@inproceedings{hirasawa-2024-osx,
title = "{OSX} at Context24: How Well Can {GPT} Tackle Contexualizing Scientific Figures and Tables",
author = "Hirasawa, Tosho",
editor = "Ghosal, Tirthankar and
Singh, Amanpreet and
Waard, Anita and
Mayr, Philipp and
Naik, Aakanksha and
Weller, Orion and
Lee, Yoonjoo and
Shen, Shannon and
Qin, Yanxia",
booktitle = "Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.sdp-1.31",
pages = "324--331",
abstract = "Identifying the alignment between different parts of a scientific paper is fundamental to scholarly document processing.In the Context24 shared task, participants are given a scientific claim and asked to identify (1) key figures or tables that support the claim and (2) methodological details.While employing a supervised approach to train models on task-specific data is a prevailing strategy for both subtasks, such an approach is not feasible for low-resource domains.Therefore, this paper introduces data-free systems supported by Large Language Models.We propose systems based on GPT-4o and GPT-4-turbo for each task.The experimental results reveal the zero-shot capabilities of GPT-4* in both tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hirasawa-2024-osx">
<titleInfo>
<title>OSX at Context24: How Well Can GPT Tackle Contexualizing Scientific Figures and Tables</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tosho</namePart>
<namePart type="family">Hirasawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanpreet</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anita</namePart>
<namePart type="family">Waard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Mayr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aakanksha</namePart>
<namePart type="family">Naik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orion</namePart>
<namePart type="family">Weller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoonjoo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shannon</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanxia</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identifying the alignment between different parts of a scientific paper is fundamental to scholarly document processing.In the Context24 shared task, participants are given a scientific claim and asked to identify (1) key figures or tables that support the claim and (2) methodological details.While employing a supervised approach to train models on task-specific data is a prevailing strategy for both subtasks, such an approach is not feasible for low-resource domains.Therefore, this paper introduces data-free systems supported by Large Language Models.We propose systems based on GPT-4o and GPT-4-turbo for each task.The experimental results reveal the zero-shot capabilities of GPT-4* in both tasks.</abstract>
<identifier type="citekey">hirasawa-2024-osx</identifier>
<location>
<url>https://aclanthology.org/2024.sdp-1.31</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>324</start>
<end>331</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OSX at Context24: How Well Can GPT Tackle Contexualizing Scientific Figures and Tables
%A Hirasawa, Tosho
%Y Ghosal, Tirthankar
%Y Singh, Amanpreet
%Y Waard, Anita
%Y Mayr, Philipp
%Y Naik, Aakanksha
%Y Weller, Orion
%Y Lee, Yoonjoo
%Y Shen, Shannon
%Y Qin, Yanxia
%S Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F hirasawa-2024-osx
%X Identifying the alignment between different parts of a scientific paper is fundamental to scholarly document processing.In the Context24 shared task, participants are given a scientific claim and asked to identify (1) key figures or tables that support the claim and (2) methodological details.While employing a supervised approach to train models on task-specific data is a prevailing strategy for both subtasks, such an approach is not feasible for low-resource domains.Therefore, this paper introduces data-free systems supported by Large Language Models.We propose systems based on GPT-4o and GPT-4-turbo for each task.The experimental results reveal the zero-shot capabilities of GPT-4* in both tasks.
%U https://aclanthology.org/2024.sdp-1.31
%P 324-331
Markdown (Informal)
[OSX at Context24: How Well Can GPT Tackle Contexualizing Scientific Figures and Tables](https://aclanthology.org/2024.sdp-1.31) (Hirasawa, sdp-WS 2024)
ACL