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Abstract

Identifying the alignment between different
parts of a scientific paper is fundamental to
scholarly document processing. In the Con-
text24 shared task, participants are given a sci-
entific claim and asked to identify (1) key fig-
ures or tables that support the claim and (2)
methodological details. While employing a
supervised approach to train models on task-
specific data is a prevailing strategy for both
subtasks, such an approach is not feasible for
low-resource domains. Therefore, this paper in-
troduces data-free systems supported by Large
Language Models. We propose systems based
on GPT-4o and GPT-4-turbo for each task. The
experimental results reveal the zero-shot ca-
pabilities of GPT-4* in both tasks. https:
//github.com/toshohirasawa/context24

1 Introduction

In scientific writing, the alignment between differ-
ent sections of a paper and the consistency between
textual claims and visual elements are paramount
for effective communication (Gopen and Swan,
1990). A well-aligned paper presents a coherent
narrative from introduction to conclusion, with
each section building logically upon the last. This
structural integrity is complemented by the harmo-
nious integration of figures and tables with the text,
where visual data reinforce and clarify written as-
sertions (Franzblau and Chung, 2012). Such align-
ment serves multiple crucial functions: it enhances
reader comprehension, strengthens the paper’s ar-
gumentative force, and facilitates critical evalua-
tion by peers. When research questions, method-
ologies, results, and interpretations are presented
consistently across both prose and visual formats, it
becomes easier for readers to grasp the study’s sig-
nificance and situate its findings within the broader
scientific context. This holistic approach to align-
ment not only elevates the quality of individual
papers but also contributes to the overall efficiency

of knowledge dissemination in the scientific com-
munity.

Building upon the importance of alignment in
scientific writing, the Context24 shared task at the
4th Workshop on Scholarly Document Processing
(SDP 2024) addresses a critical challenge in sci-
entific communication: the efficient interpretation
and contextualization of scientific claims. This task
aligns with the broader goal of enhancing the co-
herence between claims and supporting evidence in
scientific papers. The two tracks of the shared task
- Evidence Identification and Grounding Con-
text Identification - aim to automate the process
of linking claims with their supporting visual el-
ements and methodological details, respectively.
By facilitating the rapid identification of support-
ing evidence and grounding context, the Context24
task has the potential to significantly enhance the
efficiency of scientific communication, enabling re-
searchers to evaluate and build upon existing work
more quickly.

Evidence Identification This track requires par-
ticipants to identify key figures or tables from a
given research paper that provide supporting evi-
dence for a specific scientific claim. Participants
must not only locate the relevant visual data but
also ensure that it directly supports the stated claim.

Grounding Context Identification In this track,
participants must identify all relevant methodologi-
cal details associated with a scientific claim. These
details are often scattered throughout the paper
and include figures, tables, and textual descriptions
that elucidate the experimental setup, measurement
methods, sample characteristics, and other critical
information necessary for understanding the basis
of the claim.

This paper outlines our approach to the Con-
text24 shared task. Our system was based on
the GPT-4 family and exclusively utilized the trial
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data provided by the organizers, without incorpo-
rating any supplementary datasets. Our system
achieved the second-highest rank in both tracks.
The findings indicate that GPT-4 models can iden-
tify grounding information in both cross-modal and
unimodal ways without supervised tuning.

2 Related Work

Our zero-shot approach to multimodal scientific
claim verification is motivated by two key factors
in the current research landscape. First, there is a
notable scarcity of large-scale annotated datasets
specifically designed for multimodal scientific
claim verification. As highlighted by Wadden et al.
(2020), creating such datasets requires significant
domain expertise and is highly resource-intensive.
This lack of training data presents a substantial
challenge for supervised learning approaches in
this domain.

Secondly, recent advancements in large language
models (LLMs) have demonstrated remarkable
zero-shot and few-shot capabilities across various
tasks. Brown et al. (2020) showed that GPT-3
can perform complex tasks without task-specific
fine-tuning, while Wei et al. (2022) further demon-
strated the effectiveness of instruction-tuning in
enhancing zero-shot performance. These findings
suggest that LLMs could potentially address com-
plex tasks like scientific claim verification without
extensive labeled data.

In the realm of multimodal models, several
architectures have been developed to bridge the
gap between vision and language. CLIP (Con-
trastive Language-Image Pre-training) (Radford
et al., 2021b) demonstrated strong zero-shot per-
formance on various vision tasks through natural
language supervision. More recent models like
LLaVA (Liu et al., 2023) have extended this ap-
proach to incorporate more general vision-language
capabilities. In the scientific domain, models like
ScienceQA (Lu et al., 2022) have been developed to
handle scientific figures and text, showing promis-
ing results in tasks like answering questions about
scientific figures and diagrams.

Our choice of CLIP for this task was motivated
by its strong zero-shot performance and its abil-
ity to align visual and textual representations in a
shared embedding space. This alignment is partic-
ularly crucial for our task, where we need to match
textual claims with visual evidence from scientific
figures and tables.

Recent work on effective instruction writing for
LLMs informed the development of our prompting
strategy. Kojima et al. (2022) demonstrated that
carefully crafted prompts can induce step-by-step
reasoning in LLMs, improving their performance
on complex tasks. Similarly, Mishra et al. (2022)
showed that prompts encouraging LLMs to explain
their reasoning often lead to more accurate outputs.
These insights guided our approach to designing
prompts that encourage the model to articulate its
reasoning process when evaluating the relevance of
visual evidence to textual claims.

3 Evidence Identification

In the Evidence Identification task, we identi-
fied key figures and tables using a pipeline sys-
tem supported by GPT-4o. Given a claim x and
K candidate images (figures and tables) Z =
{z1, z2, · · · , zK}, we first computed the support-
iveness score si between the claim and the i-th
image. Afterward, we sorted the candidate images
based on their scores to determine the final ranking.

3.1 Pipeline

Supportiveness Score. We utilized GPT-4o to
compute the supportiveness score for each claim-
image pair. Specifically, given a claim x, a candi-
date image zi ∈ Z, and the corresponding extracted
caption ti, we computed the supportiveness score
si = GPT-4o(x, zi, ti;P ), where P is our prompt
constructed following the OpenAI’s instruction1.
Since the extracted caption ti is available only for
a limited number of images, we asked GPT-4o to
extract the text from the candidate image and use
this output as an alternative to the extracted caption.
The entire prompt is shown in Table 5. Note that
53 candidate images in the test data were rejected
by GPT-4o because they “may contain content that
is not allowed by our safety system.” We assigned
a zero score to these images.

In addition to following the OpenAI’s instruc-
tions, we also embedded task-specific knowledge
into the prompt. One of our findings was that some
images contain overwhelming amounts of data to
support the given claim and were assigned unex-
pectedly high scores using a naive prompt. To
mitigate this behavior, we added an evaluation in-
struction to penalize these images:

1https://platform.openai.com/docs/guides/
prompt-engineering
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Reduce the score by 3 if the image con-
tains more information than necessary to
support the statement.

, where the deduction value of 3 is determined
based on the performance of the validation data.

The single supportiveness score was extracted
from the output of GPT-4o using a regular expres-
sion:

^(?P<score>[0-9]{1,2})$

, and the match named “score” was then converted
into an INT value. In our experiment, every output
of GPT-4o contains a match.

We sampled the supportiveness scores five times
for each claim-image pair and used the mean score
as the final supportiveness score.

Ranking. Once we obtained the supportiveness
scores for all candidate images, we sorted them
based on their supportiveness scores, from high
(supportive) to low (non-supportive).

3.2 Experiments

Experiment settings. We used the offi-
cial dataset for our validation and test-
ing. To reduce the evaluation cost, we
randomly selected 10 instances from each
dataset category (BIOL403, akamatsulab,
dg-social-media-polarization, and
megacoglab) to obtain a balanced validation
dataset of 40 instances. We employed GPT-4o
as our backbone, limiting the number of to-
kens in the GPT-4o output to 32 to reduce the
computational cost. For evaluation metrics, we
employed normalized documented cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2017) at 5 and
10.

As baselines, we examined two systems: (i) a
system that outputs a list of randomly shuffled im-
ages (Random) and (ii) a CLIP-based system2 that
outputs the similarity of the claim-image pair as
the supportiveness score (CLIP).

Experiment results. Table 1 shows the results
for the validation and test data. Our first finding is
that the CLIP-base system failed to determine the
key images; its performance was even worse than
random chance. Our in-depth analysis revealed that

2From the OpenCLIP (Ilharco et al., 2021; Cherti et al.,
2023) project, we used the SOTA CLIP (Radford et al., 2021a)
model (ViT-H-14-378-quickgelu model, pre-trained on the
dfn5b dataset, with no fine-tuning.)

Valid. Test
Model @5 @10 @5 @10

Oracle 0.91 0.91 n/a n/a
Random 0.29 0.33 0.22 0.29
CLIP 0.18 0.25 n/a n/a
Ours 0.63 0.66 0.64 0.69

Table 1: NDCG scores at 5 (“@5”) and 10 (“@10”) on
validation (“Valid.”) and Test data. “Random” shows
the performance of randomly shuffled candidate images;
“Oracle” shows the performance of ground truth, which
serves as the upper boundary of the models.

Prompt Input Valid. Test
Naive x,z 0.562 0.671
Naive x,z,t 0.566 n/a
Instruction x,z 0.590 0.654
Instruction x,z,t 0.639 0.631

Table 2: NDCG@5 scores on the validation and test
data for different prompts and input types.

some images have the same style and differ only
in minor details. Since CLIP learns to distinguish
images in the same batch with larger differences
than those of the candidate images, the nature of
scientific images makes it more challenging for
CLIP to identify the key images.

Meanwhile, our GPT-backed system achieved
more than double the performance of the random
baseline. This finding indicates the GPT-4o’s capa-
bility in identifying grounding information.

3.3 Discussion

Prompt ablation. Table 2 shows the perfor-
mance of models with different prompt types and
input sources. The Naive prompt systems use a
simple prompt without instruction (see Appendix C
for details). The Instruction prompt systems fol-
low the OpenAI’s instructions (as described in Sec-
tion 3.1). While the instruction and additional input
t improved the performance for the validation data,
they reduced performance for the test data. The
different tendencies in prompts and input sources
may stem from the different distributions of the
validation and test data. While the validation data
is balanced across four datasets, the test data com-
prises two datasets. This indicates our proposed
system performs well on two omitted datasets
(BIOL403 and dg-social-media-polarization)
but worse on the test datasets (akamatsulab and
megacoglab). Table 3 shows the validation perfor-
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(a) Microscopic image

(b) 3D orientation or alignment of structures

(c) A tracing of a neural or cellular structure

Figure 1: Images that are prohibited for ChatGPT-4o.

Dataset Naive Instruction

BIOL403 0.452 0.635
akamatsulab 0.403 0.488

dg-social-media-
polarization

0.594 0.701

megacoglab 0.798 0.732

Table 3: The validation NDCG@5 scores for four
datasets under two different prompt methods.

mance for each dataset, indicating our system has
been improved for three datasets (BIOL403, aka-
matsulab, and dg-social-media-polarization), but
failed for the megacoglab dataset.

Prohibited Images. We found that 54 out of
3, 714 (1.45%) are prohibited for ChatGPT-4o with
our latest prompt. Figure 1 shows some prohibited
images of different types. However, as the system’s
rejection of these images might have been due to a
misunderstanding about the type of required anal-
ysis or interpretation, we may avoid this behavior
by rephrasing our prompts or declaring the clear
purpose of our prompts.

Fine-tuning CLIP. Fine-tuning a general-
purpose CLIP to fit a specific task requirement is a
well-established way to utilize CLIP models (Ha
et al., 2024). Following the latest manner, we
also have tried to fine-tune a CLIP model for the
Evidence Identification task. Technically, we
fine-tuned a CLIP model3 on the train data in
two different ways: (a) continuous training with
batch-level contrastive loss and (b) adopting the
CLIP model for an NLI task. To transform the

3openai/clip-vit-base-patch32

Evidence Identification task into an NLI task, we
annotated findings images and other images in
the same paper with a label of 0 (entailment) and
1 (neutral). The best checkpoints in both ways
were selected w.r.t. the NDCG@5 score on the
validation data. In our experiment, the NLI model
outperformed the continuously trained model by
around 0.1 NDCG@5 score but underperformed
the ChatGPT-4o pipeline. This observation
suggested the close images in the same article are
preferable to the images from other articles.

4 Grounding Context Identification

In the Grounding Context Identification, we identi-
fied the methodological details in a zero-shot man-
ner using GPT-4-turbo. Most part of the prompt P
is cited from the official task definition4. We only
appended a prompt to format the output.

Given a claim x and the full text of the corre-
sponding article d, we first asked GPT-4-turbo to
generate the output r = GPT-4-turbo(x, d;P ),
where P is the prompt shown in Table 6. We then
split the output by the new lines and trimmed the
empty lines to obtain the final prediction.

4.1 Experiments

Experiment settings. We have not refined our
prompt from the first version (as shown in Table 6).
We employed GPT-4-turbo because it accepts a
longer context than GPT-4o. The number of tokens
in the output is limited to 1, 024. We sampled
only one response for each claim. For evaluation
metrics, we employed BERTScore (Zhang et al.,

4https://github.com/oasisresearchlab/
context24?tab=readme-ov-file#task-description-1
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Model BS R-1 R-2 R-L
Ours 0.86 0.32 0.17 0.26

Table 4: BERTScore (“B”), ROUGE-1 (“R-1”),
ROUGE-2 (“R-2”), and ROUGE-L(“R-L”) scores on
the test data.

2020) and ROUGE (Lin, 2004).

Experiment results. Table 4 shows the perfor-
mance of our model for the test data. Compared to
the first-placed model, our model achieved nearly
comparable performance (−0.01 BERTScore and
−0.01 ROUGE-L score). Considering the minimal
effort required to tune the prompt, this observa-
tion demonstrates the capability of GPT-4-turbo to
identify the alignments between a claim and the
corresponding methodological details.

5 Conclusion

In this paper, we introduced GPT-4-based systems
designed to identify key images and methodologi-
cal details for a given claim. Our systems achieved
considerable high performance in both subtasks
within the Context24 Shared Task.
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A Prompts for tasks

Table 5 and table 6 show our prompts for the Ev-
idence Identification and the Grounding Context
Identification tasks, respectively.

B Prompt for OCR

Table 7 shows our prompt for GPT-4o to extract text
in candidate images that have no official extracted
captions.

C Naive Prompt

Table 8 shows the Naive prompt for GPT-4o to de-
termine the supportiveness score of a given claim-
image pair.
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Role Prompt

System

Instruction:
Evaluate the given image along with its caption and the provided sentence (delimited with
XML tags) to determine how well the image supports the sentence. Follow the steps below
to ensure a comprehensive analysis.

Steps:
1. Description of the Image: Provide a brief description of the image, including key
elements and details that stand out.
2. Sentence Analysis: Break down the sentence into its main components and key points.
3. Comparison: Compare the elements and details of the image with the key points of the
sentence.
4. Evaluation: Rate the supportiveness of the image on a scale of 1 to 10, where 1 means
the image does not support the sentence at all and 10 means the image perfectly supports
the sentence. Reduce the score by 3 if the image contains more information than necessary
to support the statement.
5. Explanation: Provide a detailed explanation for the rating, highlighting specific aspects
of the image that either support or do not support the sentence.

Format:
Supportiveness Score: [Your rating here]
Image Description:
• [Your description here]
Sentence Analysis:
• [Your analysis here]
4. Comparison:
• [Your comparison here]
5. Explanation:
• [Your explanation here]

Example:
Supportiveness Score: 2
Image Description:
• The image shows a bustling city street with tall skyscrapers, busy traffic, and pedestrians
walking on the sidewalks.
Sentence Analysis:
• The sentence states, ”The serene countryside is a perfect getaway from the city’s hustle
and bustle.”
Comparison:
• The image depicts a busy city street, which is in direct contrast to the serene countryside
mentioned in the sentence.
Explanation:
• The image does not support the sentence as it shows a bustling city street rather than a
serene countryside. The elements of the image (skyscrapers, busy traffic, pedestrians) are
the opposite of what is described in the sentence.

User
<image>ENCODED_IMAGE</image>
<sentence>CLAIM</sentence>
<caption>CAPTION</caption>

Table 5: Prompt to assess the supportativeness score of each image. “ENCODED_IMAGE”, “CLAIM”, and
“CAPTION” are replaced by the base64-encoded image, the claim text, and the caption (or OCR text), respectively.
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Role Prompt

System

Given a scientific claim and a relevant research paper, identify all grounding context from
the paper discussing methodological details of the experiment that resulted in this claim.
For the purposes of this task, grounding context is restricted to quotesa from the paper.
These grounding context quotes are typically dispersed throughout the full-text, often far
from where the supporting evidence is presented.

For maximal coverage for this task, search for text snippets that cover the following key
aspects of the empirical methods of the claim:
1. What observable measures/data were collected
2. How (with what methods, analyses, etc.) from
3. Who(m) (which participants, what dataset, what population, etc.)

You should output only the text snippets and must not contain any explanation.

User
<claim>CLAIM</claim>
<full-text>FULLTEXT</full-text>

Table 6: Prompt to extract methodological details in a paper. “CLAIM” and “FULLTEXT” are replaced by the
claim text and the full text of the paper, respectively.

Role Prompt

System
You are an Optical Character Recognition (OCR) machine. You will extract all the characters
from the image provided by the user, and you will only provide the extracted text in your
response. As an OCR machine, You can only respond with the extracted text.

User ENCODED_IMAGE

Table 7: Our prompt for GPT-4o to extract text from an image. “ENCODED_IMAGE” is replaced by the base64-
encoded image.

Role Prompt

System

You will receive a sentence and an image from a scientific paper. Determine how well the
image supports the sentence and report the score on a scale from 0 to 10, where 0 means
wholly irrelevant and 10 means highly supporting. Afterward, provide a detailed explanation
for your relevance score, highlighting specific elements of the image and the sentence that
influenced your decision.

User
<image>ENCODED_IMAGE</image>
<sentence>CLAIM<sentence>

Table 8: Naive prompt. “ENCODED_IMAGE” and “CLAIM” are replaced by the base64-encoded image and the
claim text, respectively.
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