure, materials, and design. Thus, we did not
include snippet categorization into who/how/what,
and only assessed model performance on snippet
identification. However, we described our annota-
tion schema to participants to clarify task require-
ments and provide additional motivation for mod-
eling approaches.

All methodological details were captured as text
quotes from PDFs copied into the Roam Research
note-taking tool. As with figure/table snippets, the
first and third authors either personally captured

relevant text quotes, or verified quotes captured by
students or research assistants. Due to the high la-
bor cost of obtaining text quotes for track 2, which
requires exhaustive annotation over paper full-texts,
we did not annotate the entire training set of claims.
Instead, we collected and released annotations for
a small development set of 42 claims (out of 474),
and posed this as a few-shot task. For testing, we
collected annotations for 109 claims. The research
context breakdown of development and test splits
for track 2 are shown in Table 3.

4.3 Supplementary Data Sourcing

Extracting figures, tables and captions. Track
1, which focuses on ranking all figures and tables
from a paper based on whether they provide sup-
porting evidence for a claim, requires models to
accurately extract figures and tables from paper
PDFs. Our preliminary exploration showed that
even state-of-the-art toolkits such as PaperMage
(Lo et al., 2023) perform poorly on figure and table
extraction, particularly for cell biology (∼20% ac-
curacy). This motivated us to get all figures, tables
and captions manually extracted from paper PDFs
and release them as supplementary data.

For this annotation process, all paper PDFs were
rasterized and uploaded to the Label Studio data
labeling platform. 3 Annotators then labeled all
figures, tables and captions by drawing bounding
boxes, annotating figures at the smallest sub-figure
level. We recruited three annotators with experi-
ence in reading and writing scientific text from Up-
work.4 All annotators were trained to do the task on
a small pilot set of PDFs annotated by two authors,
and paid $20-$24 an hour. Bounding box coordi-
nates collected via this process were used then to
crop out figures, tables and captions. Sub-figures
were concatenated into a compound figure since
the entire figure might be labeled as supporting ev-
idence in some instances. For example, if a Figure
1 had subfigures 1A, 1B, and 1C, we provided a
compound Figure 1 besides Figure 1A, Figure 1B
and Figure 1C as candidates for ranking. Lastly,
we also ran optical character recognition (OCR)
using the Nougat library (Blecher et al., 2023) on
caption images and released caption texts.

Extracting full-texts. Track 2 requires partici-
pants to extract methodological details from paper
full-texts. To make participation easier, we released

3https://labelstud.io/
4https://www.upwork.com/
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parsed full-texts for all PDFs extracted using Pa-
perMage (Lo et al., 2023). Because we could not
guarantee the accuracy of section labels, the full-
text parses did not have section information.

Silver data generation. Since track 2 has lim-
ited training data, we release additional unlabeled
text resources to encourage exploration of weak
supervision-style approaches. Specifically, we also
provided full text parses for 17,007 papers from
1-2 hop in-bound and out-bound citations of the
original papers present in our training data.

The training, development, and blind test data
(without gold annotation) for both tracks are avail-
able on HuggingFace5.

5 Official Results

The training data for this shared task was released
on Github, alongside evaluation scripts, on April
11, 2024. The test phase was released as an open
competition on Eval.Ai6 on May 31, 2024. Partici-
pants were allowed to upload a maximum of five
submissions per day during the seven-day testing
phase. We received official submissions from a
total of 6 teams for track 1, and 2 teams for track
2. The official results from the leaderboard, as
well as the performance of some baseline systems,
are shown in Tables 4 and 5 for tracks 1 and 2,
respectively.

Team nDCG@5 nDCG@10

CSIRO-LT 0.73 1.06
OSX 0.64 0.69

UW24 0.26 0.30
larch24 0.25 0.29
KISTI 0.17 0.22
SLTD 0.14 0.14

Baselines

CC-Sim 0.28 0.36
CC-Sim (Sci) 0.29 0.36

CC-LLM-Rank 0.33 0.36
LLaVA 0.20 0.29
GPT-4o 0.64 0.68

Table 4: Official results for Track 1. For each team,
we report the performance of the highest-scoring run
submitted to the leaderboard

5https://huggingface.co/datasets/joelchan/
contextualizing-scientific-claims

6https://eval.ai/web/challenges/
challenge-page/2306/overview

5.1 Track 1

Baseline systems. For track 1, we report the per-
formance of the following baselines:
• CC-Sim: Ranking figures/tables in decreasing

order of cosine similarity between the claim and
figure/table caption texts embedded using MPNet
(Song et al., 2020). We use the all-mpnet-base-
v2 version from Sentence Transformers (Reimers
and Gurevych, 2019).7

• CC-Sim (Sci): Same as above, except claim and
caption texts are embedded using SPECTER (Co-
han et al., 2020).

• CC-LLM-Rank: Prompting an LLM to rank fig-
ures/tables in decreasing order of support given
a claim and figure/table caption texts. We use
GPT-4-Turbo.

• LLaVA: Prompting a multimodal LLM to pro-
duce relevance scores given a claim and fig-
ure/table pair, which are then used for ranking.
We use the llava-1.5-7b-hf version from Hugging-
face.

• GPT-4o: Same as above, except using GPT-4o.

Participant submissions. Though six teams par-
ticipated, we only received reports from the top
three teams: CSIRO-LT, OSX, and UW24. Inter-
estingly, all three adopted different approaches to
the task. Team OSX opted for the most straightfor-
ward approach of prompting multimodal LLMs, but
explored sophisticated prompting strategies such
as chain-of-thought prompting, multiple retries,
etc., which significantly boosted their performance.
Team UW24 focused on data augmentation and
leveraged datasets for related tasks like scientific
image captioning to train a better scientific image-
text similarity model, but this technique was less
successful. Lastly, CSIRO-LT had the most com-
plicated system design consisting of an ensemble
of retrieval approaches, which differed in retrieval
strategy used (BM25, embeddings, etc.) and how
text documents representing figures/tables are con-
structed (LLM-based descriptions, captions, etc.).
Consistent with the findings of other teams, they
also observed that their text-based systems outper-
formed all approaches that tried to train an image-
text similarity model.

The top-performing team (CSIRO-LT) achieved
nDCG@5 = 0.73 and nDCG@10 = 1.06. Note that

7https://sbert.net/docs/sentence_transformer/
pretrained_models.html
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Team BERTScore ROUGE-1 ROUGE-2 ROUGE-L

CSIRO-LT 0.87 0.35 0.18 0.27
OSX 0.86 0.32 0.17 0.26

Baselines

GPT-4 0.70 0.28 0.16 0.22
Mixtral-8x22B 0.80 0.29 0.14 0.23

Table 5: Official results for Track 2. For each team, we report the performance of the highest-scoring run submitted
to the leaderboard

our partial relevance score modification can some-
times lead to nDCG scores > 1 if both the correct
sub-figures as well as parent figures are present
in the top ranked predictions. With the exception
of the top two teams, all others had worse results
than our weakest baseline, indicating the difficulty
of this task. On the other hand, GPT-4o achieves
very strong performance with our simple zero-shot
baseline prompting strategy, almost matching the
performance of the team ranked second, indicating
that closed LLMs are now improving the tractabil-
ity of this task.

5.2 Track 2

Baseline systems. For track 2, we report the per-
formance of the following baselines:
• GPT-4: Prompting an LLM to return all rele-

vant quotes about methodological details given
a claim and the paper full-text. We use GPT-4-
Turbo.

• Mixtral-8x22B: Same as above with an open
LLM, we use Mixtral-8x22B-Instruct-v0.1 owing
to its large context length which can ingest full-
texts.

Participant submissions. Only CSIRO-LT and
OSX participated in track 2, with OSX continu-
ing to rely on prompting LLMs. CSIRO-LT again
leveraged retrieval approaches, additionally explor-
ing rule-based and LLM-based postprocessing of
retrieved snippets to further push performance.

For track 2, both participating teams had very
close scores, improving moderately over our base-
lines. We note here that the BERTScores were
in general substantially higher than the ROUGE
scores. Interestingly, we observed that Mixtral
achieved slightly better performance than GPT-4
indicating that this task is tractable for SOTA open
LLMs too (unlike track 1 where LLaVA signifi-
cantly underperformed GPT-4o).

6 Discussion and Future Directions

Overall, our baseline experiments and participant
submissions for both shared task tracks demon-
strate that the problem of contextualizing scientific
claims is still challenging but starting to become
tractable. For instance, baseline performance was
quite low, but two teams were able to substantially
outperform these baselines while still leaving some
room for improvement. Our experiences construct-
ing the dataset, and reflections on participants’ tech-
nical reports, also suggest fruitful future directions.

Better image-text similarity models. Con-
trastively trained image-text similarity models like
CLIP could be beneficial for our task since they can
adapt to other scientific domains with little training
data (necessary for real-world use given high costs
of collecting annotated data). However, a common
theme across participants’ reports was that using
image-text similarity models did not perform well
compared to relying entirely on text or prompting
multimodal LLMs. Exploring why models like
CLIP do not work well on our task and how to im-
prove them could lead to stronger models for our
task, as well as advancements in image-text rep-
resentation learning. One potential direction may
be to explore augmentation of figures with textual
mentions (Yang et al., 2023).

PDF pre-processing. An ideal system for con-
textualizing scientific claims would be able to op-
erate end-to-end from research paper PDFs. How-
ever, state-of-the-art PDF preprocessing toolkits
(e.g., PaperMage (Lo et al., 2023)) were not able
to extract figures/tables with sufficient accuracy,
particularly for some domains like biology papers;
thus, to make this shared task tractable, we pro-
vided manually extracted figures/tables/captions
to participants. This suggests that further work is
needed to improve PDF preprocessing tasks such as
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structured content extraction (Shen et al., 2022; Lo
et al., 2023), or converting PDFs to more accessi-
ble HTML (Wang et al., 2021), which could enable
development of better end-to-end contextualization
methods, especially across scientific domains.

Evaluation metrics for context identification.
Finally, from an evaluation perspective, we suggest
that better evaluation metrics may be needed for as-
sessing the extraction of methodological details as
context for claims. Similar to other summarization
tasks, in our setting, methodological details can be
presented at multiple points in a paper, and models
might choose different snippet(s) expressing the
same information. Our choice of BERTScore as
a complement to ROUGE partially mitigated this
issue: however, this approach may overestimate
performance since it relies on overall text similar-
ity rather than assessing whether all relevant facts
are retrieved. Thus, better automated evaluation for
this subtask is still an open problem. Future work
could explore adapting factuality-style evaluations,
such as extracting atomic facts from gold snippets
and measuring whether they are covered/supported
by model-retrieved snippets (Min et al., 2023) or
explore model-based evaluation using LLMs as
judges (Bubeck et al., 2023).

7 Conclusion

In this paper, we described a new dataset and results
from a shared task for contextualizing scientific
claims with empirical evidence and methodologi-
cal details. Our dataset consists of 585 scientific
claims with gold annotations for figures and tables,
and gold text snippets of methodological details,
that ground the key results behind each claim. Ex-
periments with text embedding and (multimodal)
LLM-based baselines demonstrate the challenging
nature of the task. Performance gains over these
baselines from official submissions to the Shared
Task for this dataset at SDP 2024 show the tractabil-
ity of the task, and reveal promising directions for
future work, such as improving image-text similar-
ity models, PDF-processing, and automated evalu-
ation metrics for context identification.
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